linux/drivers/crypto/ccp/ccp-crypto-sha.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
   4 *
   5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/sched.h>
  13#include <linux/delay.h>
  14#include <linux/scatterlist.h>
  15#include <linux/crypto.h>
  16#include <crypto/algapi.h>
  17#include <crypto/hash.h>
  18#include <crypto/hmac.h>
  19#include <crypto/internal/hash.h>
  20#include <crypto/sha.h>
  21#include <crypto/scatterwalk.h>
  22#include <linux/string.h>
  23
  24#include "ccp-crypto.h"
  25
  26static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  27{
  28        struct ahash_request *req = ahash_request_cast(async_req);
  29        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  30        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  31        unsigned int digest_size = crypto_ahash_digestsize(tfm);
  32
  33        if (ret)
  34                goto e_free;
  35
  36        if (rctx->hash_rem) {
  37                /* Save remaining data to buffer */
  38                unsigned int offset = rctx->nbytes - rctx->hash_rem;
  39
  40                scatterwalk_map_and_copy(rctx->buf, rctx->src,
  41                                         offset, rctx->hash_rem, 0);
  42                rctx->buf_count = rctx->hash_rem;
  43        } else {
  44                rctx->buf_count = 0;
  45        }
  46
  47        /* Update result area if supplied */
  48        if (req->result && rctx->final)
  49                memcpy(req->result, rctx->ctx, digest_size);
  50
  51e_free:
  52        sg_free_table(&rctx->data_sg);
  53
  54        return ret;
  55}
  56
  57static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  58                             unsigned int final)
  59{
  60        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  61        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  62        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  63        struct scatterlist *sg;
  64        unsigned int block_size =
  65                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  66        unsigned int sg_count;
  67        gfp_t gfp;
  68        u64 len;
  69        int ret;
  70
  71        len = (u64)rctx->buf_count + (u64)nbytes;
  72
  73        if (!final && (len <= block_size)) {
  74                scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  75                                         0, nbytes, 0);
  76                rctx->buf_count += nbytes;
  77
  78                return 0;
  79        }
  80
  81        rctx->src = req->src;
  82        rctx->nbytes = nbytes;
  83
  84        rctx->final = final;
  85        rctx->hash_rem = final ? 0 : len & (block_size - 1);
  86        rctx->hash_cnt = len - rctx->hash_rem;
  87        if (!final && !rctx->hash_rem) {
  88                /* CCP can't do zero length final, so keep some data around */
  89                rctx->hash_cnt -= block_size;
  90                rctx->hash_rem = block_size;
  91        }
  92
  93        /* Initialize the context scatterlist */
  94        sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  95
  96        sg = NULL;
  97        if (rctx->buf_count && nbytes) {
  98                /* Build the data scatterlist table - allocate enough entries
  99                 * for both data pieces (buffer and input data)
 100                 */
 101                gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 102                        GFP_KERNEL : GFP_ATOMIC;
 103                sg_count = sg_nents(req->src) + 1;
 104                ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 105                if (ret)
 106                        return ret;
 107
 108                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 109                sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 110                if (!sg) {
 111                        ret = -EINVAL;
 112                        goto e_free;
 113                }
 114                sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 115                if (!sg) {
 116                        ret = -EINVAL;
 117                        goto e_free;
 118                }
 119                sg_mark_end(sg);
 120
 121                sg = rctx->data_sg.sgl;
 122        } else if (rctx->buf_count) {
 123                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 124
 125                sg = &rctx->buf_sg;
 126        } else if (nbytes) {
 127                sg = req->src;
 128        }
 129
 130        rctx->msg_bits += (rctx->hash_cnt << 3);        /* Total in bits */
 131
 132        memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 133        INIT_LIST_HEAD(&rctx->cmd.entry);
 134        rctx->cmd.engine = CCP_ENGINE_SHA;
 135        rctx->cmd.u.sha.type = rctx->type;
 136        rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 137
 138        switch (rctx->type) {
 139        case CCP_SHA_TYPE_1:
 140                rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
 141                break;
 142        case CCP_SHA_TYPE_224:
 143                rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
 144                break;
 145        case CCP_SHA_TYPE_256:
 146                rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
 147                break;
 148        case CCP_SHA_TYPE_384:
 149                rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
 150                break;
 151        case CCP_SHA_TYPE_512:
 152                rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
 153                break;
 154        default:
 155                /* Should never get here */
 156                break;
 157        }
 158
 159        rctx->cmd.u.sha.src = sg;
 160        rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 161        rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 162                &ctx->u.sha.opad_sg : NULL;
 163        rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 164                ctx->u.sha.opad_count : 0;
 165        rctx->cmd.u.sha.first = rctx->first;
 166        rctx->cmd.u.sha.final = rctx->final;
 167        rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 168
 169        rctx->first = 0;
 170
 171        ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 172
 173        return ret;
 174
 175e_free:
 176        sg_free_table(&rctx->data_sg);
 177
 178        return ret;
 179}
 180
 181static int ccp_sha_init(struct ahash_request *req)
 182{
 183        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 184        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 185        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 186        struct ccp_crypto_ahash_alg *alg =
 187                ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 188        unsigned int block_size =
 189                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 190
 191        memset(rctx, 0, sizeof(*rctx));
 192
 193        rctx->type = alg->type;
 194        rctx->first = 1;
 195
 196        if (ctx->u.sha.key_len) {
 197                /* Buffer the HMAC key for first update */
 198                memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 199                rctx->buf_count = block_size;
 200        }
 201
 202        return 0;
 203}
 204
 205static int ccp_sha_update(struct ahash_request *req)
 206{
 207        return ccp_do_sha_update(req, req->nbytes, 0);
 208}
 209
 210static int ccp_sha_final(struct ahash_request *req)
 211{
 212        return ccp_do_sha_update(req, 0, 1);
 213}
 214
 215static int ccp_sha_finup(struct ahash_request *req)
 216{
 217        return ccp_do_sha_update(req, req->nbytes, 1);
 218}
 219
 220static int ccp_sha_digest(struct ahash_request *req)
 221{
 222        int ret;
 223
 224        ret = ccp_sha_init(req);
 225        if (ret)
 226                return ret;
 227
 228        return ccp_sha_finup(req);
 229}
 230
 231static int ccp_sha_export(struct ahash_request *req, void *out)
 232{
 233        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 234        struct ccp_sha_exp_ctx state;
 235
 236        /* Don't let anything leak to 'out' */
 237        memset(&state, 0, sizeof(state));
 238
 239        state.type = rctx->type;
 240        state.msg_bits = rctx->msg_bits;
 241        state.first = rctx->first;
 242        memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
 243        state.buf_count = rctx->buf_count;
 244        memcpy(state.buf, rctx->buf, sizeof(state.buf));
 245
 246        /* 'out' may not be aligned so memcpy from local variable */
 247        memcpy(out, &state, sizeof(state));
 248
 249        return 0;
 250}
 251
 252static int ccp_sha_import(struct ahash_request *req, const void *in)
 253{
 254        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 255        struct ccp_sha_exp_ctx state;
 256
 257        /* 'in' may not be aligned so memcpy to local variable */
 258        memcpy(&state, in, sizeof(state));
 259
 260        memset(rctx, 0, sizeof(*rctx));
 261        rctx->type = state.type;
 262        rctx->msg_bits = state.msg_bits;
 263        rctx->first = state.first;
 264        memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
 265        rctx->buf_count = state.buf_count;
 266        memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
 267
 268        return 0;
 269}
 270
 271static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 272                          unsigned int key_len)
 273{
 274        struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 275        struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 276        unsigned int block_size = crypto_shash_blocksize(shash);
 277        unsigned int digest_size = crypto_shash_digestsize(shash);
 278        int i, ret;
 279
 280        /* Set to zero until complete */
 281        ctx->u.sha.key_len = 0;
 282
 283        /* Clear key area to provide zero padding for keys smaller
 284         * than the block size
 285         */
 286        memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 287
 288        if (key_len > block_size) {
 289                /* Must hash the input key */
 290                ret = crypto_shash_tfm_digest(shash, key, key_len,
 291                                              ctx->u.sha.key);
 292                if (ret)
 293                        return -EINVAL;
 294
 295                key_len = digest_size;
 296        } else {
 297                memcpy(ctx->u.sha.key, key, key_len);
 298        }
 299
 300        for (i = 0; i < block_size; i++) {
 301                ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
 302                ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
 303        }
 304
 305        sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 306        ctx->u.sha.opad_count = block_size;
 307
 308        ctx->u.sha.key_len = key_len;
 309
 310        return 0;
 311}
 312
 313static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 314{
 315        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 316        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 317
 318        ctx->complete = ccp_sha_complete;
 319        ctx->u.sha.key_len = 0;
 320
 321        crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 322
 323        return 0;
 324}
 325
 326static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 327{
 328}
 329
 330static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 331{
 332        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 333        struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 334        struct crypto_shash *hmac_tfm;
 335
 336        hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 337        if (IS_ERR(hmac_tfm)) {
 338                pr_warn("could not load driver %s need for HMAC support\n",
 339                        alg->child_alg);
 340                return PTR_ERR(hmac_tfm);
 341        }
 342
 343        ctx->u.sha.hmac_tfm = hmac_tfm;
 344
 345        return ccp_sha_cra_init(tfm);
 346}
 347
 348static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 349{
 350        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 351
 352        if (ctx->u.sha.hmac_tfm)
 353                crypto_free_shash(ctx->u.sha.hmac_tfm);
 354
 355        ccp_sha_cra_exit(tfm);
 356}
 357
 358struct ccp_sha_def {
 359        unsigned int version;
 360        const char *name;
 361        const char *drv_name;
 362        enum ccp_sha_type type;
 363        u32 digest_size;
 364        u32 block_size;
 365};
 366
 367static struct ccp_sha_def sha_algs[] = {
 368        {
 369                .version        = CCP_VERSION(3, 0),
 370                .name           = "sha1",
 371                .drv_name       = "sha1-ccp",
 372                .type           = CCP_SHA_TYPE_1,
 373                .digest_size    = SHA1_DIGEST_SIZE,
 374                .block_size     = SHA1_BLOCK_SIZE,
 375        },
 376        {
 377                .version        = CCP_VERSION(3, 0),
 378                .name           = "sha224",
 379                .drv_name       = "sha224-ccp",
 380                .type           = CCP_SHA_TYPE_224,
 381                .digest_size    = SHA224_DIGEST_SIZE,
 382                .block_size     = SHA224_BLOCK_SIZE,
 383        },
 384        {
 385                .version        = CCP_VERSION(3, 0),
 386                .name           = "sha256",
 387                .drv_name       = "sha256-ccp",
 388                .type           = CCP_SHA_TYPE_256,
 389                .digest_size    = SHA256_DIGEST_SIZE,
 390                .block_size     = SHA256_BLOCK_SIZE,
 391        },
 392        {
 393                .version        = CCP_VERSION(5, 0),
 394                .name           = "sha384",
 395                .drv_name       = "sha384-ccp",
 396                .type           = CCP_SHA_TYPE_384,
 397                .digest_size    = SHA384_DIGEST_SIZE,
 398                .block_size     = SHA384_BLOCK_SIZE,
 399        },
 400        {
 401                .version        = CCP_VERSION(5, 0),
 402                .name           = "sha512",
 403                .drv_name       = "sha512-ccp",
 404                .type           = CCP_SHA_TYPE_512,
 405                .digest_size    = SHA512_DIGEST_SIZE,
 406                .block_size     = SHA512_BLOCK_SIZE,
 407        },
 408};
 409
 410static int ccp_register_hmac_alg(struct list_head *head,
 411                                 const struct ccp_sha_def *def,
 412                                 const struct ccp_crypto_ahash_alg *base_alg)
 413{
 414        struct ccp_crypto_ahash_alg *ccp_alg;
 415        struct ahash_alg *alg;
 416        struct hash_alg_common *halg;
 417        struct crypto_alg *base;
 418        int ret;
 419
 420        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 421        if (!ccp_alg)
 422                return -ENOMEM;
 423
 424        /* Copy the base algorithm and only change what's necessary */
 425        *ccp_alg = *base_alg;
 426        INIT_LIST_HEAD(&ccp_alg->entry);
 427
 428        strscpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 429
 430        alg = &ccp_alg->alg;
 431        alg->setkey = ccp_sha_setkey;
 432
 433        halg = &alg->halg;
 434
 435        base = &halg->base;
 436        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 437        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 438                 def->drv_name);
 439        base->cra_init = ccp_hmac_sha_cra_init;
 440        base->cra_exit = ccp_hmac_sha_cra_exit;
 441
 442        ret = crypto_register_ahash(alg);
 443        if (ret) {
 444                pr_err("%s ahash algorithm registration error (%d)\n",
 445                       base->cra_name, ret);
 446                kfree(ccp_alg);
 447                return ret;
 448        }
 449
 450        list_add(&ccp_alg->entry, head);
 451
 452        return ret;
 453}
 454
 455static int ccp_register_sha_alg(struct list_head *head,
 456                                const struct ccp_sha_def *def)
 457{
 458        struct ccp_crypto_ahash_alg *ccp_alg;
 459        struct ahash_alg *alg;
 460        struct hash_alg_common *halg;
 461        struct crypto_alg *base;
 462        int ret;
 463
 464        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 465        if (!ccp_alg)
 466                return -ENOMEM;
 467
 468        INIT_LIST_HEAD(&ccp_alg->entry);
 469
 470        ccp_alg->type = def->type;
 471
 472        alg = &ccp_alg->alg;
 473        alg->init = ccp_sha_init;
 474        alg->update = ccp_sha_update;
 475        alg->final = ccp_sha_final;
 476        alg->finup = ccp_sha_finup;
 477        alg->digest = ccp_sha_digest;
 478        alg->export = ccp_sha_export;
 479        alg->import = ccp_sha_import;
 480
 481        halg = &alg->halg;
 482        halg->digestsize = def->digest_size;
 483        halg->statesize = sizeof(struct ccp_sha_exp_ctx);
 484
 485        base = &halg->base;
 486        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 487        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 488                 def->drv_name);
 489        base->cra_flags = CRYPTO_ALG_ASYNC |
 490                          CRYPTO_ALG_ALLOCATES_MEMORY |
 491                          CRYPTO_ALG_KERN_DRIVER_ONLY |
 492                          CRYPTO_ALG_NEED_FALLBACK;
 493        base->cra_blocksize = def->block_size;
 494        base->cra_ctxsize = sizeof(struct ccp_ctx);
 495        base->cra_priority = CCP_CRA_PRIORITY;
 496        base->cra_init = ccp_sha_cra_init;
 497        base->cra_exit = ccp_sha_cra_exit;
 498        base->cra_module = THIS_MODULE;
 499
 500        ret = crypto_register_ahash(alg);
 501        if (ret) {
 502                pr_err("%s ahash algorithm registration error (%d)\n",
 503                       base->cra_name, ret);
 504                kfree(ccp_alg);
 505                return ret;
 506        }
 507
 508        list_add(&ccp_alg->entry, head);
 509
 510        ret = ccp_register_hmac_alg(head, def, ccp_alg);
 511
 512        return ret;
 513}
 514
 515int ccp_register_sha_algs(struct list_head *head)
 516{
 517        int i, ret;
 518        unsigned int ccpversion = ccp_version();
 519
 520        for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 521                if (sha_algs[i].version > ccpversion)
 522                        continue;
 523                ret = ccp_register_sha_alg(head, &sha_algs[i]);
 524                if (ret)
 525                        return ret;
 526        }
 527
 528        return 0;
 529}
 530