linux/drivers/gpu/drm/i915/i915_gem.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_vma_manager.h>
  29#include <linux/dma-fence-array.h>
  30#include <linux/kthread.h>
  31#include <linux/dma-resv.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/slab.h>
  34#include <linux/stop_machine.h>
  35#include <linux/swap.h>
  36#include <linux/pci.h>
  37#include <linux/dma-buf.h>
  38#include <linux/mman.h>
  39
  40#include "display/intel_display.h"
  41#include "display/intel_frontbuffer.h"
  42
  43#include "gem/i915_gem_clflush.h"
  44#include "gem/i915_gem_context.h"
  45#include "gem/i915_gem_ioctls.h"
  46#include "gem/i915_gem_mman.h"
  47#include "gem/i915_gem_region.h"
  48#include "gt/intel_engine_user.h"
  49#include "gt/intel_gt.h"
  50#include "gt/intel_gt_pm.h"
  51#include "gt/intel_workarounds.h"
  52
  53#include "i915_drv.h"
  54#include "i915_trace.h"
  55#include "i915_vgpu.h"
  56
  57#include "intel_pm.h"
  58
  59static int
  60insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  61{
  62        int err;
  63
  64        err = mutex_lock_interruptible(&ggtt->vm.mutex);
  65        if (err)
  66                return err;
  67
  68        memset(node, 0, sizeof(*node));
  69        err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  70                                          size, 0, I915_COLOR_UNEVICTABLE,
  71                                          0, ggtt->mappable_end,
  72                                          DRM_MM_INSERT_LOW);
  73
  74        mutex_unlock(&ggtt->vm.mutex);
  75
  76        return err;
  77}
  78
  79static void
  80remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  81{
  82        mutex_lock(&ggtt->vm.mutex);
  83        drm_mm_remove_node(node);
  84        mutex_unlock(&ggtt->vm.mutex);
  85}
  86
  87int
  88i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  89                            struct drm_file *file)
  90{
  91        struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
  92        struct drm_i915_gem_get_aperture *args = data;
  93        struct i915_vma *vma;
  94        u64 pinned;
  95
  96        if (mutex_lock_interruptible(&ggtt->vm.mutex))
  97                return -EINTR;
  98
  99        pinned = ggtt->vm.reserved;
 100        list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 101                if (i915_vma_is_pinned(vma))
 102                        pinned += vma->node.size;
 103
 104        mutex_unlock(&ggtt->vm.mutex);
 105
 106        args->aper_size = ggtt->vm.total;
 107        args->aper_available_size = args->aper_size - pinned;
 108
 109        return 0;
 110}
 111
 112int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 113                           unsigned long flags)
 114{
 115        struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 116        LIST_HEAD(still_in_list);
 117        intel_wakeref_t wakeref;
 118        struct i915_vma *vma;
 119        int ret;
 120
 121        if (list_empty(&obj->vma.list))
 122                return 0;
 123
 124        /*
 125         * As some machines use ACPI to handle runtime-resume callbacks, and
 126         * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 127         * as they are required by the shrinker. Ergo, we wake the device up
 128         * first just in case.
 129         */
 130        wakeref = intel_runtime_pm_get(rpm);
 131
 132try_again:
 133        ret = 0;
 134        spin_lock(&obj->vma.lock);
 135        while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 136                                                       struct i915_vma,
 137                                                       obj_link))) {
 138                struct i915_address_space *vm = vma->vm;
 139
 140                list_move_tail(&vma->obj_link, &still_in_list);
 141                if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 142                        continue;
 143
 144                if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 145                        ret = -EBUSY;
 146                        break;
 147                }
 148
 149                ret = -EAGAIN;
 150                if (!i915_vm_tryopen(vm))
 151                        break;
 152
 153                /* Prevent vma being freed by i915_vma_parked as we unbind */
 154                vma = __i915_vma_get(vma);
 155                spin_unlock(&obj->vma.lock);
 156
 157                if (vma) {
 158                        ret = -EBUSY;
 159                        if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 160                            !i915_vma_is_active(vma))
 161                                ret = i915_vma_unbind(vma);
 162
 163                        __i915_vma_put(vma);
 164                }
 165
 166                i915_vm_close(vm);
 167                spin_lock(&obj->vma.lock);
 168        }
 169        list_splice_init(&still_in_list, &obj->vma.list);
 170        spin_unlock(&obj->vma.lock);
 171
 172        if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 173                rcu_barrier(); /* flush the i915_vm_release() */
 174                goto try_again;
 175        }
 176
 177        intel_runtime_pm_put(rpm, wakeref);
 178
 179        return ret;
 180}
 181
 182static int
 183i915_gem_create(struct drm_file *file,
 184                struct intel_memory_region *mr,
 185                u64 *size_p,
 186                u32 *handle_p)
 187{
 188        struct drm_i915_gem_object *obj;
 189        u32 handle;
 190        u64 size;
 191        int ret;
 192
 193        GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
 194        size = round_up(*size_p, mr->min_page_size);
 195        if (size == 0)
 196                return -EINVAL;
 197
 198        /* For most of the ABI (e.g. mmap) we think in system pages */
 199        GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
 200
 201        /* Allocate the new object */
 202        obj = i915_gem_object_create_region(mr, size, 0);
 203        if (IS_ERR(obj))
 204                return PTR_ERR(obj);
 205
 206        ret = drm_gem_handle_create(file, &obj->base, &handle);
 207        /* drop reference from allocate - handle holds it now */
 208        i915_gem_object_put(obj);
 209        if (ret)
 210                return ret;
 211
 212        *handle_p = handle;
 213        *size_p = size;
 214        return 0;
 215}
 216
 217int
 218i915_gem_dumb_create(struct drm_file *file,
 219                     struct drm_device *dev,
 220                     struct drm_mode_create_dumb *args)
 221{
 222        enum intel_memory_type mem_type;
 223        int cpp = DIV_ROUND_UP(args->bpp, 8);
 224        u32 format;
 225
 226        switch (cpp) {
 227        case 1:
 228                format = DRM_FORMAT_C8;
 229                break;
 230        case 2:
 231                format = DRM_FORMAT_RGB565;
 232                break;
 233        case 4:
 234                format = DRM_FORMAT_XRGB8888;
 235                break;
 236        default:
 237                return -EINVAL;
 238        }
 239
 240        /* have to work out size/pitch and return them */
 241        args->pitch = ALIGN(args->width * cpp, 64);
 242
 243        /* align stride to page size so that we can remap */
 244        if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
 245                                                    DRM_FORMAT_MOD_LINEAR))
 246                args->pitch = ALIGN(args->pitch, 4096);
 247
 248        if (args->pitch < args->width)
 249                return -EINVAL;
 250
 251        args->size = mul_u32_u32(args->pitch, args->height);
 252
 253        mem_type = INTEL_MEMORY_SYSTEM;
 254        if (HAS_LMEM(to_i915(dev)))
 255                mem_type = INTEL_MEMORY_LOCAL;
 256
 257        return i915_gem_create(file,
 258                               intel_memory_region_by_type(to_i915(dev),
 259                                                           mem_type),
 260                               &args->size, &args->handle);
 261}
 262
 263/**
 264 * Creates a new mm object and returns a handle to it.
 265 * @dev: drm device pointer
 266 * @data: ioctl data blob
 267 * @file: drm file pointer
 268 */
 269int
 270i915_gem_create_ioctl(struct drm_device *dev, void *data,
 271                      struct drm_file *file)
 272{
 273        struct drm_i915_private *i915 = to_i915(dev);
 274        struct drm_i915_gem_create *args = data;
 275
 276        i915_gem_flush_free_objects(i915);
 277
 278        return i915_gem_create(file,
 279                               intel_memory_region_by_type(i915,
 280                                                           INTEL_MEMORY_SYSTEM),
 281                               &args->size, &args->handle);
 282}
 283
 284static int
 285shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 286            bool needs_clflush)
 287{
 288        char *vaddr;
 289        int ret;
 290
 291        vaddr = kmap(page);
 292
 293        if (needs_clflush)
 294                drm_clflush_virt_range(vaddr + offset, len);
 295
 296        ret = __copy_to_user(user_data, vaddr + offset, len);
 297
 298        kunmap(page);
 299
 300        return ret ? -EFAULT : 0;
 301}
 302
 303static int
 304i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 305                     struct drm_i915_gem_pread *args)
 306{
 307        unsigned int needs_clflush;
 308        unsigned int idx, offset;
 309        struct dma_fence *fence;
 310        char __user *user_data;
 311        u64 remain;
 312        int ret;
 313
 314        ret = i915_gem_object_lock_interruptible(obj, NULL);
 315        if (ret)
 316                return ret;
 317
 318        ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 319        if (ret) {
 320                i915_gem_object_unlock(obj);
 321                return ret;
 322        }
 323
 324        fence = i915_gem_object_lock_fence(obj);
 325        i915_gem_object_finish_access(obj);
 326        i915_gem_object_unlock(obj);
 327
 328        if (!fence)
 329                return -ENOMEM;
 330
 331        remain = args->size;
 332        user_data = u64_to_user_ptr(args->data_ptr);
 333        offset = offset_in_page(args->offset);
 334        for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 335                struct page *page = i915_gem_object_get_page(obj, idx);
 336                unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 337
 338                ret = shmem_pread(page, offset, length, user_data,
 339                                  needs_clflush);
 340                if (ret)
 341                        break;
 342
 343                remain -= length;
 344                user_data += length;
 345                offset = 0;
 346        }
 347
 348        i915_gem_object_unlock_fence(obj, fence);
 349        return ret;
 350}
 351
 352static inline bool
 353gtt_user_read(struct io_mapping *mapping,
 354              loff_t base, int offset,
 355              char __user *user_data, int length)
 356{
 357        void __iomem *vaddr;
 358        unsigned long unwritten;
 359
 360        /* We can use the cpu mem copy function because this is X86. */
 361        vaddr = io_mapping_map_atomic_wc(mapping, base);
 362        unwritten = __copy_to_user_inatomic(user_data,
 363                                            (void __force *)vaddr + offset,
 364                                            length);
 365        io_mapping_unmap_atomic(vaddr);
 366        if (unwritten) {
 367                vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 368                unwritten = copy_to_user(user_data,
 369                                         (void __force *)vaddr + offset,
 370                                         length);
 371                io_mapping_unmap(vaddr);
 372        }
 373        return unwritten;
 374}
 375
 376static int
 377i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 378                   const struct drm_i915_gem_pread *args)
 379{
 380        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 381        struct i915_ggtt *ggtt = &i915->ggtt;
 382        intel_wakeref_t wakeref;
 383        struct drm_mm_node node;
 384        struct dma_fence *fence;
 385        void __user *user_data;
 386        struct i915_vma *vma;
 387        u64 remain, offset;
 388        int ret;
 389
 390        wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 391        vma = ERR_PTR(-ENODEV);
 392        if (!i915_gem_object_is_tiled(obj))
 393                vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 394                                               PIN_MAPPABLE |
 395                                               PIN_NONBLOCK /* NOWARN */ |
 396                                               PIN_NOEVICT);
 397        if (!IS_ERR(vma)) {
 398                node.start = i915_ggtt_offset(vma);
 399                node.flags = 0;
 400        } else {
 401                ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 402                if (ret)
 403                        goto out_rpm;
 404                GEM_BUG_ON(!drm_mm_node_allocated(&node));
 405        }
 406
 407        ret = i915_gem_object_lock_interruptible(obj, NULL);
 408        if (ret)
 409                goto out_unpin;
 410
 411        ret = i915_gem_object_set_to_gtt_domain(obj, false);
 412        if (ret) {
 413                i915_gem_object_unlock(obj);
 414                goto out_unpin;
 415        }
 416
 417        fence = i915_gem_object_lock_fence(obj);
 418        i915_gem_object_unlock(obj);
 419        if (!fence) {
 420                ret = -ENOMEM;
 421                goto out_unpin;
 422        }
 423
 424        user_data = u64_to_user_ptr(args->data_ptr);
 425        remain = args->size;
 426        offset = args->offset;
 427
 428        while (remain > 0) {
 429                /* Operation in this page
 430                 *
 431                 * page_base = page offset within aperture
 432                 * page_offset = offset within page
 433                 * page_length = bytes to copy for this page
 434                 */
 435                u32 page_base = node.start;
 436                unsigned page_offset = offset_in_page(offset);
 437                unsigned page_length = PAGE_SIZE - page_offset;
 438                page_length = remain < page_length ? remain : page_length;
 439                if (drm_mm_node_allocated(&node)) {
 440                        ggtt->vm.insert_page(&ggtt->vm,
 441                                             i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 442                                             node.start, I915_CACHE_NONE, 0);
 443                } else {
 444                        page_base += offset & PAGE_MASK;
 445                }
 446
 447                if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 448                                  user_data, page_length)) {
 449                        ret = -EFAULT;
 450                        break;
 451                }
 452
 453                remain -= page_length;
 454                user_data += page_length;
 455                offset += page_length;
 456        }
 457
 458        i915_gem_object_unlock_fence(obj, fence);
 459out_unpin:
 460        if (drm_mm_node_allocated(&node)) {
 461                ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 462                remove_mappable_node(ggtt, &node);
 463        } else {
 464                i915_vma_unpin(vma);
 465        }
 466out_rpm:
 467        intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 468        return ret;
 469}
 470
 471/**
 472 * Reads data from the object referenced by handle.
 473 * @dev: drm device pointer
 474 * @data: ioctl data blob
 475 * @file: drm file pointer
 476 *
 477 * On error, the contents of *data are undefined.
 478 */
 479int
 480i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 481                     struct drm_file *file)
 482{
 483        struct drm_i915_gem_pread *args = data;
 484        struct drm_i915_gem_object *obj;
 485        int ret;
 486
 487        if (args->size == 0)
 488                return 0;
 489
 490        if (!access_ok(u64_to_user_ptr(args->data_ptr),
 491                       args->size))
 492                return -EFAULT;
 493
 494        obj = i915_gem_object_lookup(file, args->handle);
 495        if (!obj)
 496                return -ENOENT;
 497
 498        /* Bounds check source.  */
 499        if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 500                ret = -EINVAL;
 501                goto out;
 502        }
 503
 504        trace_i915_gem_object_pread(obj, args->offset, args->size);
 505
 506        ret = -ENODEV;
 507        if (obj->ops->pread)
 508                ret = obj->ops->pread(obj, args);
 509        if (ret != -ENODEV)
 510                goto out;
 511
 512        ret = i915_gem_object_wait(obj,
 513                                   I915_WAIT_INTERRUPTIBLE,
 514                                   MAX_SCHEDULE_TIMEOUT);
 515        if (ret)
 516                goto out;
 517
 518        ret = i915_gem_object_pin_pages(obj);
 519        if (ret)
 520                goto out;
 521
 522        ret = i915_gem_shmem_pread(obj, args);
 523        if (ret == -EFAULT || ret == -ENODEV)
 524                ret = i915_gem_gtt_pread(obj, args);
 525
 526        i915_gem_object_unpin_pages(obj);
 527out:
 528        i915_gem_object_put(obj);
 529        return ret;
 530}
 531
 532/* This is the fast write path which cannot handle
 533 * page faults in the source data
 534 */
 535
 536static inline bool
 537ggtt_write(struct io_mapping *mapping,
 538           loff_t base, int offset,
 539           char __user *user_data, int length)
 540{
 541        void __iomem *vaddr;
 542        unsigned long unwritten;
 543
 544        /* We can use the cpu mem copy function because this is X86. */
 545        vaddr = io_mapping_map_atomic_wc(mapping, base);
 546        unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 547                                                      user_data, length);
 548        io_mapping_unmap_atomic(vaddr);
 549        if (unwritten) {
 550                vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 551                unwritten = copy_from_user((void __force *)vaddr + offset,
 552                                           user_data, length);
 553                io_mapping_unmap(vaddr);
 554        }
 555
 556        return unwritten;
 557}
 558
 559/**
 560 * This is the fast pwrite path, where we copy the data directly from the
 561 * user into the GTT, uncached.
 562 * @obj: i915 GEM object
 563 * @args: pwrite arguments structure
 564 */
 565static int
 566i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 567                         const struct drm_i915_gem_pwrite *args)
 568{
 569        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 570        struct i915_ggtt *ggtt = &i915->ggtt;
 571        struct intel_runtime_pm *rpm = &i915->runtime_pm;
 572        intel_wakeref_t wakeref;
 573        struct drm_mm_node node;
 574        struct dma_fence *fence;
 575        struct i915_vma *vma;
 576        u64 remain, offset;
 577        void __user *user_data;
 578        int ret;
 579
 580        if (i915_gem_object_has_struct_page(obj)) {
 581                /*
 582                 * Avoid waking the device up if we can fallback, as
 583                 * waking/resuming is very slow (worst-case 10-100 ms
 584                 * depending on PCI sleeps and our own resume time).
 585                 * This easily dwarfs any performance advantage from
 586                 * using the cache bypass of indirect GGTT access.
 587                 */
 588                wakeref = intel_runtime_pm_get_if_in_use(rpm);
 589                if (!wakeref)
 590                        return -EFAULT;
 591        } else {
 592                /* No backing pages, no fallback, we must force GGTT access */
 593                wakeref = intel_runtime_pm_get(rpm);
 594        }
 595
 596        vma = ERR_PTR(-ENODEV);
 597        if (!i915_gem_object_is_tiled(obj))
 598                vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 599                                               PIN_MAPPABLE |
 600                                               PIN_NONBLOCK /* NOWARN */ |
 601                                               PIN_NOEVICT);
 602        if (!IS_ERR(vma)) {
 603                node.start = i915_ggtt_offset(vma);
 604                node.flags = 0;
 605        } else {
 606                ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 607                if (ret)
 608                        goto out_rpm;
 609                GEM_BUG_ON(!drm_mm_node_allocated(&node));
 610        }
 611
 612        ret = i915_gem_object_lock_interruptible(obj, NULL);
 613        if (ret)
 614                goto out_unpin;
 615
 616        ret = i915_gem_object_set_to_gtt_domain(obj, true);
 617        if (ret) {
 618                i915_gem_object_unlock(obj);
 619                goto out_unpin;
 620        }
 621
 622        fence = i915_gem_object_lock_fence(obj);
 623        i915_gem_object_unlock(obj);
 624        if (!fence) {
 625                ret = -ENOMEM;
 626                goto out_unpin;
 627        }
 628
 629        i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 630
 631        user_data = u64_to_user_ptr(args->data_ptr);
 632        offset = args->offset;
 633        remain = args->size;
 634        while (remain) {
 635                /* Operation in this page
 636                 *
 637                 * page_base = page offset within aperture
 638                 * page_offset = offset within page
 639                 * page_length = bytes to copy for this page
 640                 */
 641                u32 page_base = node.start;
 642                unsigned int page_offset = offset_in_page(offset);
 643                unsigned int page_length = PAGE_SIZE - page_offset;
 644                page_length = remain < page_length ? remain : page_length;
 645                if (drm_mm_node_allocated(&node)) {
 646                        /* flush the write before we modify the GGTT */
 647                        intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 648                        ggtt->vm.insert_page(&ggtt->vm,
 649                                             i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 650                                             node.start, I915_CACHE_NONE, 0);
 651                        wmb(); /* flush modifications to the GGTT (insert_page) */
 652                } else {
 653                        page_base += offset & PAGE_MASK;
 654                }
 655                /* If we get a fault while copying data, then (presumably) our
 656                 * source page isn't available.  Return the error and we'll
 657                 * retry in the slow path.
 658                 * If the object is non-shmem backed, we retry again with the
 659                 * path that handles page fault.
 660                 */
 661                if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 662                               user_data, page_length)) {
 663                        ret = -EFAULT;
 664                        break;
 665                }
 666
 667                remain -= page_length;
 668                user_data += page_length;
 669                offset += page_length;
 670        }
 671
 672        intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 673        i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 674
 675        i915_gem_object_unlock_fence(obj, fence);
 676out_unpin:
 677        if (drm_mm_node_allocated(&node)) {
 678                ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 679                remove_mappable_node(ggtt, &node);
 680        } else {
 681                i915_vma_unpin(vma);
 682        }
 683out_rpm:
 684        intel_runtime_pm_put(rpm, wakeref);
 685        return ret;
 686}
 687
 688/* Per-page copy function for the shmem pwrite fastpath.
 689 * Flushes invalid cachelines before writing to the target if
 690 * needs_clflush_before is set and flushes out any written cachelines after
 691 * writing if needs_clflush is set.
 692 */
 693static int
 694shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 695             bool needs_clflush_before,
 696             bool needs_clflush_after)
 697{
 698        char *vaddr;
 699        int ret;
 700
 701        vaddr = kmap(page);
 702
 703        if (needs_clflush_before)
 704                drm_clflush_virt_range(vaddr + offset, len);
 705
 706        ret = __copy_from_user(vaddr + offset, user_data, len);
 707        if (!ret && needs_clflush_after)
 708                drm_clflush_virt_range(vaddr + offset, len);
 709
 710        kunmap(page);
 711
 712        return ret ? -EFAULT : 0;
 713}
 714
 715static int
 716i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 717                      const struct drm_i915_gem_pwrite *args)
 718{
 719        unsigned int partial_cacheline_write;
 720        unsigned int needs_clflush;
 721        unsigned int offset, idx;
 722        struct dma_fence *fence;
 723        void __user *user_data;
 724        u64 remain;
 725        int ret;
 726
 727        ret = i915_gem_object_lock_interruptible(obj, NULL);
 728        if (ret)
 729                return ret;
 730
 731        ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 732        if (ret) {
 733                i915_gem_object_unlock(obj);
 734                return ret;
 735        }
 736
 737        fence = i915_gem_object_lock_fence(obj);
 738        i915_gem_object_finish_access(obj);
 739        i915_gem_object_unlock(obj);
 740
 741        if (!fence)
 742                return -ENOMEM;
 743
 744        /* If we don't overwrite a cacheline completely we need to be
 745         * careful to have up-to-date data by first clflushing. Don't
 746         * overcomplicate things and flush the entire patch.
 747         */
 748        partial_cacheline_write = 0;
 749        if (needs_clflush & CLFLUSH_BEFORE)
 750                partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 751
 752        user_data = u64_to_user_ptr(args->data_ptr);
 753        remain = args->size;
 754        offset = offset_in_page(args->offset);
 755        for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 756                struct page *page = i915_gem_object_get_page(obj, idx);
 757                unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 758
 759                ret = shmem_pwrite(page, offset, length, user_data,
 760                                   (offset | length) & partial_cacheline_write,
 761                                   needs_clflush & CLFLUSH_AFTER);
 762                if (ret)
 763                        break;
 764
 765                remain -= length;
 766                user_data += length;
 767                offset = 0;
 768        }
 769
 770        i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 771        i915_gem_object_unlock_fence(obj, fence);
 772
 773        return ret;
 774}
 775
 776/**
 777 * Writes data to the object referenced by handle.
 778 * @dev: drm device
 779 * @data: ioctl data blob
 780 * @file: drm file
 781 *
 782 * On error, the contents of the buffer that were to be modified are undefined.
 783 */
 784int
 785i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 786                      struct drm_file *file)
 787{
 788        struct drm_i915_gem_pwrite *args = data;
 789        struct drm_i915_gem_object *obj;
 790        int ret;
 791
 792        if (args->size == 0)
 793                return 0;
 794
 795        if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 796                return -EFAULT;
 797
 798        obj = i915_gem_object_lookup(file, args->handle);
 799        if (!obj)
 800                return -ENOENT;
 801
 802        /* Bounds check destination. */
 803        if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 804                ret = -EINVAL;
 805                goto err;
 806        }
 807
 808        /* Writes not allowed into this read-only object */
 809        if (i915_gem_object_is_readonly(obj)) {
 810                ret = -EINVAL;
 811                goto err;
 812        }
 813
 814        trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 815
 816        ret = -ENODEV;
 817        if (obj->ops->pwrite)
 818                ret = obj->ops->pwrite(obj, args);
 819        if (ret != -ENODEV)
 820                goto err;
 821
 822        ret = i915_gem_object_wait(obj,
 823                                   I915_WAIT_INTERRUPTIBLE |
 824                                   I915_WAIT_ALL,
 825                                   MAX_SCHEDULE_TIMEOUT);
 826        if (ret)
 827                goto err;
 828
 829        ret = i915_gem_object_pin_pages(obj);
 830        if (ret)
 831                goto err;
 832
 833        ret = -EFAULT;
 834        /* We can only do the GTT pwrite on untiled buffers, as otherwise
 835         * it would end up going through the fenced access, and we'll get
 836         * different detiling behavior between reading and writing.
 837         * pread/pwrite currently are reading and writing from the CPU
 838         * perspective, requiring manual detiling by the client.
 839         */
 840        if (!i915_gem_object_has_struct_page(obj) ||
 841            cpu_write_needs_clflush(obj))
 842                /* Note that the gtt paths might fail with non-page-backed user
 843                 * pointers (e.g. gtt mappings when moving data between
 844                 * textures). Fallback to the shmem path in that case.
 845                 */
 846                ret = i915_gem_gtt_pwrite_fast(obj, args);
 847
 848        if (ret == -EFAULT || ret == -ENOSPC) {
 849                if (i915_gem_object_has_struct_page(obj))
 850                        ret = i915_gem_shmem_pwrite(obj, args);
 851        }
 852
 853        i915_gem_object_unpin_pages(obj);
 854err:
 855        i915_gem_object_put(obj);
 856        return ret;
 857}
 858
 859/**
 860 * Called when user space has done writes to this buffer
 861 * @dev: drm device
 862 * @data: ioctl data blob
 863 * @file: drm file
 864 */
 865int
 866i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 867                         struct drm_file *file)
 868{
 869        struct drm_i915_gem_sw_finish *args = data;
 870        struct drm_i915_gem_object *obj;
 871
 872        obj = i915_gem_object_lookup(file, args->handle);
 873        if (!obj)
 874                return -ENOENT;
 875
 876        /*
 877         * Proxy objects are barred from CPU access, so there is no
 878         * need to ban sw_finish as it is a nop.
 879         */
 880
 881        /* Pinned buffers may be scanout, so flush the cache */
 882        i915_gem_object_flush_if_display(obj);
 883        i915_gem_object_put(obj);
 884
 885        return 0;
 886}
 887
 888void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 889{
 890        struct drm_i915_gem_object *obj, *on;
 891        int i;
 892
 893        /*
 894         * Only called during RPM suspend. All users of the userfault_list
 895         * must be holding an RPM wakeref to ensure that this can not
 896         * run concurrently with themselves (and use the struct_mutex for
 897         * protection between themselves).
 898         */
 899
 900        list_for_each_entry_safe(obj, on,
 901                                 &i915->ggtt.userfault_list, userfault_link)
 902                __i915_gem_object_release_mmap_gtt(obj);
 903
 904        /*
 905         * The fence will be lost when the device powers down. If any were
 906         * in use by hardware (i.e. they are pinned), we should not be powering
 907         * down! All other fences will be reacquired by the user upon waking.
 908         */
 909        for (i = 0; i < i915->ggtt.num_fences; i++) {
 910                struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
 911
 912                /*
 913                 * Ideally we want to assert that the fence register is not
 914                 * live at this point (i.e. that no piece of code will be
 915                 * trying to write through fence + GTT, as that both violates
 916                 * our tracking of activity and associated locking/barriers,
 917                 * but also is illegal given that the hw is powered down).
 918                 *
 919                 * Previously we used reg->pin_count as a "liveness" indicator.
 920                 * That is not sufficient, and we need a more fine-grained
 921                 * tool if we want to have a sanity check here.
 922                 */
 923
 924                if (!reg->vma)
 925                        continue;
 926
 927                GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 928                reg->dirty = true;
 929        }
 930}
 931
 932static void discard_ggtt_vma(struct i915_vma *vma)
 933{
 934        struct drm_i915_gem_object *obj = vma->obj;
 935
 936        spin_lock(&obj->vma.lock);
 937        if (!RB_EMPTY_NODE(&vma->obj_node)) {
 938                rb_erase(&vma->obj_node, &obj->vma.tree);
 939                RB_CLEAR_NODE(&vma->obj_node);
 940        }
 941        spin_unlock(&obj->vma.lock);
 942}
 943
 944struct i915_vma *
 945i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 946                            struct i915_gem_ww_ctx *ww,
 947                            const struct i915_ggtt_view *view,
 948                            u64 size, u64 alignment, u64 flags)
 949{
 950        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 951        struct i915_ggtt *ggtt = &i915->ggtt;
 952        struct i915_vma *vma;
 953        int ret;
 954
 955        if (flags & PIN_MAPPABLE &&
 956            (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
 957                /*
 958                 * If the required space is larger than the available
 959                 * aperture, we will not able to find a slot for the
 960                 * object and unbinding the object now will be in
 961                 * vain. Worse, doing so may cause us to ping-pong
 962                 * the object in and out of the Global GTT and
 963                 * waste a lot of cycles under the mutex.
 964                 */
 965                if (obj->base.size > ggtt->mappable_end)
 966                        return ERR_PTR(-E2BIG);
 967
 968                /*
 969                 * If NONBLOCK is set the caller is optimistically
 970                 * trying to cache the full object within the mappable
 971                 * aperture, and *must* have a fallback in place for
 972                 * situations where we cannot bind the object. We
 973                 * can be a little more lax here and use the fallback
 974                 * more often to avoid costly migrations of ourselves
 975                 * and other objects within the aperture.
 976                 *
 977                 * Half-the-aperture is used as a simple heuristic.
 978                 * More interesting would to do search for a free
 979                 * block prior to making the commitment to unbind.
 980                 * That caters for the self-harm case, and with a
 981                 * little more heuristics (e.g. NOFAULT, NOEVICT)
 982                 * we could try to minimise harm to others.
 983                 */
 984                if (flags & PIN_NONBLOCK &&
 985                    obj->base.size > ggtt->mappable_end / 2)
 986                        return ERR_PTR(-ENOSPC);
 987        }
 988
 989new_vma:
 990        vma = i915_vma_instance(obj, &ggtt->vm, view);
 991        if (IS_ERR(vma))
 992                return vma;
 993
 994        if (i915_vma_misplaced(vma, size, alignment, flags)) {
 995                if (flags & PIN_NONBLOCK) {
 996                        if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 997                                return ERR_PTR(-ENOSPC);
 998
 999                        if (flags & PIN_MAPPABLE &&
1000                            vma->fence_size > ggtt->mappable_end / 2)
1001                                return ERR_PTR(-ENOSPC);
1002                }
1003
1004                if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1005                        discard_ggtt_vma(vma);
1006                        goto new_vma;
1007                }
1008
1009                ret = i915_vma_unbind(vma);
1010                if (ret)
1011                        return ERR_PTR(ret);
1012        }
1013
1014        ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
1015        if (ret)
1016                return ERR_PTR(ret);
1017
1018        if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1019                mutex_lock(&ggtt->vm.mutex);
1020                i915_vma_revoke_fence(vma);
1021                mutex_unlock(&ggtt->vm.mutex);
1022        }
1023
1024        ret = i915_vma_wait_for_bind(vma);
1025        if (ret) {
1026                i915_vma_unpin(vma);
1027                return ERR_PTR(ret);
1028        }
1029
1030        return vma;
1031}
1032
1033int
1034i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1035                       struct drm_file *file_priv)
1036{
1037        struct drm_i915_private *i915 = to_i915(dev);
1038        struct drm_i915_gem_madvise *args = data;
1039        struct drm_i915_gem_object *obj;
1040        int err;
1041
1042        switch (args->madv) {
1043        case I915_MADV_DONTNEED:
1044        case I915_MADV_WILLNEED:
1045            break;
1046        default:
1047            return -EINVAL;
1048        }
1049
1050        obj = i915_gem_object_lookup(file_priv, args->handle);
1051        if (!obj)
1052                return -ENOENT;
1053
1054        err = mutex_lock_interruptible(&obj->mm.lock);
1055        if (err)
1056                goto out;
1057
1058        if (i915_gem_object_has_pages(obj) &&
1059            i915_gem_object_is_tiled(obj) &&
1060            i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1061                if (obj->mm.madv == I915_MADV_WILLNEED) {
1062                        GEM_BUG_ON(!obj->mm.quirked);
1063                        __i915_gem_object_unpin_pages(obj);
1064                        obj->mm.quirked = false;
1065                }
1066                if (args->madv == I915_MADV_WILLNEED) {
1067                        GEM_BUG_ON(obj->mm.quirked);
1068                        __i915_gem_object_pin_pages(obj);
1069                        obj->mm.quirked = true;
1070                }
1071        }
1072
1073        if (obj->mm.madv != __I915_MADV_PURGED)
1074                obj->mm.madv = args->madv;
1075
1076        if (i915_gem_object_has_pages(obj)) {
1077                struct list_head *list;
1078
1079                if (i915_gem_object_is_shrinkable(obj)) {
1080                        unsigned long flags;
1081
1082                        spin_lock_irqsave(&i915->mm.obj_lock, flags);
1083
1084                        if (obj->mm.madv != I915_MADV_WILLNEED)
1085                                list = &i915->mm.purge_list;
1086                        else
1087                                list = &i915->mm.shrink_list;
1088                        list_move_tail(&obj->mm.link, list);
1089
1090                        spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1091                }
1092        }
1093
1094        /* if the object is no longer attached, discard its backing storage */
1095        if (obj->mm.madv == I915_MADV_DONTNEED &&
1096            !i915_gem_object_has_pages(obj))
1097                i915_gem_object_truncate(obj);
1098
1099        args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100        mutex_unlock(&obj->mm.lock);
1101
1102out:
1103        i915_gem_object_put(obj);
1104        return err;
1105}
1106
1107int i915_gem_init(struct drm_i915_private *dev_priv)
1108{
1109        int ret;
1110
1111        /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1112        if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1113                mkwrite_device_info(dev_priv)->page_sizes =
1114                        I915_GTT_PAGE_SIZE_4K;
1115
1116        ret = i915_gem_init_userptr(dev_priv);
1117        if (ret)
1118                return ret;
1119
1120        intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1121        intel_wopcm_init(&dev_priv->wopcm);
1122
1123        ret = i915_init_ggtt(dev_priv);
1124        if (ret) {
1125                GEM_BUG_ON(ret == -EIO);
1126                goto err_unlock;
1127        }
1128
1129        /*
1130         * Despite its name intel_init_clock_gating applies both display
1131         * clock gating workarounds; GT mmio workarounds and the occasional
1132         * GT power context workaround. Worse, sometimes it includes a context
1133         * register workaround which we need to apply before we record the
1134         * default HW state for all contexts.
1135         *
1136         * FIXME: break up the workarounds and apply them at the right time!
1137         */
1138        intel_init_clock_gating(dev_priv);
1139
1140        ret = intel_gt_init(&dev_priv->gt);
1141        if (ret)
1142                goto err_unlock;
1143
1144        return 0;
1145
1146        /*
1147         * Unwinding is complicated by that we want to handle -EIO to mean
1148         * disable GPU submission but keep KMS alive. We want to mark the
1149         * HW as irrevisibly wedged, but keep enough state around that the
1150         * driver doesn't explode during runtime.
1151         */
1152err_unlock:
1153        i915_gem_drain_workqueue(dev_priv);
1154
1155        if (ret != -EIO) {
1156                intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1157                i915_gem_cleanup_userptr(dev_priv);
1158        }
1159
1160        if (ret == -EIO) {
1161                /*
1162                 * Allow engines or uC initialisation to fail by marking the GPU
1163                 * as wedged. But we only want to do this when the GPU is angry,
1164                 * for all other failure, such as an allocation failure, bail.
1165                 */
1166                if (!intel_gt_is_wedged(&dev_priv->gt)) {
1167                        i915_probe_error(dev_priv,
1168                                         "Failed to initialize GPU, declaring it wedged!\n");
1169                        intel_gt_set_wedged(&dev_priv->gt);
1170                }
1171
1172                /* Minimal basic recovery for KMS */
1173                ret = i915_ggtt_enable_hw(dev_priv);
1174                i915_ggtt_resume(&dev_priv->ggtt);
1175                intel_init_clock_gating(dev_priv);
1176        }
1177
1178        i915_gem_drain_freed_objects(dev_priv);
1179        return ret;
1180}
1181
1182void i915_gem_driver_register(struct drm_i915_private *i915)
1183{
1184        i915_gem_driver_register__shrinker(i915);
1185
1186        intel_engines_driver_register(i915);
1187}
1188
1189void i915_gem_driver_unregister(struct drm_i915_private *i915)
1190{
1191        i915_gem_driver_unregister__shrinker(i915);
1192}
1193
1194void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1195{
1196        intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1197
1198        i915_gem_suspend_late(dev_priv);
1199        intel_gt_driver_remove(&dev_priv->gt);
1200        dev_priv->uabi_engines = RB_ROOT;
1201
1202        /* Flush any outstanding unpin_work. */
1203        i915_gem_drain_workqueue(dev_priv);
1204
1205        i915_gem_drain_freed_objects(dev_priv);
1206}
1207
1208void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1209{
1210        i915_gem_driver_release__contexts(dev_priv);
1211
1212        intel_gt_driver_release(&dev_priv->gt);
1213
1214        intel_wa_list_free(&dev_priv->gt_wa_list);
1215
1216        intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1217        i915_gem_cleanup_userptr(dev_priv);
1218
1219        i915_gem_drain_freed_objects(dev_priv);
1220
1221        drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1222}
1223
1224static void i915_gem_init__mm(struct drm_i915_private *i915)
1225{
1226        spin_lock_init(&i915->mm.obj_lock);
1227
1228        init_llist_head(&i915->mm.free_list);
1229
1230        INIT_LIST_HEAD(&i915->mm.purge_list);
1231        INIT_LIST_HEAD(&i915->mm.shrink_list);
1232
1233        i915_gem_init__objects(i915);
1234}
1235
1236void i915_gem_init_early(struct drm_i915_private *dev_priv)
1237{
1238        i915_gem_init__mm(dev_priv);
1239        i915_gem_init__contexts(dev_priv);
1240
1241        spin_lock_init(&dev_priv->fb_tracking.lock);
1242}
1243
1244void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1245{
1246        i915_gem_drain_freed_objects(dev_priv);
1247        GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1248        GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1249        drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1250}
1251
1252int i915_gem_freeze(struct drm_i915_private *dev_priv)
1253{
1254        /* Discard all purgeable objects, let userspace recover those as
1255         * required after resuming.
1256         */
1257        i915_gem_shrink_all(dev_priv);
1258
1259        return 0;
1260}
1261
1262int i915_gem_freeze_late(struct drm_i915_private *i915)
1263{
1264        struct drm_i915_gem_object *obj;
1265        intel_wakeref_t wakeref;
1266
1267        /*
1268         * Called just before we write the hibernation image.
1269         *
1270         * We need to update the domain tracking to reflect that the CPU
1271         * will be accessing all the pages to create and restore from the
1272         * hibernation, and so upon restoration those pages will be in the
1273         * CPU domain.
1274         *
1275         * To make sure the hibernation image contains the latest state,
1276         * we update that state just before writing out the image.
1277         *
1278         * To try and reduce the hibernation image, we manually shrink
1279         * the objects as well, see i915_gem_freeze()
1280         */
1281
1282        wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1283
1284        i915_gem_shrink(i915, -1UL, NULL, ~0);
1285        i915_gem_drain_freed_objects(i915);
1286
1287        list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1288                i915_gem_object_lock(obj, NULL);
1289                drm_WARN_ON(&i915->drm,
1290                            i915_gem_object_set_to_cpu_domain(obj, true));
1291                i915_gem_object_unlock(obj);
1292        }
1293
1294        intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1295
1296        return 0;
1297}
1298
1299int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1300{
1301        struct drm_i915_file_private *file_priv;
1302        int ret;
1303
1304        DRM_DEBUG("\n");
1305
1306        file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1307        if (!file_priv)
1308                return -ENOMEM;
1309
1310        file->driver_priv = file_priv;
1311        file_priv->dev_priv = i915;
1312        file_priv->file = file;
1313
1314        file_priv->bsd_engine = -1;
1315        file_priv->hang_timestamp = jiffies;
1316
1317        ret = i915_gem_context_open(i915, file);
1318        if (ret)
1319                kfree(file_priv);
1320
1321        return ret;
1322}
1323
1324void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1325{
1326        ww_acquire_init(&ww->ctx, &reservation_ww_class);
1327        INIT_LIST_HEAD(&ww->obj_list);
1328        ww->intr = intr;
1329        ww->contended = NULL;
1330}
1331
1332static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1333{
1334        struct drm_i915_gem_object *obj;
1335
1336        while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1337                list_del(&obj->obj_link);
1338                i915_gem_object_unlock(obj);
1339        }
1340}
1341
1342void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1343{
1344        list_del(&obj->obj_link);
1345        i915_gem_object_unlock(obj);
1346}
1347
1348void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1349{
1350        i915_gem_ww_ctx_unlock_all(ww);
1351        WARN_ON(ww->contended);
1352        ww_acquire_fini(&ww->ctx);
1353}
1354
1355int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1356{
1357        int ret = 0;
1358
1359        if (WARN_ON(!ww->contended))
1360                return -EINVAL;
1361
1362        i915_gem_ww_ctx_unlock_all(ww);
1363        if (ww->intr)
1364                ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1365        else
1366                dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1367
1368        if (!ret)
1369                list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1370
1371        ww->contended = NULL;
1372
1373        return ret;
1374}
1375
1376#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1377#include "selftests/mock_gem_device.c"
1378#include "selftests/i915_gem.c"
1379#endif
1380