linux/drivers/media/platform/vsp1/vsp1_wpf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * vsp1_wpf.c  --  R-Car VSP1 Write Pixel Formatter
   4 *
   5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/device.h>
  11
  12#include <media/v4l2-subdev.h>
  13
  14#include "vsp1.h"
  15#include "vsp1_dl.h"
  16#include "vsp1_pipe.h"
  17#include "vsp1_rwpf.h"
  18#include "vsp1_video.h"
  19
  20#define WPF_GEN2_MAX_WIDTH                      2048U
  21#define WPF_GEN2_MAX_HEIGHT                     2048U
  22#define WPF_GEN3_MAX_WIDTH                      8190U
  23#define WPF_GEN3_MAX_HEIGHT                     8190U
  24
  25/* -----------------------------------------------------------------------------
  26 * Device Access
  27 */
  28
  29static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
  30                                  struct vsp1_dl_body *dlb, u32 reg, u32 data)
  31{
  32        vsp1_dl_body_write(dlb, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
  33}
  34
  35/* -----------------------------------------------------------------------------
  36 * Controls
  37 */
  38
  39enum wpf_flip_ctrl {
  40        WPF_CTRL_VFLIP = 0,
  41        WPF_CTRL_HFLIP = 1,
  42};
  43
  44static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
  45{
  46        struct vsp1_video *video = wpf->video;
  47        struct v4l2_mbus_framefmt *sink_format;
  48        struct v4l2_mbus_framefmt *source_format;
  49        bool rotate;
  50        int ret = 0;
  51
  52        /*
  53         * Only consider the 0°/180° from/to 90°/270° modifications, the rest
  54         * is taken care of by the flipping configuration.
  55         */
  56        rotate = rotation == 90 || rotation == 270;
  57        if (rotate == wpf->flip.rotate)
  58                return 0;
  59
  60        /* Changing rotation isn't allowed when buffers are allocated. */
  61        mutex_lock(&video->lock);
  62
  63        if (vb2_is_busy(&video->queue)) {
  64                ret = -EBUSY;
  65                goto done;
  66        }
  67
  68        sink_format = vsp1_entity_get_pad_format(&wpf->entity,
  69                                                 wpf->entity.config,
  70                                                 RWPF_PAD_SINK);
  71        source_format = vsp1_entity_get_pad_format(&wpf->entity,
  72                                                   wpf->entity.config,
  73                                                   RWPF_PAD_SOURCE);
  74
  75        mutex_lock(&wpf->entity.lock);
  76
  77        if (rotate) {
  78                source_format->width = sink_format->height;
  79                source_format->height = sink_format->width;
  80        } else {
  81                source_format->width = sink_format->width;
  82                source_format->height = sink_format->height;
  83        }
  84
  85        wpf->flip.rotate = rotate;
  86
  87        mutex_unlock(&wpf->entity.lock);
  88
  89done:
  90        mutex_unlock(&video->lock);
  91        return ret;
  92}
  93
  94static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
  95{
  96        struct vsp1_rwpf *wpf =
  97                container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
  98        unsigned int rotation;
  99        u32 flip = 0;
 100        int ret;
 101
 102        /* Update the rotation. */
 103        rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
 104        ret = vsp1_wpf_set_rotation(wpf, rotation);
 105        if (ret < 0)
 106                return ret;
 107
 108        /*
 109         * Compute the flip value resulting from all three controls, with
 110         * rotation by 180° flipping the image in both directions. Store the
 111         * result in the pending flip field for the next frame that will be
 112         * processed.
 113         */
 114        if (wpf->flip.ctrls.vflip->val)
 115                flip |= BIT(WPF_CTRL_VFLIP);
 116
 117        if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
 118                flip |= BIT(WPF_CTRL_HFLIP);
 119
 120        if (rotation == 180 || rotation == 270)
 121                flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
 122
 123        spin_lock_irq(&wpf->flip.lock);
 124        wpf->flip.pending = flip;
 125        spin_unlock_irq(&wpf->flip.lock);
 126
 127        return 0;
 128}
 129
 130static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = {
 131        .s_ctrl = vsp1_wpf_s_ctrl,
 132};
 133
 134static int wpf_init_controls(struct vsp1_rwpf *wpf)
 135{
 136        struct vsp1_device *vsp1 = wpf->entity.vsp1;
 137        unsigned int num_flip_ctrls;
 138
 139        spin_lock_init(&wpf->flip.lock);
 140
 141        if (wpf->entity.index != 0) {
 142                /* Only WPF0 supports flipping. */
 143                num_flip_ctrls = 0;
 144        } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP)) {
 145                /*
 146                 * When horizontal flip is supported the WPF implements three
 147                 * controls (horizontal flip, vertical flip and rotation).
 148                 */
 149                num_flip_ctrls = 3;
 150        } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_VFLIP)) {
 151                /*
 152                 * When only vertical flip is supported the WPF implements a
 153                 * single control (vertical flip).
 154                 */
 155                num_flip_ctrls = 1;
 156        } else {
 157                /* Otherwise flipping is not supported. */
 158                num_flip_ctrls = 0;
 159        }
 160
 161        vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
 162
 163        if (num_flip_ctrls >= 1) {
 164                wpf->flip.ctrls.vflip =
 165                        v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
 166                                          V4L2_CID_VFLIP, 0, 1, 1, 0);
 167        }
 168
 169        if (num_flip_ctrls == 3) {
 170                wpf->flip.ctrls.hflip =
 171                        v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
 172                                          V4L2_CID_HFLIP, 0, 1, 1, 0);
 173                wpf->flip.ctrls.rotate =
 174                        v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
 175                                          V4L2_CID_ROTATE, 0, 270, 90, 0);
 176                v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
 177        }
 178
 179        if (wpf->ctrls.error) {
 180                dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
 181                        wpf->entity.index);
 182                return wpf->ctrls.error;
 183        }
 184
 185        return 0;
 186}
 187
 188/* -----------------------------------------------------------------------------
 189 * V4L2 Subdevice Core Operations
 190 */
 191
 192static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
 193{
 194        struct vsp1_rwpf *wpf = to_rwpf(subdev);
 195        struct vsp1_device *vsp1 = wpf->entity.vsp1;
 196
 197        if (enable)
 198                return 0;
 199
 200        /*
 201         * Write to registers directly when stopping the stream as there will be
 202         * no pipeline run to apply the display list.
 203         */
 204        vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
 205        vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
 206                   VI6_WPF_SRCRPF, 0);
 207
 208        return 0;
 209}
 210
 211/* -----------------------------------------------------------------------------
 212 * V4L2 Subdevice Operations
 213 */
 214
 215static const struct v4l2_subdev_video_ops wpf_video_ops = {
 216        .s_stream = wpf_s_stream,
 217};
 218
 219static const struct v4l2_subdev_ops wpf_ops = {
 220        .video  = &wpf_video_ops,
 221        .pad    = &vsp1_rwpf_pad_ops,
 222};
 223
 224/* -----------------------------------------------------------------------------
 225 * VSP1 Entity Operations
 226 */
 227
 228static void vsp1_wpf_destroy(struct vsp1_entity *entity)
 229{
 230        struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
 231
 232        vsp1_dlm_destroy(wpf->dlm);
 233}
 234
 235static int wpf_configure_writeback_chain(struct vsp1_rwpf *wpf,
 236                                         struct vsp1_dl_list *dl)
 237{
 238        unsigned int index = wpf->entity.index;
 239        struct vsp1_dl_list *dl_next;
 240        struct vsp1_dl_body *dlb;
 241
 242        dl_next = vsp1_dl_list_get(wpf->dlm);
 243        if (!dl_next) {
 244                dev_err(wpf->entity.vsp1->dev,
 245                        "Failed to obtain a dl list, disabling writeback\n");
 246                return -ENOMEM;
 247        }
 248
 249        dlb = vsp1_dl_list_get_body0(dl_next);
 250        vsp1_dl_body_write(dlb, VI6_WPF_WRBCK_CTRL(index), 0);
 251        vsp1_dl_list_add_chain(dl, dl_next);
 252
 253        return 0;
 254}
 255
 256static void wpf_configure_stream(struct vsp1_entity *entity,
 257                                 struct vsp1_pipeline *pipe,
 258                                 struct vsp1_dl_list *dl,
 259                                 struct vsp1_dl_body *dlb)
 260{
 261        struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
 262        struct vsp1_device *vsp1 = wpf->entity.vsp1;
 263        const struct v4l2_mbus_framefmt *source_format;
 264        const struct v4l2_mbus_framefmt *sink_format;
 265        unsigned int index = wpf->entity.index;
 266        unsigned int i;
 267        u32 outfmt = 0;
 268        u32 srcrpf = 0;
 269        int ret;
 270
 271        sink_format = vsp1_entity_get_pad_format(&wpf->entity,
 272                                                 wpf->entity.config,
 273                                                 RWPF_PAD_SINK);
 274        source_format = vsp1_entity_get_pad_format(&wpf->entity,
 275                                                   wpf->entity.config,
 276                                                   RWPF_PAD_SOURCE);
 277
 278        /* Format */
 279        if (!pipe->lif || wpf->writeback) {
 280                const struct v4l2_pix_format_mplane *format = &wpf->format;
 281                const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
 282
 283                outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
 284
 285                if (wpf->flip.rotate)
 286                        outfmt |= VI6_WPF_OUTFMT_ROT;
 287
 288                if (fmtinfo->alpha)
 289                        outfmt |= VI6_WPF_OUTFMT_PXA;
 290                if (fmtinfo->swap_yc)
 291                        outfmt |= VI6_WPF_OUTFMT_SPYCS;
 292                if (fmtinfo->swap_uv)
 293                        outfmt |= VI6_WPF_OUTFMT_SPUVS;
 294
 295                /* Destination stride and byte swapping. */
 296                vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_Y,
 297                               format->plane_fmt[0].bytesperline);
 298                if (format->num_planes > 1)
 299                        vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_C,
 300                                       format->plane_fmt[1].bytesperline);
 301
 302                vsp1_wpf_write(wpf, dlb, VI6_WPF_DSWAP, fmtinfo->swap);
 303
 304                if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP) && index == 0)
 305                        vsp1_wpf_write(wpf, dlb, VI6_WPF_ROT_CTRL,
 306                                       VI6_WPF_ROT_CTRL_LN16 |
 307                                       (256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT));
 308        }
 309
 310        if (sink_format->code != source_format->code)
 311                outfmt |= VI6_WPF_OUTFMT_CSC;
 312
 313        wpf->outfmt = outfmt;
 314
 315        vsp1_dl_body_write(dlb, VI6_DPR_WPF_FPORCH(index),
 316                           VI6_DPR_WPF_FPORCH_FP_WPFN);
 317
 318        /*
 319         * Sources. If the pipeline has a single input and BRx is not used,
 320         * configure it as the master layer. Otherwise configure all
 321         * inputs as sub-layers and select the virtual RPF as the master
 322         * layer.
 323         */
 324        for (i = 0; i < vsp1->info->rpf_count; ++i) {
 325                struct vsp1_rwpf *input = pipe->inputs[i];
 326
 327                if (!input)
 328                        continue;
 329
 330                srcrpf |= (!pipe->brx && pipe->num_inputs == 1)
 331                        ? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
 332                        : VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
 333        }
 334
 335        if (pipe->brx)
 336                srcrpf |= pipe->brx->type == VSP1_ENTITY_BRU
 337                        ? VI6_WPF_SRCRPF_VIRACT_MST
 338                        : VI6_WPF_SRCRPF_VIRACT2_MST;
 339
 340        vsp1_wpf_write(wpf, dlb, VI6_WPF_SRCRPF, srcrpf);
 341
 342        /* Enable interrupts. */
 343        vsp1_dl_body_write(dlb, VI6_WPF_IRQ_STA(index), 0);
 344        vsp1_dl_body_write(dlb, VI6_WPF_IRQ_ENB(index),
 345                           VI6_WFP_IRQ_ENB_DFEE);
 346
 347        /*
 348         * Configure writeback for display pipelines (the wpf writeback flag is
 349         * never set for memory-to-memory pipelines). Start by adding a chained
 350         * display list to disable writeback after a single frame, and process
 351         * to enable writeback. If the display list allocation fails don't
 352         * enable writeback as we wouldn't be able to safely disable it,
 353         * resulting in possible memory corruption.
 354         */
 355        if (wpf->writeback) {
 356                ret = wpf_configure_writeback_chain(wpf, dl);
 357                if (ret < 0)
 358                        wpf->writeback = false;
 359        }
 360
 361        vsp1_dl_body_write(dlb, VI6_WPF_WRBCK_CTRL(index),
 362                           wpf->writeback ? VI6_WPF_WRBCK_CTRL_WBMD : 0);
 363}
 364
 365static void wpf_configure_frame(struct vsp1_entity *entity,
 366                                struct vsp1_pipeline *pipe,
 367                                struct vsp1_dl_list *dl,
 368                                struct vsp1_dl_body *dlb)
 369{
 370        const unsigned int mask = BIT(WPF_CTRL_VFLIP)
 371                                | BIT(WPF_CTRL_HFLIP);
 372        struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
 373        unsigned long flags;
 374        u32 outfmt;
 375
 376        spin_lock_irqsave(&wpf->flip.lock, flags);
 377        wpf->flip.active = (wpf->flip.active & ~mask)
 378                         | (wpf->flip.pending & mask);
 379        spin_unlock_irqrestore(&wpf->flip.lock, flags);
 380
 381        outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt;
 382
 383        if (wpf->flip.active & BIT(WPF_CTRL_VFLIP))
 384                outfmt |= VI6_WPF_OUTFMT_FLP;
 385        if (wpf->flip.active & BIT(WPF_CTRL_HFLIP))
 386                outfmt |= VI6_WPF_OUTFMT_HFLP;
 387
 388        vsp1_wpf_write(wpf, dlb, VI6_WPF_OUTFMT, outfmt);
 389}
 390
 391static void wpf_configure_partition(struct vsp1_entity *entity,
 392                                    struct vsp1_pipeline *pipe,
 393                                    struct vsp1_dl_list *dl,
 394                                    struct vsp1_dl_body *dlb)
 395{
 396        struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
 397        struct vsp1_device *vsp1 = wpf->entity.vsp1;
 398        struct vsp1_rwpf_memory mem = wpf->mem;
 399        const struct v4l2_mbus_framefmt *sink_format;
 400        const struct v4l2_pix_format_mplane *format = &wpf->format;
 401        const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
 402        unsigned int width;
 403        unsigned int height;
 404        unsigned int left;
 405        unsigned int offset;
 406        unsigned int flip;
 407        unsigned int i;
 408
 409        sink_format = vsp1_entity_get_pad_format(&wpf->entity,
 410                                                 wpf->entity.config,
 411                                                 RWPF_PAD_SINK);
 412        width = sink_format->width;
 413        height = sink_format->height;
 414        left = 0;
 415
 416        /*
 417         * Cropping. The partition algorithm can split the image into
 418         * multiple slices.
 419         */
 420        if (pipe->partitions > 1) {
 421                width = pipe->partition->wpf.width;
 422                left = pipe->partition->wpf.left;
 423        }
 424
 425        vsp1_wpf_write(wpf, dlb, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
 426                       (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
 427                       (width << VI6_WPF_SZCLIP_SIZE_SHIFT));
 428        vsp1_wpf_write(wpf, dlb, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
 429                       (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
 430                       (height << VI6_WPF_SZCLIP_SIZE_SHIFT));
 431
 432        /*
 433         * For display pipelines without writeback enabled there's no memory
 434         * address to configure, return now.
 435         */
 436        if (pipe->lif && !wpf->writeback)
 437                return;
 438
 439        /*
 440         * Update the memory offsets based on flipping configuration.
 441         * The destination addresses point to the locations where the
 442         * VSP starts writing to memory, which can be any corner of the
 443         * image depending on the combination of flipping and rotation.
 444         */
 445
 446        /*
 447         * First take the partition left coordinate into account.
 448         * Compute the offset to order the partitions correctly on the
 449         * output based on whether flipping is enabled. Consider
 450         * horizontal flipping when rotation is disabled but vertical
 451         * flipping when rotation is enabled, as rotating the image
 452         * switches the horizontal and vertical directions. The offset
 453         * is applied horizontally or vertically accordingly.
 454         */
 455        flip = wpf->flip.active;
 456
 457        if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
 458                offset = format->width - left - width;
 459        else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
 460                offset = format->height - left - width;
 461        else
 462                offset = left;
 463
 464        for (i = 0; i < format->num_planes; ++i) {
 465                unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
 466                unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
 467
 468                if (wpf->flip.rotate)
 469                        mem.addr[i] += offset / vsub
 470                                     * format->plane_fmt[i].bytesperline;
 471                else
 472                        mem.addr[i] += offset / hsub
 473                                     * fmtinfo->bpp[i] / 8;
 474        }
 475
 476        if (flip & BIT(WPF_CTRL_VFLIP)) {
 477                /*
 478                 * When rotating the output (after rotation) image
 479                 * height is equal to the partition width (before
 480                 * rotation). Otherwise it is equal to the output
 481                 * image height.
 482                 */
 483                if (wpf->flip.rotate)
 484                        height = width;
 485                else
 486                        height = format->height;
 487
 488                mem.addr[0] += (height - 1)
 489                             * format->plane_fmt[0].bytesperline;
 490
 491                if (format->num_planes > 1) {
 492                        offset = (height / fmtinfo->vsub - 1)
 493                               * format->plane_fmt[1].bytesperline;
 494                        mem.addr[1] += offset;
 495                        mem.addr[2] += offset;
 496                }
 497        }
 498
 499        if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
 500                unsigned int hoffset = max(0, (int)format->width - 16);
 501
 502                /*
 503                 * Compute the output coordinate. The partition
 504                 * horizontal (left) offset becomes a vertical offset.
 505                 */
 506                for (i = 0; i < format->num_planes; ++i) {
 507                        unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
 508
 509                        mem.addr[i] += hoffset / hsub
 510                                     * fmtinfo->bpp[i] / 8;
 511                }
 512        }
 513
 514        /*
 515         * On Gen3 hardware the SPUVS bit has no effect on 3-planar
 516         * formats. Swap the U and V planes manually in that case.
 517         */
 518        if (vsp1->info->gen == 3 && format->num_planes == 3 &&
 519            fmtinfo->swap_uv)
 520                swap(mem.addr[1], mem.addr[2]);
 521
 522        vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]);
 523        vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]);
 524        vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]);
 525
 526        /*
 527         * Writeback operates in single-shot mode and lasts for a single frame,
 528         * reset the writeback flag to false for the next frame.
 529         */
 530        wpf->writeback = false;
 531}
 532
 533static unsigned int wpf_max_width(struct vsp1_entity *entity,
 534                                  struct vsp1_pipeline *pipe)
 535{
 536        struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
 537
 538        return wpf->flip.rotate ? 256 : wpf->max_width;
 539}
 540
 541static void wpf_partition(struct vsp1_entity *entity,
 542                          struct vsp1_pipeline *pipe,
 543                          struct vsp1_partition *partition,
 544                          unsigned int partition_idx,
 545                          struct vsp1_partition_window *window)
 546{
 547        partition->wpf = *window;
 548}
 549
 550static const struct vsp1_entity_operations wpf_entity_ops = {
 551        .destroy = vsp1_wpf_destroy,
 552        .configure_stream = wpf_configure_stream,
 553        .configure_frame = wpf_configure_frame,
 554        .configure_partition = wpf_configure_partition,
 555        .max_width = wpf_max_width,
 556        .partition = wpf_partition,
 557};
 558
 559/* -----------------------------------------------------------------------------
 560 * Initialization and Cleanup
 561 */
 562
 563struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
 564{
 565        struct vsp1_rwpf *wpf;
 566        char name[6];
 567        int ret;
 568
 569        wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
 570        if (wpf == NULL)
 571                return ERR_PTR(-ENOMEM);
 572
 573        if (vsp1->info->gen == 2) {
 574                wpf->max_width = WPF_GEN2_MAX_WIDTH;
 575                wpf->max_height = WPF_GEN2_MAX_HEIGHT;
 576        } else {
 577                wpf->max_width = WPF_GEN3_MAX_WIDTH;
 578                wpf->max_height = WPF_GEN3_MAX_HEIGHT;
 579        }
 580
 581        wpf->entity.ops = &wpf_entity_ops;
 582        wpf->entity.type = VSP1_ENTITY_WPF;
 583        wpf->entity.index = index;
 584
 585        sprintf(name, "wpf.%u", index);
 586        ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
 587                               MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
 588        if (ret < 0)
 589                return ERR_PTR(ret);
 590
 591        /* Initialize the display list manager. */
 592        wpf->dlm = vsp1_dlm_create(vsp1, index, 64);
 593        if (!wpf->dlm) {
 594                ret = -ENOMEM;
 595                goto error;
 596        }
 597
 598        /* Initialize the control handler. */
 599        ret = wpf_init_controls(wpf);
 600        if (ret < 0) {
 601                dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
 602                        index);
 603                goto error;
 604        }
 605
 606        v4l2_ctrl_handler_setup(&wpf->ctrls);
 607
 608        return wpf;
 609
 610error:
 611        vsp1_entity_destroy(&wpf->entity);
 612        return ERR_PTR(ret);
 613}
 614