linux/drivers/mtd/mtdcore.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/slab.h>
  27#include <linux/reboot.h>
  28#include <linux/leds.h>
  29#include <linux/debugfs.h>
  30#include <linux/nvmem-provider.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include "mtdcore.h"
  36
  37struct backing_dev_info *mtd_bdi;
  38
  39#ifdef CONFIG_PM_SLEEP
  40
  41static int mtd_cls_suspend(struct device *dev)
  42{
  43        struct mtd_info *mtd = dev_get_drvdata(dev);
  44
  45        return mtd ? mtd_suspend(mtd) : 0;
  46}
  47
  48static int mtd_cls_resume(struct device *dev)
  49{
  50        struct mtd_info *mtd = dev_get_drvdata(dev);
  51
  52        if (mtd)
  53                mtd_resume(mtd);
  54        return 0;
  55}
  56
  57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  59#else
  60#define MTD_CLS_PM_OPS NULL
  61#endif
  62
  63static struct class mtd_class = {
  64        .name = "mtd",
  65        .owner = THIS_MODULE,
  66        .pm = MTD_CLS_PM_OPS,
  67};
  68
  69static DEFINE_IDR(mtd_idr);
  70
  71/* These are exported solely for the purpose of mtd_blkdevs.c. You
  72   should not use them for _anything_ else */
  73DEFINE_MUTEX(mtd_table_mutex);
  74EXPORT_SYMBOL_GPL(mtd_table_mutex);
  75
  76struct mtd_info *__mtd_next_device(int i)
  77{
  78        return idr_get_next(&mtd_idr, &i);
  79}
  80EXPORT_SYMBOL_GPL(__mtd_next_device);
  81
  82static LIST_HEAD(mtd_notifiers);
  83
  84
  85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  86
  87/* REVISIT once MTD uses the driver model better, whoever allocates
  88 * the mtd_info will probably want to use the release() hook...
  89 */
  90static void mtd_release(struct device *dev)
  91{
  92        struct mtd_info *mtd = dev_get_drvdata(dev);
  93        dev_t index = MTD_DEVT(mtd->index);
  94
  95        /* remove /dev/mtdXro node */
  96        device_destroy(&mtd_class, index + 1);
  97}
  98
  99static ssize_t mtd_type_show(struct device *dev,
 100                struct device_attribute *attr, char *buf)
 101{
 102        struct mtd_info *mtd = dev_get_drvdata(dev);
 103        char *type;
 104
 105        switch (mtd->type) {
 106        case MTD_ABSENT:
 107                type = "absent";
 108                break;
 109        case MTD_RAM:
 110                type = "ram";
 111                break;
 112        case MTD_ROM:
 113                type = "rom";
 114                break;
 115        case MTD_NORFLASH:
 116                type = "nor";
 117                break;
 118        case MTD_NANDFLASH:
 119                type = "nand";
 120                break;
 121        case MTD_DATAFLASH:
 122                type = "dataflash";
 123                break;
 124        case MTD_UBIVOLUME:
 125                type = "ubi";
 126                break;
 127        case MTD_MLCNANDFLASH:
 128                type = "mlc-nand";
 129                break;
 130        default:
 131                type = "unknown";
 132        }
 133
 134        return snprintf(buf, PAGE_SIZE, "%s\n", type);
 135}
 136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 137
 138static ssize_t mtd_flags_show(struct device *dev,
 139                struct device_attribute *attr, char *buf)
 140{
 141        struct mtd_info *mtd = dev_get_drvdata(dev);
 142
 143        return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 144}
 145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 146
 147static ssize_t mtd_size_show(struct device *dev,
 148                struct device_attribute *attr, char *buf)
 149{
 150        struct mtd_info *mtd = dev_get_drvdata(dev);
 151
 152        return snprintf(buf, PAGE_SIZE, "%llu\n",
 153                (unsigned long long)mtd->size);
 154}
 155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 156
 157static ssize_t mtd_erasesize_show(struct device *dev,
 158                struct device_attribute *attr, char *buf)
 159{
 160        struct mtd_info *mtd = dev_get_drvdata(dev);
 161
 162        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 163}
 164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 165
 166static ssize_t mtd_writesize_show(struct device *dev,
 167                struct device_attribute *attr, char *buf)
 168{
 169        struct mtd_info *mtd = dev_get_drvdata(dev);
 170
 171        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 172}
 173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 174
 175static ssize_t mtd_subpagesize_show(struct device *dev,
 176                struct device_attribute *attr, char *buf)
 177{
 178        struct mtd_info *mtd = dev_get_drvdata(dev);
 179        unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 180
 181        return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 182}
 183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 184
 185static ssize_t mtd_oobsize_show(struct device *dev,
 186                struct device_attribute *attr, char *buf)
 187{
 188        struct mtd_info *mtd = dev_get_drvdata(dev);
 189
 190        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 191}
 192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 193
 194static ssize_t mtd_oobavail_show(struct device *dev,
 195                                 struct device_attribute *attr, char *buf)
 196{
 197        struct mtd_info *mtd = dev_get_drvdata(dev);
 198
 199        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
 200}
 201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
 202
 203static ssize_t mtd_numeraseregions_show(struct device *dev,
 204                struct device_attribute *attr, char *buf)
 205{
 206        struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 209}
 210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 211        NULL);
 212
 213static ssize_t mtd_name_show(struct device *dev,
 214                struct device_attribute *attr, char *buf)
 215{
 216        struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218        return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 219}
 220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 221
 222static ssize_t mtd_ecc_strength_show(struct device *dev,
 223                                     struct device_attribute *attr, char *buf)
 224{
 225        struct mtd_info *mtd = dev_get_drvdata(dev);
 226
 227        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 228}
 229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 230
 231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 232                                          struct device_attribute *attr,
 233                                          char *buf)
 234{
 235        struct mtd_info *mtd = dev_get_drvdata(dev);
 236
 237        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 238}
 239
 240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 241                                           struct device_attribute *attr,
 242                                           const char *buf, size_t count)
 243{
 244        struct mtd_info *mtd = dev_get_drvdata(dev);
 245        unsigned int bitflip_threshold;
 246        int retval;
 247
 248        retval = kstrtouint(buf, 0, &bitflip_threshold);
 249        if (retval)
 250                return retval;
 251
 252        mtd->bitflip_threshold = bitflip_threshold;
 253        return count;
 254}
 255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 256                   mtd_bitflip_threshold_show,
 257                   mtd_bitflip_threshold_store);
 258
 259static ssize_t mtd_ecc_step_size_show(struct device *dev,
 260                struct device_attribute *attr, char *buf)
 261{
 262        struct mtd_info *mtd = dev_get_drvdata(dev);
 263
 264        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 265
 266}
 267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 268
 269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 270                struct device_attribute *attr, char *buf)
 271{
 272        struct mtd_info *mtd = dev_get_drvdata(dev);
 273        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 274
 275        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 276}
 277static DEVICE_ATTR(corrected_bits, S_IRUGO,
 278                   mtd_ecc_stats_corrected_show, NULL);
 279
 280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 281                struct device_attribute *attr, char *buf)
 282{
 283        struct mtd_info *mtd = dev_get_drvdata(dev);
 284        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 285
 286        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 287}
 288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 289
 290static ssize_t mtd_badblocks_show(struct device *dev,
 291                struct device_attribute *attr, char *buf)
 292{
 293        struct mtd_info *mtd = dev_get_drvdata(dev);
 294        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 295
 296        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 297}
 298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 299
 300static ssize_t mtd_bbtblocks_show(struct device *dev,
 301                struct device_attribute *attr, char *buf)
 302{
 303        struct mtd_info *mtd = dev_get_drvdata(dev);
 304        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 305
 306        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 307}
 308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 309
 310static struct attribute *mtd_attrs[] = {
 311        &dev_attr_type.attr,
 312        &dev_attr_flags.attr,
 313        &dev_attr_size.attr,
 314        &dev_attr_erasesize.attr,
 315        &dev_attr_writesize.attr,
 316        &dev_attr_subpagesize.attr,
 317        &dev_attr_oobsize.attr,
 318        &dev_attr_oobavail.attr,
 319        &dev_attr_numeraseregions.attr,
 320        &dev_attr_name.attr,
 321        &dev_attr_ecc_strength.attr,
 322        &dev_attr_ecc_step_size.attr,
 323        &dev_attr_corrected_bits.attr,
 324        &dev_attr_ecc_failures.attr,
 325        &dev_attr_bad_blocks.attr,
 326        &dev_attr_bbt_blocks.attr,
 327        &dev_attr_bitflip_threshold.attr,
 328        NULL,
 329};
 330ATTRIBUTE_GROUPS(mtd);
 331
 332static const struct device_type mtd_devtype = {
 333        .name           = "mtd",
 334        .groups         = mtd_groups,
 335        .release        = mtd_release,
 336};
 337
 338static int mtd_partid_debug_show(struct seq_file *s, void *p)
 339{
 340        struct mtd_info *mtd = s->private;
 341
 342        seq_printf(s, "%s\n", mtd->dbg.partid);
 343
 344        return 0;
 345}
 346
 347DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
 348
 349static int mtd_partname_debug_show(struct seq_file *s, void *p)
 350{
 351        struct mtd_info *mtd = s->private;
 352
 353        seq_printf(s, "%s\n", mtd->dbg.partname);
 354
 355        return 0;
 356}
 357
 358DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
 359
 360static struct dentry *dfs_dir_mtd;
 361
 362static void mtd_debugfs_populate(struct mtd_info *mtd)
 363{
 364        struct device *dev = &mtd->dev;
 365        struct dentry *root;
 366
 367        if (IS_ERR_OR_NULL(dfs_dir_mtd))
 368                return;
 369
 370        root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 371        mtd->dbg.dfs_dir = root;
 372
 373        if (mtd->dbg.partid)
 374                debugfs_create_file("partid", 0400, root, mtd,
 375                                    &mtd_partid_debug_fops);
 376
 377        if (mtd->dbg.partname)
 378                debugfs_create_file("partname", 0400, root, mtd,
 379                                    &mtd_partname_debug_fops);
 380}
 381
 382#ifndef CONFIG_MMU
 383unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 384{
 385        switch (mtd->type) {
 386        case MTD_RAM:
 387                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 388                        NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 389        case MTD_ROM:
 390                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 391                        NOMMU_MAP_READ;
 392        default:
 393                return NOMMU_MAP_COPY;
 394        }
 395}
 396EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 397#endif
 398
 399static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 400                               void *cmd)
 401{
 402        struct mtd_info *mtd;
 403
 404        mtd = container_of(n, struct mtd_info, reboot_notifier);
 405        mtd->_reboot(mtd);
 406
 407        return NOTIFY_DONE;
 408}
 409
 410/**
 411 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 412 * @mtd: pointer to new MTD device info structure
 413 * @wunit: write unit we are interested in
 414 * @info: returned pairing information
 415 *
 416 * Retrieve pairing information associated to the wunit.
 417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 418 * paired together, and where programming a page may influence the page it is
 419 * paired with.
 420 * The notion of page is replaced by the term wunit (write-unit) to stay
 421 * consistent with the ->writesize field.
 422 *
 423 * The @wunit argument can be extracted from an absolute offset using
 424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 425 * to @wunit.
 426 *
 427 * From the pairing info the MTD user can find all the wunits paired with
 428 * @wunit using the following loop:
 429 *
 430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 431 *      info.pair = i;
 432 *      mtd_pairing_info_to_wunit(mtd, &info);
 433 *      ...
 434 * }
 435 */
 436int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 437                              struct mtd_pairing_info *info)
 438{
 439        struct mtd_info *master = mtd_get_master(mtd);
 440        int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 441
 442        if (wunit < 0 || wunit >= npairs)
 443                return -EINVAL;
 444
 445        if (master->pairing && master->pairing->get_info)
 446                return master->pairing->get_info(master, wunit, info);
 447
 448        info->group = 0;
 449        info->pair = wunit;
 450
 451        return 0;
 452}
 453EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 454
 455/**
 456 * mtd_pairing_info_to_wunit - get wunit from pairing information
 457 * @mtd: pointer to new MTD device info structure
 458 * @info: pairing information struct
 459 *
 460 * Returns a positive number representing the wunit associated to the info
 461 * struct, or a negative error code.
 462 *
 463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 465 * doc).
 466 *
 467 * It can also be used to only program the first page of each pair (i.e.
 468 * page attached to group 0), which allows one to use an MLC NAND in
 469 * software-emulated SLC mode:
 470 *
 471 * info.group = 0;
 472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 473 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 474 *      wunit = mtd_pairing_info_to_wunit(mtd, &info);
 475 *      mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 476 *                mtd->writesize, &retlen, buf + (i * mtd->writesize));
 477 * }
 478 */
 479int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 480                              const struct mtd_pairing_info *info)
 481{
 482        struct mtd_info *master = mtd_get_master(mtd);
 483        int ngroups = mtd_pairing_groups(master);
 484        int npairs = mtd_wunit_per_eb(master) / ngroups;
 485
 486        if (!info || info->pair < 0 || info->pair >= npairs ||
 487            info->group < 0 || info->group >= ngroups)
 488                return -EINVAL;
 489
 490        if (master->pairing && master->pairing->get_wunit)
 491                return mtd->pairing->get_wunit(master, info);
 492
 493        return info->pair;
 494}
 495EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 496
 497/**
 498 * mtd_pairing_groups - get the number of pairing groups
 499 * @mtd: pointer to new MTD device info structure
 500 *
 501 * Returns the number of pairing groups.
 502 *
 503 * This number is usually equal to the number of bits exposed by a single
 504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 505 * to iterate over all pages of a given pair.
 506 */
 507int mtd_pairing_groups(struct mtd_info *mtd)
 508{
 509        struct mtd_info *master = mtd_get_master(mtd);
 510
 511        if (!master->pairing || !master->pairing->ngroups)
 512                return 1;
 513
 514        return master->pairing->ngroups;
 515}
 516EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 517
 518static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 519                              void *val, size_t bytes)
 520{
 521        struct mtd_info *mtd = priv;
 522        size_t retlen;
 523        int err;
 524
 525        err = mtd_read(mtd, offset, bytes, &retlen, val);
 526        if (err && err != -EUCLEAN)
 527                return err;
 528
 529        return retlen == bytes ? 0 : -EIO;
 530}
 531
 532static int mtd_nvmem_add(struct mtd_info *mtd)
 533{
 534        struct nvmem_config config = {};
 535
 536        config.id = -1;
 537        config.dev = &mtd->dev;
 538        config.name = dev_name(&mtd->dev);
 539        config.owner = THIS_MODULE;
 540        config.reg_read = mtd_nvmem_reg_read;
 541        config.size = mtd->size;
 542        config.word_size = 1;
 543        config.stride = 1;
 544        config.read_only = true;
 545        config.root_only = true;
 546        config.no_of_node = true;
 547        config.priv = mtd;
 548
 549        mtd->nvmem = nvmem_register(&config);
 550        if (IS_ERR(mtd->nvmem)) {
 551                /* Just ignore if there is no NVMEM support in the kernel */
 552                if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
 553                        mtd->nvmem = NULL;
 554                } else {
 555                        dev_err(&mtd->dev, "Failed to register NVMEM device\n");
 556                        return PTR_ERR(mtd->nvmem);
 557                }
 558        }
 559
 560        return 0;
 561}
 562
 563/**
 564 *      add_mtd_device - register an MTD device
 565 *      @mtd: pointer to new MTD device info structure
 566 *
 567 *      Add a device to the list of MTD devices present in the system, and
 568 *      notify each currently active MTD 'user' of its arrival. Returns
 569 *      zero on success or non-zero on failure.
 570 */
 571
 572int add_mtd_device(struct mtd_info *mtd)
 573{
 574        struct mtd_info *master = mtd_get_master(mtd);
 575        struct mtd_notifier *not;
 576        int i, error;
 577
 578        /*
 579         * May occur, for instance, on buggy drivers which call
 580         * mtd_device_parse_register() multiple times on the same master MTD,
 581         * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 582         */
 583        if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 584                return -EEXIST;
 585
 586        BUG_ON(mtd->writesize == 0);
 587
 588        /*
 589         * MTD drivers should implement ->_{write,read}() or
 590         * ->_{write,read}_oob(), but not both.
 591         */
 592        if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 593                    (mtd->_read && mtd->_read_oob)))
 594                return -EINVAL;
 595
 596        if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 597                    !(mtd->flags & MTD_NO_ERASE)))
 598                return -EINVAL;
 599
 600        /*
 601         * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 602         * master is an MLC NAND and has a proper pairing scheme defined.
 603         * We also reject masters that implement ->_writev() for now, because
 604         * NAND controller drivers don't implement this hook, and adding the
 605         * SLC -> MLC address/length conversion to this path is useless if we
 606         * don't have a user.
 607         */
 608        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 609            (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 610             !master->pairing || master->_writev))
 611                return -EINVAL;
 612
 613        mutex_lock(&mtd_table_mutex);
 614
 615        i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 616        if (i < 0) {
 617                error = i;
 618                goto fail_locked;
 619        }
 620
 621        mtd->index = i;
 622        mtd->usecount = 0;
 623
 624        /* default value if not set by driver */
 625        if (mtd->bitflip_threshold == 0)
 626                mtd->bitflip_threshold = mtd->ecc_strength;
 627
 628        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 629                int ngroups = mtd_pairing_groups(master);
 630
 631                mtd->erasesize /= ngroups;
 632                mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 633                            mtd->erasesize;
 634        }
 635
 636        if (is_power_of_2(mtd->erasesize))
 637                mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 638        else
 639                mtd->erasesize_shift = 0;
 640
 641        if (is_power_of_2(mtd->writesize))
 642                mtd->writesize_shift = ffs(mtd->writesize) - 1;
 643        else
 644                mtd->writesize_shift = 0;
 645
 646        mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 647        mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 648
 649        /* Some chips always power up locked. Unlock them now */
 650        if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 651                error = mtd_unlock(mtd, 0, mtd->size);
 652                if (error && error != -EOPNOTSUPP)
 653                        printk(KERN_WARNING
 654                               "%s: unlock failed, writes may not work\n",
 655                               mtd->name);
 656                /* Ignore unlock failures? */
 657                error = 0;
 658        }
 659
 660        /* Caller should have set dev.parent to match the
 661         * physical device, if appropriate.
 662         */
 663        mtd->dev.type = &mtd_devtype;
 664        mtd->dev.class = &mtd_class;
 665        mtd->dev.devt = MTD_DEVT(i);
 666        dev_set_name(&mtd->dev, "mtd%d", i);
 667        dev_set_drvdata(&mtd->dev, mtd);
 668        of_node_get(mtd_get_of_node(mtd));
 669        error = device_register(&mtd->dev);
 670        if (error)
 671                goto fail_added;
 672
 673        /* Add the nvmem provider */
 674        error = mtd_nvmem_add(mtd);
 675        if (error)
 676                goto fail_nvmem_add;
 677
 678        mtd_debugfs_populate(mtd);
 679
 680        device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 681                      "mtd%dro", i);
 682
 683        pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 684        /* No need to get a refcount on the module containing
 685           the notifier, since we hold the mtd_table_mutex */
 686        list_for_each_entry(not, &mtd_notifiers, list)
 687                not->add(mtd);
 688
 689        mutex_unlock(&mtd_table_mutex);
 690        /* We _know_ we aren't being removed, because
 691           our caller is still holding us here. So none
 692           of this try_ nonsense, and no bitching about it
 693           either. :) */
 694        __module_get(THIS_MODULE);
 695        return 0;
 696
 697fail_nvmem_add:
 698        device_unregister(&mtd->dev);
 699fail_added:
 700        of_node_put(mtd_get_of_node(mtd));
 701        idr_remove(&mtd_idr, i);
 702fail_locked:
 703        mutex_unlock(&mtd_table_mutex);
 704        return error;
 705}
 706
 707/**
 708 *      del_mtd_device - unregister an MTD device
 709 *      @mtd: pointer to MTD device info structure
 710 *
 711 *      Remove a device from the list of MTD devices present in the system,
 712 *      and notify each currently active MTD 'user' of its departure.
 713 *      Returns zero on success or 1 on failure, which currently will happen
 714 *      if the requested device does not appear to be present in the list.
 715 */
 716
 717int del_mtd_device(struct mtd_info *mtd)
 718{
 719        int ret;
 720        struct mtd_notifier *not;
 721
 722        mutex_lock(&mtd_table_mutex);
 723
 724        debugfs_remove_recursive(mtd->dbg.dfs_dir);
 725
 726        if (idr_find(&mtd_idr, mtd->index) != mtd) {
 727                ret = -ENODEV;
 728                goto out_error;
 729        }
 730
 731        /* No need to get a refcount on the module containing
 732                the notifier, since we hold the mtd_table_mutex */
 733        list_for_each_entry(not, &mtd_notifiers, list)
 734                not->remove(mtd);
 735
 736        if (mtd->usecount) {
 737                printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 738                       mtd->index, mtd->name, mtd->usecount);
 739                ret = -EBUSY;
 740        } else {
 741                /* Try to remove the NVMEM provider */
 742                if (mtd->nvmem)
 743                        nvmem_unregister(mtd->nvmem);
 744
 745                device_unregister(&mtd->dev);
 746
 747                idr_remove(&mtd_idr, mtd->index);
 748                of_node_put(mtd_get_of_node(mtd));
 749
 750                module_put(THIS_MODULE);
 751                ret = 0;
 752        }
 753
 754out_error:
 755        mutex_unlock(&mtd_table_mutex);
 756        return ret;
 757}
 758
 759/*
 760 * Set a few defaults based on the parent devices, if not provided by the
 761 * driver
 762 */
 763static void mtd_set_dev_defaults(struct mtd_info *mtd)
 764{
 765        if (mtd->dev.parent) {
 766                if (!mtd->owner && mtd->dev.parent->driver)
 767                        mtd->owner = mtd->dev.parent->driver->owner;
 768                if (!mtd->name)
 769                        mtd->name = dev_name(mtd->dev.parent);
 770        } else {
 771                pr_debug("mtd device won't show a device symlink in sysfs\n");
 772        }
 773
 774        INIT_LIST_HEAD(&mtd->partitions);
 775        mutex_init(&mtd->master.partitions_lock);
 776}
 777
 778/**
 779 * mtd_device_parse_register - parse partitions and register an MTD device.
 780 *
 781 * @mtd: the MTD device to register
 782 * @types: the list of MTD partition probes to try, see
 783 *         'parse_mtd_partitions()' for more information
 784 * @parser_data: MTD partition parser-specific data
 785 * @parts: fallback partition information to register, if parsing fails;
 786 *         only valid if %nr_parts > %0
 787 * @nr_parts: the number of partitions in parts, if zero then the full
 788 *            MTD device is registered if no partition info is found
 789 *
 790 * This function aggregates MTD partitions parsing (done by
 791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 792 * basically follows the most common pattern found in many MTD drivers:
 793 *
 794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 795 *   registered first.
 796 * * Then It tries to probe partitions on MTD device @mtd using parsers
 797 *   specified in @types (if @types is %NULL, then the default list of parsers
 798 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 799 *   found this functions tries to fallback to information specified in
 800 *   @parts/@nr_parts.
 801 * * If no partitions were found this function just registers the MTD device
 802 *   @mtd and exits.
 803 *
 804 * Returns zero in case of success and a negative error code in case of failure.
 805 */
 806int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 807                              struct mtd_part_parser_data *parser_data,
 808                              const struct mtd_partition *parts,
 809                              int nr_parts)
 810{
 811        int ret;
 812
 813        mtd_set_dev_defaults(mtd);
 814
 815        if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 816                ret = add_mtd_device(mtd);
 817                if (ret)
 818                        return ret;
 819        }
 820
 821        /* Prefer parsed partitions over driver-provided fallback */
 822        ret = parse_mtd_partitions(mtd, types, parser_data);
 823        if (ret > 0)
 824                ret = 0;
 825        else if (nr_parts)
 826                ret = add_mtd_partitions(mtd, parts, nr_parts);
 827        else if (!device_is_registered(&mtd->dev))
 828                ret = add_mtd_device(mtd);
 829        else
 830                ret = 0;
 831
 832        if (ret)
 833                goto out;
 834
 835        /*
 836         * FIXME: some drivers unfortunately call this function more than once.
 837         * So we have to check if we've already assigned the reboot notifier.
 838         *
 839         * Generally, we can make multiple calls work for most cases, but it
 840         * does cause problems with parse_mtd_partitions() above (e.g.,
 841         * cmdlineparts will register partitions more than once).
 842         */
 843        WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 844                  "MTD already registered\n");
 845        if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 846                mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 847                register_reboot_notifier(&mtd->reboot_notifier);
 848        }
 849
 850out:
 851        if (ret && device_is_registered(&mtd->dev))
 852                del_mtd_device(mtd);
 853
 854        return ret;
 855}
 856EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 857
 858/**
 859 * mtd_device_unregister - unregister an existing MTD device.
 860 *
 861 * @master: the MTD device to unregister.  This will unregister both the master
 862 *          and any partitions if registered.
 863 */
 864int mtd_device_unregister(struct mtd_info *master)
 865{
 866        int err;
 867
 868        if (master->_reboot)
 869                unregister_reboot_notifier(&master->reboot_notifier);
 870
 871        err = del_mtd_partitions(master);
 872        if (err)
 873                return err;
 874
 875        if (!device_is_registered(&master->dev))
 876                return 0;
 877
 878        return del_mtd_device(master);
 879}
 880EXPORT_SYMBOL_GPL(mtd_device_unregister);
 881
 882/**
 883 *      register_mtd_user - register a 'user' of MTD devices.
 884 *      @new: pointer to notifier info structure
 885 *
 886 *      Registers a pair of callbacks function to be called upon addition
 887 *      or removal of MTD devices. Causes the 'add' callback to be immediately
 888 *      invoked for each MTD device currently present in the system.
 889 */
 890void register_mtd_user (struct mtd_notifier *new)
 891{
 892        struct mtd_info *mtd;
 893
 894        mutex_lock(&mtd_table_mutex);
 895
 896        list_add(&new->list, &mtd_notifiers);
 897
 898        __module_get(THIS_MODULE);
 899
 900        mtd_for_each_device(mtd)
 901                new->add(mtd);
 902
 903        mutex_unlock(&mtd_table_mutex);
 904}
 905EXPORT_SYMBOL_GPL(register_mtd_user);
 906
 907/**
 908 *      unregister_mtd_user - unregister a 'user' of MTD devices.
 909 *      @old: pointer to notifier info structure
 910 *
 911 *      Removes a callback function pair from the list of 'users' to be
 912 *      notified upon addition or removal of MTD devices. Causes the
 913 *      'remove' callback to be immediately invoked for each MTD device
 914 *      currently present in the system.
 915 */
 916int unregister_mtd_user (struct mtd_notifier *old)
 917{
 918        struct mtd_info *mtd;
 919
 920        mutex_lock(&mtd_table_mutex);
 921
 922        module_put(THIS_MODULE);
 923
 924        mtd_for_each_device(mtd)
 925                old->remove(mtd);
 926
 927        list_del(&old->list);
 928        mutex_unlock(&mtd_table_mutex);
 929        return 0;
 930}
 931EXPORT_SYMBOL_GPL(unregister_mtd_user);
 932
 933/**
 934 *      get_mtd_device - obtain a validated handle for an MTD device
 935 *      @mtd: last known address of the required MTD device
 936 *      @num: internal device number of the required MTD device
 937 *
 938 *      Given a number and NULL address, return the num'th entry in the device
 939 *      table, if any.  Given an address and num == -1, search the device table
 940 *      for a device with that address and return if it's still present. Given
 941 *      both, return the num'th driver only if its address matches. Return
 942 *      error code if not.
 943 */
 944struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 945{
 946        struct mtd_info *ret = NULL, *other;
 947        int err = -ENODEV;
 948
 949        mutex_lock(&mtd_table_mutex);
 950
 951        if (num == -1) {
 952                mtd_for_each_device(other) {
 953                        if (other == mtd) {
 954                                ret = mtd;
 955                                break;
 956                        }
 957                }
 958        } else if (num >= 0) {
 959                ret = idr_find(&mtd_idr, num);
 960                if (mtd && mtd != ret)
 961                        ret = NULL;
 962        }
 963
 964        if (!ret) {
 965                ret = ERR_PTR(err);
 966                goto out;
 967        }
 968
 969        err = __get_mtd_device(ret);
 970        if (err)
 971                ret = ERR_PTR(err);
 972out:
 973        mutex_unlock(&mtd_table_mutex);
 974        return ret;
 975}
 976EXPORT_SYMBOL_GPL(get_mtd_device);
 977
 978
 979int __get_mtd_device(struct mtd_info *mtd)
 980{
 981        struct mtd_info *master = mtd_get_master(mtd);
 982        int err;
 983
 984        if (!try_module_get(master->owner))
 985                return -ENODEV;
 986
 987        if (master->_get_device) {
 988                err = master->_get_device(mtd);
 989
 990                if (err) {
 991                        module_put(master->owner);
 992                        return err;
 993                }
 994        }
 995
 996        while (mtd->parent) {
 997                mtd->usecount++;
 998                mtd = mtd->parent;
 999        }
1000
1001        return 0;
1002}
1003EXPORT_SYMBOL_GPL(__get_mtd_device);
1004
1005/**
1006 *      get_mtd_device_nm - obtain a validated handle for an MTD device by
1007 *      device name
1008 *      @name: MTD device name to open
1009 *
1010 *      This function returns MTD device description structure in case of
1011 *      success and an error code in case of failure.
1012 */
1013struct mtd_info *get_mtd_device_nm(const char *name)
1014{
1015        int err = -ENODEV;
1016        struct mtd_info *mtd = NULL, *other;
1017
1018        mutex_lock(&mtd_table_mutex);
1019
1020        mtd_for_each_device(other) {
1021                if (!strcmp(name, other->name)) {
1022                        mtd = other;
1023                        break;
1024                }
1025        }
1026
1027        if (!mtd)
1028                goto out_unlock;
1029
1030        err = __get_mtd_device(mtd);
1031        if (err)
1032                goto out_unlock;
1033
1034        mutex_unlock(&mtd_table_mutex);
1035        return mtd;
1036
1037out_unlock:
1038        mutex_unlock(&mtd_table_mutex);
1039        return ERR_PTR(err);
1040}
1041EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1042
1043void put_mtd_device(struct mtd_info *mtd)
1044{
1045        mutex_lock(&mtd_table_mutex);
1046        __put_mtd_device(mtd);
1047        mutex_unlock(&mtd_table_mutex);
1048
1049}
1050EXPORT_SYMBOL_GPL(put_mtd_device);
1051
1052void __put_mtd_device(struct mtd_info *mtd)
1053{
1054        struct mtd_info *master = mtd_get_master(mtd);
1055
1056        while (mtd->parent) {
1057                --mtd->usecount;
1058                BUG_ON(mtd->usecount < 0);
1059                mtd = mtd->parent;
1060        }
1061
1062        if (master->_put_device)
1063                master->_put_device(master);
1064
1065        module_put(master->owner);
1066}
1067EXPORT_SYMBOL_GPL(__put_mtd_device);
1068
1069/*
1070 * Erase is an synchronous operation. Device drivers are epected to return a
1071 * negative error code if the operation failed and update instr->fail_addr
1072 * to point the portion that was not properly erased.
1073 */
1074int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1075{
1076        struct mtd_info *master = mtd_get_master(mtd);
1077        u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1078        struct erase_info adjinstr;
1079        int ret;
1080
1081        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1082        adjinstr = *instr;
1083
1084        if (!mtd->erasesize || !master->_erase)
1085                return -ENOTSUPP;
1086
1087        if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1088                return -EINVAL;
1089        if (!(mtd->flags & MTD_WRITEABLE))
1090                return -EROFS;
1091
1092        if (!instr->len)
1093                return 0;
1094
1095        ledtrig_mtd_activity();
1096
1097        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1098                adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1099                                master->erasesize;
1100                adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1101                                master->erasesize) -
1102                               adjinstr.addr;
1103        }
1104
1105        adjinstr.addr += mst_ofs;
1106
1107        ret = master->_erase(master, &adjinstr);
1108
1109        if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1110                instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1111                if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1112                        instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1113                                                         master);
1114                        instr->fail_addr *= mtd->erasesize;
1115                }
1116        }
1117
1118        return ret;
1119}
1120EXPORT_SYMBOL_GPL(mtd_erase);
1121
1122/*
1123 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1124 */
1125int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1126              void **virt, resource_size_t *phys)
1127{
1128        struct mtd_info *master = mtd_get_master(mtd);
1129
1130        *retlen = 0;
1131        *virt = NULL;
1132        if (phys)
1133                *phys = 0;
1134        if (!master->_point)
1135                return -EOPNOTSUPP;
1136        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1137                return -EINVAL;
1138        if (!len)
1139                return 0;
1140
1141        from = mtd_get_master_ofs(mtd, from);
1142        return master->_point(master, from, len, retlen, virt, phys);
1143}
1144EXPORT_SYMBOL_GPL(mtd_point);
1145
1146/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1147int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1148{
1149        struct mtd_info *master = mtd_get_master(mtd);
1150
1151        if (!master->_unpoint)
1152                return -EOPNOTSUPP;
1153        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1154                return -EINVAL;
1155        if (!len)
1156                return 0;
1157        return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1158}
1159EXPORT_SYMBOL_GPL(mtd_unpoint);
1160
1161/*
1162 * Allow NOMMU mmap() to directly map the device (if not NULL)
1163 * - return the address to which the offset maps
1164 * - return -ENOSYS to indicate refusal to do the mapping
1165 */
1166unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1167                                    unsigned long offset, unsigned long flags)
1168{
1169        size_t retlen;
1170        void *virt;
1171        int ret;
1172
1173        ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1174        if (ret)
1175                return ret;
1176        if (retlen != len) {
1177                mtd_unpoint(mtd, offset, retlen);
1178                return -ENOSYS;
1179        }
1180        return (unsigned long)virt;
1181}
1182EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1183
1184static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1185                                 const struct mtd_ecc_stats *old_stats)
1186{
1187        struct mtd_ecc_stats diff;
1188
1189        if (master == mtd)
1190                return;
1191
1192        diff = master->ecc_stats;
1193        diff.failed -= old_stats->failed;
1194        diff.corrected -= old_stats->corrected;
1195
1196        while (mtd->parent) {
1197                mtd->ecc_stats.failed += diff.failed;
1198                mtd->ecc_stats.corrected += diff.corrected;
1199                mtd = mtd->parent;
1200        }
1201}
1202
1203int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1204             u_char *buf)
1205{
1206        struct mtd_oob_ops ops = {
1207                .len = len,
1208                .datbuf = buf,
1209        };
1210        int ret;
1211
1212        ret = mtd_read_oob(mtd, from, &ops);
1213        *retlen = ops.retlen;
1214
1215        return ret;
1216}
1217EXPORT_SYMBOL_GPL(mtd_read);
1218
1219int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1220              const u_char *buf)
1221{
1222        struct mtd_oob_ops ops = {
1223                .len = len,
1224                .datbuf = (u8 *)buf,
1225        };
1226        int ret;
1227
1228        ret = mtd_write_oob(mtd, to, &ops);
1229        *retlen = ops.retlen;
1230
1231        return ret;
1232}
1233EXPORT_SYMBOL_GPL(mtd_write);
1234
1235/*
1236 * In blackbox flight recorder like scenarios we want to make successful writes
1237 * in interrupt context. panic_write() is only intended to be called when its
1238 * known the kernel is about to panic and we need the write to succeed. Since
1239 * the kernel is not going to be running for much longer, this function can
1240 * break locks and delay to ensure the write succeeds (but not sleep).
1241 */
1242int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1243                    const u_char *buf)
1244{
1245        struct mtd_info *master = mtd_get_master(mtd);
1246
1247        *retlen = 0;
1248        if (!master->_panic_write)
1249                return -EOPNOTSUPP;
1250        if (to < 0 || to >= mtd->size || len > mtd->size - to)
1251                return -EINVAL;
1252        if (!(mtd->flags & MTD_WRITEABLE))
1253                return -EROFS;
1254        if (!len)
1255                return 0;
1256        if (!master->oops_panic_write)
1257                master->oops_panic_write = true;
1258
1259        return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1260                                    retlen, buf);
1261}
1262EXPORT_SYMBOL_GPL(mtd_panic_write);
1263
1264static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1265                             struct mtd_oob_ops *ops)
1266{
1267        /*
1268         * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1269         * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1270         *  this case.
1271         */
1272        if (!ops->datbuf)
1273                ops->len = 0;
1274
1275        if (!ops->oobbuf)
1276                ops->ooblen = 0;
1277
1278        if (offs < 0 || offs + ops->len > mtd->size)
1279                return -EINVAL;
1280
1281        if (ops->ooblen) {
1282                size_t maxooblen;
1283
1284                if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1285                        return -EINVAL;
1286
1287                maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1288                                      mtd_div_by_ws(offs, mtd)) *
1289                             mtd_oobavail(mtd, ops)) - ops->ooboffs;
1290                if (ops->ooblen > maxooblen)
1291                        return -EINVAL;
1292        }
1293
1294        return 0;
1295}
1296
1297static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1298                            struct mtd_oob_ops *ops)
1299{
1300        struct mtd_info *master = mtd_get_master(mtd);
1301        int ret;
1302
1303        from = mtd_get_master_ofs(mtd, from);
1304        if (master->_read_oob)
1305                ret = master->_read_oob(master, from, ops);
1306        else
1307                ret = master->_read(master, from, ops->len, &ops->retlen,
1308                                    ops->datbuf);
1309
1310        return ret;
1311}
1312
1313static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1314                             struct mtd_oob_ops *ops)
1315{
1316        struct mtd_info *master = mtd_get_master(mtd);
1317        int ret;
1318
1319        to = mtd_get_master_ofs(mtd, to);
1320        if (master->_write_oob)
1321                ret = master->_write_oob(master, to, ops);
1322        else
1323                ret = master->_write(master, to, ops->len, &ops->retlen,
1324                                     ops->datbuf);
1325
1326        return ret;
1327}
1328
1329static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1330                               struct mtd_oob_ops *ops)
1331{
1332        struct mtd_info *master = mtd_get_master(mtd);
1333        int ngroups = mtd_pairing_groups(master);
1334        int npairs = mtd_wunit_per_eb(master) / ngroups;
1335        struct mtd_oob_ops adjops = *ops;
1336        unsigned int wunit, oobavail;
1337        struct mtd_pairing_info info;
1338        int max_bitflips = 0;
1339        u32 ebofs, pageofs;
1340        loff_t base, pos;
1341
1342        ebofs = mtd_mod_by_eb(start, mtd);
1343        base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1344        info.group = 0;
1345        info.pair = mtd_div_by_ws(ebofs, mtd);
1346        pageofs = mtd_mod_by_ws(ebofs, mtd);
1347        oobavail = mtd_oobavail(mtd, ops);
1348
1349        while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1350                int ret;
1351
1352                if (info.pair >= npairs) {
1353                        info.pair = 0;
1354                        base += master->erasesize;
1355                }
1356
1357                wunit = mtd_pairing_info_to_wunit(master, &info);
1358                pos = mtd_wunit_to_offset(mtd, base, wunit);
1359
1360                adjops.len = ops->len - ops->retlen;
1361                if (adjops.len > mtd->writesize - pageofs)
1362                        adjops.len = mtd->writesize - pageofs;
1363
1364                adjops.ooblen = ops->ooblen - ops->oobretlen;
1365                if (adjops.ooblen > oobavail - adjops.ooboffs)
1366                        adjops.ooblen = oobavail - adjops.ooboffs;
1367
1368                if (read) {
1369                        ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1370                        if (ret > 0)
1371                                max_bitflips = max(max_bitflips, ret);
1372                } else {
1373                        ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1374                }
1375
1376                if (ret < 0)
1377                        return ret;
1378
1379                max_bitflips = max(max_bitflips, ret);
1380                ops->retlen += adjops.retlen;
1381                ops->oobretlen += adjops.oobretlen;
1382                adjops.datbuf += adjops.retlen;
1383                adjops.oobbuf += adjops.oobretlen;
1384                adjops.ooboffs = 0;
1385                pageofs = 0;
1386                info.pair++;
1387        }
1388
1389        return max_bitflips;
1390}
1391
1392int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1393{
1394        struct mtd_info *master = mtd_get_master(mtd);
1395        struct mtd_ecc_stats old_stats = master->ecc_stats;
1396        int ret_code;
1397
1398        ops->retlen = ops->oobretlen = 0;
1399
1400        ret_code = mtd_check_oob_ops(mtd, from, ops);
1401        if (ret_code)
1402                return ret_code;
1403
1404        ledtrig_mtd_activity();
1405
1406        /* Check the validity of a potential fallback on mtd->_read */
1407        if (!master->_read_oob && (!master->_read || ops->oobbuf))
1408                return -EOPNOTSUPP;
1409
1410        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1411                ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1412        else
1413                ret_code = mtd_read_oob_std(mtd, from, ops);
1414
1415        mtd_update_ecc_stats(mtd, master, &old_stats);
1416
1417        /*
1418         * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1419         * similar to mtd->_read(), returning a non-negative integer
1420         * representing max bitflips. In other cases, mtd->_read_oob() may
1421         * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1422         */
1423        if (unlikely(ret_code < 0))
1424                return ret_code;
1425        if (mtd->ecc_strength == 0)
1426                return 0;       /* device lacks ecc */
1427        return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1428}
1429EXPORT_SYMBOL_GPL(mtd_read_oob);
1430
1431int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1432                                struct mtd_oob_ops *ops)
1433{
1434        struct mtd_info *master = mtd_get_master(mtd);
1435        int ret;
1436
1437        ops->retlen = ops->oobretlen = 0;
1438
1439        if (!(mtd->flags & MTD_WRITEABLE))
1440                return -EROFS;
1441
1442        ret = mtd_check_oob_ops(mtd, to, ops);
1443        if (ret)
1444                return ret;
1445
1446        ledtrig_mtd_activity();
1447
1448        /* Check the validity of a potential fallback on mtd->_write */
1449        if (!master->_write_oob && (!master->_write || ops->oobbuf))
1450                return -EOPNOTSUPP;
1451
1452        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1453                return mtd_io_emulated_slc(mtd, to, false, ops);
1454
1455        return mtd_write_oob_std(mtd, to, ops);
1456}
1457EXPORT_SYMBOL_GPL(mtd_write_oob);
1458
1459/**
1460 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1461 * @mtd: MTD device structure
1462 * @section: ECC section. Depending on the layout you may have all the ECC
1463 *           bytes stored in a single contiguous section, or one section
1464 *           per ECC chunk (and sometime several sections for a single ECC
1465 *           ECC chunk)
1466 * @oobecc: OOB region struct filled with the appropriate ECC position
1467 *          information
1468 *
1469 * This function returns ECC section information in the OOB area. If you want
1470 * to get all the ECC bytes information, then you should call
1471 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1472 *
1473 * Returns zero on success, a negative error code otherwise.
1474 */
1475int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1476                      struct mtd_oob_region *oobecc)
1477{
1478        struct mtd_info *master = mtd_get_master(mtd);
1479
1480        memset(oobecc, 0, sizeof(*oobecc));
1481
1482        if (!master || section < 0)
1483                return -EINVAL;
1484
1485        if (!master->ooblayout || !master->ooblayout->ecc)
1486                return -ENOTSUPP;
1487
1488        return master->ooblayout->ecc(master, section, oobecc);
1489}
1490EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1491
1492/**
1493 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1494 *                      section
1495 * @mtd: MTD device structure
1496 * @section: Free section you are interested in. Depending on the layout
1497 *           you may have all the free bytes stored in a single contiguous
1498 *           section, or one section per ECC chunk plus an extra section
1499 *           for the remaining bytes (or other funky layout).
1500 * @oobfree: OOB region struct filled with the appropriate free position
1501 *           information
1502 *
1503 * This function returns free bytes position in the OOB area. If you want
1504 * to get all the free bytes information, then you should call
1505 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1506 *
1507 * Returns zero on success, a negative error code otherwise.
1508 */
1509int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1510                       struct mtd_oob_region *oobfree)
1511{
1512        struct mtd_info *master = mtd_get_master(mtd);
1513
1514        memset(oobfree, 0, sizeof(*oobfree));
1515
1516        if (!master || section < 0)
1517                return -EINVAL;
1518
1519        if (!master->ooblayout || !master->ooblayout->free)
1520                return -ENOTSUPP;
1521
1522        return master->ooblayout->free(master, section, oobfree);
1523}
1524EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1525
1526/**
1527 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1528 * @mtd: mtd info structure
1529 * @byte: the byte we are searching for
1530 * @sectionp: pointer where the section id will be stored
1531 * @oobregion: used to retrieve the ECC position
1532 * @iter: iterator function. Should be either mtd_ooblayout_free or
1533 *        mtd_ooblayout_ecc depending on the region type you're searching for
1534 *
1535 * This function returns the section id and oobregion information of a
1536 * specific byte. For example, say you want to know where the 4th ECC byte is
1537 * stored, you'll use:
1538 *
1539 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1540 *
1541 * Returns zero on success, a negative error code otherwise.
1542 */
1543static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1544                                int *sectionp, struct mtd_oob_region *oobregion,
1545                                int (*iter)(struct mtd_info *,
1546                                            int section,
1547                                            struct mtd_oob_region *oobregion))
1548{
1549        int pos = 0, ret, section = 0;
1550
1551        memset(oobregion, 0, sizeof(*oobregion));
1552
1553        while (1) {
1554                ret = iter(mtd, section, oobregion);
1555                if (ret)
1556                        return ret;
1557
1558                if (pos + oobregion->length > byte)
1559                        break;
1560
1561                pos += oobregion->length;
1562                section++;
1563        }
1564
1565        /*
1566         * Adjust region info to make it start at the beginning at the
1567         * 'start' ECC byte.
1568         */
1569        oobregion->offset += byte - pos;
1570        oobregion->length -= byte - pos;
1571        *sectionp = section;
1572
1573        return 0;
1574}
1575
1576/**
1577 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1578 *                                ECC byte
1579 * @mtd: mtd info structure
1580 * @eccbyte: the byte we are searching for
1581 * @sectionp: pointer where the section id will be stored
1582 * @oobregion: OOB region information
1583 *
1584 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1585 * byte.
1586 *
1587 * Returns zero on success, a negative error code otherwise.
1588 */
1589int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1590                                 int *section,
1591                                 struct mtd_oob_region *oobregion)
1592{
1593        return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1594                                         mtd_ooblayout_ecc);
1595}
1596EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1597
1598/**
1599 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1600 * @mtd: mtd info structure
1601 * @buf: destination buffer to store OOB bytes
1602 * @oobbuf: OOB buffer
1603 * @start: first byte to retrieve
1604 * @nbytes: number of bytes to retrieve
1605 * @iter: section iterator
1606 *
1607 * Extract bytes attached to a specific category (ECC or free)
1608 * from the OOB buffer and copy them into buf.
1609 *
1610 * Returns zero on success, a negative error code otherwise.
1611 */
1612static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1613                                const u8 *oobbuf, int start, int nbytes,
1614                                int (*iter)(struct mtd_info *,
1615                                            int section,
1616                                            struct mtd_oob_region *oobregion))
1617{
1618        struct mtd_oob_region oobregion;
1619        int section, ret;
1620
1621        ret = mtd_ooblayout_find_region(mtd, start, &section,
1622                                        &oobregion, iter);
1623
1624        while (!ret) {
1625                int cnt;
1626
1627                cnt = min_t(int, nbytes, oobregion.length);
1628                memcpy(buf, oobbuf + oobregion.offset, cnt);
1629                buf += cnt;
1630                nbytes -= cnt;
1631
1632                if (!nbytes)
1633                        break;
1634
1635                ret = iter(mtd, ++section, &oobregion);
1636        }
1637
1638        return ret;
1639}
1640
1641/**
1642 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1643 * @mtd: mtd info structure
1644 * @buf: source buffer to get OOB bytes from
1645 * @oobbuf: OOB buffer
1646 * @start: first OOB byte to set
1647 * @nbytes: number of OOB bytes to set
1648 * @iter: section iterator
1649 *
1650 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1651 * is selected by passing the appropriate iterator.
1652 *
1653 * Returns zero on success, a negative error code otherwise.
1654 */
1655static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1656                                u8 *oobbuf, int start, int nbytes,
1657                                int (*iter)(struct mtd_info *,
1658                                            int section,
1659                                            struct mtd_oob_region *oobregion))
1660{
1661        struct mtd_oob_region oobregion;
1662        int section, ret;
1663
1664        ret = mtd_ooblayout_find_region(mtd, start, &section,
1665                                        &oobregion, iter);
1666
1667        while (!ret) {
1668                int cnt;
1669
1670                cnt = min_t(int, nbytes, oobregion.length);
1671                memcpy(oobbuf + oobregion.offset, buf, cnt);
1672                buf += cnt;
1673                nbytes -= cnt;
1674
1675                if (!nbytes)
1676                        break;
1677
1678                ret = iter(mtd, ++section, &oobregion);
1679        }
1680
1681        return ret;
1682}
1683
1684/**
1685 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1686 * @mtd: mtd info structure
1687 * @iter: category iterator
1688 *
1689 * Count the number of bytes in a given category.
1690 *
1691 * Returns a positive value on success, a negative error code otherwise.
1692 */
1693static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1694                                int (*iter)(struct mtd_info *,
1695                                            int section,
1696                                            struct mtd_oob_region *oobregion))
1697{
1698        struct mtd_oob_region oobregion;
1699        int section = 0, ret, nbytes = 0;
1700
1701        while (1) {
1702                ret = iter(mtd, section++, &oobregion);
1703                if (ret) {
1704                        if (ret == -ERANGE)
1705                                ret = nbytes;
1706                        break;
1707                }
1708
1709                nbytes += oobregion.length;
1710        }
1711
1712        return ret;
1713}
1714
1715/**
1716 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1717 * @mtd: mtd info structure
1718 * @eccbuf: destination buffer to store ECC bytes
1719 * @oobbuf: OOB buffer
1720 * @start: first ECC byte to retrieve
1721 * @nbytes: number of ECC bytes to retrieve
1722 *
1723 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1724 *
1725 * Returns zero on success, a negative error code otherwise.
1726 */
1727int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1728                               const u8 *oobbuf, int start, int nbytes)
1729{
1730        return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1731                                       mtd_ooblayout_ecc);
1732}
1733EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1734
1735/**
1736 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: source buffer to get ECC bytes from
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to set
1741 * @nbytes: number of ECC bytes to set
1742 *
1743 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1748                               u8 *oobbuf, int start, int nbytes)
1749{
1750        return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751                                       mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1757 * @mtd: mtd info structure
1758 * @databuf: destination buffer to store ECC bytes
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to retrieve
1761 * @nbytes: number of ECC bytes to retrieve
1762 *
1763 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1768                                const u8 *oobbuf, int start, int nbytes)
1769{
1770        return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1771                                       mtd_ooblayout_free);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1774
1775/**
1776 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: source buffer to get data bytes from
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to set
1781 * @nbytes: number of ECC bytes to set
1782 *
1783 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1788                                u8 *oobbuf, int start, int nbytes)
1789{
1790        return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1791                                       mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1794
1795/**
1796 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1797 * @mtd: mtd info structure
1798 *
1799 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1800 *
1801 * Returns zero on success, a negative error code otherwise.
1802 */
1803int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1804{
1805        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1806}
1807EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1808
1809/**
1810 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1811 * @mtd: mtd info structure
1812 *
1813 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1814 *
1815 * Returns zero on success, a negative error code otherwise.
1816 */
1817int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1818{
1819        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1820}
1821EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1822
1823/*
1824 * Method to access the protection register area, present in some flash
1825 * devices. The user data is one time programmable but the factory data is read
1826 * only.
1827 */
1828int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1829                           struct otp_info *buf)
1830{
1831        struct mtd_info *master = mtd_get_master(mtd);
1832
1833        if (!master->_get_fact_prot_info)
1834                return -EOPNOTSUPP;
1835        if (!len)
1836                return 0;
1837        return master->_get_fact_prot_info(master, len, retlen, buf);
1838}
1839EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1840
1841int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1842                           size_t *retlen, u_char *buf)
1843{
1844        struct mtd_info *master = mtd_get_master(mtd);
1845
1846        *retlen = 0;
1847        if (!master->_read_fact_prot_reg)
1848                return -EOPNOTSUPP;
1849        if (!len)
1850                return 0;
1851        return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1852}
1853EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1854
1855int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1856                           struct otp_info *buf)
1857{
1858        struct mtd_info *master = mtd_get_master(mtd);
1859
1860        if (!master->_get_user_prot_info)
1861                return -EOPNOTSUPP;
1862        if (!len)
1863                return 0;
1864        return master->_get_user_prot_info(master, len, retlen, buf);
1865}
1866EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1867
1868int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1869                           size_t *retlen, u_char *buf)
1870{
1871        struct mtd_info *master = mtd_get_master(mtd);
1872
1873        *retlen = 0;
1874        if (!master->_read_user_prot_reg)
1875                return -EOPNOTSUPP;
1876        if (!len)
1877                return 0;
1878        return master->_read_user_prot_reg(master, from, len, retlen, buf);
1879}
1880EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1881
1882int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1883                            size_t *retlen, u_char *buf)
1884{
1885        struct mtd_info *master = mtd_get_master(mtd);
1886        int ret;
1887
1888        *retlen = 0;
1889        if (!master->_write_user_prot_reg)
1890                return -EOPNOTSUPP;
1891        if (!len)
1892                return 0;
1893        ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1894        if (ret)
1895                return ret;
1896
1897        /*
1898         * If no data could be written at all, we are out of memory and
1899         * must return -ENOSPC.
1900         */
1901        return (*retlen) ? 0 : -ENOSPC;
1902}
1903EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1904
1905int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1906{
1907        struct mtd_info *master = mtd_get_master(mtd);
1908
1909        if (!master->_lock_user_prot_reg)
1910                return -EOPNOTSUPP;
1911        if (!len)
1912                return 0;
1913        return master->_lock_user_prot_reg(master, from, len);
1914}
1915EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1916
1917/* Chip-supported device locking */
1918int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1919{
1920        struct mtd_info *master = mtd_get_master(mtd);
1921
1922        if (!master->_lock)
1923                return -EOPNOTSUPP;
1924        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1925                return -EINVAL;
1926        if (!len)
1927                return 0;
1928
1929        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1930                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1931                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1932        }
1933
1934        return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1935}
1936EXPORT_SYMBOL_GPL(mtd_lock);
1937
1938int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
1940        struct mtd_info *master = mtd_get_master(mtd);
1941
1942        if (!master->_unlock)
1943                return -EOPNOTSUPP;
1944        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945                return -EINVAL;
1946        if (!len)
1947                return 0;
1948
1949        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952        }
1953
1954        return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1955}
1956EXPORT_SYMBOL_GPL(mtd_unlock);
1957
1958int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
1960        struct mtd_info *master = mtd_get_master(mtd);
1961
1962        if (!master->_is_locked)
1963                return -EOPNOTSUPP;
1964        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965                return -EINVAL;
1966        if (!len)
1967                return 0;
1968
1969        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972        }
1973
1974        return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1975}
1976EXPORT_SYMBOL_GPL(mtd_is_locked);
1977
1978int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1979{
1980        struct mtd_info *master = mtd_get_master(mtd);
1981
1982        if (ofs < 0 || ofs >= mtd->size)
1983                return -EINVAL;
1984        if (!master->_block_isreserved)
1985                return 0;
1986
1987        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1988                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1989
1990        return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1991}
1992EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1993
1994int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1995{
1996        struct mtd_info *master = mtd_get_master(mtd);
1997
1998        if (ofs < 0 || ofs >= mtd->size)
1999                return -EINVAL;
2000        if (!master->_block_isbad)
2001                return 0;
2002
2003        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2004                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2005
2006        return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2007}
2008EXPORT_SYMBOL_GPL(mtd_block_isbad);
2009
2010int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2011{
2012        struct mtd_info *master = mtd_get_master(mtd);
2013        int ret;
2014
2015        if (!master->_block_markbad)
2016                return -EOPNOTSUPP;
2017        if (ofs < 0 || ofs >= mtd->size)
2018                return -EINVAL;
2019        if (!(mtd->flags & MTD_WRITEABLE))
2020                return -EROFS;
2021
2022        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2023                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2024
2025        ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2026        if (ret)
2027                return ret;
2028
2029        while (mtd->parent) {
2030                mtd->ecc_stats.badblocks++;
2031                mtd = mtd->parent;
2032        }
2033
2034        return 0;
2035}
2036EXPORT_SYMBOL_GPL(mtd_block_markbad);
2037
2038/*
2039 * default_mtd_writev - the default writev method
2040 * @mtd: mtd device description object pointer
2041 * @vecs: the vectors to write
2042 * @count: count of vectors in @vecs
2043 * @to: the MTD device offset to write to
2044 * @retlen: on exit contains the count of bytes written to the MTD device.
2045 *
2046 * This function returns zero in case of success and a negative error code in
2047 * case of failure.
2048 */
2049static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2050                              unsigned long count, loff_t to, size_t *retlen)
2051{
2052        unsigned long i;
2053        size_t totlen = 0, thislen;
2054        int ret = 0;
2055
2056        for (i = 0; i < count; i++) {
2057                if (!vecs[i].iov_len)
2058                        continue;
2059                ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2060                                vecs[i].iov_base);
2061                totlen += thislen;
2062                if (ret || thislen != vecs[i].iov_len)
2063                        break;
2064                to += vecs[i].iov_len;
2065        }
2066        *retlen = totlen;
2067        return ret;
2068}
2069
2070/*
2071 * mtd_writev - the vector-based MTD write method
2072 * @mtd: mtd device description object pointer
2073 * @vecs: the vectors to write
2074 * @count: count of vectors in @vecs
2075 * @to: the MTD device offset to write to
2076 * @retlen: on exit contains the count of bytes written to the MTD device.
2077 *
2078 * This function returns zero in case of success and a negative error code in
2079 * case of failure.
2080 */
2081int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2082               unsigned long count, loff_t to, size_t *retlen)
2083{
2084        struct mtd_info *master = mtd_get_master(mtd);
2085
2086        *retlen = 0;
2087        if (!(mtd->flags & MTD_WRITEABLE))
2088                return -EROFS;
2089
2090        if (!master->_writev)
2091                return default_mtd_writev(mtd, vecs, count, to, retlen);
2092
2093        return master->_writev(master, vecs, count,
2094                               mtd_get_master_ofs(mtd, to), retlen);
2095}
2096EXPORT_SYMBOL_GPL(mtd_writev);
2097
2098/**
2099 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2100 * @mtd: mtd device description object pointer
2101 * @size: a pointer to the ideal or maximum size of the allocation, points
2102 *        to the actual allocation size on success.
2103 *
2104 * This routine attempts to allocate a contiguous kernel buffer up to
2105 * the specified size, backing off the size of the request exponentially
2106 * until the request succeeds or until the allocation size falls below
2107 * the system page size. This attempts to make sure it does not adversely
2108 * impact system performance, so when allocating more than one page, we
2109 * ask the memory allocator to avoid re-trying, swapping, writing back
2110 * or performing I/O.
2111 *
2112 * Note, this function also makes sure that the allocated buffer is aligned to
2113 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2114 *
2115 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2116 * to handle smaller (i.e. degraded) buffer allocations under low- or
2117 * fragmented-memory situations where such reduced allocations, from a
2118 * requested ideal, are allowed.
2119 *
2120 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2121 */
2122void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2123{
2124        gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2125        size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2126        void *kbuf;
2127
2128        *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2129
2130        while (*size > min_alloc) {
2131                kbuf = kmalloc(*size, flags);
2132                if (kbuf)
2133                        return kbuf;
2134
2135                *size >>= 1;
2136                *size = ALIGN(*size, mtd->writesize);
2137        }
2138
2139        /*
2140         * For the last resort allocation allow 'kmalloc()' to do all sorts of
2141         * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2142         */
2143        return kmalloc(*size, GFP_KERNEL);
2144}
2145EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2146
2147#ifdef CONFIG_PROC_FS
2148
2149/*====================================================================*/
2150/* Support for /proc/mtd */
2151
2152static int mtd_proc_show(struct seq_file *m, void *v)
2153{
2154        struct mtd_info *mtd;
2155
2156        seq_puts(m, "dev:    size   erasesize  name\n");
2157        mutex_lock(&mtd_table_mutex);
2158        mtd_for_each_device(mtd) {
2159                seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2160                           mtd->index, (unsigned long long)mtd->size,
2161                           mtd->erasesize, mtd->name);
2162        }
2163        mutex_unlock(&mtd_table_mutex);
2164        return 0;
2165}
2166#endif /* CONFIG_PROC_FS */
2167
2168/*====================================================================*/
2169/* Init code */
2170
2171static struct backing_dev_info * __init mtd_bdi_init(char *name)
2172{
2173        struct backing_dev_info *bdi;
2174        int ret;
2175
2176        bdi = bdi_alloc(NUMA_NO_NODE);
2177        if (!bdi)
2178                return ERR_PTR(-ENOMEM);
2179        bdi->ra_pages = 0;
2180        bdi->io_pages = 0;
2181
2182        /*
2183         * We put '-0' suffix to the name to get the same name format as we
2184         * used to get. Since this is called only once, we get a unique name. 
2185         */
2186        ret = bdi_register(bdi, "%.28s-0", name);
2187        if (ret)
2188                bdi_put(bdi);
2189
2190        return ret ? ERR_PTR(ret) : bdi;
2191}
2192
2193static struct proc_dir_entry *proc_mtd;
2194
2195static int __init init_mtd(void)
2196{
2197        int ret;
2198
2199        ret = class_register(&mtd_class);
2200        if (ret)
2201                goto err_reg;
2202
2203        mtd_bdi = mtd_bdi_init("mtd");
2204        if (IS_ERR(mtd_bdi)) {
2205                ret = PTR_ERR(mtd_bdi);
2206                goto err_bdi;
2207        }
2208
2209        proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2210
2211        ret = init_mtdchar();
2212        if (ret)
2213                goto out_procfs;
2214
2215        dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2216
2217        return 0;
2218
2219out_procfs:
2220        if (proc_mtd)
2221                remove_proc_entry("mtd", NULL);
2222        bdi_put(mtd_bdi);
2223err_bdi:
2224        class_unregister(&mtd_class);
2225err_reg:
2226        pr_err("Error registering mtd class or bdi: %d\n", ret);
2227        return ret;
2228}
2229
2230static void __exit cleanup_mtd(void)
2231{
2232        debugfs_remove_recursive(dfs_dir_mtd);
2233        cleanup_mtdchar();
2234        if (proc_mtd)
2235                remove_proc_entry("mtd", NULL);
2236        class_unregister(&mtd_class);
2237        bdi_put(mtd_bdi);
2238        idr_destroy(&mtd_idr);
2239}
2240
2241module_init(init_mtd);
2242module_exit(cleanup_mtd);
2243
2244MODULE_LICENSE("GPL");
2245MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2246MODULE_DESCRIPTION("Core MTD registration and access routines");
2247