1
2
3
4
5
6
7
8
9
10
11
12
13#include <linux/bch.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <linux/iopoll.h>
20#include <linux/module.h>
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/partitions.h>
23#include <linux/mtd/rawnand.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#define PKT_REG 0x00
29#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
30#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
31
32#define MEM_ADDR1_REG 0x04
33
34#define MEM_ADDR2_REG 0x08
35#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
36#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
37
38#define CMD_REG 0x0C
39#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
40#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
41#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
42#define CMD_DMA_ENABLE BIT(27)
43#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
44#define CMD_ECC_ENABLE BIT(31)
45
46#define PROG_REG 0x10
47#define PROG_PGRD BIT(0)
48#define PROG_ERASE BIT(2)
49#define PROG_STATUS BIT(3)
50#define PROG_PGPROG BIT(4)
51#define PROG_RDID BIT(6)
52#define PROG_RDPARAM BIT(7)
53#define PROG_RST BIT(8)
54#define PROG_GET_FEATURE BIT(9)
55#define PROG_SET_FEATURE BIT(10)
56#define PROG_CHG_RD_COL_ENH BIT(14)
57
58#define INTR_STS_EN_REG 0x14
59#define INTR_SIG_EN_REG 0x18
60#define INTR_STS_REG 0x1C
61#define WRITE_READY BIT(0)
62#define READ_READY BIT(1)
63#define XFER_COMPLETE BIT(2)
64#define DMA_BOUNDARY BIT(6)
65#define EVENT_MASK GENMASK(7, 0)
66
67#define READY_STS_REG 0x20
68
69#define DMA_ADDR0_REG 0x50
70#define DMA_ADDR1_REG 0x24
71
72#define FLASH_STS_REG 0x28
73
74#define DATA_PORT_REG 0x30
75
76#define ECC_CONF_REG 0x34
77#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
78#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
79#define ECC_CONF_BCH_EN BIT(27)
80
81#define ECC_ERR_CNT_REG 0x38
82#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
83#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
84
85#define ECC_SP_REG 0x3C
86#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
87#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
88#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
89
90#define ECC_1ERR_CNT_REG 0x40
91#define ECC_2ERR_CNT_REG 0x44
92
93#define DATA_INTERFACE_REG 0x6C
94#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
95#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
96#define DIFACE_SDR 0
97#define DIFACE_NVDDR BIT(9)
98
99#define ANFC_MAX_CS 2
100#define ANFC_DFLT_TIMEOUT_US 1000000
101#define ANFC_MAX_CHUNK_SIZE SZ_1M
102#define ANFC_MAX_PARAM_SIZE SZ_4K
103#define ANFC_MAX_STEPS SZ_2K
104#define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
105#define ANFC_MAX_ADDR_CYC 5U
106#define ANFC_RSVD_ECC_BYTES 21
107
108#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
109#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
110
111
112
113
114
115
116
117
118
119
120
121
122
123struct anfc_op {
124 u32 pkt_reg;
125 u32 addr1_reg;
126 u32 addr2_reg;
127 u32 cmd_reg;
128 u32 prog_reg;
129 int steps;
130 unsigned int rdy_timeout_ms;
131 unsigned int len;
132 bool read;
133 u8 *buf;
134};
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155struct anand {
156 struct list_head node;
157 struct nand_chip chip;
158 unsigned int cs;
159 unsigned int rb;
160 unsigned int page_sz;
161 unsigned long clk;
162 u32 timings;
163 u32 ecc_conf;
164 u32 strength;
165 u16 raddr_cycles;
166 u16 caddr_cycles;
167 unsigned int ecc_bits;
168 unsigned int ecc_total;
169 unsigned int *errloc;
170 u8 *hw_ecc;
171 struct bch_control *bch;
172};
173
174
175
176
177
178
179
180
181
182
183
184
185struct arasan_nfc {
186 struct device *dev;
187 void __iomem *base;
188 struct clk *controller_clk;
189 struct clk *bus_clk;
190 struct nand_controller controller;
191 struct list_head chips;
192 unsigned long assigned_cs;
193 unsigned int cur_clk;
194};
195
196static struct anand *to_anand(struct nand_chip *nand)
197{
198 return container_of(nand, struct anand, chip);
199}
200
201static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
202{
203 return container_of(ctrl, struct arasan_nfc, controller);
204}
205
206static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
207{
208 u32 val;
209 int ret;
210
211 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
212 val & event, 0,
213 ANFC_DFLT_TIMEOUT_US);
214 if (ret) {
215 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
216 return -ETIMEDOUT;
217 }
218
219 writel_relaxed(event, nfc->base + INTR_STS_REG);
220
221 return 0;
222}
223
224static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
225 unsigned int timeout_ms)
226{
227 struct anand *anand = to_anand(chip);
228 u32 val;
229 int ret;
230
231
232 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
233 val & BIT(anand->rb),
234 1, timeout_ms * 1000);
235 if (ret) {
236 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
237 readl_relaxed(nfc->base + READY_STS_REG));
238 return -ETIMEDOUT;
239 }
240
241 return 0;
242}
243
244static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
245{
246 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
247 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
248 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
249 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
250 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
251}
252
253static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
254 unsigned int *pktsize)
255{
256 unsigned int nb, sz;
257
258 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
259 sz = len / nb;
260 if (sz <= ANFC_MAX_PKT_SIZE)
261 break;
262 }
263
264 if (sz * nb != len)
265 return -ENOTSUPP;
266
267 if (steps)
268 *steps = nb;
269
270 if (pktsize)
271 *pktsize = sz;
272
273 return 0;
274}
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
299 int oob_required, int page)
300{
301 struct arasan_nfc *nfc = to_anfc(chip->controller);
302 struct mtd_info *mtd = nand_to_mtd(chip);
303 struct anand *anand = to_anand(chip);
304 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
305 unsigned int max_bitflips = 0;
306 dma_addr_t dma_addr;
307 int step, ret;
308 struct anfc_op nfc_op = {
309 .pkt_reg =
310 PKT_SIZE(chip->ecc.size) |
311 PKT_STEPS(chip->ecc.steps),
312 .addr1_reg =
313 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
314 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
315 .addr2_reg =
316 ((page >> 16) & 0xFF) |
317 ADDR2_STRENGTH(anand->strength) |
318 ADDR2_CS(anand->cs),
319 .cmd_reg =
320 CMD_1(NAND_CMD_READ0) |
321 CMD_2(NAND_CMD_READSTART) |
322 CMD_PAGE_SIZE(anand->page_sz) |
323 CMD_DMA_ENABLE |
324 CMD_NADDRS(anand->caddr_cycles +
325 anand->raddr_cycles),
326 .prog_reg = PROG_PGRD,
327 };
328
329 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
330 if (dma_mapping_error(nfc->dev, dma_addr)) {
331 dev_err(nfc->dev, "Buffer mapping error");
332 return -EIO;
333 }
334
335 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
336 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
337
338 anfc_trigger_op(nfc, &nfc_op);
339
340 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
341 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
342 if (ret) {
343 dev_err(nfc->dev, "Error reading page %d\n", page);
344 return ret;
345 }
346
347
348 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
349 mtd->oobsize, 0);
350 if (ret)
351 return ret;
352
353
354
355
356
357
358 for (step = 0; step < chip->ecc.steps; step++) {
359 u8 *raw_buf = &buf[step * chip->ecc.size];
360 unsigned int bit, byte;
361 int bf, i;
362
363
364 memset(anand->hw_ecc, 0, chip->ecc.bytes);
365 nand_extract_bits(anand->hw_ecc, 0,
366 &chip->oob_poi[mtd->oobsize - anand->ecc_total],
367 anand->ecc_bits * step, anand->ecc_bits);
368
369 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
370 anand->hw_ecc, NULL, NULL, anand->errloc);
371 if (!bf) {
372 continue;
373 } else if (bf > 0) {
374 for (i = 0; i < bf; i++) {
375
376 if (anand->errloc[i] < (chip->ecc.size * 8)) {
377 bit = BIT(anand->errloc[i] & 7);
378 byte = anand->errloc[i] >> 3;
379 raw_buf[byte] ^= bit;
380 }
381 }
382
383 mtd->ecc_stats.corrected += bf;
384 max_bitflips = max_t(unsigned int, max_bitflips, bf);
385
386 continue;
387 }
388
389 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
390 NULL, 0, NULL, 0,
391 chip->ecc.strength);
392 if (bf > 0) {
393 mtd->ecc_stats.corrected += bf;
394 max_bitflips = max_t(unsigned int, max_bitflips, bf);
395 memset(raw_buf, 0xFF, chip->ecc.size);
396 } else if (bf < 0) {
397 mtd->ecc_stats.failed++;
398 }
399 }
400
401 return 0;
402}
403
404static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
405 int oob_required, int page)
406{
407 struct anand *anand = to_anand(chip);
408 struct arasan_nfc *nfc = to_anfc(chip->controller);
409 struct mtd_info *mtd = nand_to_mtd(chip);
410 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
411 dma_addr_t dma_addr;
412 int ret;
413 struct anfc_op nfc_op = {
414 .pkt_reg =
415 PKT_SIZE(chip->ecc.size) |
416 PKT_STEPS(chip->ecc.steps),
417 .addr1_reg =
418 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
419 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
420 .addr2_reg =
421 ((page >> 16) & 0xFF) |
422 ADDR2_STRENGTH(anand->strength) |
423 ADDR2_CS(anand->cs),
424 .cmd_reg =
425 CMD_1(NAND_CMD_SEQIN) |
426 CMD_2(NAND_CMD_PAGEPROG) |
427 CMD_PAGE_SIZE(anand->page_sz) |
428 CMD_DMA_ENABLE |
429 CMD_NADDRS(anand->caddr_cycles +
430 anand->raddr_cycles) |
431 CMD_ECC_ENABLE,
432 .prog_reg = PROG_PGPROG,
433 };
434
435 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
436 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
437 ECC_SP_ADDRS(anand->caddr_cycles),
438 nfc->base + ECC_SP_REG);
439
440 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
441 if (dma_mapping_error(nfc->dev, dma_addr)) {
442 dev_err(nfc->dev, "Buffer mapping error");
443 return -EIO;
444 }
445
446 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
447 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
448
449 anfc_trigger_op(nfc, &nfc_op);
450 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
451 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
452 if (ret) {
453 dev_err(nfc->dev, "Error writing page %d\n", page);
454 return ret;
455 }
456
457
458 if (oob_required)
459 ret = nand_write_oob_std(chip, page);
460
461 return ret;
462}
463
464
465static int anfc_parse_instructions(struct nand_chip *chip,
466 const struct nand_subop *subop,
467 struct anfc_op *nfc_op)
468{
469 struct anand *anand = to_anand(chip);
470 const struct nand_op_instr *instr = NULL;
471 bool first_cmd = true;
472 unsigned int op_id;
473 int ret, i;
474
475 memset(nfc_op, 0, sizeof(*nfc_op));
476 nfc_op->addr2_reg = ADDR2_CS(anand->cs);
477 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
478
479 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
480 unsigned int offset, naddrs, pktsize;
481 const u8 *addrs;
482 u8 *buf;
483
484 instr = &subop->instrs[op_id];
485
486 switch (instr->type) {
487 case NAND_OP_CMD_INSTR:
488 if (first_cmd)
489 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
490 else
491 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
492
493 first_cmd = false;
494 break;
495
496 case NAND_OP_ADDR_INSTR:
497 offset = nand_subop_get_addr_start_off(subop, op_id);
498 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
499 addrs = &instr->ctx.addr.addrs[offset];
500 nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
501
502 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
503 if (i < 4)
504 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
505 else
506 nfc_op->addr2_reg |= addrs[i];
507 }
508
509 break;
510 case NAND_OP_DATA_IN_INSTR:
511 nfc_op->read = true;
512 fallthrough;
513 case NAND_OP_DATA_OUT_INSTR:
514 offset = nand_subop_get_data_start_off(subop, op_id);
515 buf = instr->ctx.data.buf.in;
516 nfc_op->buf = &buf[offset];
517 nfc_op->len = nand_subop_get_data_len(subop, op_id);
518 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
519 &pktsize);
520 if (ret)
521 return ret;
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
538 PKT_STEPS(nfc_op->steps);
539 break;
540 case NAND_OP_WAITRDY_INSTR:
541 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
542 break;
543 }
544 }
545
546 return 0;
547}
548
549static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
550{
551 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
552 unsigned int last_len = nfc_op->len % 4;
553 unsigned int offset, dir;
554 u8 *buf = nfc_op->buf;
555 int ret, i;
556
557 for (i = 0; i < nfc_op->steps; i++) {
558 dir = nfc_op->read ? READ_READY : WRITE_READY;
559 ret = anfc_wait_for_event(nfc, dir);
560 if (ret) {
561 dev_err(nfc->dev, "PIO %s ready signal not received\n",
562 nfc_op->read ? "Read" : "Write");
563 return ret;
564 }
565
566 offset = i * (dwords * 4);
567 if (nfc_op->read)
568 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
569 dwords);
570 else
571 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
572 dwords);
573 }
574
575 if (last_len) {
576 u32 remainder;
577
578 offset = nfc_op->len - last_len;
579
580 if (nfc_op->read) {
581 remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
582 memcpy(&buf[offset], &remainder, last_len);
583 } else {
584 memcpy(&remainder, &buf[offset], last_len);
585 writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
586 }
587 }
588
589 return anfc_wait_for_event(nfc, XFER_COMPLETE);
590}
591
592static int anfc_misc_data_type_exec(struct nand_chip *chip,
593 const struct nand_subop *subop,
594 u32 prog_reg)
595{
596 struct arasan_nfc *nfc = to_anfc(chip->controller);
597 struct anfc_op nfc_op = {};
598 int ret;
599
600 ret = anfc_parse_instructions(chip, subop, &nfc_op);
601 if (ret)
602 return ret;
603
604 nfc_op.prog_reg = prog_reg;
605 anfc_trigger_op(nfc, &nfc_op);
606
607 if (nfc_op.rdy_timeout_ms) {
608 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
609 if (ret)
610 return ret;
611 }
612
613 return anfc_rw_pio_op(nfc, &nfc_op);
614}
615
616static int anfc_param_read_type_exec(struct nand_chip *chip,
617 const struct nand_subop *subop)
618{
619 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
620}
621
622static int anfc_data_read_type_exec(struct nand_chip *chip,
623 const struct nand_subop *subop)
624{
625 u32 prog_reg = PROG_PGRD;
626
627
628
629
630
631
632
633
634
635
636
637 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
638 subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
639 prog_reg = PROG_CHG_RD_COL_ENH;
640
641 return anfc_misc_data_type_exec(chip, subop, prog_reg);
642}
643
644static int anfc_param_write_type_exec(struct nand_chip *chip,
645 const struct nand_subop *subop)
646{
647 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
648}
649
650static int anfc_data_write_type_exec(struct nand_chip *chip,
651 const struct nand_subop *subop)
652{
653 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
654}
655
656static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
657 const struct nand_subop *subop,
658 u32 prog_reg)
659{
660 struct arasan_nfc *nfc = to_anfc(chip->controller);
661 struct anfc_op nfc_op = {};
662 int ret;
663
664 ret = anfc_parse_instructions(chip, subop, &nfc_op);
665 if (ret)
666 return ret;
667
668 nfc_op.prog_reg = prog_reg;
669 anfc_trigger_op(nfc, &nfc_op);
670
671 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
672 if (ret)
673 return ret;
674
675 if (nfc_op.rdy_timeout_ms)
676 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
677
678 return ret;
679}
680
681static int anfc_status_type_exec(struct nand_chip *chip,
682 const struct nand_subop *subop)
683{
684 struct arasan_nfc *nfc = to_anfc(chip->controller);
685 u32 tmp;
686 int ret;
687
688
689 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
690 return -ENOTSUPP;
691
692 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
693 if (ret)
694 return ret;
695
696 tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
697 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
698
699 return 0;
700}
701
702static int anfc_reset_type_exec(struct nand_chip *chip,
703 const struct nand_subop *subop)
704{
705 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
706}
707
708static int anfc_erase_type_exec(struct nand_chip *chip,
709 const struct nand_subop *subop)
710{
711 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
712}
713
714static int anfc_wait_type_exec(struct nand_chip *chip,
715 const struct nand_subop *subop)
716{
717 struct arasan_nfc *nfc = to_anfc(chip->controller);
718 struct anfc_op nfc_op = {};
719 int ret;
720
721 ret = anfc_parse_instructions(chip, subop, &nfc_op);
722 if (ret)
723 return ret;
724
725 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
726}
727
728static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
729 NAND_OP_PARSER_PATTERN(
730 anfc_param_read_type_exec,
731 NAND_OP_PARSER_PAT_CMD_ELEM(false),
732 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
733 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
734 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
735 NAND_OP_PARSER_PATTERN(
736 anfc_param_write_type_exec,
737 NAND_OP_PARSER_PAT_CMD_ELEM(false),
738 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
739 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
740 NAND_OP_PARSER_PATTERN(
741 anfc_data_read_type_exec,
742 NAND_OP_PARSER_PAT_CMD_ELEM(false),
743 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
744 NAND_OP_PARSER_PAT_CMD_ELEM(false),
745 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
746 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
747 NAND_OP_PARSER_PATTERN(
748 anfc_data_write_type_exec,
749 NAND_OP_PARSER_PAT_CMD_ELEM(false),
750 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
751 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
752 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
753 NAND_OP_PARSER_PATTERN(
754 anfc_reset_type_exec,
755 NAND_OP_PARSER_PAT_CMD_ELEM(false),
756 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
757 NAND_OP_PARSER_PATTERN(
758 anfc_erase_type_exec,
759 NAND_OP_PARSER_PAT_CMD_ELEM(false),
760 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
761 NAND_OP_PARSER_PAT_CMD_ELEM(false),
762 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
763 NAND_OP_PARSER_PATTERN(
764 anfc_status_type_exec,
765 NAND_OP_PARSER_PAT_CMD_ELEM(false),
766 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
767 NAND_OP_PARSER_PATTERN(
768 anfc_wait_type_exec,
769 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
770 );
771
772static int anfc_select_target(struct nand_chip *chip, int target)
773{
774 struct anand *anand = to_anand(chip);
775 struct arasan_nfc *nfc = to_anfc(chip->controller);
776 int ret;
777
778
779 writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
780
781
782 if (nfc->cur_clk != anand->clk) {
783 clk_disable_unprepare(nfc->controller_clk);
784 ret = clk_set_rate(nfc->controller_clk, anand->clk);
785 if (ret) {
786 dev_err(nfc->dev, "Failed to change clock rate\n");
787 return ret;
788 }
789
790 ret = clk_prepare_enable(nfc->controller_clk);
791 if (ret) {
792 dev_err(nfc->dev,
793 "Failed to re-enable the controller clock\n");
794 return ret;
795 }
796
797 nfc->cur_clk = anand->clk;
798 }
799
800 return 0;
801}
802
803static int anfc_check_op(struct nand_chip *chip,
804 const struct nand_operation *op)
805{
806 const struct nand_op_instr *instr;
807 int op_id;
808
809
810
811
812
813
814
815
816 for (op_id = 0; op_id < op->ninstrs; op_id++) {
817 instr = &op->instrs[op_id];
818
819 switch (instr->type) {
820 case NAND_OP_ADDR_INSTR:
821 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
822 return -ENOTSUPP;
823
824 break;
825 case NAND_OP_DATA_IN_INSTR:
826 case NAND_OP_DATA_OUT_INSTR:
827 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
828 return -ENOTSUPP;
829
830 if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
831 return -ENOTSUPP;
832
833 break;
834 default:
835 break;
836 }
837 }
838
839
840
841
842
843
844
845
846
847
848
849 if (op->ninstrs == 2 &&
850 op->instrs[0].type == NAND_OP_CMD_INSTR &&
851 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
852 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
853 return -ENOTSUPP;
854
855 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
856}
857
858static int anfc_exec_op(struct nand_chip *chip,
859 const struct nand_operation *op,
860 bool check_only)
861{
862 int ret;
863
864 if (check_only)
865 return anfc_check_op(chip, op);
866
867 ret = anfc_select_target(chip, op->cs);
868 if (ret)
869 return ret;
870
871 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
872}
873
874static int anfc_setup_interface(struct nand_chip *chip, int target,
875 const struct nand_interface_config *conf)
876{
877 struct anand *anand = to_anand(chip);
878 struct arasan_nfc *nfc = to_anfc(chip->controller);
879 struct device_node *np = nfc->dev->of_node;
880 const struct nand_sdr_timings *sdr;
881 const struct nand_nvddr_timings *nvddr;
882
883 if (nand_interface_is_nvddr(conf)) {
884 nvddr = nand_get_nvddr_timings(conf);
885 if (IS_ERR(nvddr))
886 return PTR_ERR(nvddr);
887 } else {
888 sdr = nand_get_sdr_timings(conf);
889 if (IS_ERR(sdr))
890 return PTR_ERR(sdr);
891 }
892
893 if (target < 0)
894 return 0;
895
896 if (nand_interface_is_sdr(conf))
897 anand->timings = DIFACE_SDR |
898 DIFACE_SDR_MODE(conf->timings.mode);
899 else
900 anand->timings = DIFACE_NVDDR |
901 DIFACE_DDR_MODE(conf->timings.mode);
902
903 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
904
905
906
907
908
909
910
911 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
912 nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
913 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
914
915 return 0;
916}
917
918static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
919{
920 unsigned int bch_gf_mag, ecc_bits;
921
922 switch (step_size) {
923 case SZ_512:
924 bch_gf_mag = 13;
925 break;
926 case SZ_1K:
927 bch_gf_mag = 14;
928 break;
929 default:
930 return -EINVAL;
931 }
932
933 ecc_bits = bch_gf_mag * strength;
934
935 return DIV_ROUND_UP(ecc_bits, 8);
936}
937
938static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
939
940static const int anfc_hw_ecc_1024_strengths[] = {24};
941
942static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
943 {
944 .stepsize = SZ_512,
945 .strengths = anfc_hw_ecc_512_strengths,
946 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
947 },
948 {
949 .stepsize = SZ_1K,
950 .strengths = anfc_hw_ecc_1024_strengths,
951 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
952 },
953};
954
955static const struct nand_ecc_caps anfc_hw_ecc_caps = {
956 .stepinfos = anfc_hw_ecc_step_infos,
957 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
958 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
959};
960
961static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
962 struct nand_chip *chip)
963{
964 struct anand *anand = to_anand(chip);
965 struct mtd_info *mtd = nand_to_mtd(chip);
966 struct nand_ecc_ctrl *ecc = &chip->ecc;
967 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
968 int ret;
969
970 switch (mtd->writesize) {
971 case SZ_512:
972 case SZ_2K:
973 case SZ_4K:
974 case SZ_8K:
975 case SZ_16K:
976 break;
977 default:
978 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
979 return -EINVAL;
980 }
981
982 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
983 if (ret)
984 return ret;
985
986 switch (ecc->strength) {
987 case 12:
988 anand->strength = 0x1;
989 break;
990 case 8:
991 anand->strength = 0x2;
992 break;
993 case 4:
994 anand->strength = 0x3;
995 break;
996 case 24:
997 anand->strength = 0x4;
998 break;
999 default:
1000 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1001 return -EINVAL;
1002 }
1003
1004 switch (ecc->size) {
1005 case SZ_512:
1006 bch_gf_mag = 13;
1007 bch_prim_poly = 0x201b;
1008 break;
1009 case SZ_1K:
1010 bch_gf_mag = 14;
1011 bch_prim_poly = 0x4443;
1012 break;
1013 default:
1014 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1015 return -EINVAL;
1016 }
1017
1018 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1019
1020 ecc->steps = mtd->writesize / ecc->size;
1021 ecc->algo = NAND_ECC_ALGO_BCH;
1022 anand->ecc_bits = bch_gf_mag * ecc->strength;
1023 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1024 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1025 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1026 anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1027 ECC_CONF_LEN(anand->ecc_total) |
1028 ECC_CONF_BCH_EN;
1029
1030 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1031 sizeof(*anand->errloc), GFP_KERNEL);
1032 if (!anand->errloc)
1033 return -ENOMEM;
1034
1035 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1036 if (!anand->hw_ecc)
1037 return -ENOMEM;
1038
1039
1040 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1041 if (!anand->bch)
1042 return -EINVAL;
1043
1044 ecc->read_page = anfc_read_page_hw_ecc;
1045 ecc->write_page = anfc_write_page_hw_ecc;
1046
1047 return 0;
1048}
1049
1050static int anfc_attach_chip(struct nand_chip *chip)
1051{
1052 struct anand *anand = to_anand(chip);
1053 struct arasan_nfc *nfc = to_anfc(chip->controller);
1054 struct mtd_info *mtd = nand_to_mtd(chip);
1055 int ret = 0;
1056
1057 if (mtd->writesize <= SZ_512)
1058 anand->caddr_cycles = 1;
1059 else
1060 anand->caddr_cycles = 2;
1061
1062 if (chip->options & NAND_ROW_ADDR_3)
1063 anand->raddr_cycles = 3;
1064 else
1065 anand->raddr_cycles = 2;
1066
1067 switch (mtd->writesize) {
1068 case 512:
1069 anand->page_sz = 0;
1070 break;
1071 case 1024:
1072 anand->page_sz = 5;
1073 break;
1074 case 2048:
1075 anand->page_sz = 1;
1076 break;
1077 case 4096:
1078 anand->page_sz = 2;
1079 break;
1080 case 8192:
1081 anand->page_sz = 3;
1082 break;
1083 case 16384:
1084 anand->page_sz = 4;
1085 break;
1086 default:
1087 return -EINVAL;
1088 }
1089
1090
1091 chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1092 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1093
1094 switch (chip->ecc.engine_type) {
1095 case NAND_ECC_ENGINE_TYPE_NONE:
1096 case NAND_ECC_ENGINE_TYPE_SOFT:
1097 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1098 break;
1099 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1100 ret = anfc_init_hw_ecc_controller(nfc, chip);
1101 break;
1102 default:
1103 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1104 chip->ecc.engine_type);
1105 return -EINVAL;
1106 }
1107
1108 return ret;
1109}
1110
1111static void anfc_detach_chip(struct nand_chip *chip)
1112{
1113 struct anand *anand = to_anand(chip);
1114
1115 if (anand->bch)
1116 bch_free(anand->bch);
1117}
1118
1119static const struct nand_controller_ops anfc_ops = {
1120 .exec_op = anfc_exec_op,
1121 .setup_interface = anfc_setup_interface,
1122 .attach_chip = anfc_attach_chip,
1123 .detach_chip = anfc_detach_chip,
1124};
1125
1126static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1127{
1128 struct anand *anand;
1129 struct nand_chip *chip;
1130 struct mtd_info *mtd;
1131 int cs, rb, ret;
1132
1133 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1134 if (!anand)
1135 return -ENOMEM;
1136
1137
1138 if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1139 dev_err(nfc->dev, "Invalid reg property\n");
1140 return -EINVAL;
1141 }
1142
1143 ret = of_property_read_u32(np, "reg", &cs);
1144 if (ret)
1145 return ret;
1146
1147 ret = of_property_read_u32(np, "nand-rb", &rb);
1148 if (ret)
1149 return ret;
1150
1151 if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1152 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1153 return -EINVAL;
1154 }
1155
1156 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1157 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1158 return -EINVAL;
1159 }
1160
1161 anand->cs = cs;
1162 anand->rb = rb;
1163
1164 chip = &anand->chip;
1165 mtd = nand_to_mtd(chip);
1166 mtd->dev.parent = nfc->dev;
1167 chip->controller = &nfc->controller;
1168 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1169 NAND_USES_DMA;
1170
1171 nand_set_flash_node(chip, np);
1172 if (!mtd->name) {
1173 dev_err(nfc->dev, "NAND label property is mandatory\n");
1174 return -EINVAL;
1175 }
1176
1177 ret = nand_scan(chip, 1);
1178 if (ret) {
1179 dev_err(nfc->dev, "Scan operation failed\n");
1180 return ret;
1181 }
1182
1183 ret = mtd_device_register(mtd, NULL, 0);
1184 if (ret) {
1185 nand_cleanup(chip);
1186 return ret;
1187 }
1188
1189 list_add_tail(&anand->node, &nfc->chips);
1190
1191 return 0;
1192}
1193
1194static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1195{
1196 struct anand *anand, *tmp;
1197 struct nand_chip *chip;
1198 int ret;
1199
1200 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1201 chip = &anand->chip;
1202 ret = mtd_device_unregister(nand_to_mtd(chip));
1203 WARN_ON(ret);
1204 nand_cleanup(chip);
1205 list_del(&anand->node);
1206 }
1207}
1208
1209static int anfc_chips_init(struct arasan_nfc *nfc)
1210{
1211 struct device_node *np = nfc->dev->of_node, *nand_np;
1212 int nchips = of_get_child_count(np);
1213 int ret;
1214
1215 if (!nchips || nchips > ANFC_MAX_CS) {
1216 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1217 nchips);
1218 return -EINVAL;
1219 }
1220
1221 for_each_child_of_node(np, nand_np) {
1222 ret = anfc_chip_init(nfc, nand_np);
1223 if (ret) {
1224 of_node_put(nand_np);
1225 anfc_chips_cleanup(nfc);
1226 break;
1227 }
1228 }
1229
1230 return ret;
1231}
1232
1233static void anfc_reset(struct arasan_nfc *nfc)
1234{
1235
1236 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1237
1238
1239 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1240}
1241
1242static int anfc_probe(struct platform_device *pdev)
1243{
1244 struct arasan_nfc *nfc;
1245 int ret;
1246
1247 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1248 if (!nfc)
1249 return -ENOMEM;
1250
1251 nfc->dev = &pdev->dev;
1252 nand_controller_init(&nfc->controller);
1253 nfc->controller.ops = &anfc_ops;
1254 INIT_LIST_HEAD(&nfc->chips);
1255
1256 nfc->base = devm_platform_ioremap_resource(pdev, 0);
1257 if (IS_ERR(nfc->base))
1258 return PTR_ERR(nfc->base);
1259
1260 anfc_reset(nfc);
1261
1262 nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1263 if (IS_ERR(nfc->controller_clk))
1264 return PTR_ERR(nfc->controller_clk);
1265
1266 nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1267 if (IS_ERR(nfc->bus_clk))
1268 return PTR_ERR(nfc->bus_clk);
1269
1270 ret = clk_prepare_enable(nfc->controller_clk);
1271 if (ret)
1272 return ret;
1273
1274 ret = clk_prepare_enable(nfc->bus_clk);
1275 if (ret)
1276 goto disable_controller_clk;
1277
1278 ret = anfc_chips_init(nfc);
1279 if (ret)
1280 goto disable_bus_clk;
1281
1282 platform_set_drvdata(pdev, nfc);
1283
1284 return 0;
1285
1286disable_bus_clk:
1287 clk_disable_unprepare(nfc->bus_clk);
1288
1289disable_controller_clk:
1290 clk_disable_unprepare(nfc->controller_clk);
1291
1292 return ret;
1293}
1294
1295static int anfc_remove(struct platform_device *pdev)
1296{
1297 struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1298
1299 anfc_chips_cleanup(nfc);
1300
1301 clk_disable_unprepare(nfc->bus_clk);
1302 clk_disable_unprepare(nfc->controller_clk);
1303
1304 return 0;
1305}
1306
1307static const struct of_device_id anfc_ids[] = {
1308 {
1309 .compatible = "xlnx,zynqmp-nand-controller",
1310 },
1311 {
1312 .compatible = "arasan,nfc-v3p10",
1313 },
1314 {}
1315};
1316MODULE_DEVICE_TABLE(of, anfc_ids);
1317
1318static struct platform_driver anfc_driver = {
1319 .driver = {
1320 .name = "arasan-nand-controller",
1321 .of_match_table = anfc_ids,
1322 },
1323 .probe = anfc_probe,
1324 .remove = anfc_remove,
1325};
1326module_platform_driver(anfc_driver);
1327
1328MODULE_LICENSE("GPL v2");
1329MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1330MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1331MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1332MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1333