linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: QLogic Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 * Copyright (c) 2014 QLogic Corporation
   5 * All rights reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation.
  10 *
  11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  12 * Written by: Eliezer Tamir
  13 * Based on code from Michael Chan's bnx2 driver
  14 * UDP CSUM errata workaround by Arik Gendelman
  15 * Slowpath and fastpath rework by Vladislav Zolotarov
  16 * Statistics and Link management by Yitchak Gertner
  17 *
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/kernel.h>
  25#include <linux/device.h>  /* for dev_info() */
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/ioport.h>
  29#include <linux/slab.h>
  30#include <linux/interrupt.h>
  31#include <linux/pci.h>
  32#include <linux/aer.h>
  33#include <linux/init.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/bitops.h>
  39#include <linux/irq.h>
  40#include <linux/delay.h>
  41#include <asm/byteorder.h>
  42#include <linux/time.h>
  43#include <linux/ethtool.h>
  44#include <linux/mii.h>
  45#include <linux/if_vlan.h>
  46#include <linux/crash_dump.h>
  47#include <net/ip.h>
  48#include <net/ipv6.h>
  49#include <net/tcp.h>
  50#include <net/vxlan.h>
  51#include <net/checksum.h>
  52#include <net/ip6_checksum.h>
  53#include <linux/workqueue.h>
  54#include <linux/crc32.h>
  55#include <linux/crc32c.h>
  56#include <linux/prefetch.h>
  57#include <linux/zlib.h>
  58#include <linux/io.h>
  59#include <linux/semaphore.h>
  60#include <linux/stringify.h>
  61#include <linux/vmalloc.h>
  62#include "bnx2x.h"
  63#include "bnx2x_init.h"
  64#include "bnx2x_init_ops.h"
  65#include "bnx2x_cmn.h"
  66#include "bnx2x_vfpf.h"
  67#include "bnx2x_dcb.h"
  68#include "bnx2x_sp.h"
  69#include <linux/firmware.h>
  70#include "bnx2x_fw_file_hdr.h"
  71/* FW files */
  72#define FW_FILE_VERSION                                 \
  73        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  74        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  75        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  76        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  77#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  78#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  79#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  80
  81/* Time in jiffies before concluding the transmitter is hung */
  82#define TX_TIMEOUT              (5*HZ)
  83
  84MODULE_AUTHOR("Eliezer Tamir");
  85MODULE_DESCRIPTION("QLogic "
  86                   "BCM57710/57711/57711E/"
  87                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  88                   "57840/57840_MF Driver");
  89MODULE_LICENSE("GPL");
  90MODULE_FIRMWARE(FW_FILE_NAME_E1);
  91MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  92MODULE_FIRMWARE(FW_FILE_NAME_E2);
  93
  94int bnx2x_num_queues;
  95module_param_named(num_queues, bnx2x_num_queues, int, 0444);
  96MODULE_PARM_DESC(num_queues,
  97                 " Set number of queues (default is as a number of CPUs)");
  98
  99static int disable_tpa;
 100module_param(disable_tpa, int, 0444);
 101MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 102
 103static int int_mode;
 104module_param(int_mode, int, 0444);
 105MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 106                                "(1 INT#x; 2 MSI)");
 107
 108static int dropless_fc;
 109module_param(dropless_fc, int, 0444);
 110MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 111
 112static int mrrs = -1;
 113module_param(mrrs, int, 0444);
 114MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 115
 116static int debug;
 117module_param(debug, int, 0444);
 118MODULE_PARM_DESC(debug, " Default debug msglevel");
 119
 120static struct workqueue_struct *bnx2x_wq;
 121struct workqueue_struct *bnx2x_iov_wq;
 122
 123struct bnx2x_mac_vals {
 124        u32 xmac_addr;
 125        u32 xmac_val;
 126        u32 emac_addr;
 127        u32 emac_val;
 128        u32 umac_addr[2];
 129        u32 umac_val[2];
 130        u32 bmac_addr;
 131        u32 bmac_val[2];
 132};
 133
 134enum bnx2x_board_type {
 135        BCM57710 = 0,
 136        BCM57711,
 137        BCM57711E,
 138        BCM57712,
 139        BCM57712_MF,
 140        BCM57712_VF,
 141        BCM57800,
 142        BCM57800_MF,
 143        BCM57800_VF,
 144        BCM57810,
 145        BCM57810_MF,
 146        BCM57810_VF,
 147        BCM57840_4_10,
 148        BCM57840_2_20,
 149        BCM57840_MF,
 150        BCM57840_VF,
 151        BCM57811,
 152        BCM57811_MF,
 153        BCM57840_O,
 154        BCM57840_MFO,
 155        BCM57811_VF
 156};
 157
 158/* indexed by board_type, above */
 159static struct {
 160        char *name;
 161} board_info[] = {
 162        [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
 163        [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
 164        [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
 165        [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
 166        [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
 167        [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
 168        [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
 169        [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
 170        [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
 171        [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
 172        [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
 173        [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
 174        [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
 175        [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
 176        [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 177        [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 178        [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
 179        [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
 180        [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
 181        [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
 182        [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 183};
 184
 185#ifndef PCI_DEVICE_ID_NX2_57710
 186#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 187#endif
 188#ifndef PCI_DEVICE_ID_NX2_57711
 189#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 190#endif
 191#ifndef PCI_DEVICE_ID_NX2_57711E
 192#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 193#endif
 194#ifndef PCI_DEVICE_ID_NX2_57712
 195#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 196#endif
 197#ifndef PCI_DEVICE_ID_NX2_57712_MF
 198#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 199#endif
 200#ifndef PCI_DEVICE_ID_NX2_57712_VF
 201#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 202#endif
 203#ifndef PCI_DEVICE_ID_NX2_57800
 204#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 205#endif
 206#ifndef PCI_DEVICE_ID_NX2_57800_MF
 207#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 208#endif
 209#ifndef PCI_DEVICE_ID_NX2_57800_VF
 210#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 211#endif
 212#ifndef PCI_DEVICE_ID_NX2_57810
 213#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 214#endif
 215#ifndef PCI_DEVICE_ID_NX2_57810_MF
 216#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 217#endif
 218#ifndef PCI_DEVICE_ID_NX2_57840_O
 219#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 220#endif
 221#ifndef PCI_DEVICE_ID_NX2_57810_VF
 222#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 223#endif
 224#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 225#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 226#endif
 227#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 228#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 229#endif
 230#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 231#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 232#endif
 233#ifndef PCI_DEVICE_ID_NX2_57840_MF
 234#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 235#endif
 236#ifndef PCI_DEVICE_ID_NX2_57840_VF
 237#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 238#endif
 239#ifndef PCI_DEVICE_ID_NX2_57811
 240#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 241#endif
 242#ifndef PCI_DEVICE_ID_NX2_57811_MF
 243#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 244#endif
 245#ifndef PCI_DEVICE_ID_NX2_57811_VF
 246#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 247#endif
 248
 249static const struct pci_device_id bnx2x_pci_tbl[] = {
 250        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 251        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 252        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 253        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 254        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 255        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 256        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 257        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 263        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 268        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 270        { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 271        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 273        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 274        { 0 }
 275};
 276
 277MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 278
 279const u32 dmae_reg_go_c[] = {
 280        DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
 281        DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
 282        DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
 283        DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
 284};
 285
 286/* Global resources for unloading a previously loaded device */
 287#define BNX2X_PREV_WAIT_NEEDED 1
 288static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 289static LIST_HEAD(bnx2x_prev_list);
 290
 291/* Forward declaration */
 292static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 293static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 294static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 295
 296/****************************************************************************
 297* General service functions
 298****************************************************************************/
 299
 300static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
 301
 302static void __storm_memset_dma_mapping(struct bnx2x *bp,
 303                                       u32 addr, dma_addr_t mapping)
 304{
 305        REG_WR(bp,  addr, U64_LO(mapping));
 306        REG_WR(bp,  addr + 4, U64_HI(mapping));
 307}
 308
 309static void storm_memset_spq_addr(struct bnx2x *bp,
 310                                  dma_addr_t mapping, u16 abs_fid)
 311{
 312        u32 addr = XSEM_REG_FAST_MEMORY +
 313                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 314
 315        __storm_memset_dma_mapping(bp, addr, mapping);
 316}
 317
 318static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 319                                  u16 pf_id)
 320{
 321        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 322                pf_id);
 323        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 324                pf_id);
 325        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 326                pf_id);
 327        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 328                pf_id);
 329}
 330
 331static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 332                                 u8 enable)
 333{
 334        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 335                enable);
 336        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 337                enable);
 338        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 339                enable);
 340        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 341                enable);
 342}
 343
 344static void storm_memset_eq_data(struct bnx2x *bp,
 345                                 struct event_ring_data *eq_data,
 346                                u16 pfid)
 347{
 348        size_t size = sizeof(struct event_ring_data);
 349
 350        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 351
 352        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 353}
 354
 355static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 356                                 u16 pfid)
 357{
 358        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 359        REG_WR16(bp, addr, eq_prod);
 360}
 361
 362/* used only at init
 363 * locking is done by mcp
 364 */
 365static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 366{
 367        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 368        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 369        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 370                               PCICFG_VENDOR_ID_OFFSET);
 371}
 372
 373static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 374{
 375        u32 val;
 376
 377        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 378        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 379        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 380                               PCICFG_VENDOR_ID_OFFSET);
 381
 382        return val;
 383}
 384
 385#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 386#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 387#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 388#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 389#define DMAE_DP_DST_NONE        "dst_addr [none]"
 390
 391static void bnx2x_dp_dmae(struct bnx2x *bp,
 392                          struct dmae_command *dmae, int msglvl)
 393{
 394        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 395        int i;
 396
 397        switch (dmae->opcode & DMAE_COMMAND_DST) {
 398        case DMAE_CMD_DST_PCI:
 399                if (src_type == DMAE_CMD_SRC_PCI)
 400                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 401                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 402                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 403                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 404                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 405                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 406                           dmae->comp_val);
 407                else
 408                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 409                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 410                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 411                           dmae->opcode, dmae->src_addr_lo >> 2,
 412                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 413                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 414                           dmae->comp_val);
 415                break;
 416        case DMAE_CMD_DST_GRC:
 417                if (src_type == DMAE_CMD_SRC_PCI)
 418                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 419                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 420                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 421                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 422                           dmae->len, dmae->dst_addr_lo >> 2,
 423                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 424                           dmae->comp_val);
 425                else
 426                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 427                           "src [%08x], len [%d*4], dst [%08x]\n"
 428                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 429                           dmae->opcode, dmae->src_addr_lo >> 2,
 430                           dmae->len, dmae->dst_addr_lo >> 2,
 431                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 432                           dmae->comp_val);
 433                break;
 434        default:
 435                if (src_type == DMAE_CMD_SRC_PCI)
 436                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 437                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 438                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 439                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 440                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 441                           dmae->comp_val);
 442                else
 443                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 444                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 445                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 446                           dmae->opcode, dmae->src_addr_lo >> 2,
 447                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 448                           dmae->comp_val);
 449                break;
 450        }
 451
 452        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 453                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 454                   i, *(((u32 *)dmae) + i));
 455}
 456
 457/* copy command into DMAE command memory and set DMAE command go */
 458void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 459{
 460        u32 cmd_offset;
 461        int i;
 462
 463        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 464        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 465                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 466        }
 467        REG_WR(bp, dmae_reg_go_c[idx], 1);
 468}
 469
 470u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 471{
 472        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 473                           DMAE_CMD_C_ENABLE);
 474}
 475
 476u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 477{
 478        return opcode & ~DMAE_CMD_SRC_RESET;
 479}
 480
 481u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 482                             bool with_comp, u8 comp_type)
 483{
 484        u32 opcode = 0;
 485
 486        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 487                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 488
 489        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 490
 491        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 492        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 493                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 494        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 495
 496#ifdef __BIG_ENDIAN
 497        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 498#else
 499        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 500#endif
 501        if (with_comp)
 502                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 503        return opcode;
 504}
 505
 506void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 507                                      struct dmae_command *dmae,
 508                                      u8 src_type, u8 dst_type)
 509{
 510        memset(dmae, 0, sizeof(struct dmae_command));
 511
 512        /* set the opcode */
 513        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 514                                         true, DMAE_COMP_PCI);
 515
 516        /* fill in the completion parameters */
 517        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 518        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 519        dmae->comp_val = DMAE_COMP_VAL;
 520}
 521
 522/* issue a dmae command over the init-channel and wait for completion */
 523int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 524                               u32 *comp)
 525{
 526        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 527        int rc = 0;
 528
 529        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 530
 531        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 532         * as long as this code is called both from syscall context and
 533         * from ndo_set_rx_mode() flow that may be called from BH.
 534         */
 535
 536        spin_lock_bh(&bp->dmae_lock);
 537
 538        /* reset completion */
 539        *comp = 0;
 540
 541        /* post the command on the channel used for initializations */
 542        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 543
 544        /* wait for completion */
 545        udelay(5);
 546        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 547
 548                if (!cnt ||
 549                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 550                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 551                        BNX2X_ERR("DMAE timeout!\n");
 552                        rc = DMAE_TIMEOUT;
 553                        goto unlock;
 554                }
 555                cnt--;
 556                udelay(50);
 557        }
 558        if (*comp & DMAE_PCI_ERR_FLAG) {
 559                BNX2X_ERR("DMAE PCI error!\n");
 560                rc = DMAE_PCI_ERROR;
 561        }
 562
 563unlock:
 564
 565        spin_unlock_bh(&bp->dmae_lock);
 566
 567        return rc;
 568}
 569
 570void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 571                      u32 len32)
 572{
 573        int rc;
 574        struct dmae_command dmae;
 575
 576        if (!bp->dmae_ready) {
 577                u32 *data = bnx2x_sp(bp, wb_data[0]);
 578
 579                if (CHIP_IS_E1(bp))
 580                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 581                else
 582                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 583                return;
 584        }
 585
 586        /* set opcode and fixed command fields */
 587        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 588
 589        /* fill in addresses and len */
 590        dmae.src_addr_lo = U64_LO(dma_addr);
 591        dmae.src_addr_hi = U64_HI(dma_addr);
 592        dmae.dst_addr_lo = dst_addr >> 2;
 593        dmae.dst_addr_hi = 0;
 594        dmae.len = len32;
 595
 596        /* issue the command and wait for completion */
 597        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 598        if (rc) {
 599                BNX2X_ERR("DMAE returned failure %d\n", rc);
 600#ifdef BNX2X_STOP_ON_ERROR
 601                bnx2x_panic();
 602#endif
 603        }
 604}
 605
 606void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 607{
 608        int rc;
 609        struct dmae_command dmae;
 610
 611        if (!bp->dmae_ready) {
 612                u32 *data = bnx2x_sp(bp, wb_data[0]);
 613                int i;
 614
 615                if (CHIP_IS_E1(bp))
 616                        for (i = 0; i < len32; i++)
 617                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 618                else
 619                        for (i = 0; i < len32; i++)
 620                                data[i] = REG_RD(bp, src_addr + i*4);
 621
 622                return;
 623        }
 624
 625        /* set opcode and fixed command fields */
 626        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 627
 628        /* fill in addresses and len */
 629        dmae.src_addr_lo = src_addr >> 2;
 630        dmae.src_addr_hi = 0;
 631        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 632        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 633        dmae.len = len32;
 634
 635        /* issue the command and wait for completion */
 636        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 637        if (rc) {
 638                BNX2X_ERR("DMAE returned failure %d\n", rc);
 639#ifdef BNX2X_STOP_ON_ERROR
 640                bnx2x_panic();
 641#endif
 642        }
 643}
 644
 645static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 646                                      u32 addr, u32 len)
 647{
 648        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 649        int offset = 0;
 650
 651        while (len > dmae_wr_max) {
 652                bnx2x_write_dmae(bp, phys_addr + offset,
 653                                 addr + offset, dmae_wr_max);
 654                offset += dmae_wr_max * 4;
 655                len -= dmae_wr_max;
 656        }
 657
 658        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 659}
 660
 661enum storms {
 662           XSTORM,
 663           TSTORM,
 664           CSTORM,
 665           USTORM,
 666           MAX_STORMS
 667};
 668
 669#define STORMS_NUM 4
 670#define REGS_IN_ENTRY 4
 671
 672static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
 673                                              enum storms storm,
 674                                              int entry)
 675{
 676        switch (storm) {
 677        case XSTORM:
 678                return XSTORM_ASSERT_LIST_OFFSET(entry);
 679        case TSTORM:
 680                return TSTORM_ASSERT_LIST_OFFSET(entry);
 681        case CSTORM:
 682                return CSTORM_ASSERT_LIST_OFFSET(entry);
 683        case USTORM:
 684                return USTORM_ASSERT_LIST_OFFSET(entry);
 685        case MAX_STORMS:
 686        default:
 687                BNX2X_ERR("unknown storm\n");
 688        }
 689        return -EINVAL;
 690}
 691
 692static int bnx2x_mc_assert(struct bnx2x *bp)
 693{
 694        char last_idx;
 695        int i, j, rc = 0;
 696        enum storms storm;
 697        u32 regs[REGS_IN_ENTRY];
 698        u32 bar_storm_intmem[STORMS_NUM] = {
 699                BAR_XSTRORM_INTMEM,
 700                BAR_TSTRORM_INTMEM,
 701                BAR_CSTRORM_INTMEM,
 702                BAR_USTRORM_INTMEM
 703        };
 704        u32 storm_assert_list_index[STORMS_NUM] = {
 705                XSTORM_ASSERT_LIST_INDEX_OFFSET,
 706                TSTORM_ASSERT_LIST_INDEX_OFFSET,
 707                CSTORM_ASSERT_LIST_INDEX_OFFSET,
 708                USTORM_ASSERT_LIST_INDEX_OFFSET
 709        };
 710        char *storms_string[STORMS_NUM] = {
 711                "XSTORM",
 712                "TSTORM",
 713                "CSTORM",
 714                "USTORM"
 715        };
 716
 717        for (storm = XSTORM; storm < MAX_STORMS; storm++) {
 718                last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
 719                                   storm_assert_list_index[storm]);
 720                if (last_idx)
 721                        BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
 722                                  storms_string[storm], last_idx);
 723
 724                /* print the asserts */
 725                for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 726                        /* read a single assert entry */
 727                        for (j = 0; j < REGS_IN_ENTRY; j++)
 728                                regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
 729                                          bnx2x_get_assert_list_entry(bp,
 730                                                                      storm,
 731                                                                      i) +
 732                                          sizeof(u32) * j);
 733
 734                        /* log entry if it contains a valid assert */
 735                        if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 736                                BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 737                                          storms_string[storm], i, regs[3],
 738                                          regs[2], regs[1], regs[0]);
 739                                rc++;
 740                        } else {
 741                                break;
 742                        }
 743                }
 744        }
 745
 746        BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
 747                  CHIP_IS_E1(bp) ? "everest1" :
 748                  CHIP_IS_E1H(bp) ? "everest1h" :
 749                  CHIP_IS_E2(bp) ? "everest2" : "everest3",
 750                  BCM_5710_FW_MAJOR_VERSION,
 751                  BCM_5710_FW_MINOR_VERSION,
 752                  BCM_5710_FW_REVISION_VERSION);
 753
 754        return rc;
 755}
 756
 757#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 758#define SCRATCH_BUFFER_SIZE(bp) \
 759        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 760
 761void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 762{
 763        u32 addr, val;
 764        u32 mark, offset;
 765        __be32 data[9];
 766        int word;
 767        u32 trace_shmem_base;
 768        if (BP_NOMCP(bp)) {
 769                BNX2X_ERR("NO MCP - can not dump\n");
 770                return;
 771        }
 772        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 773                (bp->common.bc_ver & 0xff0000) >> 16,
 774                (bp->common.bc_ver & 0xff00) >> 8,
 775                (bp->common.bc_ver & 0xff));
 776
 777        if (pci_channel_offline(bp->pdev)) {
 778                BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
 779                return;
 780        }
 781
 782        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 783        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 784                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 785
 786        if (BP_PATH(bp) == 0)
 787                trace_shmem_base = bp->common.shmem_base;
 788        else
 789                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 790
 791        /* sanity */
 792        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 793            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 794                                SCRATCH_BUFFER_SIZE(bp)) {
 795                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 796                          trace_shmem_base);
 797                return;
 798        }
 799
 800        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 801
 802        /* validate TRCB signature */
 803        mark = REG_RD(bp, addr);
 804        if (mark != MFW_TRACE_SIGNATURE) {
 805                BNX2X_ERR("Trace buffer signature is missing.");
 806                return ;
 807        }
 808
 809        /* read cyclic buffer pointer */
 810        addr += 4;
 811        mark = REG_RD(bp, addr);
 812        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 813        if (mark >= trace_shmem_base || mark < addr + 4) {
 814                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 815                return;
 816        }
 817        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 818
 819        printk("%s", lvl);
 820
 821        /* dump buffer after the mark */
 822        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 823                for (word = 0; word < 8; word++)
 824                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 825                data[8] = 0x0;
 826                pr_cont("%s", (char *)data);
 827        }
 828
 829        /* dump buffer before the mark */
 830        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 831                for (word = 0; word < 8; word++)
 832                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 833                data[8] = 0x0;
 834                pr_cont("%s", (char *)data);
 835        }
 836        printk("%s" "end of fw dump\n", lvl);
 837}
 838
 839static void bnx2x_fw_dump(struct bnx2x *bp)
 840{
 841        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 842}
 843
 844static void bnx2x_hc_int_disable(struct bnx2x *bp)
 845{
 846        int port = BP_PORT(bp);
 847        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 848        u32 val = REG_RD(bp, addr);
 849
 850        /* in E1 we must use only PCI configuration space to disable
 851         * MSI/MSIX capability
 852         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 853         */
 854        if (CHIP_IS_E1(bp)) {
 855                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 856                 * Use mask register to prevent from HC sending interrupts
 857                 * after we exit the function
 858                 */
 859                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 860
 861                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 862                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 863                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 864        } else
 865                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 866                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 867                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 868                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 869
 870        DP(NETIF_MSG_IFDOWN,
 871           "write %x to HC %d (addr 0x%x)\n",
 872           val, port, addr);
 873
 874        REG_WR(bp, addr, val);
 875        if (REG_RD(bp, addr) != val)
 876                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 877}
 878
 879static void bnx2x_igu_int_disable(struct bnx2x *bp)
 880{
 881        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 882
 883        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 884                 IGU_PF_CONF_INT_LINE_EN |
 885                 IGU_PF_CONF_ATTN_BIT_EN);
 886
 887        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 888
 889        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 890        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 891                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 892}
 893
 894static void bnx2x_int_disable(struct bnx2x *bp)
 895{
 896        if (bp->common.int_block == INT_BLOCK_HC)
 897                bnx2x_hc_int_disable(bp);
 898        else
 899                bnx2x_igu_int_disable(bp);
 900}
 901
 902void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 903{
 904        int i;
 905        u16 j;
 906        struct hc_sp_status_block_data sp_sb_data;
 907        int func = BP_FUNC(bp);
 908#ifdef BNX2X_STOP_ON_ERROR
 909        u16 start = 0, end = 0;
 910        u8 cos;
 911#endif
 912        if (IS_PF(bp) && disable_int)
 913                bnx2x_int_disable(bp);
 914
 915        bp->stats_state = STATS_STATE_DISABLED;
 916        bp->eth_stats.unrecoverable_error++;
 917        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 918
 919        BNX2X_ERR("begin crash dump -----------------\n");
 920
 921        /* Indices */
 922        /* Common */
 923        if (IS_PF(bp)) {
 924                struct host_sp_status_block *def_sb = bp->def_status_blk;
 925                int data_size, cstorm_offset;
 926
 927                BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 928                          bp->def_idx, bp->def_att_idx, bp->attn_state,
 929                          bp->spq_prod_idx, bp->stats_counter);
 930                BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 931                          def_sb->atten_status_block.attn_bits,
 932                          def_sb->atten_status_block.attn_bits_ack,
 933                          def_sb->atten_status_block.status_block_id,
 934                          def_sb->atten_status_block.attn_bits_index);
 935                BNX2X_ERR("     def (");
 936                for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 937                        pr_cont("0x%x%s",
 938                                def_sb->sp_sb.index_values[i],
 939                                (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 940
 941                data_size = sizeof(struct hc_sp_status_block_data) /
 942                            sizeof(u32);
 943                cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
 944                for (i = 0; i < data_size; i++)
 945                        *((u32 *)&sp_sb_data + i) =
 946                                REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
 947                                           i * sizeof(u32));
 948
 949                pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 950                        sp_sb_data.igu_sb_id,
 951                        sp_sb_data.igu_seg_id,
 952                        sp_sb_data.p_func.pf_id,
 953                        sp_sb_data.p_func.vnic_id,
 954                        sp_sb_data.p_func.vf_id,
 955                        sp_sb_data.p_func.vf_valid,
 956                        sp_sb_data.state);
 957        }
 958
 959        for_each_eth_queue(bp, i) {
 960                struct bnx2x_fastpath *fp = &bp->fp[i];
 961                int loop;
 962                struct hc_status_block_data_e2 sb_data_e2;
 963                struct hc_status_block_data_e1x sb_data_e1x;
 964                struct hc_status_block_sm  *hc_sm_p =
 965                        CHIP_IS_E1x(bp) ?
 966                        sb_data_e1x.common.state_machine :
 967                        sb_data_e2.common.state_machine;
 968                struct hc_index_data *hc_index_p =
 969                        CHIP_IS_E1x(bp) ?
 970                        sb_data_e1x.index_data :
 971                        sb_data_e2.index_data;
 972                u8 data_size, cos;
 973                u32 *sb_data_p;
 974                struct bnx2x_fp_txdata txdata;
 975
 976                if (!bp->fp)
 977                        break;
 978
 979                if (!fp->rx_cons_sb)
 980                        continue;
 981
 982                /* Rx */
 983                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 984                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 985                          fp->rx_comp_prod,
 986                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 987                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 988                          fp->rx_sge_prod, fp->last_max_sge,
 989                          le16_to_cpu(fp->fp_hc_idx));
 990
 991                /* Tx */
 992                for_each_cos_in_tx_queue(fp, cos)
 993                {
 994                        if (!fp->txdata_ptr[cos])
 995                                break;
 996
 997                        txdata = *fp->txdata_ptr[cos];
 998
 999                        if (!txdata.tx_cons_sb)
1000                                continue;
1001
1002                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003                                  i, txdata.tx_pkt_prod,
1004                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005                                  txdata.tx_bd_cons,
1006                                  le16_to_cpu(*txdata.tx_cons_sb));
1007                }
1008
1009                loop = CHIP_IS_E1x(bp) ?
1010                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012                /* host sb data */
1013
1014                if (IS_FCOE_FP(fp))
1015                        continue;
1016
1017                BNX2X_ERR("     run indexes (");
1018                for (j = 0; j < HC_SB_MAX_SM; j++)
1019                        pr_cont("0x%x%s",
1020                               fp->sb_running_index[j],
1021                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023                BNX2X_ERR("     indexes (");
1024                for (j = 0; j < loop; j++)
1025                        pr_cont("0x%x%s",
1026                               fp->sb_index_values[j],
1027                               (j == loop - 1) ? ")" : " ");
1028
1029                /* VF cannot access FW refelection for status block */
1030                if (IS_VF(bp))
1031                        continue;
1032
1033                /* fw sb data */
1034                data_size = CHIP_IS_E1x(bp) ?
1035                        sizeof(struct hc_status_block_data_e1x) :
1036                        sizeof(struct hc_status_block_data_e2);
1037                data_size /= sizeof(u32);
1038                sb_data_p = CHIP_IS_E1x(bp) ?
1039                        (u32 *)&sb_data_e1x :
1040                        (u32 *)&sb_data_e2;
1041                /* copy sb data in here */
1042                for (j = 0; j < data_size; j++)
1043                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045                                j * sizeof(u32));
1046
1047                if (!CHIP_IS_E1x(bp)) {
1048                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049                                sb_data_e2.common.p_func.pf_id,
1050                                sb_data_e2.common.p_func.vf_id,
1051                                sb_data_e2.common.p_func.vf_valid,
1052                                sb_data_e2.common.p_func.vnic_id,
1053                                sb_data_e2.common.same_igu_sb_1b,
1054                                sb_data_e2.common.state);
1055                } else {
1056                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057                                sb_data_e1x.common.p_func.pf_id,
1058                                sb_data_e1x.common.p_func.vf_id,
1059                                sb_data_e1x.common.p_func.vf_valid,
1060                                sb_data_e1x.common.p_func.vnic_id,
1061                                sb_data_e1x.common.same_igu_sb_1b,
1062                                sb_data_e1x.common.state);
1063                }
1064
1065                /* SB_SMs data */
1066                for (j = 0; j < HC_SB_MAX_SM; j++) {
1067                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068                                j, hc_sm_p[j].__flags,
1069                                hc_sm_p[j].igu_sb_id,
1070                                hc_sm_p[j].igu_seg_id,
1071                                hc_sm_p[j].time_to_expire,
1072                                hc_sm_p[j].timer_value);
1073                }
1074
1075                /* Indices data */
1076                for (j = 0; j < loop; j++) {
1077                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078                               hc_index_p[j].flags,
1079                               hc_index_p[j].timeout);
1080                }
1081        }
1082
1083#ifdef BNX2X_STOP_ON_ERROR
1084        if (IS_PF(bp)) {
1085                /* event queue */
1086                BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087                for (i = 0; i < NUM_EQ_DESC; i++) {
1088                        u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090                        BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091                                  i, bp->eq_ring[i].message.opcode,
1092                                  bp->eq_ring[i].message.error);
1093                        BNX2X_ERR("data: %x %x %x\n",
1094                                  data[0], data[1], data[2]);
1095                }
1096        }
1097
1098        /* Rings */
1099        /* Rx */
1100        for_each_valid_rx_queue(bp, i) {
1101                struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103                if (!bp->fp)
1104                        break;
1105
1106                if (!fp->rx_cons_sb)
1107                        continue;
1108
1109                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111                for (j = start; j != end; j = RX_BD(j + 1)) {
1112                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117                }
1118
1119                start = RX_SGE(fp->rx_sge_prod);
1120                end = RX_SGE(fp->last_max_sge);
1121                for (j = start; j != end; j = RX_SGE(j + 1)) {
1122                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127                }
1128
1129                start = RCQ_BD(fp->rx_comp_cons - 10);
1130                end = RCQ_BD(fp->rx_comp_cons + 503);
1131                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136                }
1137        }
1138
1139        /* Tx */
1140        for_each_valid_tx_queue(bp, i) {
1141                struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143                if (!bp->fp)
1144                        break;
1145
1146                for_each_cos_in_tx_queue(fp, cos) {
1147                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149                        if (!fp->txdata_ptr[cos])
1150                                break;
1151
1152                        if (!txdata->tx_cons_sb)
1153                                continue;
1154
1155                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157                        for (j = start; j != end; j = TX_BD(j + 1)) {
1158                                struct sw_tx_bd *sw_bd =
1159                                        &txdata->tx_buf_ring[j];
1160
1161                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162                                          i, cos, j, sw_bd->skb,
1163                                          sw_bd->first_bd);
1164                        }
1165
1166                        start = TX_BD(txdata->tx_bd_cons - 10);
1167                        end = TX_BD(txdata->tx_bd_cons + 254);
1168                        for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172                                          i, cos, j, tx_bd[0], tx_bd[1],
1173                                          tx_bd[2], tx_bd[3]);
1174                        }
1175                }
1176        }
1177#endif
1178        if (IS_PF(bp)) {
1179                int tmp_msg_en = bp->msg_enable;
1180
1181                bnx2x_fw_dump(bp);
1182                bp->msg_enable |= NETIF_MSG_HW;
1183                BNX2X_ERR("Idle check (1st round) ----------\n");
1184                bnx2x_idle_chk(bp);
1185                BNX2X_ERR("Idle check (2nd round) ----------\n");
1186                bnx2x_idle_chk(bp);
1187                bp->msg_enable = tmp_msg_en;
1188                bnx2x_mc_assert(bp);
1189        }
1190
1191        BNX2X_ERR("end crash dump -----------------\n");
1192}
1193
1194/*
1195 * FLR Support for E2
1196 *
1197 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198 * initialization.
1199 */
1200#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1201#define FLR_WAIT_INTERVAL       50      /* usec */
1202#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1203
1204struct pbf_pN_buf_regs {
1205        int pN;
1206        u32 init_crd;
1207        u32 crd;
1208        u32 crd_freed;
1209};
1210
1211struct pbf_pN_cmd_regs {
1212        int pN;
1213        u32 lines_occup;
1214        u32 lines_freed;
1215};
1216
1217static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218                                     struct pbf_pN_buf_regs *regs,
1219                                     u32 poll_count)
1220{
1221        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222        u32 cur_cnt = poll_count;
1223
1224        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225        crd = crd_start = REG_RD(bp, regs->crd);
1226        init_crd = REG_RD(bp, regs->init_crd);
1227
1228        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1230        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1231
1232        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233               (init_crd - crd_start))) {
1234                if (cur_cnt--) {
1235                        udelay(FLR_WAIT_INTERVAL);
1236                        crd = REG_RD(bp, regs->crd);
1237                        crd_freed = REG_RD(bp, regs->crd_freed);
1238                } else {
1239                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240                           regs->pN);
1241                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1242                           regs->pN, crd);
1243                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244                           regs->pN, crd_freed);
1245                        break;
1246                }
1247        }
1248        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1250}
1251
1252static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253                                     struct pbf_pN_cmd_regs *regs,
1254                                     u32 poll_count)
1255{
1256        u32 occup, to_free, freed, freed_start;
1257        u32 cur_cnt = poll_count;
1258
1259        occup = to_free = REG_RD(bp, regs->lines_occup);
1260        freed = freed_start = REG_RD(bp, regs->lines_freed);
1261
1262        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1263        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1264
1265        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266                if (cur_cnt--) {
1267                        udelay(FLR_WAIT_INTERVAL);
1268                        occup = REG_RD(bp, regs->lines_occup);
1269                        freed = REG_RD(bp, regs->lines_freed);
1270                } else {
1271                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272                           regs->pN);
1273                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1274                           regs->pN, occup);
1275                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276                           regs->pN, freed);
1277                        break;
1278                }
1279        }
1280        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1282}
1283
1284static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285                                    u32 expected, u32 poll_count)
1286{
1287        u32 cur_cnt = poll_count;
1288        u32 val;
1289
1290        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291                udelay(FLR_WAIT_INTERVAL);
1292
1293        return val;
1294}
1295
1296int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297                                    char *msg, u32 poll_cnt)
1298{
1299        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300        if (val != 0) {
1301                BNX2X_ERR("%s usage count=%d\n", msg, val);
1302                return 1;
1303        }
1304        return 0;
1305}
1306
1307/* Common routines with VF FLR cleanup */
1308u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1309{
1310        /* adjust polling timeout */
1311        if (CHIP_REV_IS_EMUL(bp))
1312                return FLR_POLL_CNT * 2000;
1313
1314        if (CHIP_REV_IS_FPGA(bp))
1315                return FLR_POLL_CNT * 120;
1316
1317        return FLR_POLL_CNT;
1318}
1319
1320void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1321{
1322        struct pbf_pN_cmd_regs cmd_regs[] = {
1323                {0, (CHIP_IS_E3B0(bp)) ?
1324                        PBF_REG_TQ_OCCUPANCY_Q0 :
1325                        PBF_REG_P0_TQ_OCCUPANCY,
1326                    (CHIP_IS_E3B0(bp)) ?
1327                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1329                {1, (CHIP_IS_E3B0(bp)) ?
1330                        PBF_REG_TQ_OCCUPANCY_Q1 :
1331                        PBF_REG_P1_TQ_OCCUPANCY,
1332                    (CHIP_IS_E3B0(bp)) ?
1333                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1335                {4, (CHIP_IS_E3B0(bp)) ?
1336                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1337                        PBF_REG_P4_TQ_OCCUPANCY,
1338                    (CHIP_IS_E3B0(bp)) ?
1339                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1341        };
1342
1343        struct pbf_pN_buf_regs buf_regs[] = {
1344                {0, (CHIP_IS_E3B0(bp)) ?
1345                        PBF_REG_INIT_CRD_Q0 :
1346                        PBF_REG_P0_INIT_CRD ,
1347                    (CHIP_IS_E3B0(bp)) ?
1348                        PBF_REG_CREDIT_Q0 :
1349                        PBF_REG_P0_CREDIT,
1350                    (CHIP_IS_E3B0(bp)) ?
1351                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353                {1, (CHIP_IS_E3B0(bp)) ?
1354                        PBF_REG_INIT_CRD_Q1 :
1355                        PBF_REG_P1_INIT_CRD,
1356                    (CHIP_IS_E3B0(bp)) ?
1357                        PBF_REG_CREDIT_Q1 :
1358                        PBF_REG_P1_CREDIT,
1359                    (CHIP_IS_E3B0(bp)) ?
1360                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362                {4, (CHIP_IS_E3B0(bp)) ?
1363                        PBF_REG_INIT_CRD_LB_Q :
1364                        PBF_REG_P4_INIT_CRD,
1365                    (CHIP_IS_E3B0(bp)) ?
1366                        PBF_REG_CREDIT_LB_Q :
1367                        PBF_REG_P4_CREDIT,
1368                    (CHIP_IS_E3B0(bp)) ?
1369                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1371        };
1372
1373        int i;
1374
1375        /* Verify the command queues are flushed P0, P1, P4 */
1376        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1378
1379        /* Verify the transmission buffers are flushed P0, P1, P4 */
1380        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1382}
1383
1384#define OP_GEN_PARAM(param) \
1385        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1386
1387#define OP_GEN_TYPE(type) \
1388        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1389
1390#define OP_GEN_AGG_VECT(index) \
1391        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1392
1393int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1394{
1395        u32 op_gen_command = 0;
1396        u32 comp_addr = BAR_CSTRORM_INTMEM +
1397                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398        int ret = 0;
1399
1400        if (REG_RD(bp, comp_addr)) {
1401                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1402                return 1;
1403        }
1404
1405        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1406        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1407        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1408        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1409
1410        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1411        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1412
1413        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1414                BNX2X_ERR("FW final cleanup did not succeed\n");
1415                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1416                   (REG_RD(bp, comp_addr)));
1417                bnx2x_panic();
1418                return 1;
1419        }
1420        /* Zero completion for next FLR */
1421        REG_WR(bp, comp_addr, 0);
1422
1423        return ret;
1424}
1425
1426u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1427{
1428        u16 status;
1429
1430        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1431        return status & PCI_EXP_DEVSTA_TRPND;
1432}
1433
1434/* PF FLR specific routines
1435*/
1436static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1437{
1438        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1439        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1441                        "CFC PF usage counter timed out",
1442                        poll_cnt))
1443                return 1;
1444
1445        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1446        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                        DORQ_REG_PF_USAGE_CNT,
1448                        "DQ PF usage counter timed out",
1449                        poll_cnt))
1450                return 1;
1451
1452        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1453        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1455                        "QM PF usage counter timed out",
1456                        poll_cnt))
1457                return 1;
1458
1459        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1460        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1462                        "Timers VNIC usage counter timed out",
1463                        poll_cnt))
1464                return 1;
1465        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1467                        "Timers NUM_SCANS usage counter timed out",
1468                        poll_cnt))
1469                return 1;
1470
1471        /* Wait DMAE PF usage counter to zero */
1472        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1473                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1474                        "DMAE command register timed out",
1475                        poll_cnt))
1476                return 1;
1477
1478        return 0;
1479}
1480
1481static void bnx2x_hw_enable_status(struct bnx2x *bp)
1482{
1483        u32 val;
1484
1485        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1486        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1487
1488        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1489        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1490
1491        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1492        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1493
1494        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1495        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1496
1497        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1498        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1499
1500        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1501        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1502
1503        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1504        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1505
1506        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1507        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1508           val);
1509}
1510
1511static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1512{
1513        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1514
1515        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1516
1517        /* Re-enable PF target read access */
1518        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1519
1520        /* Poll HW usage counters */
1521        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1522        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1523                return -EBUSY;
1524
1525        /* Zero the igu 'trailing edge' and 'leading edge' */
1526
1527        /* Send the FW cleanup command */
1528        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1529                return -EBUSY;
1530
1531        /* ATC cleanup */
1532
1533        /* Verify TX hw is flushed */
1534        bnx2x_tx_hw_flushed(bp, poll_cnt);
1535
1536        /* Wait 100ms (not adjusted according to platform) */
1537        msleep(100);
1538
1539        /* Verify no pending pci transactions */
1540        if (bnx2x_is_pcie_pending(bp->pdev))
1541                BNX2X_ERR("PCIE Transactions still pending\n");
1542
1543        /* Debug */
1544        bnx2x_hw_enable_status(bp);
1545
1546        /*
1547         * Master enable - Due to WB DMAE writes performed before this
1548         * register is re-initialized as part of the regular function init
1549         */
1550        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1551
1552        return 0;
1553}
1554
1555static void bnx2x_hc_int_enable(struct bnx2x *bp)
1556{
1557        int port = BP_PORT(bp);
1558        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1559        u32 val = REG_RD(bp, addr);
1560        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1561        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1562        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1563
1564        if (msix) {
1565                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1566                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1567                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569                if (single_msix)
1570                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1571        } else if (msi) {
1572                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1573                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1575                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576        } else {
1577                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1578                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1580                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1581
1582                if (!CHIP_IS_E1(bp)) {
1583                        DP(NETIF_MSG_IFUP,
1584                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1585
1586                        REG_WR(bp, addr, val);
1587
1588                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1589                }
1590        }
1591
1592        if (CHIP_IS_E1(bp))
1593                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1594
1595        DP(NETIF_MSG_IFUP,
1596           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1597           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1598
1599        REG_WR(bp, addr, val);
1600        /*
1601         * Ensure that HC_CONFIG is written before leading/trailing edge config
1602         */
1603        barrier();
1604
1605        if (!CHIP_IS_E1(bp)) {
1606                /* init leading/trailing edge */
1607                if (IS_MF(bp)) {
1608                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1609                        if (bp->port.pmf)
1610                                /* enable nig and gpio3 attention */
1611                                val |= 0x1100;
1612                } else
1613                        val = 0xffff;
1614
1615                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1616                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1617        }
1618}
1619
1620static void bnx2x_igu_int_enable(struct bnx2x *bp)
1621{
1622        u32 val;
1623        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1624        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1625        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1626
1627        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1628
1629        if (msix) {
1630                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1631                         IGU_PF_CONF_SINGLE_ISR_EN);
1632                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1633                        IGU_PF_CONF_ATTN_BIT_EN);
1634
1635                if (single_msix)
1636                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1637        } else if (msi) {
1638                val &= ~IGU_PF_CONF_INT_LINE_EN;
1639                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1640                        IGU_PF_CONF_ATTN_BIT_EN |
1641                        IGU_PF_CONF_SINGLE_ISR_EN);
1642        } else {
1643                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1644                val |= (IGU_PF_CONF_INT_LINE_EN |
1645                        IGU_PF_CONF_ATTN_BIT_EN |
1646                        IGU_PF_CONF_SINGLE_ISR_EN);
1647        }
1648
1649        /* Clean previous status - need to configure igu prior to ack*/
1650        if ((!msix) || single_msix) {
1651                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1652                bnx2x_ack_int(bp);
1653        }
1654
1655        val |= IGU_PF_CONF_FUNC_EN;
1656
1657        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1658           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1659
1660        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661
1662        if (val & IGU_PF_CONF_INT_LINE_EN)
1663                pci_intx(bp->pdev, true);
1664
1665        barrier();
1666
1667        /* init leading/trailing edge */
1668        if (IS_MF(bp)) {
1669                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1670                if (bp->port.pmf)
1671                        /* enable nig and gpio3 attention */
1672                        val |= 0x1100;
1673        } else
1674                val = 0xffff;
1675
1676        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1677        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1678}
1679
1680void bnx2x_int_enable(struct bnx2x *bp)
1681{
1682        if (bp->common.int_block == INT_BLOCK_HC)
1683                bnx2x_hc_int_enable(bp);
1684        else
1685                bnx2x_igu_int_enable(bp);
1686}
1687
1688void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1689{
1690        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691        int i, offset;
1692
1693        if (disable_hw)
1694                /* prevent the HW from sending interrupts */
1695                bnx2x_int_disable(bp);
1696
1697        /* make sure all ISRs are done */
1698        if (msix) {
1699                synchronize_irq(bp->msix_table[0].vector);
1700                offset = 1;
1701                if (CNIC_SUPPORT(bp))
1702                        offset++;
1703                for_each_eth_queue(bp, i)
1704                        synchronize_irq(bp->msix_table[offset++].vector);
1705        } else
1706                synchronize_irq(bp->pdev->irq);
1707
1708        /* make sure sp_task is not running */
1709        cancel_delayed_work(&bp->sp_task);
1710        cancel_delayed_work(&bp->period_task);
1711        flush_workqueue(bnx2x_wq);
1712}
1713
1714/* fast path */
1715
1716/*
1717 * General service functions
1718 */
1719
1720/* Return true if succeeded to acquire the lock */
1721static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1722{
1723        u32 lock_status;
1724        u32 resource_bit = (1 << resource);
1725        int func = BP_FUNC(bp);
1726        u32 hw_lock_control_reg;
1727
1728        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729           "Trying to take a lock on resource %d\n", resource);
1730
1731        /* Validating that the resource is within range */
1732        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736                return false;
1737        }
1738
1739        if (func <= 5)
1740                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741        else
1742                hw_lock_control_reg =
1743                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1744
1745        /* Try to acquire the lock */
1746        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747        lock_status = REG_RD(bp, hw_lock_control_reg);
1748        if (lock_status & resource_bit)
1749                return true;
1750
1751        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752           "Failed to get a lock on resource %d\n", resource);
1753        return false;
1754}
1755
1756/**
1757 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1758 *
1759 * @bp: driver handle
1760 *
1761 * Returns the recovery leader resource id according to the engine this function
1762 * belongs to. Currently only only 2 engines is supported.
1763 */
1764static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1765{
1766        if (BP_PATH(bp))
1767                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768        else
1769                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1770}
1771
1772/**
1773 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1774 *
1775 * @bp: driver handle
1776 *
1777 * Tries to acquire a leader lock for current engine.
1778 */
1779static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1780{
1781        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1782}
1783
1784static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1785
1786/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1788{
1789        /* Set the interrupt occurred bit for the sp-task to recognize it
1790         * must ack the interrupt and transition according to the IGU
1791         * state machine.
1792         */
1793        atomic_set(&bp->interrupt_occurred, 1);
1794
1795        /* The sp_task must execute only after this bit
1796         * is set, otherwise we will get out of sync and miss all
1797         * further interrupts. Hence, the barrier.
1798         */
1799        smp_wmb();
1800
1801        /* schedule sp_task to workqueue */
1802        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1803}
1804
1805void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1806{
1807        struct bnx2x *bp = fp->bp;
1808        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1812
1813        DP(BNX2X_MSG_SP,
1814           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1815           fp->index, cid, command, bp->state,
1816           rr_cqe->ramrod_cqe.ramrod_type);
1817
1818        /* If cid is within VF range, replace the slowpath object with the
1819         * one corresponding to this VF
1820         */
1821        if (cid >= BNX2X_FIRST_VF_CID  &&
1822            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1824
1825        switch (command) {
1826        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828                drv_cmd = BNX2X_Q_CMD_UPDATE;
1829                break;
1830
1831        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833                drv_cmd = BNX2X_Q_CMD_SETUP;
1834                break;
1835
1836        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839                break;
1840
1841        case (RAMROD_CMD_ID_ETH_HALT):
1842                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843                drv_cmd = BNX2X_Q_CMD_HALT;
1844                break;
1845
1846        case (RAMROD_CMD_ID_ETH_TERMINATE):
1847                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849                break;
1850
1851        case (RAMROD_CMD_ID_ETH_EMPTY):
1852                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853                drv_cmd = BNX2X_Q_CMD_EMPTY;
1854                break;
1855
1856        case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857                DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858                drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859                break;
1860
1861        default:
1862                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863                          command, fp->index);
1864                return;
1865        }
1866
1867        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869                /* q_obj->complete_cmd() failure means that this was
1870                 * an unexpected completion.
1871                 *
1872                 * In this case we don't want to increase the bp->spq_left
1873                 * because apparently we haven't sent this command the first
1874                 * place.
1875                 */
1876#ifdef BNX2X_STOP_ON_ERROR
1877                bnx2x_panic();
1878#else
1879                return;
1880#endif
1881
1882        smp_mb__before_atomic();
1883        atomic_inc(&bp->cq_spq_left);
1884        /* push the change in bp->spq_left and towards the memory */
1885        smp_mb__after_atomic();
1886
1887        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1888
1889        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891                /* if Q update ramrod is completed for last Q in AFEX vif set
1892                 * flow, then ACK MCP at the end
1893                 *
1894                 * mark pending ACK to MCP bit.
1895                 * prevent case that both bits are cleared.
1896                 * At the end of load/unload driver checks that
1897                 * sp_state is cleared, and this order prevents
1898                 * races
1899                 */
1900                smp_mb__before_atomic();
1901                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902                wmb();
1903                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904                smp_mb__after_atomic();
1905
1906                /* schedule the sp task as mcp ack is required */
1907                bnx2x_schedule_sp_task(bp);
1908        }
1909
1910        return;
1911}
1912
1913irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1914{
1915        struct bnx2x *bp = netdev_priv(dev_instance);
1916        u16 status = bnx2x_ack_int(bp);
1917        u16 mask;
1918        int i;
1919        u8 cos;
1920
1921        /* Return here if interrupt is shared and it's not for us */
1922        if (unlikely(status == 0)) {
1923                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924                return IRQ_NONE;
1925        }
1926        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1927
1928#ifdef BNX2X_STOP_ON_ERROR
1929        if (unlikely(bp->panic))
1930                return IRQ_HANDLED;
1931#endif
1932
1933        for_each_eth_queue(bp, i) {
1934                struct bnx2x_fastpath *fp = &bp->fp[i];
1935
1936                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937                if (status & mask) {
1938                        /* Handle Rx or Tx according to SB id */
1939                        for_each_cos_in_tx_queue(fp, cos)
1940                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1942                        napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943                        status &= ~mask;
1944                }
1945        }
1946
1947        if (CNIC_SUPPORT(bp)) {
1948                mask = 0x2;
1949                if (status & (mask | 0x1)) {
1950                        struct cnic_ops *c_ops = NULL;
1951
1952                        rcu_read_lock();
1953                        c_ops = rcu_dereference(bp->cnic_ops);
1954                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1955                                      CNIC_DRV_STATE_HANDLES_IRQ))
1956                                c_ops->cnic_handler(bp->cnic_data, NULL);
1957                        rcu_read_unlock();
1958
1959                        status &= ~mask;
1960                }
1961        }
1962
1963        if (unlikely(status & 0x1)) {
1964
1965                /* schedule sp task to perform default status block work, ack
1966                 * attentions and enable interrupts.
1967                 */
1968                bnx2x_schedule_sp_task(bp);
1969
1970                status &= ~0x1;
1971                if (!status)
1972                        return IRQ_HANDLED;
1973        }
1974
1975        if (unlikely(status))
1976                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977                   status);
1978
1979        return IRQ_HANDLED;
1980}
1981
1982/* Link */
1983
1984/*
1985 * General service functions
1986 */
1987
1988int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1989{
1990        u32 lock_status;
1991        u32 resource_bit = (1 << resource);
1992        int func = BP_FUNC(bp);
1993        u32 hw_lock_control_reg;
1994        int cnt;
1995
1996        /* Validating that the resource is within range */
1997        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000                return -EINVAL;
2001        }
2002
2003        if (func <= 5) {
2004                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005        } else {
2006                hw_lock_control_reg =
2007                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2008        }
2009
2010        /* Validating that the resource is not already taken */
2011        lock_status = REG_RD(bp, hw_lock_control_reg);
2012        if (lock_status & resource_bit) {
2013                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2014                   lock_status, resource_bit);
2015                return -EEXIST;
2016        }
2017
2018        /* Try for 5 second every 5ms */
2019        for (cnt = 0; cnt < 1000; cnt++) {
2020                /* Try to acquire the lock */
2021                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022                lock_status = REG_RD(bp, hw_lock_control_reg);
2023                if (lock_status & resource_bit)
2024                        return 0;
2025
2026                usleep_range(5000, 10000);
2027        }
2028        BNX2X_ERR("Timeout\n");
2029        return -EAGAIN;
2030}
2031
2032int bnx2x_release_leader_lock(struct bnx2x *bp)
2033{
2034        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2035}
2036
2037int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2038{
2039        u32 lock_status;
2040        u32 resource_bit = (1 << resource);
2041        int func = BP_FUNC(bp);
2042        u32 hw_lock_control_reg;
2043
2044        /* Validating that the resource is within range */
2045        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048                return -EINVAL;
2049        }
2050
2051        if (func <= 5) {
2052                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053        } else {
2054                hw_lock_control_reg =
2055                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2056        }
2057
2058        /* Validating that the resource is currently taken */
2059        lock_status = REG_RD(bp, hw_lock_control_reg);
2060        if (!(lock_status & resource_bit)) {
2061                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062                          lock_status, resource_bit);
2063                return -EFAULT;
2064        }
2065
2066        REG_WR(bp, hw_lock_control_reg, resource_bit);
2067        return 0;
2068}
2069
2070int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2071{
2072        /* The GPIO should be swapped if swap register is set and active */
2073        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075        int gpio_shift = gpio_num +
2076                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077        u32 gpio_mask = (1 << gpio_shift);
2078        u32 gpio_reg;
2079        int value;
2080
2081        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083                return -EINVAL;
2084        }
2085
2086        /* read GPIO value */
2087        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2088
2089        /* get the requested pin value */
2090        if ((gpio_reg & gpio_mask) == gpio_mask)
2091                value = 1;
2092        else
2093                value = 0;
2094
2095        return value;
2096}
2097
2098int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2099{
2100        /* The GPIO should be swapped if swap register is set and active */
2101        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103        int gpio_shift = gpio_num +
2104                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105        u32 gpio_mask = (1 << gpio_shift);
2106        u32 gpio_reg;
2107
2108        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110                return -EINVAL;
2111        }
2112
2113        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114        /* read GPIO and mask except the float bits */
2115        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2116
2117        switch (mode) {
2118        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119                DP(NETIF_MSG_LINK,
2120                   "Set GPIO %d (shift %d) -> output low\n",
2121                   gpio_num, gpio_shift);
2122                /* clear FLOAT and set CLR */
2123                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125                break;
2126
2127        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128                DP(NETIF_MSG_LINK,
2129                   "Set GPIO %d (shift %d) -> output high\n",
2130                   gpio_num, gpio_shift);
2131                /* clear FLOAT and set SET */
2132                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134                break;
2135
2136        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137                DP(NETIF_MSG_LINK,
2138                   "Set GPIO %d (shift %d) -> input\n",
2139                   gpio_num, gpio_shift);
2140                /* set FLOAT */
2141                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142                break;
2143
2144        default:
2145                break;
2146        }
2147
2148        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150
2151        return 0;
2152}
2153
2154int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2155{
2156        u32 gpio_reg = 0;
2157        int rc = 0;
2158
2159        /* Any port swapping should be handled by caller. */
2160
2161        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162        /* read GPIO and mask except the float bits */
2163        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2167
2168        switch (mode) {
2169        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171                /* set CLR */
2172                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173                break;
2174
2175        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177                /* set SET */
2178                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179                break;
2180
2181        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183                /* set FLOAT */
2184                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185                break;
2186
2187        default:
2188                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189                rc = -EINVAL;
2190                break;
2191        }
2192
2193        if (rc == 0)
2194                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2195
2196        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2197
2198        return rc;
2199}
2200
2201int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2202{
2203        /* The GPIO should be swapped if swap register is set and active */
2204        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206        int gpio_shift = gpio_num +
2207                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208        u32 gpio_mask = (1 << gpio_shift);
2209        u32 gpio_reg;
2210
2211        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213                return -EINVAL;
2214        }
2215
2216        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217        /* read GPIO int */
2218        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2219
2220        switch (mode) {
2221        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222                DP(NETIF_MSG_LINK,
2223                   "Clear GPIO INT %d (shift %d) -> output low\n",
2224                   gpio_num, gpio_shift);
2225                /* clear SET and set CLR */
2226                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228                break;
2229
2230        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231                DP(NETIF_MSG_LINK,
2232                   "Set GPIO INT %d (shift %d) -> output high\n",
2233                   gpio_num, gpio_shift);
2234                /* clear CLR and set SET */
2235                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237                break;
2238
2239        default:
2240                break;
2241        }
2242
2243        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2245
2246        return 0;
2247}
2248
2249static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2250{
2251        u32 spio_reg;
2252
2253        /* Only 2 SPIOs are configurable */
2254        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256                return -EINVAL;
2257        }
2258
2259        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260        /* read SPIO and mask except the float bits */
2261        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2262
2263        switch (mode) {
2264        case MISC_SPIO_OUTPUT_LOW:
2265                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266                /* clear FLOAT and set CLR */
2267                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2269                break;
2270
2271        case MISC_SPIO_OUTPUT_HIGH:
2272                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273                /* clear FLOAT and set SET */
2274                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2276                break;
2277
2278        case MISC_SPIO_INPUT_HI_Z:
2279                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280                /* set FLOAT */
2281                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282                break;
2283
2284        default:
2285                break;
2286        }
2287
2288        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2290
2291        return 0;
2292}
2293
2294void bnx2x_calc_fc_adv(struct bnx2x *bp)
2295{
2296        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2297
2298        bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299                                           ADVERTISED_Pause);
2300        switch (bp->link_vars.ieee_fc &
2301                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304                                                  ADVERTISED_Pause);
2305                break;
2306
2307        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309                break;
2310
2311        default:
2312                break;
2313        }
2314}
2315
2316static void bnx2x_set_requested_fc(struct bnx2x *bp)
2317{
2318        /* Initialize link parameters structure variables
2319         * It is recommended to turn off RX FC for jumbo frames
2320         *  for better performance
2321         */
2322        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324        else
2325                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2326}
2327
2328static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2329{
2330        u32 pause_enabled = 0;
2331
2332        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334                        pause_enabled = 1;
2335
2336                REG_WR(bp, BAR_USTRORM_INTMEM +
2337                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338                       pause_enabled);
2339        }
2340
2341        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342           pause_enabled ? "enabled" : "disabled");
2343}
2344
2345int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2346{
2347        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2349
2350        if (!BP_NOMCP(bp)) {
2351                bnx2x_set_requested_fc(bp);
2352                bnx2x_acquire_phy_lock(bp);
2353
2354                if (load_mode == LOAD_DIAG) {
2355                        struct link_params *lp = &bp->link_params;
2356                        lp->loopback_mode = LOOPBACK_XGXS;
2357                        /* Prefer doing PHY loopback at highest speed */
2358                        if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359                                if (lp->speed_cap_mask[cfx_idx] &
2360                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361                                        lp->req_line_speed[cfx_idx] =
2362                                        SPEED_20000;
2363                                else if (lp->speed_cap_mask[cfx_idx] &
2364                                            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365                                                lp->req_line_speed[cfx_idx] =
2366                                                SPEED_10000;
2367                                else
2368                                        lp->req_line_speed[cfx_idx] =
2369                                        SPEED_1000;
2370                        }
2371                }
2372
2373                if (load_mode == LOAD_LOOPBACK_EXT) {
2374                        struct link_params *lp = &bp->link_params;
2375                        lp->loopback_mode = LOOPBACK_EXT;
2376                }
2377
2378                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2379
2380                bnx2x_release_phy_lock(bp);
2381
2382                bnx2x_init_dropless_fc(bp);
2383
2384                bnx2x_calc_fc_adv(bp);
2385
2386                if (bp->link_vars.link_up) {
2387                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388                        bnx2x_link_report(bp);
2389                }
2390                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392                return rc;
2393        }
2394        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395        return -EINVAL;
2396}
2397
2398void bnx2x_link_set(struct bnx2x *bp)
2399{
2400        if (!BP_NOMCP(bp)) {
2401                bnx2x_acquire_phy_lock(bp);
2402                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403                bnx2x_release_phy_lock(bp);
2404
2405                bnx2x_init_dropless_fc(bp);
2406
2407                bnx2x_calc_fc_adv(bp);
2408        } else
2409                BNX2X_ERR("Bootcode is missing - can not set link\n");
2410}
2411
2412static void bnx2x__link_reset(struct bnx2x *bp)
2413{
2414        if (!BP_NOMCP(bp)) {
2415                bnx2x_acquire_phy_lock(bp);
2416                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417                bnx2x_release_phy_lock(bp);
2418        } else
2419                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2420}
2421
2422void bnx2x_force_link_reset(struct bnx2x *bp)
2423{
2424        bnx2x_acquire_phy_lock(bp);
2425        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426        bnx2x_release_phy_lock(bp);
2427}
2428
2429u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2430{
2431        u8 rc = 0;
2432
2433        if (!BP_NOMCP(bp)) {
2434                bnx2x_acquire_phy_lock(bp);
2435                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436                                     is_serdes);
2437                bnx2x_release_phy_lock(bp);
2438        } else
2439                BNX2X_ERR("Bootcode is missing - can not test link\n");
2440
2441        return rc;
2442}
2443
2444/* Calculates the sum of vn_min_rates.
2445   It's needed for further normalizing of the min_rates.
2446   Returns:
2447     sum of vn_min_rates.
2448       or
2449     0 - if all the min_rates are 0.
2450     In the later case fairness algorithm should be deactivated.
2451     If not all min_rates are zero then those that are zeroes will be set to 1.
2452 */
2453static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454                                      struct cmng_init_input *input)
2455{
2456        int all_zero = 1;
2457        int vn;
2458
2459        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460                u32 vn_cfg = bp->mf_config[vn];
2461                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2463
2464                /* Skip hidden vns */
2465                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466                        vn_min_rate = 0;
2467                /* If min rate is zero - set it to 1 */
2468                else if (!vn_min_rate)
2469                        vn_min_rate = DEF_MIN_RATE;
2470                else
2471                        all_zero = 0;
2472
2473                input->vnic_min_rate[vn] = vn_min_rate;
2474        }
2475
2476        /* if ETS or all min rates are zeros - disable fairness */
2477        if (BNX2X_IS_ETS_ENABLED(bp)) {
2478                input->flags.cmng_enables &=
2479                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481        } else if (all_zero) {
2482                input->flags.cmng_enables &=
2483                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484                DP(NETIF_MSG_IFUP,
2485                   "All MIN values are zeroes fairness will be disabled\n");
2486        } else
2487                input->flags.cmng_enables |=
2488                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489}
2490
2491static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492                                    struct cmng_init_input *input)
2493{
2494        u16 vn_max_rate;
2495        u32 vn_cfg = bp->mf_config[vn];
2496
2497        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498                vn_max_rate = 0;
2499        else {
2500                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2501
2502                if (IS_MF_PERCENT_BW(bp)) {
2503                        /* maxCfg in percents of linkspeed */
2504                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505                } else /* SD modes */
2506                        /* maxCfg is absolute in 100Mb units */
2507                        vn_max_rate = maxCfg * 100;
2508        }
2509
2510        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2511
2512        input->vnic_max_rate[vn] = vn_max_rate;
2513}
2514
2515static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2516{
2517        if (CHIP_REV_IS_SLOW(bp))
2518                return CMNG_FNS_NONE;
2519        if (IS_MF(bp))
2520                return CMNG_FNS_MINMAX;
2521
2522        return CMNG_FNS_NONE;
2523}
2524
2525void bnx2x_read_mf_cfg(struct bnx2x *bp)
2526{
2527        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2528
2529        if (BP_NOMCP(bp))
2530                return; /* what should be the default value in this case */
2531
2532        /* For 2 port configuration the absolute function number formula
2533         * is:
2534         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2535         *
2536         *      and there are 4 functions per port
2537         *
2538         * For 4 port configuration it is
2539         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2540         *
2541         *      and there are 2 functions per port
2542         */
2543        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2545
2546                if (func >= E1H_FUNC_MAX)
2547                        break;
2548
2549                bp->mf_config[vn] =
2550                        MF_CFG_RD(bp, func_mf_config[func].config);
2551        }
2552        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554                bp->flags |= MF_FUNC_DIS;
2555        } else {
2556                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557                bp->flags &= ~MF_FUNC_DIS;
2558        }
2559}
2560
2561static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2562{
2563        struct cmng_init_input input;
2564        memset(&input, 0, sizeof(struct cmng_init_input));
2565
2566        input.port_rate = bp->link_vars.line_speed;
2567
2568        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569                int vn;
2570
2571                /* read mf conf from shmem */
2572                if (read_cfg)
2573                        bnx2x_read_mf_cfg(bp);
2574
2575                /* vn_weight_sum and enable fairness if not 0 */
2576                bnx2x_calc_vn_min(bp, &input);
2577
2578                /* calculate and set min-max rate for each vn */
2579                if (bp->port.pmf)
2580                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581                                bnx2x_calc_vn_max(bp, vn, &input);
2582
2583                /* always enable rate shaping and fairness */
2584                input.flags.cmng_enables |=
2585                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2586
2587                bnx2x_init_cmng(&input, &bp->cmng);
2588                return;
2589        }
2590
2591        /* rate shaping and fairness are disabled */
2592        DP(NETIF_MSG_IFUP,
2593           "rate shaping and fairness are disabled\n");
2594}
2595
2596static void storm_memset_cmng(struct bnx2x *bp,
2597                              struct cmng_init *cmng,
2598                              u8 port)
2599{
2600        int vn;
2601        size_t size = sizeof(struct cmng_struct_per_port);
2602
2603        u32 addr = BAR_XSTRORM_INTMEM +
2604                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2605
2606        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2607
2608        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609                int func = func_by_vn(bp, vn);
2610
2611                addr = BAR_XSTRORM_INTMEM +
2612                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613                size = sizeof(struct rate_shaping_vars_per_vn);
2614                __storm_memset_struct(bp, addr, size,
2615                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2616
2617                addr = BAR_XSTRORM_INTMEM +
2618                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619                size = sizeof(struct fairness_vars_per_vn);
2620                __storm_memset_struct(bp, addr, size,
2621                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2622        }
2623}
2624
2625/* init cmng mode in HW according to local configuration */
2626void bnx2x_set_local_cmng(struct bnx2x *bp)
2627{
2628        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2629
2630        if (cmng_fns != CMNG_FNS_NONE) {
2631                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633        } else {
2634                /* rate shaping and fairness are disabled */
2635                DP(NETIF_MSG_IFUP,
2636                   "single function mode without fairness\n");
2637        }
2638}
2639
2640/* This function is called upon link interrupt */
2641static void bnx2x_link_attn(struct bnx2x *bp)
2642{
2643        /* Make sure that we are synced with the current statistics */
2644        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2645
2646        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2647
2648        bnx2x_init_dropless_fc(bp);
2649
2650        if (bp->link_vars.link_up) {
2651
2652                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653                        struct host_port_stats *pstats;
2654
2655                        pstats = bnx2x_sp(bp, port_stats);
2656                        /* reset old mac stats */
2657                        memset(&(pstats->mac_stx[0]), 0,
2658                               sizeof(struct mac_stx));
2659                }
2660                if (bp->state == BNX2X_STATE_OPEN)
2661                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2662        }
2663
2664        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665                bnx2x_set_local_cmng(bp);
2666
2667        __bnx2x_link_report(bp);
2668
2669        if (IS_MF(bp))
2670                bnx2x_link_sync_notify(bp);
2671}
2672
2673void bnx2x__link_status_update(struct bnx2x *bp)
2674{
2675        if (bp->state != BNX2X_STATE_OPEN)
2676                return;
2677
2678        /* read updated dcb configuration */
2679        if (IS_PF(bp)) {
2680                bnx2x_dcbx_pmf_update(bp);
2681                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682                if (bp->link_vars.link_up)
2683                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684                else
2685                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686                        /* indicate link status */
2687                bnx2x_link_report(bp);
2688
2689        } else { /* VF */
2690                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691                                          SUPPORTED_10baseT_Full |
2692                                          SUPPORTED_100baseT_Half |
2693                                          SUPPORTED_100baseT_Full |
2694                                          SUPPORTED_1000baseT_Full |
2695                                          SUPPORTED_2500baseX_Full |
2696                                          SUPPORTED_10000baseT_Full |
2697                                          SUPPORTED_TP |
2698                                          SUPPORTED_FIBRE |
2699                                          SUPPORTED_Autoneg |
2700                                          SUPPORTED_Pause |
2701                                          SUPPORTED_Asym_Pause);
2702                bp->port.advertising[0] = bp->port.supported[0];
2703
2704                bp->link_params.bp = bp;
2705                bp->link_params.port = BP_PORT(bp);
2706                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708                bp->link_params.req_line_speed[0] = SPEED_10000;
2709                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712                bp->link_vars.line_speed = SPEED_10000;
2713                bp->link_vars.link_status =
2714                        (LINK_STATUS_LINK_UP |
2715                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716                bp->link_vars.link_up = 1;
2717                bp->link_vars.duplex = DUPLEX_FULL;
2718                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719                __bnx2x_link_report(bp);
2720
2721                bnx2x_sample_bulletin(bp);
2722
2723                /* if bulletin board did not have an update for link status
2724                 * __bnx2x_link_report will report current status
2725                 * but it will NOT duplicate report in case of already reported
2726                 * during sampling bulletin board.
2727                 */
2728                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2729        }
2730}
2731
2732static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733                                  u16 vlan_val, u8 allowed_prio)
2734{
2735        struct bnx2x_func_state_params func_params = {NULL};
2736        struct bnx2x_func_afex_update_params *f_update_params =
2737                &func_params.params.afex_update;
2738
2739        func_params.f_obj = &bp->func_obj;
2740        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2741
2742        /* no need to wait for RAMROD completion, so don't
2743         * set RAMROD_COMP_WAIT flag
2744         */
2745
2746        f_update_params->vif_id = vifid;
2747        f_update_params->afex_default_vlan = vlan_val;
2748        f_update_params->allowed_priorities = allowed_prio;
2749
2750        /* if ramrod can not be sent, response to MCP immediately */
2751        if (bnx2x_func_state_change(bp, &func_params) < 0)
2752                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2753
2754        return 0;
2755}
2756
2757static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758                                          u16 vif_index, u8 func_bit_map)
2759{
2760        struct bnx2x_func_state_params func_params = {NULL};
2761        struct bnx2x_func_afex_viflists_params *update_params =
2762                &func_params.params.afex_viflists;
2763        int rc;
2764        u32 drv_msg_code;
2765
2766        /* validate only LIST_SET and LIST_GET are received from switch */
2767        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769                          cmd_type);
2770
2771        func_params.f_obj = &bp->func_obj;
2772        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2773
2774        /* set parameters according to cmd_type */
2775        update_params->afex_vif_list_command = cmd_type;
2776        update_params->vif_list_index = vif_index;
2777        update_params->func_bit_map =
2778                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779        update_params->func_to_clear = 0;
2780        drv_msg_code =
2781                (cmd_type == VIF_LIST_RULE_GET) ?
2782                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2784
2785        /* if ramrod can not be sent, respond to MCP immediately for
2786         * SET and GET requests (other are not triggered from MCP)
2787         */
2788        rc = bnx2x_func_state_change(bp, &func_params);
2789        if (rc < 0)
2790                bnx2x_fw_command(bp, drv_msg_code, 0);
2791
2792        return 0;
2793}
2794
2795static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2796{
2797        struct afex_stats afex_stats;
2798        u32 func = BP_ABS_FUNC(bp);
2799        u32 mf_config;
2800        u16 vlan_val;
2801        u32 vlan_prio;
2802        u16 vif_id;
2803        u8 allowed_prio;
2804        u8 vlan_mode;
2805        u32 addr_to_write, vifid, addrs, stats_type, i;
2806
2807        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                DP(BNX2X_MSG_MCP,
2810                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2812        }
2813
2814        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817                DP(BNX2X_MSG_MCP,
2818                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819                   vifid, addrs);
2820                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821                                               addrs);
2822        }
2823
2824        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825                addr_to_write = SHMEM2_RD(bp,
2826                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827                stats_type = SHMEM2_RD(bp,
2828                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2829
2830                DP(BNX2X_MSG_MCP,
2831                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832                   addr_to_write);
2833
2834                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2835
2836                /* write response to scratchpad, for MCP */
2837                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2839                               *(((u32 *)(&afex_stats))+i));
2840
2841                /* send ack message to MCP */
2842                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2843        }
2844
2845        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847                bp->mf_config[BP_VN(bp)] = mf_config;
2848                DP(BNX2X_MSG_MCP,
2849                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850                   mf_config);
2851
2852                /* if VIF_SET is "enabled" */
2853                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854                        /* set rate limit directly to internal RAM */
2855                        struct cmng_init_input cmng_input;
2856                        struct rate_shaping_vars_per_vn m_rs_vn;
2857                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858                        u32 addr = BAR_XSTRORM_INTMEM +
2859                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2860
2861                        bp->mf_config[BP_VN(bp)] = mf_config;
2862
2863                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864                        m_rs_vn.vn_counter.rate =
2865                                cmng_input.vnic_max_rate[BP_VN(bp)];
2866                        m_rs_vn.vn_counter.quota =
2867                                (m_rs_vn.vn_counter.rate *
2868                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2869
2870                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2871
2872                        /* read relevant values from mf_cfg struct in shmem */
2873                        vif_id =
2874                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877                        vlan_val =
2878                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881                        vlan_prio = (mf_config &
2882                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885                        vlan_mode =
2886                                (MF_CFG_RD(bp,
2887                                           func_mf_config[func].afex_config) &
2888                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890                        allowed_prio =
2891                                (MF_CFG_RD(bp,
2892                                           func_mf_config[func].afex_config) &
2893                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2895
2896                        /* send ramrod to FW, return in case of failure */
2897                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898                                                   allowed_prio))
2899                                return;
2900
2901                        bp->afex_def_vlan_tag = vlan_val;
2902                        bp->afex_vlan_mode = vlan_mode;
2903                } else {
2904                        /* notify link down because BP->flags is disabled */
2905                        bnx2x_link_report(bp);
2906
2907                        /* send INVALID VIF ramrod to FW */
2908                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2909
2910                        /* Reset the default afex VLAN */
2911                        bp->afex_def_vlan_tag = -1;
2912                }
2913        }
2914}
2915
2916static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2917{
2918        struct bnx2x_func_switch_update_params *switch_update_params;
2919        struct bnx2x_func_state_params func_params;
2920
2921        memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922        switch_update_params = &func_params.params.switch_update;
2923        func_params.f_obj = &bp->func_obj;
2924        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2925
2926        /* Prepare parameters for function state transitions */
2927        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2928        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2929
2930        if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2931                int func = BP_ABS_FUNC(bp);
2932                u32 val;
2933
2934                /* Re-learn the S-tag from shmem */
2935                val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2936                                FUNC_MF_CFG_E1HOV_TAG_MASK;
2937                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2938                        bp->mf_ov = val;
2939                } else {
2940                        BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2941                        goto fail;
2942                }
2943
2944                /* Configure new S-tag in LLH */
2945                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2946                       bp->mf_ov);
2947
2948                /* Send Ramrod to update FW of change */
2949                __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2950                          &switch_update_params->changes);
2951                switch_update_params->vlan = bp->mf_ov;
2952
2953                if (bnx2x_func_state_change(bp, &func_params) < 0) {
2954                        BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2955                                  bp->mf_ov);
2956                        goto fail;
2957                } else {
2958                        DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2959                           bp->mf_ov);
2960                }
2961        } else {
2962                goto fail;
2963        }
2964
2965        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2966        return;
2967fail:
2968        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2969}
2970
2971static void bnx2x_pmf_update(struct bnx2x *bp)
2972{
2973        int port = BP_PORT(bp);
2974        u32 val;
2975
2976        bp->port.pmf = 1;
2977        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2978
2979        /*
2980         * We need the mb() to ensure the ordering between the writing to
2981         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2982         */
2983        smp_mb();
2984
2985        /* queue a periodic task */
2986        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2987
2988        bnx2x_dcbx_pmf_update(bp);
2989
2990        /* enable nig attention */
2991        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2992        if (bp->common.int_block == INT_BLOCK_HC) {
2993                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2994                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2995        } else if (!CHIP_IS_E1x(bp)) {
2996                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2997                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2998        }
2999
3000        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3001}
3002
3003/* end of Link */
3004
3005/* slow path */
3006
3007/*
3008 * General service functions
3009 */
3010
3011/* send the MCP a request, block until there is a reply */
3012u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3013{
3014        int mb_idx = BP_FW_MB_IDX(bp);
3015        u32 seq;
3016        u32 rc = 0;
3017        u32 cnt = 1;
3018        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3019
3020        mutex_lock(&bp->fw_mb_mutex);
3021        seq = ++bp->fw_seq;
3022        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3023        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3024
3025        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3026                        (command | seq), param);
3027
3028        do {
3029                /* let the FW do it's magic ... */
3030                msleep(delay);
3031
3032                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3033
3034                /* Give the FW up to 5 second (500*10ms) */
3035        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3036
3037        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3038           cnt*delay, rc, seq);
3039
3040        /* is this a reply to our command? */
3041        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3042                rc &= FW_MSG_CODE_MASK;
3043        else {
3044                /* FW BUG! */
3045                BNX2X_ERR("FW failed to respond!\n");
3046                bnx2x_fw_dump(bp);
3047                rc = 0;
3048        }
3049        mutex_unlock(&bp->fw_mb_mutex);
3050
3051        return rc;
3052}
3053
3054static void storm_memset_func_cfg(struct bnx2x *bp,
3055                                 struct tstorm_eth_function_common_config *tcfg,
3056                                 u16 abs_fid)
3057{
3058        size_t size = sizeof(struct tstorm_eth_function_common_config);
3059
3060        u32 addr = BAR_TSTRORM_INTMEM +
3061                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3062
3063        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3064}
3065
3066void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3067{
3068        if (CHIP_IS_E1x(bp)) {
3069                struct tstorm_eth_function_common_config tcfg = {0};
3070
3071                storm_memset_func_cfg(bp, &tcfg, p->func_id);
3072        }
3073
3074        /* Enable the function in the FW */
3075        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3076        storm_memset_func_en(bp, p->func_id, 1);
3077
3078        /* spq */
3079        if (p->spq_active) {
3080                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3081                REG_WR(bp, XSEM_REG_FAST_MEMORY +
3082                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3083        }
3084}
3085
3086/**
3087 * bnx2x_get_common_flags - Return common flags
3088 *
3089 * @bp:         device handle
3090 * @fp:         queue handle
3091 * @zero_stats: TRUE if statistics zeroing is needed
3092 *
3093 * Return the flags that are common for the Tx-only and not normal connections.
3094 */
3095static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3096                                            struct bnx2x_fastpath *fp,
3097                                            bool zero_stats)
3098{
3099        unsigned long flags = 0;
3100
3101        /* PF driver will always initialize the Queue to an ACTIVE state */
3102        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3103
3104        /* tx only connections collect statistics (on the same index as the
3105         * parent connection). The statistics are zeroed when the parent
3106         * connection is initialized.
3107         */
3108
3109        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3110        if (zero_stats)
3111                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3112
3113        if (bp->flags & TX_SWITCHING)
3114                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3115
3116        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3117        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3118
3119#ifdef BNX2X_STOP_ON_ERROR
3120        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3121#endif
3122
3123        return flags;
3124}
3125
3126static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3127                                       struct bnx2x_fastpath *fp,
3128                                       bool leading)
3129{
3130        unsigned long flags = 0;
3131
3132        /* calculate other queue flags */
3133        if (IS_MF_SD(bp))
3134                __set_bit(BNX2X_Q_FLG_OV, &flags);
3135
3136        if (IS_FCOE_FP(fp)) {
3137                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3138                /* For FCoE - force usage of default priority (for afex) */
3139                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3140        }
3141
3142        if (fp->mode != TPA_MODE_DISABLED) {
3143                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3144                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3145                if (fp->mode == TPA_MODE_GRO)
3146                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3147        }
3148
3149        if (leading) {
3150                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3151                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3152        }
3153
3154        /* Always set HW VLAN stripping */
3155        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3156
3157        /* configure silent vlan removal */
3158        if (IS_MF_AFEX(bp))
3159                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3160
3161        return flags | bnx2x_get_common_flags(bp, fp, true);
3162}
3163
3164static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3165        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3166        u8 cos)
3167{
3168        gen_init->stat_id = bnx2x_stats_id(fp);
3169        gen_init->spcl_id = fp->cl_id;
3170
3171        /* Always use mini-jumbo MTU for FCoE L2 ring */
3172        if (IS_FCOE_FP(fp))
3173                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3174        else
3175                gen_init->mtu = bp->dev->mtu;
3176
3177        gen_init->cos = cos;
3178
3179        gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3180}
3181
3182static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3183        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3184        struct bnx2x_rxq_setup_params *rxq_init)
3185{
3186        u8 max_sge = 0;
3187        u16 sge_sz = 0;
3188        u16 tpa_agg_size = 0;
3189
3190        if (fp->mode != TPA_MODE_DISABLED) {
3191                pause->sge_th_lo = SGE_TH_LO(bp);
3192                pause->sge_th_hi = SGE_TH_HI(bp);
3193
3194                /* validate SGE ring has enough to cross high threshold */
3195                WARN_ON(bp->dropless_fc &&
3196                                pause->sge_th_hi + FW_PREFETCH_CNT >
3197                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3198
3199                tpa_agg_size = TPA_AGG_SIZE;
3200                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3201                        SGE_PAGE_SHIFT;
3202                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3203                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3204                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3205        }
3206
3207        /* pause - not for e1 */
3208        if (!CHIP_IS_E1(bp)) {
3209                pause->bd_th_lo = BD_TH_LO(bp);
3210                pause->bd_th_hi = BD_TH_HI(bp);
3211
3212                pause->rcq_th_lo = RCQ_TH_LO(bp);
3213                pause->rcq_th_hi = RCQ_TH_HI(bp);
3214                /*
3215                 * validate that rings have enough entries to cross
3216                 * high thresholds
3217                 */
3218                WARN_ON(bp->dropless_fc &&
3219                                pause->bd_th_hi + FW_PREFETCH_CNT >
3220                                bp->rx_ring_size);
3221                WARN_ON(bp->dropless_fc &&
3222                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3223                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3224
3225                pause->pri_map = 1;
3226        }
3227
3228        /* rxq setup */
3229        rxq_init->dscr_map = fp->rx_desc_mapping;
3230        rxq_init->sge_map = fp->rx_sge_mapping;
3231        rxq_init->rcq_map = fp->rx_comp_mapping;
3232        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3233
3234        /* This should be a maximum number of data bytes that may be
3235         * placed on the BD (not including paddings).
3236         */
3237        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3238                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3239
3240        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3241        rxq_init->tpa_agg_sz = tpa_agg_size;
3242        rxq_init->sge_buf_sz = sge_sz;
3243        rxq_init->max_sges_pkt = max_sge;
3244        rxq_init->rss_engine_id = BP_FUNC(bp);
3245        rxq_init->mcast_engine_id = BP_FUNC(bp);
3246
3247        /* Maximum number or simultaneous TPA aggregation for this Queue.
3248         *
3249         * For PF Clients it should be the maximum available number.
3250         * VF driver(s) may want to define it to a smaller value.
3251         */
3252        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3253
3254        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3255        rxq_init->fw_sb_id = fp->fw_sb_id;
3256
3257        if (IS_FCOE_FP(fp))
3258                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3259        else
3260                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3261        /* configure silent vlan removal
3262         * if multi function mode is afex, then mask default vlan
3263         */
3264        if (IS_MF_AFEX(bp)) {
3265                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3266                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3267        }
3268}
3269
3270static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3271        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3272        u8 cos)
3273{
3274        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3275        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3276        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3277        txq_init->fw_sb_id = fp->fw_sb_id;
3278
3279        /*
3280         * set the tss leading client id for TX classification ==
3281         * leading RSS client id
3282         */
3283        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3284
3285        if (IS_FCOE_FP(fp)) {
3286                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3287                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3288        }
3289}
3290
3291static void bnx2x_pf_init(struct bnx2x *bp)
3292{
3293        struct bnx2x_func_init_params func_init = {0};
3294        struct event_ring_data eq_data = { {0} };
3295
3296        if (!CHIP_IS_E1x(bp)) {
3297                /* reset IGU PF statistics: MSIX + ATTN */
3298                /* PF */
3299                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3300                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3301                           (CHIP_MODE_IS_4_PORT(bp) ?
3302                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303                /* ATTN */
3304                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3305                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3306                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3307                           (CHIP_MODE_IS_4_PORT(bp) ?
3308                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3309        }
3310
3311        func_init.spq_active = true;
3312        func_init.pf_id = BP_FUNC(bp);
3313        func_init.func_id = BP_FUNC(bp);
3314        func_init.spq_map = bp->spq_mapping;
3315        func_init.spq_prod = bp->spq_prod_idx;
3316
3317        bnx2x_func_init(bp, &func_init);
3318
3319        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3320
3321        /*
3322         * Congestion management values depend on the link rate
3323         * There is no active link so initial link rate is set to 10 Gbps.
3324         * When the link comes up The congestion management values are
3325         * re-calculated according to the actual link rate.
3326         */
3327        bp->link_vars.line_speed = SPEED_10000;
3328        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3329
3330        /* Only the PMF sets the HW */
3331        if (bp->port.pmf)
3332                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3333
3334        /* init Event Queue - PCI bus guarantees correct endianity*/
3335        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3336        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3337        eq_data.producer = bp->eq_prod;
3338        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3339        eq_data.sb_id = DEF_SB_ID;
3340        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3341}
3342
3343static void bnx2x_e1h_disable(struct bnx2x *bp)
3344{
3345        int port = BP_PORT(bp);
3346
3347        bnx2x_tx_disable(bp);
3348
3349        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3350}
3351
3352static void bnx2x_e1h_enable(struct bnx2x *bp)
3353{
3354        int port = BP_PORT(bp);
3355
3356        if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3357                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3358
3359        /* Tx queue should be only re-enabled */
3360        netif_tx_wake_all_queues(bp->dev);
3361
3362        /*
3363         * Should not call netif_carrier_on since it will be called if the link
3364         * is up when checking for link state
3365         */
3366}
3367
3368#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3369
3370static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3371{
3372        struct eth_stats_info *ether_stat =
3373                &bp->slowpath->drv_info_to_mcp.ether_stat;
3374        struct bnx2x_vlan_mac_obj *mac_obj =
3375                &bp->sp_objs->mac_obj;
3376        int i;
3377
3378        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3379                ETH_STAT_INFO_VERSION_LEN);
3380
3381        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3382         * mac_local field in ether_stat struct. The base address is offset by 2
3383         * bytes to account for the field being 8 bytes but a mac address is
3384         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3385         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3386         * allocated by the ether_stat struct, so the macs will land in their
3387         * proper positions.
3388         */
3389        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3390                memset(ether_stat->mac_local + i, 0,
3391                       sizeof(ether_stat->mac_local[0]));
3392        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3393                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3394                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3395                                ETH_ALEN);
3396        ether_stat->mtu_size = bp->dev->mtu;
3397        if (bp->dev->features & NETIF_F_RXCSUM)
3398                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3399        if (bp->dev->features & NETIF_F_TSO)
3400                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3401        ether_stat->feature_flags |= bp->common.boot_mode;
3402
3403        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3404
3405        ether_stat->txq_size = bp->tx_ring_size;
3406        ether_stat->rxq_size = bp->rx_ring_size;
3407
3408#ifdef CONFIG_BNX2X_SRIOV
3409        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3410#endif
3411}
3412
3413static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3414{
3415        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3416        struct fcoe_stats_info *fcoe_stat =
3417                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3418
3419        if (!CNIC_LOADED(bp))
3420                return;
3421
3422        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3423
3424        fcoe_stat->qos_priority =
3425                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3426
3427        /* insert FCoE stats from ramrod response */
3428        if (!NO_FCOE(bp)) {
3429                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3430                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431                        tstorm_queue_statistics;
3432
3433                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3434                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3435                        xstorm_queue_statistics;
3436
3437                struct fcoe_statistics_params *fw_fcoe_stat =
3438                        &bp->fw_stats_data->fcoe;
3439
3440                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3441                          fcoe_stat->rx_bytes_lo,
3442                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3443
3444                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3446                          fcoe_stat->rx_bytes_lo,
3447                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3448
3449                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3451                          fcoe_stat->rx_bytes_lo,
3452                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3453
3454                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3456                          fcoe_stat->rx_bytes_lo,
3457                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3458
3459                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460                          fcoe_stat->rx_frames_lo,
3461                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3462
3463                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464                          fcoe_stat->rx_frames_lo,
3465                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3466
3467                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468                          fcoe_stat->rx_frames_lo,
3469                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3470
3471                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472                          fcoe_stat->rx_frames_lo,
3473                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3474
3475                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3476                          fcoe_stat->tx_bytes_lo,
3477                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3478
3479                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3481                          fcoe_stat->tx_bytes_lo,
3482                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3483
3484                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3486                          fcoe_stat->tx_bytes_lo,
3487                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3488
3489                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3491                          fcoe_stat->tx_bytes_lo,
3492                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3493
3494                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495                          fcoe_stat->tx_frames_lo,
3496                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3497
3498                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499                          fcoe_stat->tx_frames_lo,
3500                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3501
3502                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503                          fcoe_stat->tx_frames_lo,
3504                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3505
3506                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507                          fcoe_stat->tx_frames_lo,
3508                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3509        }
3510
3511        /* ask L5 driver to add data to the struct */
3512        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3513}
3514
3515static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3516{
3517        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3518        struct iscsi_stats_info *iscsi_stat =
3519                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3520
3521        if (!CNIC_LOADED(bp))
3522                return;
3523
3524        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3525               ETH_ALEN);
3526
3527        iscsi_stat->qos_priority =
3528                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3529
3530        /* ask L5 driver to add data to the struct */
3531        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3532}
3533
3534/* called due to MCP event (on pmf):
3535 *      reread new bandwidth configuration
3536 *      configure FW
3537 *      notify others function about the change
3538 */
3539static void bnx2x_config_mf_bw(struct bnx2x *bp)
3540{
3541        /* Workaround for MFW bug.
3542         * MFW is not supposed to generate BW attention in
3543         * single function mode.
3544         */
3545        if (!IS_MF(bp)) {
3546                DP(BNX2X_MSG_MCP,
3547                   "Ignoring MF BW config in single function mode\n");
3548                return;
3549        }
3550
3551        if (bp->link_vars.link_up) {
3552                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3553                bnx2x_link_sync_notify(bp);
3554        }
3555        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3556}
3557
3558static void bnx2x_set_mf_bw(struct bnx2x *bp)
3559{
3560        bnx2x_config_mf_bw(bp);
3561        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3562}
3563
3564static void bnx2x_handle_eee_event(struct bnx2x *bp)
3565{
3566        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3567        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3568}
3569
3570#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3571#define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3572
3573static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3574{
3575        enum drv_info_opcode op_code;
3576        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3577        bool release = false;
3578        int wait;
3579
3580        /* if drv_info version supported by MFW doesn't match - send NACK */
3581        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3582                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3583                return;
3584        }
3585
3586        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3587                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3588
3589        /* Must prevent other flows from accessing drv_info_to_mcp */
3590        mutex_lock(&bp->drv_info_mutex);
3591
3592        memset(&bp->slowpath->drv_info_to_mcp, 0,
3593               sizeof(union drv_info_to_mcp));
3594
3595        switch (op_code) {
3596        case ETH_STATS_OPCODE:
3597                bnx2x_drv_info_ether_stat(bp);
3598                break;
3599        case FCOE_STATS_OPCODE:
3600                bnx2x_drv_info_fcoe_stat(bp);
3601                break;
3602        case ISCSI_STATS_OPCODE:
3603                bnx2x_drv_info_iscsi_stat(bp);
3604                break;
3605        default:
3606                /* if op code isn't supported - send NACK */
3607                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3608                goto out;
3609        }
3610
3611        /* if we got drv_info attn from MFW then these fields are defined in
3612         * shmem2 for sure
3613         */
3614        SHMEM2_WR(bp, drv_info_host_addr_lo,
3615                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3616        SHMEM2_WR(bp, drv_info_host_addr_hi,
3617                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3618
3619        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3620
3621        /* Since possible management wants both this and get_driver_version
3622         * need to wait until management notifies us it finished utilizing
3623         * the buffer.
3624         */
3625        if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3626                DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3627        } else if (!bp->drv_info_mng_owner) {
3628                u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3629
3630                for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3631                        u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3632
3633                        /* Management is done; need to clear indication */
3634                        if (indication & bit) {
3635                                SHMEM2_WR(bp, mfw_drv_indication,
3636                                          indication & ~bit);
3637                                release = true;
3638                                break;
3639                        }
3640
3641                        msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3642                }
3643        }
3644        if (!release) {
3645                DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3646                bp->drv_info_mng_owner = true;
3647        }
3648
3649out:
3650        mutex_unlock(&bp->drv_info_mutex);
3651}
3652
3653static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3654{
3655        u8 vals[4];
3656        int i = 0;
3657
3658        if (bnx2x_format) {
3659                i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3660                           &vals[0], &vals[1], &vals[2], &vals[3]);
3661                if (i > 0)
3662                        vals[0] -= '0';
3663        } else {
3664                i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3665                           &vals[0], &vals[1], &vals[2], &vals[3]);
3666        }
3667
3668        while (i < 4)
3669                vals[i++] = 0;
3670
3671        return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3672}
3673
3674void bnx2x_update_mng_version(struct bnx2x *bp)
3675{
3676        u32 iscsiver = DRV_VER_NOT_LOADED;
3677        u32 fcoever = DRV_VER_NOT_LOADED;
3678        u32 ethver = DRV_VER_NOT_LOADED;
3679        int idx = BP_FW_MB_IDX(bp);
3680        u8 *version;
3681
3682        if (!SHMEM2_HAS(bp, func_os_drv_ver))
3683                return;
3684
3685        mutex_lock(&bp->drv_info_mutex);
3686        /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3687        if (bp->drv_info_mng_owner)
3688                goto out;
3689
3690        if (bp->state != BNX2X_STATE_OPEN)
3691                goto out;
3692
3693        /* Parse ethernet driver version */
3694        ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3695        if (!CNIC_LOADED(bp))
3696                goto out;
3697
3698        /* Try getting storage driver version via cnic */
3699        memset(&bp->slowpath->drv_info_to_mcp, 0,
3700               sizeof(union drv_info_to_mcp));
3701        bnx2x_drv_info_iscsi_stat(bp);
3702        version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3703        iscsiver = bnx2x_update_mng_version_utility(version, false);
3704
3705        memset(&bp->slowpath->drv_info_to_mcp, 0,
3706               sizeof(union drv_info_to_mcp));
3707        bnx2x_drv_info_fcoe_stat(bp);
3708        version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3709        fcoever = bnx2x_update_mng_version_utility(version, false);
3710
3711out:
3712        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3713        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3714        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3715
3716        mutex_unlock(&bp->drv_info_mutex);
3717
3718        DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3719           ethver, iscsiver, fcoever);
3720}
3721
3722void bnx2x_update_mfw_dump(struct bnx2x *bp)
3723{
3724        u32 drv_ver;
3725        u32 valid_dump;
3726
3727        if (!SHMEM2_HAS(bp, drv_info))
3728                return;
3729
3730        /* Update Driver load time, possibly broken in y2038 */
3731        SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3732
3733        drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3734        SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3735
3736        SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3737
3738        /* Check & notify On-Chip dump. */
3739        valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3740
3741        if (valid_dump & FIRST_DUMP_VALID)
3742                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3743
3744        if (valid_dump & SECOND_DUMP_VALID)
3745                DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3746}
3747
3748static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3749{
3750        u32 cmd_ok, cmd_fail;
3751
3752        /* sanity */
3753        if (event & DRV_STATUS_DCC_EVENT_MASK &&
3754            event & DRV_STATUS_OEM_EVENT_MASK) {
3755                BNX2X_ERR("Received simultaneous events %08x\n", event);
3756                return;
3757        }
3758
3759        if (event & DRV_STATUS_DCC_EVENT_MASK) {
3760                cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3761                cmd_ok = DRV_MSG_CODE_DCC_OK;
3762        } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3763                cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3764                cmd_ok = DRV_MSG_CODE_OEM_OK;
3765        }
3766
3767        DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3768
3769        if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770                     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3771                /* This is the only place besides the function initialization
3772                 * where the bp->flags can change so it is done without any
3773                 * locks
3774                 */
3775                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3776                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3777                        bp->flags |= MF_FUNC_DIS;
3778
3779                        bnx2x_e1h_disable(bp);
3780                } else {
3781                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3782                        bp->flags &= ~MF_FUNC_DIS;
3783
3784                        bnx2x_e1h_enable(bp);
3785                }
3786                event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3787                           DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3788        }
3789
3790        if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3791                     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3792                bnx2x_config_mf_bw(bp);
3793                event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3794                           DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3795        }
3796
3797        /* Report results to MCP */
3798        if (event)
3799                bnx2x_fw_command(bp, cmd_fail, 0);
3800        else
3801                bnx2x_fw_command(bp, cmd_ok, 0);
3802}
3803
3804/* must be called under the spq lock */
3805static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3806{
3807        struct eth_spe *next_spe = bp->spq_prod_bd;
3808
3809        if (bp->spq_prod_bd == bp->spq_last_bd) {
3810                bp->spq_prod_bd = bp->spq;
3811                bp->spq_prod_idx = 0;
3812                DP(BNX2X_MSG_SP, "end of spq\n");
3813        } else {
3814                bp->spq_prod_bd++;
3815                bp->spq_prod_idx++;
3816        }
3817        return next_spe;
3818}
3819
3820/* must be called under the spq lock */
3821static void bnx2x_sp_prod_update(struct bnx2x *bp)
3822{
3823        int func = BP_FUNC(bp);
3824
3825        /*
3826         * Make sure that BD data is updated before writing the producer:
3827         * BD data is written to the memory, the producer is read from the
3828         * memory, thus we need a full memory barrier to ensure the ordering.
3829         */
3830        mb();
3831
3832        REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3833                         bp->spq_prod_idx);
3834}
3835
3836/**
3837 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3838 *
3839 * @cmd:        command to check
3840 * @cmd_type:   command type
3841 */
3842static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3843{
3844        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3845            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3846            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3847            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3848            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3849            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3850            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3851                return true;
3852        else
3853                return false;
3854}
3855
3856/**
3857 * bnx2x_sp_post - place a single command on an SP ring
3858 *
3859 * @bp:         driver handle
3860 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3861 * @cid:        SW CID the command is related to
3862 * @data_hi:    command private data address (high 32 bits)
3863 * @data_lo:    command private data address (low 32 bits)
3864 * @cmd_type:   command type (e.g. NONE, ETH)
3865 *
3866 * SP data is handled as if it's always an address pair, thus data fields are
3867 * not swapped to little endian in upper functions. Instead this function swaps
3868 * data as if it's two u32 fields.
3869 */
3870int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3871                  u32 data_hi, u32 data_lo, int cmd_type)
3872{
3873        struct eth_spe *spe;
3874        u16 type;
3875        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3876
3877#ifdef BNX2X_STOP_ON_ERROR
3878        if (unlikely(bp->panic)) {
3879                BNX2X_ERR("Can't post SP when there is panic\n");
3880                return -EIO;
3881        }
3882#endif
3883
3884        spin_lock_bh(&bp->spq_lock);
3885
3886        if (common) {
3887                if (!atomic_read(&bp->eq_spq_left)) {
3888                        BNX2X_ERR("BUG! EQ ring full!\n");
3889                        spin_unlock_bh(&bp->spq_lock);
3890                        bnx2x_panic();
3891                        return -EBUSY;
3892                }
3893        } else if (!atomic_read(&bp->cq_spq_left)) {
3894                        BNX2X_ERR("BUG! SPQ ring full!\n");
3895                        spin_unlock_bh(&bp->spq_lock);
3896                        bnx2x_panic();
3897                        return -EBUSY;
3898        }
3899
3900        spe = bnx2x_sp_get_next(bp);
3901
3902        /* CID needs port number to be encoded int it */
3903        spe->hdr.conn_and_cmd_data =
3904                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3905                                    HW_CID(bp, cid));
3906
3907        /* In some cases, type may already contain the func-id
3908         * mainly in SRIOV related use cases, so we add it here only
3909         * if it's not already set.
3910         */
3911        if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3912                type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3913                        SPE_HDR_CONN_TYPE;
3914                type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3915                         SPE_HDR_FUNCTION_ID);
3916        } else {
3917                type = cmd_type;
3918        }
3919
3920        spe->hdr.type = cpu_to_le16(type);
3921
3922        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3923        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3924
3925        /*
3926         * It's ok if the actual decrement is issued towards the memory
3927         * somewhere between the spin_lock and spin_unlock. Thus no
3928         * more explicit memory barrier is needed.
3929         */
3930        if (common)
3931                atomic_dec(&bp->eq_spq_left);
3932        else
3933                atomic_dec(&bp->cq_spq_left);
3934
3935        DP(BNX2X_MSG_SP,
3936           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3937           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3938           (u32)(U64_LO(bp->spq_mapping) +
3939           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3940           HW_CID(bp, cid), data_hi, data_lo, type,
3941           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3942
3943        bnx2x_sp_prod_update(bp);
3944        spin_unlock_bh(&bp->spq_lock);
3945        return 0;
3946}
3947
3948/* acquire split MCP access lock register */
3949static int bnx2x_acquire_alr(struct bnx2x *bp)
3950{
3951        u32 j, val;
3952        int rc = 0;
3953
3954        might_sleep();
3955        for (j = 0; j < 1000; j++) {
3956                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3957                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3958                if (val & MCPR_ACCESS_LOCK_LOCK)
3959                        break;
3960
3961                usleep_range(5000, 10000);
3962        }
3963        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3964                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3965                rc = -EBUSY;
3966        }
3967
3968        return rc;
3969}
3970
3971/* release split MCP access lock register */
3972static void bnx2x_release_alr(struct bnx2x *bp)
3973{
3974        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3975}
3976
3977#define BNX2X_DEF_SB_ATT_IDX    0x0001
3978#define BNX2X_DEF_SB_IDX        0x0002
3979
3980static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3981{
3982        struct host_sp_status_block *def_sb = bp->def_status_blk;
3983        u16 rc = 0;
3984
3985        barrier(); /* status block is written to by the chip */
3986        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3987                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3988                rc |= BNX2X_DEF_SB_ATT_IDX;
3989        }
3990
3991        if (bp->def_idx != def_sb->sp_sb.running_index) {
3992                bp->def_idx = def_sb->sp_sb.running_index;
3993                rc |= BNX2X_DEF_SB_IDX;
3994        }
3995
3996        /* Do not reorder: indices reading should complete before handling */
3997        barrier();
3998        return rc;
3999}
4000
4001/*
4002 * slow path service functions
4003 */
4004
4005static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4006{
4007        int port = BP_PORT(bp);
4008        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4009                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
4010        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4011                                       NIG_REG_MASK_INTERRUPT_PORT0;
4012        u32 aeu_mask;
4013        u32 nig_mask = 0;
4014        u32 reg_addr;
4015
4016        if (bp->attn_state & asserted)
4017                BNX2X_ERR("IGU ERROR\n");
4018
4019        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4020        aeu_mask = REG_RD(bp, aeu_addr);
4021
4022        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4023           aeu_mask, asserted);
4024        aeu_mask &= ~(asserted & 0x3ff);
4025        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4026
4027        REG_WR(bp, aeu_addr, aeu_mask);
4028        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029
4030        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4031        bp->attn_state |= asserted;
4032        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4033
4034        if (asserted & ATTN_HARD_WIRED_MASK) {
4035                if (asserted & ATTN_NIG_FOR_FUNC) {
4036
4037                        bnx2x_acquire_phy_lock(bp);
4038
4039                        /* save nig interrupt mask */
4040                        nig_mask = REG_RD(bp, nig_int_mask_addr);
4041
4042                        /* If nig_mask is not set, no need to call the update
4043                         * function.
4044                         */
4045                        if (nig_mask) {
4046                                REG_WR(bp, nig_int_mask_addr, 0);
4047
4048                                bnx2x_link_attn(bp);
4049                        }
4050
4051                        /* handle unicore attn? */
4052                }
4053                if (asserted & ATTN_SW_TIMER_4_FUNC)
4054                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4055
4056                if (asserted & GPIO_2_FUNC)
4057                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4058
4059                if (asserted & GPIO_3_FUNC)
4060                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4061
4062                if (asserted & GPIO_4_FUNC)
4063                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4064
4065                if (port == 0) {
4066                        if (asserted & ATTN_GENERAL_ATTN_1) {
4067                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4068                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4069                        }
4070                        if (asserted & ATTN_GENERAL_ATTN_2) {
4071                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4072                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4073                        }
4074                        if (asserted & ATTN_GENERAL_ATTN_3) {
4075                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4076                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4077                        }
4078                } else {
4079                        if (asserted & ATTN_GENERAL_ATTN_4) {
4080                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4081                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4082                        }
4083                        if (asserted & ATTN_GENERAL_ATTN_5) {
4084                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4085                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4086                        }
4087                        if (asserted & ATTN_GENERAL_ATTN_6) {
4088                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4089                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4090                        }
4091                }
4092
4093        } /* if hardwired */
4094
4095        if (bp->common.int_block == INT_BLOCK_HC)
4096                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4097                            COMMAND_REG_ATTN_BITS_SET);
4098        else
4099                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4100
4101        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4102           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4103        REG_WR(bp, reg_addr, asserted);
4104
4105        /* now set back the mask */
4106        if (asserted & ATTN_NIG_FOR_FUNC) {
4107                /* Verify that IGU ack through BAR was written before restoring
4108                 * NIG mask. This loop should exit after 2-3 iterations max.
4109                 */
4110                if (bp->common.int_block != INT_BLOCK_HC) {
4111                        u32 cnt = 0, igu_acked;
4112                        do {
4113                                igu_acked = REG_RD(bp,
4114                                                   IGU_REG_ATTENTION_ACK_BITS);
4115                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4116                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
4117                        if (!igu_acked)
4118                                DP(NETIF_MSG_HW,
4119                                   "Failed to verify IGU ack on time\n");
4120                        barrier();
4121                }
4122                REG_WR(bp, nig_int_mask_addr, nig_mask);
4123                bnx2x_release_phy_lock(bp);
4124        }
4125}
4126
4127static void bnx2x_fan_failure(struct bnx2x *bp)
4128{
4129        int port = BP_PORT(bp);
4130        u32 ext_phy_config;
4131        /* mark the failure */
4132        ext_phy_config =
4133                SHMEM_RD(bp,
4134                         dev_info.port_hw_config[port].external_phy_config);
4135
4136        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4137        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4138        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4139                 ext_phy_config);
4140
4141        /* log the failure */
4142        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4143                            "Please contact OEM Support for assistance\n");
4144
4145        /* Schedule device reset (unload)
4146         * This is due to some boards consuming sufficient power when driver is
4147         * up to overheat if fan fails.
4148         */
4149        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4150}
4151
4152static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4153{
4154        int port = BP_PORT(bp);
4155        int reg_offset;
4156        u32 val;
4157
4158        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4159                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4160
4161        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4162
4163                val = REG_RD(bp, reg_offset);
4164                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4165                REG_WR(bp, reg_offset, val);
4166
4167                BNX2X_ERR("SPIO5 hw attention\n");
4168
4169                /* Fan failure attention */
4170                bnx2x_hw_reset_phy(&bp->link_params);
4171                bnx2x_fan_failure(bp);
4172        }
4173
4174        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4175                bnx2x_acquire_phy_lock(bp);
4176                bnx2x_handle_module_detect_int(&bp->link_params);
4177                bnx2x_release_phy_lock(bp);
4178        }
4179
4180        if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4181
4182                val = REG_RD(bp, reg_offset);
4183                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4184                REG_WR(bp, reg_offset, val);
4185
4186                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4187                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4188                bnx2x_panic();
4189        }
4190}
4191
4192static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4193{
4194        u32 val;
4195
4196        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4197
4198                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4199                BNX2X_ERR("DB hw attention 0x%x\n", val);
4200                /* DORQ discard attention */
4201                if (val & 0x2)
4202                        BNX2X_ERR("FATAL error from DORQ\n");
4203        }
4204
4205        if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4206
4207                int port = BP_PORT(bp);
4208                int reg_offset;
4209
4210                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4211                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4212
4213                val = REG_RD(bp, reg_offset);
4214                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4215                REG_WR(bp, reg_offset, val);
4216
4217                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4218                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4219                bnx2x_panic();
4220        }
4221}
4222
4223static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4224{
4225        u32 val;
4226
4227        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4228
4229                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4230                BNX2X_ERR("CFC hw attention 0x%x\n", val);
4231                /* CFC error attention */
4232                if (val & 0x2)
4233                        BNX2X_ERR("FATAL error from CFC\n");
4234        }
4235
4236        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4237                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4238                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4239                /* RQ_USDMDP_FIFO_OVERFLOW */
4240                if (val & 0x18000)
4241                        BNX2X_ERR("FATAL error from PXP\n");
4242
4243                if (!CHIP_IS_E1x(bp)) {
4244                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4245                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4246                }
4247        }
4248
4249        if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4250
4251                int port = BP_PORT(bp);
4252                int reg_offset;
4253
4254                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4255                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4256
4257                val = REG_RD(bp, reg_offset);
4258                val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4259                REG_WR(bp, reg_offset, val);
4260
4261                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4262                          (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4263                bnx2x_panic();
4264        }
4265}
4266
4267static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4268{
4269        u32 val;
4270
4271        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4272
4273                if (attn & BNX2X_PMF_LINK_ASSERT) {
4274                        int func = BP_FUNC(bp);
4275
4276                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4277                        bnx2x_read_mf_cfg(bp);
4278                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4279                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4280                        val = SHMEM_RD(bp,
4281                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4282
4283                        if (val & (DRV_STATUS_DCC_EVENT_MASK |
4284                                   DRV_STATUS_OEM_EVENT_MASK))
4285                                bnx2x_oem_event(bp,
4286                                        (val & (DRV_STATUS_DCC_EVENT_MASK |
4287                                                DRV_STATUS_OEM_EVENT_MASK)));
4288
4289                        if (val & DRV_STATUS_SET_MF_BW)
4290                                bnx2x_set_mf_bw(bp);
4291
4292                        if (val & DRV_STATUS_DRV_INFO_REQ)
4293                                bnx2x_handle_drv_info_req(bp);
4294
4295                        if (val & DRV_STATUS_VF_DISABLED)
4296                                bnx2x_schedule_iov_task(bp,
4297                                                        BNX2X_IOV_HANDLE_FLR);
4298
4299                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4300                                bnx2x_pmf_update(bp);
4301
4302                        if (bp->port.pmf &&
4303                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4304                                bp->dcbx_enabled > 0)
4305                                /* start dcbx state machine */
4306                                bnx2x_dcbx_set_params(bp,
4307                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4308                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4309                                bnx2x_handle_afex_cmd(bp,
4310                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4311                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4312                                bnx2x_handle_eee_event(bp);
4313
4314                        if (val & DRV_STATUS_OEM_UPDATE_SVID)
4315                                bnx2x_schedule_sp_rtnl(bp,
4316                                        BNX2X_SP_RTNL_UPDATE_SVID, 0);
4317
4318                        if (bp->link_vars.periodic_flags &
4319                            PERIODIC_FLAGS_LINK_EVENT) {
4320                                /*  sync with link */
4321                                bnx2x_acquire_phy_lock(bp);
4322                                bp->link_vars.periodic_flags &=
4323                                        ~PERIODIC_FLAGS_LINK_EVENT;
4324                                bnx2x_release_phy_lock(bp);
4325                                if (IS_MF(bp))
4326                                        bnx2x_link_sync_notify(bp);
4327                                bnx2x_link_report(bp);
4328                        }
4329                        /* Always call it here: bnx2x_link_report() will
4330                         * prevent the link indication duplication.
4331                         */
4332                        bnx2x__link_status_update(bp);
4333                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4334
4335                        BNX2X_ERR("MC assert!\n");
4336                        bnx2x_mc_assert(bp);
4337                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4338                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4339                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4340                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4341                        bnx2x_panic();
4342
4343                } else if (attn & BNX2X_MCP_ASSERT) {
4344
4345                        BNX2X_ERR("MCP assert!\n");
4346                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4347                        bnx2x_fw_dump(bp);
4348
4349                } else
4350                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4351        }
4352
4353        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4354                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4355                if (attn & BNX2X_GRC_TIMEOUT) {
4356                        val = CHIP_IS_E1(bp) ? 0 :
4357                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4358                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4359                }
4360                if (attn & BNX2X_GRC_RSV) {
4361                        val = CHIP_IS_E1(bp) ? 0 :
4362                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4363                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4364                }
4365                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4366        }
4367}
4368
4369/*
4370 * Bits map:
4371 * 0-7   - Engine0 load counter.
4372 * 8-15  - Engine1 load counter.
4373 * 16    - Engine0 RESET_IN_PROGRESS bit.
4374 * 17    - Engine1 RESET_IN_PROGRESS bit.
4375 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4376 *         on the engine
4377 * 19    - Engine1 ONE_IS_LOADED.
4378 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4379 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4380 *         just the one belonging to its engine).
4381 *
4382 */
4383#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4384
4385#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4386#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4387#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4388#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4389#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4390#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4391#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4392
4393/*
4394 * Set the GLOBAL_RESET bit.
4395 *
4396 * Should be run under rtnl lock
4397 */
4398void bnx2x_set_reset_global(struct bnx2x *bp)
4399{
4400        u32 val;
4401        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4404        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405}
4406
4407/*
4408 * Clear the GLOBAL_RESET bit.
4409 *
4410 * Should be run under rtnl lock
4411 */
4412static void bnx2x_clear_reset_global(struct bnx2x *bp)
4413{
4414        u32 val;
4415        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4418        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4419}
4420
4421/*
4422 * Checks the GLOBAL_RESET bit.
4423 *
4424 * should be run under rtnl lock
4425 */
4426static bool bnx2x_reset_is_global(struct bnx2x *bp)
4427{
4428        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429
4430        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4431        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4432}
4433
4434/*
4435 * Clear RESET_IN_PROGRESS bit for the current engine.
4436 *
4437 * Should be run under rtnl lock
4438 */
4439static void bnx2x_set_reset_done(struct bnx2x *bp)
4440{
4441        u32 val;
4442        u32 bit = BP_PATH(bp) ?
4443                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4445        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4446
4447        /* Clear the bit */
4448        val &= ~bit;
4449        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4450
4451        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4452}
4453
4454/*
4455 * Set RESET_IN_PROGRESS for the current engine.
4456 *
4457 * should be run under rtnl lock
4458 */
4459void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4460{
4461        u32 val;
4462        u32 bit = BP_PATH(bp) ?
4463                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4464        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4465        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466
4467        /* Set the bit */
4468        val |= bit;
4469        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4470        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4471}
4472
4473/*
4474 * Checks the RESET_IN_PROGRESS bit for the given engine.
4475 * should be run under rtnl lock
4476 */
4477bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4478{
4479        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4480        u32 bit = engine ?
4481                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4482
4483        /* return false if bit is set */
4484        return (val & bit) ? false : true;
4485}
4486
4487/*
4488 * set pf load for the current pf.
4489 *
4490 * should be run under rtnl lock
4491 */
4492void bnx2x_set_pf_load(struct bnx2x *bp)
4493{
4494        u32 val1, val;
4495        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496                             BNX2X_PATH0_LOAD_CNT_MASK;
4497        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502
4503        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4504
4505        /* get the current counter value */
4506        val1 = (val & mask) >> shift;
4507
4508        /* set bit of that PF */
4509        val1 |= (1 << bp->pf_num);
4510
4511        /* clear the old value */
4512        val &= ~mask;
4513
4514        /* set the new one */
4515        val |= ((val1 << shift) & mask);
4516
4517        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4518        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4519}
4520
4521/**
4522 * bnx2x_clear_pf_load - clear pf load mark
4523 *
4524 * @bp:         driver handle
4525 *
4526 * Should be run under rtnl lock.
4527 * Decrements the load counter for the current engine. Returns
4528 * whether other functions are still loaded
4529 */
4530bool bnx2x_clear_pf_load(struct bnx2x *bp)
4531{
4532        u32 val1, val;
4533        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4534                             BNX2X_PATH0_LOAD_CNT_MASK;
4535        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4536                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4537
4538        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4540        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4541
4542        /* get the current counter value */
4543        val1 = (val & mask) >> shift;
4544
4545        /* clear bit of that PF */
4546        val1 &= ~(1 << bp->pf_num);
4547
4548        /* clear the old value */
4549        val &= ~mask;
4550
4551        /* set the new one */
4552        val |= ((val1 << shift) & mask);
4553
4554        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4555        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4556        return val1 != 0;
4557}
4558
4559/*
4560 * Read the load status for the current engine.
4561 *
4562 * should be run under rtnl lock
4563 */
4564static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4565{
4566        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4567                             BNX2X_PATH0_LOAD_CNT_MASK);
4568        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4569                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4570        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4571
4572        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4573
4574        val = (val & mask) >> shift;
4575
4576        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4577           engine, val);
4578
4579        return val != 0;
4580}
4581
4582static void _print_parity(struct bnx2x *bp, u32 reg)
4583{
4584        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4585}
4586
4587static void _print_next_block(int idx, const char *blk)
4588{
4589        pr_cont("%s%s", idx ? ", " : "", blk);
4590}
4591
4592static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4593                                            int *par_num, bool print)
4594{
4595        u32 cur_bit;
4596        bool res;
4597        int i;
4598
4599        res = false;
4600
4601        for (i = 0; sig; i++) {
4602                cur_bit = (0x1UL << i);
4603                if (sig & cur_bit) {
4604                        res |= true; /* Each bit is real error! */
4605
4606                        if (print) {
4607                                switch (cur_bit) {
4608                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4609                                        _print_next_block((*par_num)++, "BRB");
4610                                        _print_parity(bp,
4611                                                      BRB1_REG_BRB1_PRTY_STS);
4612                                        break;
4613                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4614                                        _print_next_block((*par_num)++,
4615                                                          "PARSER");
4616                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4617                                        break;
4618                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4619                                        _print_next_block((*par_num)++, "TSDM");
4620                                        _print_parity(bp,
4621                                                      TSDM_REG_TSDM_PRTY_STS);
4622                                        break;
4623                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4624                                        _print_next_block((*par_num)++,
4625                                                          "SEARCHER");
4626                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4627                                        break;
4628                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4629                                        _print_next_block((*par_num)++, "TCM");
4630                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4631                                        break;
4632                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4633                                        _print_next_block((*par_num)++,
4634                                                          "TSEMI");
4635                                        _print_parity(bp,
4636                                                      TSEM_REG_TSEM_PRTY_STS_0);
4637                                        _print_parity(bp,
4638                                                      TSEM_REG_TSEM_PRTY_STS_1);
4639                                        break;
4640                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4641                                        _print_next_block((*par_num)++, "XPB");
4642                                        _print_parity(bp, GRCBASE_XPB +
4643                                                          PB_REG_PB_PRTY_STS);
4644                                        break;
4645                                }
4646                        }
4647
4648                        /* Clear the bit */
4649                        sig &= ~cur_bit;
4650                }
4651        }
4652
4653        return res;
4654}
4655
4656static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4657                                            int *par_num, bool *global,
4658                                            bool print)
4659{
4660        u32 cur_bit;
4661        bool res;
4662        int i;
4663
4664        res = false;
4665
4666        for (i = 0; sig; i++) {
4667                cur_bit = (0x1UL << i);
4668                if (sig & cur_bit) {
4669                        res |= true; /* Each bit is real error! */
4670                        switch (cur_bit) {
4671                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4672                                if (print) {
4673                                        _print_next_block((*par_num)++, "PBF");
4674                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4675                                }
4676                                break;
4677                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4678                                if (print) {
4679                                        _print_next_block((*par_num)++, "QM");
4680                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4681                                }
4682                                break;
4683                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4684                                if (print) {
4685                                        _print_next_block((*par_num)++, "TM");
4686                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4687                                }
4688                                break;
4689                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4690                                if (print) {
4691                                        _print_next_block((*par_num)++, "XSDM");
4692                                        _print_parity(bp,
4693                                                      XSDM_REG_XSDM_PRTY_STS);
4694                                }
4695                                break;
4696                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4697                                if (print) {
4698                                        _print_next_block((*par_num)++, "XCM");
4699                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4700                                }
4701                                break;
4702                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4703                                if (print) {
4704                                        _print_next_block((*par_num)++,
4705                                                          "XSEMI");
4706                                        _print_parity(bp,
4707                                                      XSEM_REG_XSEM_PRTY_STS_0);
4708                                        _print_parity(bp,
4709                                                      XSEM_REG_XSEM_PRTY_STS_1);
4710                                }
4711                                break;
4712                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4713                                if (print) {
4714                                        _print_next_block((*par_num)++,
4715                                                          "DOORBELLQ");
4716                                        _print_parity(bp,
4717                                                      DORQ_REG_DORQ_PRTY_STS);
4718                                }
4719                                break;
4720                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4721                                if (print) {
4722                                        _print_next_block((*par_num)++, "NIG");
4723                                        if (CHIP_IS_E1x(bp)) {
4724                                                _print_parity(bp,
4725                                                        NIG_REG_NIG_PRTY_STS);
4726                                        } else {
4727                                                _print_parity(bp,
4728                                                        NIG_REG_NIG_PRTY_STS_0);
4729                                                _print_parity(bp,
4730                                                        NIG_REG_NIG_PRTY_STS_1);
4731                                        }
4732                                }
4733                                break;
4734                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4735                                if (print)
4736                                        _print_next_block((*par_num)++,
4737                                                          "VAUX PCI CORE");
4738                                *global = true;
4739                                break;
4740                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4741                                if (print) {
4742                                        _print_next_block((*par_num)++,
4743                                                          "DEBUG");
4744                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4745                                }
4746                                break;
4747                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4748                                if (print) {
4749                                        _print_next_block((*par_num)++, "USDM");
4750                                        _print_parity(bp,
4751                                                      USDM_REG_USDM_PRTY_STS);
4752                                }
4753                                break;
4754                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4755                                if (print) {
4756                                        _print_next_block((*par_num)++, "UCM");
4757                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4758                                }
4759                                break;
4760                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4761                                if (print) {
4762                                        _print_next_block((*par_num)++,
4763                                                          "USEMI");
4764                                        _print_parity(bp,
4765                                                      USEM_REG_USEM_PRTY_STS_0);
4766                                        _print_parity(bp,
4767                                                      USEM_REG_USEM_PRTY_STS_1);
4768                                }
4769                                break;
4770                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4771                                if (print) {
4772                                        _print_next_block((*par_num)++, "UPB");
4773                                        _print_parity(bp, GRCBASE_UPB +
4774                                                          PB_REG_PB_PRTY_STS);
4775                                }
4776                                break;
4777                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4778                                if (print) {
4779                                        _print_next_block((*par_num)++, "CSDM");
4780                                        _print_parity(bp,
4781                                                      CSDM_REG_CSDM_PRTY_STS);
4782                                }
4783                                break;
4784                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4785                                if (print) {
4786                                        _print_next_block((*par_num)++, "CCM");
4787                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4788                                }
4789                                break;
4790                        }
4791
4792                        /* Clear the bit */
4793                        sig &= ~cur_bit;
4794                }
4795        }
4796
4797        return res;
4798}
4799
4800static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4801                                            int *par_num, bool print)
4802{
4803        u32 cur_bit;
4804        bool res;
4805        int i;
4806
4807        res = false;
4808
4809        for (i = 0; sig; i++) {
4810                cur_bit = (0x1UL << i);
4811                if (sig & cur_bit) {
4812                        res = true; /* Each bit is real error! */
4813                        if (print) {
4814                                switch (cur_bit) {
4815                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4816                                        _print_next_block((*par_num)++,
4817                                                          "CSEMI");
4818                                        _print_parity(bp,
4819                                                      CSEM_REG_CSEM_PRTY_STS_0);
4820                                        _print_parity(bp,
4821                                                      CSEM_REG_CSEM_PRTY_STS_1);
4822                                        break;
4823                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4824                                        _print_next_block((*par_num)++, "PXP");
4825                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4826                                        _print_parity(bp,
4827                                                      PXP2_REG_PXP2_PRTY_STS_0);
4828                                        _print_parity(bp,
4829                                                      PXP2_REG_PXP2_PRTY_STS_1);
4830                                        break;
4831                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4832                                        _print_next_block((*par_num)++,
4833                                                          "PXPPCICLOCKCLIENT");
4834                                        break;
4835                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4836                                        _print_next_block((*par_num)++, "CFC");
4837                                        _print_parity(bp,
4838                                                      CFC_REG_CFC_PRTY_STS);
4839                                        break;
4840                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4841                                        _print_next_block((*par_num)++, "CDU");
4842                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4843                                        break;
4844                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4845                                        _print_next_block((*par_num)++, "DMAE");
4846                                        _print_parity(bp,
4847                                                      DMAE_REG_DMAE_PRTY_STS);
4848                                        break;
4849                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4850                                        _print_next_block((*par_num)++, "IGU");
4851                                        if (CHIP_IS_E1x(bp))
4852                                                _print_parity(bp,
4853                                                        HC_REG_HC_PRTY_STS);
4854                                        else
4855                                                _print_parity(bp,
4856                                                        IGU_REG_IGU_PRTY_STS);
4857                                        break;
4858                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4859                                        _print_next_block((*par_num)++, "MISC");
4860                                        _print_parity(bp,
4861                                                      MISC_REG_MISC_PRTY_STS);
4862                                        break;
4863                                }
4864                        }
4865
4866                        /* Clear the bit */
4867                        sig &= ~cur_bit;
4868                }
4869        }
4870
4871        return res;
4872}
4873
4874static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4875                                            int *par_num, bool *global,
4876                                            bool print)
4877{
4878        bool res = false;
4879        u32 cur_bit;
4880        int i;
4881
4882        for (i = 0; sig; i++) {
4883                cur_bit = (0x1UL << i);
4884                if (sig & cur_bit) {
4885                        switch (cur_bit) {
4886                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4887                                if (print)
4888                                        _print_next_block((*par_num)++,
4889                                                          "MCP ROM");
4890                                *global = true;
4891                                res = true;
4892                                break;
4893                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4894                                if (print)
4895                                        _print_next_block((*par_num)++,
4896                                                          "MCP UMP RX");
4897                                *global = true;
4898                                res = true;
4899                                break;
4900                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4901                                if (print)
4902                                        _print_next_block((*par_num)++,
4903                                                          "MCP UMP TX");
4904                                *global = true;
4905                                res = true;
4906                                break;
4907                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4908                                (*par_num)++;
4909                                /* clear latched SCPAD PATIRY from MCP */
4910                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4911                                       1UL << 10);
4912                                break;
4913                        }
4914
4915                        /* Clear the bit */
4916                        sig &= ~cur_bit;
4917                }
4918        }
4919
4920        return res;
4921}
4922
4923static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4924                                            int *par_num, bool print)
4925{
4926        u32 cur_bit;
4927        bool res;
4928        int i;
4929
4930        res = false;
4931
4932        for (i = 0; sig; i++) {
4933                cur_bit = (0x1UL << i);
4934                if (sig & cur_bit) {
4935                        res = true; /* Each bit is real error! */
4936                        if (print) {
4937                                switch (cur_bit) {
4938                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4939                                        _print_next_block((*par_num)++,
4940                                                          "PGLUE_B");
4941                                        _print_parity(bp,
4942                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4943                                        break;
4944                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4945                                        _print_next_block((*par_num)++, "ATC");
4946                                        _print_parity(bp,
4947                                                      ATC_REG_ATC_PRTY_STS);
4948                                        break;
4949                                }
4950                        }
4951                        /* Clear the bit */
4952                        sig &= ~cur_bit;
4953                }
4954        }
4955
4956        return res;
4957}
4958
4959static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4960                              u32 *sig)
4961{
4962        bool res = false;
4963
4964        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4965            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4966            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4967            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4968            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4969                int par_num = 0;
4970
4971                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4972                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4973                          sig[0] & HW_PRTY_ASSERT_SET_0,
4974                          sig[1] & HW_PRTY_ASSERT_SET_1,
4975                          sig[2] & HW_PRTY_ASSERT_SET_2,
4976                          sig[3] & HW_PRTY_ASSERT_SET_3,
4977                          sig[4] & HW_PRTY_ASSERT_SET_4);
4978                if (print) {
4979                        if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4980                             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4981                             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4982                             (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4983                             (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4984                                netdev_err(bp->dev,
4985                                           "Parity errors detected in blocks: ");
4986                        } else {
4987                                print = false;
4988                        }
4989                }
4990                res |= bnx2x_check_blocks_with_parity0(bp,
4991                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4992                res |= bnx2x_check_blocks_with_parity1(bp,
4993                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4994                res |= bnx2x_check_blocks_with_parity2(bp,
4995                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4996                res |= bnx2x_check_blocks_with_parity3(bp,
4997                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4998                res |= bnx2x_check_blocks_with_parity4(bp,
4999                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5000
5001                if (print)
5002                        pr_cont("\n");
5003        }
5004
5005        return res;
5006}
5007
5008/**
5009 * bnx2x_chk_parity_attn - checks for parity attentions.
5010 *
5011 * @bp:         driver handle
5012 * @global:     true if there was a global attention
5013 * @print:      show parity attention in syslog
5014 */
5015bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5016{
5017        struct attn_route attn = { {0} };
5018        int port = BP_PORT(bp);
5019
5020        attn.sig[0] = REG_RD(bp,
5021                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5022                             port*4);
5023        attn.sig[1] = REG_RD(bp,
5024                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5025                             port*4);
5026        attn.sig[2] = REG_RD(bp,
5027                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5028                             port*4);
5029        attn.sig[3] = REG_RD(bp,
5030                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5031                             port*4);
5032        /* Since MCP attentions can't be disabled inside the block, we need to
5033         * read AEU registers to see whether they're currently disabled
5034         */
5035        attn.sig[3] &= ((REG_RD(bp,
5036                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5037                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5038                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5039                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5040
5041        if (!CHIP_IS_E1x(bp))
5042                attn.sig[4] = REG_RD(bp,
5043                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5044                                     port*4);
5045
5046        return bnx2x_parity_attn(bp, global, print, attn.sig);
5047}
5048
5049static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5050{
5051        u32 val;
5052        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5053
5054                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5055                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5056                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5057                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5058                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5059                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5060                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5061                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5062                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5063                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5064                if (val &
5065                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5066                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5067                if (val &
5068                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5069                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5070                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5071                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5072                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5073                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5074                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5075                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5076        }
5077        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5078                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5079                BNX2X_ERR("ATC hw attention 0x%x\n", val);
5080                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5081                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5082                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5083                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5084                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5085                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5086                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5087                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5088                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5089                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5090                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5091                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5092        }
5093
5094        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5095                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5096                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5097                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5099        }
5100}
5101
5102static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5103{
5104        struct attn_route attn, *group_mask;
5105        int port = BP_PORT(bp);
5106        int index;
5107        u32 reg_addr;
5108        u32 val;
5109        u32 aeu_mask;
5110        bool global = false;
5111
5112        /* need to take HW lock because MCP or other port might also
5113           try to handle this event */
5114        bnx2x_acquire_alr(bp);
5115
5116        if (bnx2x_chk_parity_attn(bp, &global, true)) {
5117#ifndef BNX2X_STOP_ON_ERROR
5118                bp->recovery_state = BNX2X_RECOVERY_INIT;
5119                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5120                /* Disable HW interrupts */
5121                bnx2x_int_disable(bp);
5122                /* In case of parity errors don't handle attentions so that
5123                 * other function would "see" parity errors.
5124                 */
5125#else
5126                bnx2x_panic();
5127#endif
5128                bnx2x_release_alr(bp);
5129                return;
5130        }
5131
5132        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5133        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5134        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5135        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5136        if (!CHIP_IS_E1x(bp))
5137                attn.sig[4] =
5138                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5139        else
5140                attn.sig[4] = 0;
5141
5142        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5143           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5144
5145        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5146                if (deasserted & (1 << index)) {
5147                        group_mask = &bp->attn_group[index];
5148
5149                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5150                           index,
5151                           group_mask->sig[0], group_mask->sig[1],
5152                           group_mask->sig[2], group_mask->sig[3],
5153                           group_mask->sig[4]);
5154
5155                        bnx2x_attn_int_deasserted4(bp,
5156                                        attn.sig[4] & group_mask->sig[4]);
5157                        bnx2x_attn_int_deasserted3(bp,
5158                                        attn.sig[3] & group_mask->sig[3]);
5159                        bnx2x_attn_int_deasserted1(bp,
5160                                        attn.sig[1] & group_mask->sig[1]);
5161                        bnx2x_attn_int_deasserted2(bp,
5162                                        attn.sig[2] & group_mask->sig[2]);
5163                        bnx2x_attn_int_deasserted0(bp,
5164                                        attn.sig[0] & group_mask->sig[0]);
5165                }
5166        }
5167
5168        bnx2x_release_alr(bp);
5169
5170        if (bp->common.int_block == INT_BLOCK_HC)
5171                reg_addr = (HC_REG_COMMAND_REG + port*32 +
5172                            COMMAND_REG_ATTN_BITS_CLR);
5173        else
5174                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5175
5176        val = ~deasserted;
5177        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5178           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5179        REG_WR(bp, reg_addr, val);
5180
5181        if (~bp->attn_state & deasserted)
5182                BNX2X_ERR("IGU ERROR\n");
5183
5184        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5185                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
5186
5187        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5188        aeu_mask = REG_RD(bp, reg_addr);
5189
5190        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5191           aeu_mask, deasserted);
5192        aeu_mask |= (deasserted & 0x3ff);
5193        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5194
5195        REG_WR(bp, reg_addr, aeu_mask);
5196        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197
5198        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5199        bp->attn_state &= ~deasserted;
5200        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5201}
5202
5203static void bnx2x_attn_int(struct bnx2x *bp)
5204{
5205        /* read local copy of bits */
5206        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5207                                                                attn_bits);
5208        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5209                                                                attn_bits_ack);
5210        u32 attn_state = bp->attn_state;
5211
5212        /* look for changed bits */
5213        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5214        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5215
5216        DP(NETIF_MSG_HW,
5217           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5218           attn_bits, attn_ack, asserted, deasserted);
5219
5220        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5221                BNX2X_ERR("BAD attention state\n");
5222
5223        /* handle bits that were raised */
5224        if (asserted)
5225                bnx2x_attn_int_asserted(bp, asserted);
5226
5227        if (deasserted)
5228                bnx2x_attn_int_deasserted(bp, deasserted);
5229}
5230
5231void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5232                      u16 index, u8 op, u8 update)
5233{
5234        u32 igu_addr = bp->igu_base_addr;
5235        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5236        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5237                             igu_addr);
5238}
5239
5240static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5241{
5242        /* No memory barriers */
5243        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5244}
5245
5246static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5247                                      union event_ring_elem *elem)
5248{
5249        u8 err = elem->message.error;
5250
5251        if (!bp->cnic_eth_dev.starting_cid  ||
5252            (cid < bp->cnic_eth_dev.starting_cid &&
5253            cid != bp->cnic_eth_dev.iscsi_l2_cid))
5254                return 1;
5255
5256        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5257
5258        if (unlikely(err)) {
5259
5260                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5261                          cid);
5262                bnx2x_panic_dump(bp, false);
5263        }
5264        bnx2x_cnic_cfc_comp(bp, cid, err);
5265        return 0;
5266}
5267
5268static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5269{
5270        struct bnx2x_mcast_ramrod_params rparam;
5271        int rc;
5272
5273        memset(&rparam, 0, sizeof(rparam));
5274
5275        rparam.mcast_obj = &bp->mcast_obj;
5276
5277        netif_addr_lock_bh(bp->dev);
5278
5279        /* Clear pending state for the last command */
5280        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5281
5282        /* If there are pending mcast commands - send them */
5283        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5284                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5285                if (rc < 0)
5286                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5287                                  rc);
5288        }
5289
5290        netif_addr_unlock_bh(bp->dev);
5291}
5292
5293static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5294                                            union event_ring_elem *elem)
5295{
5296        unsigned long ramrod_flags = 0;
5297        int rc = 0;
5298        u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5299        u32 cid = echo & BNX2X_SWCID_MASK;
5300        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5301
5302        /* Always push next commands out, don't wait here */
5303        __set_bit(RAMROD_CONT, &ramrod_flags);
5304
5305        switch (echo >> BNX2X_SWCID_SHIFT) {
5306        case BNX2X_FILTER_MAC_PENDING:
5307                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5308                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5309                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5310                else
5311                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5312
5313                break;
5314        case BNX2X_FILTER_VLAN_PENDING:
5315                DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5316                vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5317                break;
5318        case BNX2X_FILTER_MCAST_PENDING:
5319                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5320                /* This is only relevant for 57710 where multicast MACs are
5321                 * configured as unicast MACs using the same ramrod.
5322                 */
5323                bnx2x_handle_mcast_eqe(bp);
5324                return;
5325        default:
5326                BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5327                return;
5328        }
5329
5330        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5331
5332        if (rc < 0)
5333                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5334        else if (rc > 0)
5335                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5336}
5337
5338static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5339
5340static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5341{
5342        netif_addr_lock_bh(bp->dev);
5343
5344        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5345
5346        /* Send rx_mode command again if was requested */
5347        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5348                bnx2x_set_storm_rx_mode(bp);
5349        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5350                                    &bp->sp_state))
5351                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5352        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5353                                    &bp->sp_state))
5354                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5355
5356        netif_addr_unlock_bh(bp->dev);
5357}
5358
5359static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5360                                              union event_ring_elem *elem)
5361{
5362        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5363                DP(BNX2X_MSG_SP,
5364                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5365                   elem->message.data.vif_list_event.func_bit_map);
5366                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5367                        elem->message.data.vif_list_event.func_bit_map);
5368        } else if (elem->message.data.vif_list_event.echo ==
5369                   VIF_LIST_RULE_SET) {
5370                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5371                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5372        }
5373}
5374
5375/* called with rtnl_lock */
5376static void bnx2x_after_function_update(struct bnx2x *bp)
5377{
5378        int q, rc;
5379        struct bnx2x_fastpath *fp;
5380        struct bnx2x_queue_state_params queue_params = {NULL};
5381        struct bnx2x_queue_update_params *q_update_params =
5382                &queue_params.params.update;
5383
5384        /* Send Q update command with afex vlan removal values for all Qs */
5385        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5386
5387        /* set silent vlan removal values according to vlan mode */
5388        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5389                  &q_update_params->update_flags);
5390        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5391                  &q_update_params->update_flags);
5392        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5393
5394        /* in access mode mark mask and value are 0 to strip all vlans */
5395        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5396                q_update_params->silent_removal_value = 0;
5397                q_update_params->silent_removal_mask = 0;
5398        } else {
5399                q_update_params->silent_removal_value =
5400                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5401                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5402        }
5403
5404        for_each_eth_queue(bp, q) {
5405                /* Set the appropriate Queue object */
5406                fp = &bp->fp[q];
5407                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409                /* send the ramrod */
5410                rc = bnx2x_queue_state_change(bp, &queue_params);
5411                if (rc < 0)
5412                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5413                                  q);
5414        }
5415
5416        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5417                fp = &bp->fp[FCOE_IDX(bp)];
5418                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419
5420                /* clear pending completion bit */
5421                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5422
5423                /* mark latest Q bit */
5424                smp_mb__before_atomic();
5425                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5426                smp_mb__after_atomic();
5427
5428                /* send Q update ramrod for FCoE Q */
5429                rc = bnx2x_queue_state_change(bp, &queue_params);
5430                if (rc < 0)
5431                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5432                                  q);
5433        } else {
5434                /* If no FCoE ring - ACK MCP now */
5435                bnx2x_link_report(bp);
5436                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5437        }
5438}
5439
5440static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5441        struct bnx2x *bp, u32 cid)
5442{
5443        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5444
5445        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5446                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5447        else
5448                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5449}
5450
5451static void bnx2x_eq_int(struct bnx2x *bp)
5452{
5453        u16 hw_cons, sw_cons, sw_prod;
5454        union event_ring_elem *elem;
5455        u8 echo;
5456        u32 cid;
5457        u8 opcode;
5458        int rc, spqe_cnt = 0;
5459        struct bnx2x_queue_sp_obj *q_obj;
5460        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5461        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5462
5463        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5464
5465        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5466         * when we get the next-page we need to adjust so the loop
5467         * condition below will be met. The next element is the size of a
5468         * regular element and hence incrementing by 1
5469         */
5470        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5471                hw_cons++;
5472
5473        /* This function may never run in parallel with itself for a
5474         * specific bp, thus there is no need in "paired" read memory
5475         * barrier here.
5476         */
5477        sw_cons = bp->eq_cons;
5478        sw_prod = bp->eq_prod;
5479
5480        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5481                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5482
5483        for (; sw_cons != hw_cons;
5484              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5485
5486                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5487
5488                rc = bnx2x_iov_eq_sp_event(bp, elem);
5489                if (!rc) {
5490                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5491                           rc);
5492                        goto next_spqe;
5493                }
5494
5495                opcode = elem->message.opcode;
5496
5497                /* handle eq element */
5498                switch (opcode) {
5499                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5500                        bnx2x_vf_mbx_schedule(bp,
5501                                              &elem->message.data.vf_pf_event);
5502                        continue;
5503
5504                case EVENT_RING_OPCODE_STAT_QUERY:
5505                        DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5506                               "got statistics comp event %d\n",
5507                               bp->stats_comp++);
5508                        /* nothing to do with stats comp */
5509                        goto next_spqe;
5510
5511                case EVENT_RING_OPCODE_CFC_DEL:
5512                        /* handle according to cid range */
5513                        /*
5514                         * we may want to verify here that the bp state is
5515                         * HALTING
5516                         */
5517
5518                        /* elem CID originates from FW; actually LE */
5519                        cid = SW_CID(elem->message.data.cfc_del_event.cid);
5520
5521                        DP(BNX2X_MSG_SP,
5522                           "got delete ramrod for MULTI[%d]\n", cid);
5523
5524                        if (CNIC_LOADED(bp) &&
5525                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5526                                goto next_spqe;
5527
5528                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5529
5530                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5531                                break;
5532
5533                        goto next_spqe;
5534
5535                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5536                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5537                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5538                        if (f_obj->complete_cmd(bp, f_obj,
5539                                                BNX2X_F_CMD_TX_STOP))
5540                                break;
5541                        goto next_spqe;
5542
5543                case EVENT_RING_OPCODE_START_TRAFFIC:
5544                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5545                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5546                        if (f_obj->complete_cmd(bp, f_obj,
5547                                                BNX2X_F_CMD_TX_START))
5548                                break;
5549                        goto next_spqe;
5550
5551                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5552                        echo = elem->message.data.function_update_event.echo;
5553                        if (echo == SWITCH_UPDATE) {
5554                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5555                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5556                                if (f_obj->complete_cmd(
5557                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5558                                        break;
5559
5560                        } else {
5561                                int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5562
5563                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5564                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5565                                f_obj->complete_cmd(bp, f_obj,
5566                                                    BNX2X_F_CMD_AFEX_UPDATE);
5567
5568                                /* We will perform the Queues update from
5569                                 * sp_rtnl task as all Queue SP operations
5570                                 * should run under rtnl_lock.
5571                                 */
5572                                bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5573                        }
5574
5575                        goto next_spqe;
5576
5577                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5578                        f_obj->complete_cmd(bp, f_obj,
5579                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5580                        bnx2x_after_afex_vif_lists(bp, elem);
5581                        goto next_spqe;
5582                case EVENT_RING_OPCODE_FUNCTION_START:
5583                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5584                           "got FUNC_START ramrod\n");
5585                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5586                                break;
5587
5588                        goto next_spqe;
5589
5590                case EVENT_RING_OPCODE_FUNCTION_STOP:
5591                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592                           "got FUNC_STOP ramrod\n");
5593                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5594                                break;
5595
5596                        goto next_spqe;
5597
5598                case EVENT_RING_OPCODE_SET_TIMESYNC:
5599                        DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5600                           "got set_timesync ramrod completion\n");
5601                        if (f_obj->complete_cmd(bp, f_obj,
5602                                                BNX2X_F_CMD_SET_TIMESYNC))
5603                                break;
5604                        goto next_spqe;
5605                }
5606
5607                switch (opcode | bp->state) {
5608                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5609                      BNX2X_STATE_OPEN):
5610                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5611                      BNX2X_STATE_OPENING_WAIT4_PORT):
5612                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5614                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5615                           SW_CID(elem->message.data.eth_event.echo));
5616                        rss_raw->clear_pending(rss_raw);
5617                        break;
5618
5619                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5620                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5621                case (EVENT_RING_OPCODE_SET_MAC |
5622                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5623                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5624                      BNX2X_STATE_OPEN):
5625                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5626                      BNX2X_STATE_DIAG):
5627                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5629                        DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5630                        bnx2x_handle_classification_eqe(bp, elem);
5631                        break;
5632
5633                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5634                      BNX2X_STATE_OPEN):
5635                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5636                      BNX2X_STATE_DIAG):
5637                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5639                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5640                        bnx2x_handle_mcast_eqe(bp);
5641                        break;
5642
5643                case (EVENT_RING_OPCODE_FILTERS_RULES |
5644                      BNX2X_STATE_OPEN):
5645                case (EVENT_RING_OPCODE_FILTERS_RULES |
5646                      BNX2X_STATE_DIAG):
5647                case (EVENT_RING_OPCODE_FILTERS_RULES |
5648                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5649                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5650                        bnx2x_handle_rx_mode_eqe(bp);
5651                        break;
5652                default:
5653                        /* unknown event log error and continue */
5654                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5655                                  elem->message.opcode, bp->state);
5656                }
5657next_spqe:
5658                spqe_cnt++;
5659        } /* for */
5660
5661        smp_mb__before_atomic();
5662        atomic_add(spqe_cnt, &bp->eq_spq_left);
5663
5664        bp->eq_cons = sw_cons;
5665        bp->eq_prod = sw_prod;
5666        /* Make sure that above mem writes were issued towards the memory */
5667        smp_wmb();
5668
5669        /* update producer */
5670        bnx2x_update_eq_prod(bp, bp->eq_prod);
5671}
5672
5673static void bnx2x_sp_task(struct work_struct *work)
5674{
5675        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5676
5677        DP(BNX2X_MSG_SP, "sp task invoked\n");
5678
5679        /* make sure the atomic interrupt_occurred has been written */
5680        smp_rmb();
5681        if (atomic_read(&bp->interrupt_occurred)) {
5682
5683                /* what work needs to be performed? */
5684                u16 status = bnx2x_update_dsb_idx(bp);
5685
5686                DP(BNX2X_MSG_SP, "status %x\n", status);
5687                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5688                atomic_set(&bp->interrupt_occurred, 0);
5689
5690                /* HW attentions */
5691                if (status & BNX2X_DEF_SB_ATT_IDX) {
5692                        bnx2x_attn_int(bp);
5693                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5694                }
5695
5696                /* SP events: STAT_QUERY and others */
5697                if (status & BNX2X_DEF_SB_IDX) {
5698                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5699
5700                        if (FCOE_INIT(bp) &&
5701                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5702                                /* Prevent local bottom-halves from running as
5703                                 * we are going to change the local NAPI list.
5704                                 */
5705                                local_bh_disable();
5706                                napi_schedule(&bnx2x_fcoe(bp, napi));
5707                                local_bh_enable();
5708                        }
5709
5710                        /* Handle EQ completions */
5711                        bnx2x_eq_int(bp);
5712                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5713                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5714
5715                        status &= ~BNX2X_DEF_SB_IDX;
5716                }
5717
5718                /* if status is non zero then perhaps something went wrong */
5719                if (unlikely(status))
5720                        DP(BNX2X_MSG_SP,
5721                           "got an unknown interrupt! (status 0x%x)\n", status);
5722
5723                /* ack status block only if something was actually handled */
5724                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5725                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5726        }
5727
5728        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5729        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5730                               &bp->sp_state)) {
5731                bnx2x_link_report(bp);
5732                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5733        }
5734}
5735
5736irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5737{
5738        struct net_device *dev = dev_instance;
5739        struct bnx2x *bp = netdev_priv(dev);
5740
5741        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5742                     IGU_INT_DISABLE, 0);
5743
5744#ifdef BNX2X_STOP_ON_ERROR
5745        if (unlikely(bp->panic))
5746                return IRQ_HANDLED;
5747#endif
5748
5749        if (CNIC_LOADED(bp)) {
5750                struct cnic_ops *c_ops;
5751
5752                rcu_read_lock();
5753                c_ops = rcu_dereference(bp->cnic_ops);
5754                if (c_ops)
5755                        c_ops->cnic_handler(bp->cnic_data, NULL);
5756                rcu_read_unlock();
5757        }
5758
5759        /* schedule sp task to perform default status block work, ack
5760         * attentions and enable interrupts.
5761         */
5762        bnx2x_schedule_sp_task(bp);
5763
5764        return IRQ_HANDLED;
5765}
5766
5767/* end of slow path */
5768
5769void bnx2x_drv_pulse(struct bnx2x *bp)
5770{
5771        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5772                 bp->fw_drv_pulse_wr_seq);
5773}
5774
5775static void bnx2x_timer(struct timer_list *t)
5776{
5777        struct bnx2x *bp = from_timer(bp, t, timer);
5778
5779        if (!netif_running(bp->dev))
5780                return;
5781
5782        if (IS_PF(bp) &&
5783            !BP_NOMCP(bp)) {
5784                int mb_idx = BP_FW_MB_IDX(bp);
5785                u16 drv_pulse;
5786                u16 mcp_pulse;
5787
5788                ++bp->fw_drv_pulse_wr_seq;
5789                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5790                drv_pulse = bp->fw_drv_pulse_wr_seq;
5791                bnx2x_drv_pulse(bp);
5792
5793                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5794                             MCP_PULSE_SEQ_MASK);
5795                /* The delta between driver pulse and mcp response
5796                 * should not get too big. If the MFW is more than 5 pulses
5797                 * behind, we should worry about it enough to generate an error
5798                 * log.
5799                 */
5800                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5801                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5802                                  drv_pulse, mcp_pulse);
5803        }
5804
5805        if (bp->state == BNX2X_STATE_OPEN)
5806                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5807
5808        /* sample pf vf bulletin board for new posts from pf */
5809        if (IS_VF(bp))
5810                bnx2x_timer_sriov(bp);
5811
5812        mod_timer(&bp->timer, jiffies + bp->current_interval);
5813}
5814
5815/* end of Statistics */
5816
5817/* nic init */
5818
5819/*
5820 * nic init service functions
5821 */
5822
5823static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5824{
5825        u32 i;
5826        if (!(len%4) && !(addr%4))
5827                for (i = 0; i < len; i += 4)
5828                        REG_WR(bp, addr + i, fill);
5829        else
5830                for (i = 0; i < len; i++)
5831                        REG_WR8(bp, addr + i, fill);
5832}
5833
5834/* helper: writes FP SP data to FW - data_size in dwords */
5835static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5836                                int fw_sb_id,
5837                                u32 *sb_data_p,
5838                                u32 data_size)
5839{
5840        int index;
5841        for (index = 0; index < data_size; index++)
5842                REG_WR(bp, BAR_CSTRORM_INTMEM +
5843                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5844                        sizeof(u32)*index,
5845                        *(sb_data_p + index));
5846}
5847
5848static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5849{
5850        u32 *sb_data_p;
5851        u32 data_size = 0;
5852        struct hc_status_block_data_e2 sb_data_e2;
5853        struct hc_status_block_data_e1x sb_data_e1x;
5854
5855        /* disable the function first */
5856        if (!CHIP_IS_E1x(bp)) {
5857                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5858                sb_data_e2.common.state = SB_DISABLED;
5859                sb_data_e2.common.p_func.vf_valid = false;
5860                sb_data_p = (u32 *)&sb_data_e2;
5861                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5862        } else {
5863                memset(&sb_data_e1x, 0,
5864                       sizeof(struct hc_status_block_data_e1x));
5865                sb_data_e1x.common.state = SB_DISABLED;
5866                sb_data_e1x.common.p_func.vf_valid = false;
5867                sb_data_p = (u32 *)&sb_data_e1x;
5868                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5869        }
5870        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5871
5872        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5873                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5874                        CSTORM_STATUS_BLOCK_SIZE);
5875        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5876                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5877                        CSTORM_SYNC_BLOCK_SIZE);
5878}
5879
5880/* helper:  writes SP SB data to FW */
5881static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5882                struct hc_sp_status_block_data *sp_sb_data)
5883{
5884        int func = BP_FUNC(bp);
5885        int i;
5886        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5887                REG_WR(bp, BAR_CSTRORM_INTMEM +
5888                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5889                        i*sizeof(u32),
5890                        *((u32 *)sp_sb_data + i));
5891}
5892
5893static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5894{
5895        int func = BP_FUNC(bp);
5896        struct hc_sp_status_block_data sp_sb_data;
5897        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5898
5899        sp_sb_data.state = SB_DISABLED;
5900        sp_sb_data.p_func.vf_valid = false;
5901
5902        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5903
5904        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5905                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5906                        CSTORM_SP_STATUS_BLOCK_SIZE);
5907        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5908                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5909                        CSTORM_SP_SYNC_BLOCK_SIZE);
5910}
5911
5912static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5913                                           int igu_sb_id, int igu_seg_id)
5914{
5915        hc_sm->igu_sb_id = igu_sb_id;
5916        hc_sm->igu_seg_id = igu_seg_id;
5917        hc_sm->timer_value = 0xFF;
5918        hc_sm->time_to_expire = 0xFFFFFFFF;
5919}
5920
5921/* allocates state machine ids. */
5922static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5923{
5924        /* zero out state machine indices */
5925        /* rx indices */
5926        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5927
5928        /* tx indices */
5929        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5930        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5931        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5932        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5933
5934        /* map indices */
5935        /* rx indices */
5936        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5937                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5938
5939        /* tx indices */
5940        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5941                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5943                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5944        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5945                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5947                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948}
5949
5950void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5951                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5952{
5953        int igu_seg_id;
5954
5955        struct hc_status_block_data_e2 sb_data_e2;
5956        struct hc_status_block_data_e1x sb_data_e1x;
5957        struct hc_status_block_sm  *hc_sm_p;
5958        int data_size;
5959        u32 *sb_data_p;
5960
5961        if (CHIP_INT_MODE_IS_BC(bp))
5962                igu_seg_id = HC_SEG_ACCESS_NORM;
5963        else
5964                igu_seg_id = IGU_SEG_ACCESS_NORM;
5965
5966        bnx2x_zero_fp_sb(bp, fw_sb_id);
5967
5968        if (!CHIP_IS_E1x(bp)) {
5969                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5970                sb_data_e2.common.state = SB_ENABLED;
5971                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5972                sb_data_e2.common.p_func.vf_id = vfid;
5973                sb_data_e2.common.p_func.vf_valid = vf_valid;
5974                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5975                sb_data_e2.common.same_igu_sb_1b = true;
5976                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5977                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5978                hc_sm_p = sb_data_e2.common.state_machine;
5979                sb_data_p = (u32 *)&sb_data_e2;
5980                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5981                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5982        } else {
5983                memset(&sb_data_e1x, 0,
5984                       sizeof(struct hc_status_block_data_e1x));
5985                sb_data_e1x.common.state = SB_ENABLED;
5986                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5987                sb_data_e1x.common.p_func.vf_id = 0xff;
5988                sb_data_e1x.common.p_func.vf_valid = false;
5989                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5990                sb_data_e1x.common.same_igu_sb_1b = true;
5991                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5992                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5993                hc_sm_p = sb_data_e1x.common.state_machine;
5994                sb_data_p = (u32 *)&sb_data_e1x;
5995                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5996                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5997        }
5998
5999        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6000                                       igu_sb_id, igu_seg_id);
6001        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6002                                       igu_sb_id, igu_seg_id);
6003
6004        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6005
6006        /* write indices to HW - PCI guarantees endianity of regpairs */
6007        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6008}
6009
6010static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6011                                     u16 tx_usec, u16 rx_usec)
6012{
6013        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6014                                    false, rx_usec);
6015        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6016                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6017                                       tx_usec);
6018        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6019                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6020                                       tx_usec);
6021        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6022                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6023                                       tx_usec);
6024}
6025
6026static void bnx2x_init_def_sb(struct bnx2x *bp)
6027{
6028        struct host_sp_status_block *def_sb = bp->def_status_blk;
6029        dma_addr_t mapping = bp->def_status_blk_mapping;
6030        int igu_sp_sb_index;
6031        int igu_seg_id;
6032        int port = BP_PORT(bp);
6033        int func = BP_FUNC(bp);
6034        int reg_offset, reg_offset_en5;
6035        u64 section;
6036        int index;
6037        struct hc_sp_status_block_data sp_sb_data;
6038        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6039
6040        if (CHIP_INT_MODE_IS_BC(bp)) {
6041                igu_sp_sb_index = DEF_SB_IGU_ID;
6042                igu_seg_id = HC_SEG_ACCESS_DEF;
6043        } else {
6044                igu_sp_sb_index = bp->igu_dsb_id;
6045                igu_seg_id = IGU_SEG_ACCESS_DEF;
6046        }
6047
6048        /* ATTN */
6049        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6050                                            atten_status_block);
6051        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6052
6053        bp->attn_state = 0;
6054
6055        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6056                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6057        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6058                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6059        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6060                int sindex;
6061                /* take care of sig[0]..sig[4] */
6062                for (sindex = 0; sindex < 4; sindex++)
6063                        bp->attn_group[index].sig[sindex] =
6064                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6065
6066                if (!CHIP_IS_E1x(bp))
6067                        /*
6068                         * enable5 is separate from the rest of the registers,
6069                         * and therefore the address skip is 4
6070                         * and not 16 between the different groups
6071                         */
6072                        bp->attn_group[index].sig[4] = REG_RD(bp,
6073                                        reg_offset_en5 + 0x4*index);
6074                else
6075                        bp->attn_group[index].sig[4] = 0;
6076        }
6077
6078        if (bp->common.int_block == INT_BLOCK_HC) {
6079                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6080                                     HC_REG_ATTN_MSG0_ADDR_L);
6081
6082                REG_WR(bp, reg_offset, U64_LO(section));
6083                REG_WR(bp, reg_offset + 4, U64_HI(section));
6084        } else if (!CHIP_IS_E1x(bp)) {
6085                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6086                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6087        }
6088
6089        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6090                                            sp_sb);
6091
6092        bnx2x_zero_sp_sb(bp);
6093
6094        /* PCI guarantees endianity of regpairs */
6095        sp_sb_data.state                = SB_ENABLED;
6096        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6097        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6098        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6099        sp_sb_data.igu_seg_id           = igu_seg_id;
6100        sp_sb_data.p_func.pf_id         = func;
6101        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6102        sp_sb_data.p_func.vf_id         = 0xff;
6103
6104        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6105
6106        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6107}
6108
6109void bnx2x_update_coalesce(struct bnx2x *bp)
6110{
6111        int i;
6112
6113        for_each_eth_queue(bp, i)
6114                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6115                                         bp->tx_ticks, bp->rx_ticks);
6116}
6117
6118static void bnx2x_init_sp_ring(struct bnx2x *bp)
6119{
6120        spin_lock_init(&bp->spq_lock);
6121        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6122
6123        bp->spq_prod_idx = 0;
6124        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6125        bp->spq_prod_bd = bp->spq;
6126        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6127}
6128
6129static void bnx2x_init_eq_ring(struct bnx2x *bp)
6130{
6131        int i;
6132        for (i = 1; i <= NUM_EQ_PAGES; i++) {
6133                union event_ring_elem *elem =
6134                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6135
6136                elem->next_page.addr.hi =
6137                        cpu_to_le32(U64_HI(bp->eq_mapping +
6138                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6139                elem->next_page.addr.lo =
6140                        cpu_to_le32(U64_LO(bp->eq_mapping +
6141                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6142        }
6143        bp->eq_cons = 0;
6144        bp->eq_prod = NUM_EQ_DESC;
6145        bp->eq_cons_sb = BNX2X_EQ_INDEX;
6146        /* we want a warning message before it gets wrought... */
6147        atomic_set(&bp->eq_spq_left,
6148                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6149}
6150
6151/* called with netif_addr_lock_bh() */
6152static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6153                               unsigned long rx_mode_flags,
6154                               unsigned long rx_accept_flags,
6155                               unsigned long tx_accept_flags,
6156                               unsigned long ramrod_flags)
6157{
6158        struct bnx2x_rx_mode_ramrod_params ramrod_param;
6159        int rc;
6160
6161        memset(&ramrod_param, 0, sizeof(ramrod_param));
6162
6163        /* Prepare ramrod parameters */
6164        ramrod_param.cid = 0;
6165        ramrod_param.cl_id = cl_id;
6166        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6167        ramrod_param.func_id = BP_FUNC(bp);
6168
6169        ramrod_param.pstate = &bp->sp_state;
6170        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6171
6172        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6173        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6174
6175        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6176
6177        ramrod_param.ramrod_flags = ramrod_flags;
6178        ramrod_param.rx_mode_flags = rx_mode_flags;
6179
6180        ramrod_param.rx_accept_flags = rx_accept_flags;
6181        ramrod_param.tx_accept_flags = tx_accept_flags;
6182
6183        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6184        if (rc < 0) {
6185                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6186                return rc;
6187        }
6188
6189        return 0;
6190}
6191
6192static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6193                                   unsigned long *rx_accept_flags,
6194                                   unsigned long *tx_accept_flags)
6195{
6196        /* Clear the flags first */
6197        *rx_accept_flags = 0;
6198        *tx_accept_flags = 0;
6199
6200        switch (rx_mode) {
6201        case BNX2X_RX_MODE_NONE:
6202                /*
6203                 * 'drop all' supersedes any accept flags that may have been
6204                 * passed to the function.
6205                 */
6206                break;
6207        case BNX2X_RX_MODE_NORMAL:
6208                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6210                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211
6212                /* internal switching mode */
6213                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6215                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216
6217                if (bp->accept_any_vlan) {
6218                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220                }
6221
6222                break;
6223        case BNX2X_RX_MODE_ALLMULTI:
6224                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6225                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6226                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6227
6228                /* internal switching mode */
6229                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6230                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6231                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6232
6233                if (bp->accept_any_vlan) {
6234                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6235                        __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6236                }
6237
6238                break;
6239        case BNX2X_RX_MODE_PROMISC:
6240                /* According to definition of SI mode, iface in promisc mode
6241                 * should receive matched and unmatched (in resolution of port)
6242                 * unicast packets.
6243                 */
6244                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6245                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6246                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6247                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6248
6249                /* internal switching mode */
6250                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6251                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6252
6253                if (IS_MF_SI(bp))
6254                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6255                else
6256                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6257
6258                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6259                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6260
6261                break;
6262        default:
6263                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6264                return -EINVAL;
6265        }
6266
6267        return 0;
6268}
6269
6270/* called with netif_addr_lock_bh() */
6271static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6272{
6273        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6274        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6275        int rc;
6276
6277        if (!NO_FCOE(bp))
6278                /* Configure rx_mode of FCoE Queue */
6279                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6280
6281        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6282                                     &tx_accept_flags);
6283        if (rc)
6284                return rc;
6285
6286        __set_bit(RAMROD_RX, &ramrod_flags);
6287        __set_bit(RAMROD_TX, &ramrod_flags);
6288
6289        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6290                                   rx_accept_flags, tx_accept_flags,
6291                                   ramrod_flags);
6292}
6293
6294static void bnx2x_init_internal_common(struct bnx2x *bp)
6295{
6296        int i;
6297
6298        /* Zero this manually as its initialization is
6299           currently missing in the initTool */
6300        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6301                REG_WR(bp, BAR_USTRORM_INTMEM +
6302                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6303        if (!CHIP_IS_E1x(bp)) {
6304                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6305                        CHIP_INT_MODE_IS_BC(bp) ?
6306                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6307        }
6308}
6309
6310static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6311{
6312        switch (load_code) {
6313        case FW_MSG_CODE_DRV_LOAD_COMMON:
6314        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6315                bnx2x_init_internal_common(bp);
6316                fallthrough;
6317
6318        case FW_MSG_CODE_DRV_LOAD_PORT:
6319                /* nothing to do */
6320                fallthrough;
6321
6322        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6323                /* internal memory per function is
6324                   initialized inside bnx2x_pf_init */
6325                break;
6326
6327        default:
6328                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6329                break;
6330        }
6331}
6332
6333static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6334{
6335        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6336}
6337
6338static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6339{
6340        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6341}
6342
6343static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6344{
6345        if (CHIP_IS_E1x(fp->bp))
6346                return BP_L_ID(fp->bp) + fp->index;
6347        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6348                return bnx2x_fp_igu_sb_id(fp);
6349}
6350
6351static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6352{
6353        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6354        u8 cos;
6355        unsigned long q_type = 0;
6356        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6357        fp->rx_queue = fp_idx;
6358        fp->cid = fp_idx;
6359        fp->cl_id = bnx2x_fp_cl_id(fp);
6360        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6361        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6362        /* qZone id equals to FW (per path) client id */
6363        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6364
6365        /* init shortcut */
6366        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6367
6368        /* Setup SB indices */
6369        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6370
6371        /* Configure Queue State object */
6372        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6373        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6374
6375        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6376
6377        /* init tx data */
6378        for_each_cos_in_tx_queue(fp, cos) {
6379                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6380                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6381                                  FP_COS_TO_TXQ(fp, cos, bp),
6382                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6383                cids[cos] = fp->txdata_ptr[cos]->cid;
6384        }
6385
6386        /* nothing more for vf to do here */
6387        if (IS_VF(bp))
6388                return;
6389
6390        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6391                      fp->fw_sb_id, fp->igu_sb_id);
6392        bnx2x_update_fpsb_idx(fp);
6393        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6394                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6395                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6396
6397        /**
6398         * Configure classification DBs: Always enable Tx switching
6399         */
6400        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6401
6402        DP(NETIF_MSG_IFUP,
6403           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6404           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6405           fp->igu_sb_id);
6406}
6407
6408static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6409{
6410        int i;
6411
6412        for (i = 1; i <= NUM_TX_RINGS; i++) {
6413                struct eth_tx_next_bd *tx_next_bd =
6414                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6415
6416                tx_next_bd->addr_hi =
6417                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6418                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6419                tx_next_bd->addr_lo =
6420                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6421                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6422        }
6423
6424        *txdata->tx_cons_sb = cpu_to_le16(0);
6425
6426        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6427        txdata->tx_db.data.zero_fill1 = 0;
6428        txdata->tx_db.data.prod = 0;
6429
6430        txdata->tx_pkt_prod = 0;
6431        txdata->tx_pkt_cons = 0;
6432        txdata->tx_bd_prod = 0;
6433        txdata->tx_bd_cons = 0;
6434        txdata->tx_pkt = 0;
6435}
6436
6437static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6438{
6439        int i;
6440
6441        for_each_tx_queue_cnic(bp, i)
6442                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6443}
6444
6445static void bnx2x_init_tx_rings(struct bnx2x *bp)
6446{
6447        int i;
6448        u8 cos;
6449
6450        for_each_eth_queue(bp, i)
6451                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6452                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6453}
6454
6455static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6456{
6457        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6458        unsigned long q_type = 0;
6459
6460        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6461        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6462                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6463        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6464        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6465        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6466        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6467        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6468                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6469                          fp);
6470
6471        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6472
6473        /* qZone id equals to FW (per path) client id */
6474        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6475        /* init shortcut */
6476        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6477                bnx2x_rx_ustorm_prods_offset(fp);
6478
6479        /* Configure Queue State object */
6480        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6481        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6482
6483        /* No multi-CoS for FCoE L2 client */
6484        BUG_ON(fp->max_cos != 1);
6485
6486        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6487                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6488                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6489
6490        DP(NETIF_MSG_IFUP,
6491           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6492           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6493           fp->igu_sb_id);
6494}
6495
6496void bnx2x_nic_init_cnic(struct bnx2x *bp)
6497{
6498        if (!NO_FCOE(bp))
6499                bnx2x_init_fcoe_fp(bp);
6500
6501        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6502                      BNX2X_VF_ID_INVALID, false,
6503                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6504
6505        /* ensure status block indices were read */
6506        rmb();
6507        bnx2x_init_rx_rings_cnic(bp);
6508        bnx2x_init_tx_rings_cnic(bp);
6509
6510        /* flush all */
6511        mb();
6512}
6513
6514void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6515{
6516        int i;
6517
6518        /* Setup NIC internals and enable interrupts */
6519        for_each_eth_queue(bp, i)
6520                bnx2x_init_eth_fp(bp, i);
6521
6522        /* ensure status block indices were read */
6523        rmb();
6524        bnx2x_init_rx_rings(bp);
6525        bnx2x_init_tx_rings(bp);
6526
6527        if (IS_PF(bp)) {
6528                /* Initialize MOD_ABS interrupts */
6529                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6530                                       bp->common.shmem_base,
6531                                       bp->common.shmem2_base, BP_PORT(bp));
6532
6533                /* initialize the default status block and sp ring */
6534                bnx2x_init_def_sb(bp);
6535                bnx2x_update_dsb_idx(bp);
6536                bnx2x_init_sp_ring(bp);
6537        } else {
6538                bnx2x_memset_stats(bp);
6539        }
6540}
6541
6542void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6543{
6544        bnx2x_init_eq_ring(bp);
6545        bnx2x_init_internal(bp, load_code);
6546        bnx2x_pf_init(bp);
6547        bnx2x_stats_init(bp);
6548
6549        /* flush all before enabling interrupts */
6550        mb();
6551
6552        bnx2x_int_enable(bp);
6553
6554        /* Check for SPIO5 */
6555        bnx2x_attn_int_deasserted0(bp,
6556                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6557                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6558}
6559
6560/* gzip service functions */
6561static int bnx2x_gunzip_init(struct bnx2x *bp)
6562{
6563        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6564                                            &bp->gunzip_mapping, GFP_KERNEL);
6565        if (bp->gunzip_buf  == NULL)
6566                goto gunzip_nomem1;
6567
6568        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6569        if (bp->strm  == NULL)
6570                goto gunzip_nomem2;
6571
6572        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6573        if (bp->strm->workspace == NULL)
6574                goto gunzip_nomem3;
6575
6576        return 0;
6577
6578gunzip_nomem3:
6579        kfree(bp->strm);
6580        bp->strm = NULL;
6581
6582gunzip_nomem2:
6583        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6584                          bp->gunzip_mapping);
6585        bp->gunzip_buf = NULL;
6586
6587gunzip_nomem1:
6588        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6589        return -ENOMEM;
6590}
6591
6592static void bnx2x_gunzip_end(struct bnx2x *bp)
6593{
6594        if (bp->strm) {
6595                vfree(bp->strm->workspace);
6596                kfree(bp->strm);
6597                bp->strm = NULL;
6598        }
6599
6600        if (bp->gunzip_buf) {
6601                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6602                                  bp->gunzip_mapping);
6603                bp->gunzip_buf = NULL;
6604        }
6605}
6606
6607static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6608{
6609        int n, rc;
6610
6611        /* check gzip header */
6612        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6613                BNX2X_ERR("Bad gzip header\n");
6614                return -EINVAL;
6615        }
6616
6617        n = 10;
6618
6619#define FNAME                           0x8
6620
6621        if (zbuf[3] & FNAME)
6622                while ((zbuf[n++] != 0) && (n < len));
6623
6624        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6625        bp->strm->avail_in = len - n;
6626        bp->strm->next_out = bp->gunzip_buf;
6627        bp->strm->avail_out = FW_BUF_SIZE;
6628
6629        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6630        if (rc != Z_OK)
6631                return rc;
6632
6633        rc = zlib_inflate(bp->strm, Z_FINISH);
6634        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6635                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6636                           bp->strm->msg);
6637
6638        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6639        if (bp->gunzip_outlen & 0x3)
6640                netdev_err(bp->dev,
6641                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6642                                bp->gunzip_outlen);
6643        bp->gunzip_outlen >>= 2;
6644
6645        zlib_inflateEnd(bp->strm);
6646
6647        if (rc == Z_STREAM_END)
6648                return 0;
6649
6650        return rc;
6651}
6652
6653/* nic load/unload */
6654
6655/*
6656 * General service functions
6657 */
6658
6659/* send a NIG loopback debug packet */
6660static void bnx2x_lb_pckt(struct bnx2x *bp)
6661{
6662        u32 wb_write[3];
6663
6664        /* Ethernet source and destination addresses */
6665        wb_write[0] = 0x55555555;
6666        wb_write[1] = 0x55555555;
6667        wb_write[2] = 0x20;             /* SOP */
6668        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6669
6670        /* NON-IP protocol */
6671        wb_write[0] = 0x09000000;
6672        wb_write[1] = 0x55555555;
6673        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6674        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6675}
6676
6677/* some of the internal memories
6678 * are not directly readable from the driver
6679 * to test them we send debug packets
6680 */
6681static int bnx2x_int_mem_test(struct bnx2x *bp)
6682{
6683        int factor;
6684        int count, i;
6685        u32 val = 0;
6686
6687        if (CHIP_REV_IS_FPGA(bp))
6688                factor = 120;
6689        else if (CHIP_REV_IS_EMUL(bp))
6690                factor = 200;
6691        else
6692                factor = 1;
6693
6694        /* Disable inputs of parser neighbor blocks */
6695        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6696        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6697        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6698        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6699
6700        /*  Write 0 to parser credits for CFC search request */
6701        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6702
6703        /* send Ethernet packet */
6704        bnx2x_lb_pckt(bp);
6705
6706        /* TODO do i reset NIG statistic? */
6707        /* Wait until NIG register shows 1 packet of size 0x10 */
6708        count = 1000 * factor;
6709        while (count) {
6710
6711                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6712                val = *bnx2x_sp(bp, wb_data[0]);
6713                if (val == 0x10)
6714                        break;
6715
6716                usleep_range(10000, 20000);
6717                count--;
6718        }
6719        if (val != 0x10) {
6720                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6721                return -1;
6722        }
6723
6724        /* Wait until PRS register shows 1 packet */
6725        count = 1000 * factor;
6726        while (count) {
6727                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728                if (val == 1)
6729                        break;
6730
6731                usleep_range(10000, 20000);
6732                count--;
6733        }
6734        if (val != 0x1) {
6735                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6736                return -2;
6737        }
6738
6739        /* Reset and init BRB, PRS */
6740        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6741        msleep(50);
6742        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6743        msleep(50);
6744        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6745        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6746
6747        DP(NETIF_MSG_HW, "part2\n");
6748
6749        /* Disable inputs of parser neighbor blocks */
6750        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6751        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6752        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6753        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6754
6755        /* Write 0 to parser credits for CFC search request */
6756        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6757
6758        /* send 10 Ethernet packets */
6759        for (i = 0; i < 10; i++)
6760                bnx2x_lb_pckt(bp);
6761
6762        /* Wait until NIG register shows 10 + 1
6763           packets of size 11*0x10 = 0xb0 */
6764        count = 1000 * factor;
6765        while (count) {
6766
6767                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6768                val = *bnx2x_sp(bp, wb_data[0]);
6769                if (val == 0xb0)
6770                        break;
6771
6772                usleep_range(10000, 20000);
6773                count--;
6774        }
6775        if (val != 0xb0) {
6776                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6777                return -3;
6778        }
6779
6780        /* Wait until PRS register shows 2 packets */
6781        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6782        if (val != 2)
6783                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6784
6785        /* Write 1 to parser credits for CFC search request */
6786        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6787
6788        /* Wait until PRS register shows 3 packets */
6789        msleep(10 * factor);
6790        /* Wait until NIG register shows 1 packet of size 0x10 */
6791        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792        if (val != 3)
6793                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794
6795        /* clear NIG EOP FIFO */
6796        for (i = 0; i < 11; i++)
6797                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6798        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6799        if (val != 1) {
6800                BNX2X_ERR("clear of NIG failed\n");
6801                return -4;
6802        }
6803
6804        /* Reset and init BRB, PRS, NIG */
6805        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6806        msleep(50);
6807        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6808        msleep(50);
6809        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6810        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6811        if (!CNIC_SUPPORT(bp))
6812                /* set NIC mode */
6813                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6814
6815        /* Enable inputs of parser neighbor blocks */
6816        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6817        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6818        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6819        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6820
6821        DP(NETIF_MSG_HW, "done\n");
6822
6823        return 0; /* OK */
6824}
6825
6826static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6827{
6828        u32 val;
6829
6830        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6831        if (!CHIP_IS_E1x(bp))
6832                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6833        else
6834                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6835        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6836        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6837        /*
6838         * mask read length error interrupts in brb for parser
6839         * (parsing unit and 'checksum and crc' unit)
6840         * these errors are legal (PU reads fixed length and CAC can cause
6841         * read length error on truncated packets)
6842         */
6843        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6844        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6845        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6846        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6847        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6848        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6849/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6850/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6851        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6852        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6853        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6854/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6855/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6856        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6857        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6858        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6859        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6860/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6861/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6862
6863        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6864                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6865                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6866        if (!CHIP_IS_E1x(bp))
6867                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6868                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6869        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6870
6871        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6872        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6873        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6874/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6875
6876        if (!CHIP_IS_E1x(bp))
6877                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6878                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6879
6880        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6881        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6882/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6883        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6884}
6885
6886static void bnx2x_reset_common(struct bnx2x *bp)
6887{
6888        u32 val = 0x1400;
6889
6890        /* reset_common */
6891        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6892               0xd3ffff7f);
6893
6894        if (CHIP_IS_E3(bp)) {
6895                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6896                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6897        }
6898
6899        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6900}
6901
6902static void bnx2x_setup_dmae(struct bnx2x *bp)
6903{
6904        bp->dmae_ready = 0;
6905        spin_lock_init(&bp->dmae_lock);
6906}
6907
6908static void bnx2x_init_pxp(struct bnx2x *bp)
6909{
6910        u16 devctl;
6911        int r_order, w_order;
6912
6913        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6914        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6915        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6916        if (bp->mrrs == -1)
6917                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6918        else {
6919                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6920                r_order = bp->mrrs;
6921        }
6922
6923        bnx2x_init_pxp_arb(bp, r_order, w_order);
6924}
6925
6926static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6927{
6928        int is_required;
6929        u32 val;
6930        int port;
6931
6932        if (BP_NOMCP(bp))
6933                return;
6934
6935        is_required = 0;
6936        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6937              SHARED_HW_CFG_FAN_FAILURE_MASK;
6938
6939        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6940                is_required = 1;
6941
6942        /*
6943         * The fan failure mechanism is usually related to the PHY type since
6944         * the power consumption of the board is affected by the PHY. Currently,
6945         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6946         */
6947        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6948                for (port = PORT_0; port < PORT_MAX; port++) {
6949                        is_required |=
6950                                bnx2x_fan_failure_det_req(
6951                                        bp,
6952                                        bp->common.shmem_base,
6953                                        bp->common.shmem2_base,
6954                                        port);
6955                }
6956
6957        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6958
6959        if (is_required == 0)
6960                return;
6961
6962        /* Fan failure is indicated by SPIO 5 */
6963        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6964
6965        /* set to active low mode */
6966        val = REG_RD(bp, MISC_REG_SPIO_INT);
6967        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6968        REG_WR(bp, MISC_REG_SPIO_INT, val);
6969
6970        /* enable interrupt to signal the IGU */
6971        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6972        val |= MISC_SPIO_SPIO5;
6973        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6974}
6975
6976void bnx2x_pf_disable(struct bnx2x *bp)
6977{
6978        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6979        val &= ~IGU_PF_CONF_FUNC_EN;
6980
6981        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6982        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6983        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6984}
6985
6986static void bnx2x__common_init_phy(struct bnx2x *bp)
6987{
6988        u32 shmem_base[2], shmem2_base[2];
6989        /* Avoid common init in case MFW supports LFA */
6990        if (SHMEM2_RD(bp, size) >
6991            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6992                return;
6993        shmem_base[0] =  bp->common.shmem_base;
6994        shmem2_base[0] = bp->common.shmem2_base;
6995        if (!CHIP_IS_E1x(bp)) {
6996                shmem_base[1] =
6997                        SHMEM2_RD(bp, other_shmem_base_addr);
6998                shmem2_base[1] =
6999                        SHMEM2_RD(bp, other_shmem2_base_addr);
7000        }
7001        bnx2x_acquire_phy_lock(bp);
7002        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7003                              bp->common.chip_id);
7004        bnx2x_release_phy_lock(bp);
7005}
7006
7007static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7008{
7009        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7010        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7011        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7012        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7013        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7014
7015        /* make sure this value is 0 */
7016        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7017
7018        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7019        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7020        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7021        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7022}
7023
7024static void bnx2x_set_endianity(struct bnx2x *bp)
7025{
7026#ifdef __BIG_ENDIAN
7027        bnx2x_config_endianity(bp, 1);
7028#else
7029        bnx2x_config_endianity(bp, 0);
7030#endif
7031}
7032
7033static void bnx2x_reset_endianity(struct bnx2x *bp)
7034{
7035        bnx2x_config_endianity(bp, 0);
7036}
7037
7038/**
7039 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7040 *
7041 * @bp:         driver handle
7042 */
7043static int bnx2x_init_hw_common(struct bnx2x *bp)
7044{
7045        u32 val;
7046
7047        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7048
7049        /*
7050         * take the RESET lock to protect undi_unload flow from accessing
7051         * registers while we're resetting the chip
7052         */
7053        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7054
7055        bnx2x_reset_common(bp);
7056        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7057
7058        val = 0xfffc;
7059        if (CHIP_IS_E3(bp)) {
7060                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7061                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7062        }
7063        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7064
7065        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7066
7067        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7068
7069        if (!CHIP_IS_E1x(bp)) {
7070                u8 abs_func_id;
7071
7072                /**
7073                 * 4-port mode or 2-port mode we need to turn of master-enable
7074                 * for everyone, after that, turn it back on for self.
7075                 * so, we disregard multi-function or not, and always disable
7076                 * for all functions on the given path, this means 0,2,4,6 for
7077                 * path 0 and 1,3,5,7 for path 1
7078                 */
7079                for (abs_func_id = BP_PATH(bp);
7080                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7081                        if (abs_func_id == BP_ABS_FUNC(bp)) {
7082                                REG_WR(bp,
7083                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7084                                    1);
7085                                continue;
7086                        }
7087
7088                        bnx2x_pretend_func(bp, abs_func_id);
7089                        /* clear pf enable */
7090                        bnx2x_pf_disable(bp);
7091                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7092                }
7093        }
7094
7095        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7096        if (CHIP_IS_E1(bp)) {
7097                /* enable HW interrupt from PXP on USDM overflow
7098                   bit 16 on INT_MASK_0 */
7099                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7100        }
7101
7102        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7103        bnx2x_init_pxp(bp);
7104        bnx2x_set_endianity(bp);
7105        bnx2x_ilt_init_page_size(bp, INITOP_SET);
7106
7107        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7108                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7109
7110        /* let the HW do it's magic ... */
7111        msleep(100);
7112        /* finish PXP init */
7113        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7114        if (val != 1) {
7115                BNX2X_ERR("PXP2 CFG failed\n");
7116                return -EBUSY;
7117        }
7118        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7119        if (val != 1) {
7120                BNX2X_ERR("PXP2 RD_INIT failed\n");
7121                return -EBUSY;
7122        }
7123
7124        /* Timers bug workaround E2 only. We need to set the entire ILT to
7125         * have entries with value "0" and valid bit on.
7126         * This needs to be done by the first PF that is loaded in a path
7127         * (i.e. common phase)
7128         */
7129        if (!CHIP_IS_E1x(bp)) {
7130/* In E2 there is a bug in the timers block that can cause function 6 / 7
7131 * (i.e. vnic3) to start even if it is marked as "scan-off".
7132 * This occurs when a different function (func2,3) is being marked
7133 * as "scan-off". Real-life scenario for example: if a driver is being
7134 * load-unloaded while func6,7 are down. This will cause the timer to access
7135 * the ilt, translate to a logical address and send a request to read/write.
7136 * Since the ilt for the function that is down is not valid, this will cause
7137 * a translation error which is unrecoverable.
7138 * The Workaround is intended to make sure that when this happens nothing fatal
7139 * will occur. The workaround:
7140 *      1.  First PF driver which loads on a path will:
7141 *              a.  After taking the chip out of reset, by using pretend,
7142 *                  it will write "0" to the following registers of
7143 *                  the other vnics.
7144 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7145 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7146 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7147 *                  And for itself it will write '1' to
7148 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7149 *                  dmae-operations (writing to pram for example.)
7150 *                  note: can be done for only function 6,7 but cleaner this
7151 *                        way.
7152 *              b.  Write zero+valid to the entire ILT.
7153 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7154 *                  VNIC3 (of that port). The range allocated will be the
7155 *                  entire ILT. This is needed to prevent  ILT range error.
7156 *      2.  Any PF driver load flow:
7157 *              a.  ILT update with the physical addresses of the allocated
7158 *                  logical pages.
7159 *              b.  Wait 20msec. - note that this timeout is needed to make
7160 *                  sure there are no requests in one of the PXP internal
7161 *                  queues with "old" ILT addresses.
7162 *              c.  PF enable in the PGLC.
7163 *              d.  Clear the was_error of the PF in the PGLC. (could have
7164 *                  occurred while driver was down)
7165 *              e.  PF enable in the CFC (WEAK + STRONG)
7166 *              f.  Timers scan enable
7167 *      3.  PF driver unload flow:
7168 *              a.  Clear the Timers scan_en.
7169 *              b.  Polling for scan_on=0 for that PF.
7170 *              c.  Clear the PF enable bit in the PXP.
7171 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7172 *              e.  Write zero+valid to all ILT entries (The valid bit must
7173 *                  stay set)
7174 *              f.  If this is VNIC 3 of a port then also init
7175 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7176 *                  to the last entry in the ILT.
7177 *
7178 *      Notes:
7179 *      Currently the PF error in the PGLC is non recoverable.
7180 *      In the future the there will be a recovery routine for this error.
7181 *      Currently attention is masked.
7182 *      Having an MCP lock on the load/unload process does not guarantee that
7183 *      there is no Timer disable during Func6/7 enable. This is because the
7184 *      Timers scan is currently being cleared by the MCP on FLR.
7185 *      Step 2.d can be done only for PF6/7 and the driver can also check if
7186 *      there is error before clearing it. But the flow above is simpler and
7187 *      more general.
7188 *      All ILT entries are written by zero+valid and not just PF6/7
7189 *      ILT entries since in the future the ILT entries allocation for
7190 *      PF-s might be dynamic.
7191 */
7192                struct ilt_client_info ilt_cli;
7193                struct bnx2x_ilt ilt;
7194                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7195                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7196
7197                /* initialize dummy TM client */
7198                ilt_cli.start = 0;
7199                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7200                ilt_cli.client_num = ILT_CLIENT_TM;
7201
7202                /* Step 1: set zeroes to all ilt page entries with valid bit on
7203                 * Step 2: set the timers first/last ilt entry to point
7204                 * to the entire range to prevent ILT range error for 3rd/4th
7205                 * vnic (this code assumes existence of the vnic)
7206                 *
7207                 * both steps performed by call to bnx2x_ilt_client_init_op()
7208                 * with dummy TM client
7209                 *
7210                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7211                 * and his brother are split registers
7212                 */
7213                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7214                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7215                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7216
7217                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7218                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7219                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7220        }
7221
7222        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7223        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7224
7225        if (!CHIP_IS_E1x(bp)) {
7226                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7227                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7228                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7229
7230                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7231
7232                /* let the HW do it's magic ... */
7233                do {
7234                        msleep(200);
7235                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7236                } while (factor-- && (val != 1));
7237
7238                if (val != 1) {
7239                        BNX2X_ERR("ATC_INIT failed\n");
7240                        return -EBUSY;
7241                }
7242        }
7243
7244        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7245
7246        bnx2x_iov_init_dmae(bp);
7247
7248        /* clean the DMAE memory */
7249        bp->dmae_ready = 1;
7250        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7251
7252        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7253
7254        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7255
7256        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7257
7258        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7259
7260        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7261        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7262        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7263        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7264
7265        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7266
7267        /* QM queues pointers table */
7268        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7269
7270        /* soft reset pulse */
7271        REG_WR(bp, QM_REG_SOFT_RESET, 1);
7272        REG_WR(bp, QM_REG_SOFT_RESET, 0);
7273
7274        if (CNIC_SUPPORT(bp))
7275                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7276
7277        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7278
7279        if (!CHIP_REV_IS_SLOW(bp))
7280                /* enable hw interrupt from doorbell Q */
7281                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7282
7283        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7284
7285        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7286        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7287
7288        if (!CHIP_IS_E1(bp))
7289                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7290
7291        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7292                if (IS_MF_AFEX(bp)) {
7293                        /* configure that VNTag and VLAN headers must be
7294                         * received in afex mode
7295                         */
7296                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7297                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7298                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7299                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7300                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7301                } else {
7302                        /* Bit-map indicating which L2 hdrs may appear
7303                         * after the basic Ethernet header
7304                         */
7305                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7306                               bp->path_has_ovlan ? 7 : 6);
7307                }
7308        }
7309
7310        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7311        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7312        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7313        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7314
7315        if (!CHIP_IS_E1x(bp)) {
7316                /* reset VFC memories */
7317                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7318                           VFC_MEMORIES_RST_REG_CAM_RST |
7319                           VFC_MEMORIES_RST_REG_RAM_RST);
7320                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7321                           VFC_MEMORIES_RST_REG_CAM_RST |
7322                           VFC_MEMORIES_RST_REG_RAM_RST);
7323
7324                msleep(20);
7325        }
7326
7327        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7328        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7329        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7330        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7331
7332        /* sync semi rtc */
7333        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7334               0x80000000);
7335        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7336               0x80000000);
7337
7338        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7339        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7340        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7341
7342        if (!CHIP_IS_E1x(bp)) {
7343                if (IS_MF_AFEX(bp)) {
7344                        /* configure that VNTag and VLAN headers must be
7345                         * sent in afex mode
7346                         */
7347                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7348                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7349                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7350                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7351                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7352                } else {
7353                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7354                               bp->path_has_ovlan ? 7 : 6);
7355                }
7356        }
7357
7358        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7359
7360        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7361
7362        if (CNIC_SUPPORT(bp)) {
7363                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7364                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7365                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7366                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7367                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7368                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7369                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7370                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7371                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7372                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7373        }
7374        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7375
7376        if (sizeof(union cdu_context) != 1024)
7377                /* we currently assume that a context is 1024 bytes */
7378                dev_alert(&bp->pdev->dev,
7379                          "please adjust the size of cdu_context(%ld)\n",
7380                          (long)sizeof(union cdu_context));
7381
7382        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7383        val = (4 << 24) + (0 << 12) + 1024;
7384        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7385
7386        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7387        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7388        /* enable context validation interrupt from CFC */
7389        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7390
7391        /* set the thresholds to prevent CFC/CDU race */
7392        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7393
7394        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7395
7396        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7397                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7398
7399        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7400        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7401
7402        /* Reset PCIE errors for debug */
7403        REG_WR(bp, 0x2814, 0xffffffff);
7404        REG_WR(bp, 0x3820, 0xffffffff);
7405
7406        if (!CHIP_IS_E1x(bp)) {
7407                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7408                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7409                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7410                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7411                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7412                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7413                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7414                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7415                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7416                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7417                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7418        }
7419
7420        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7421        if (!CHIP_IS_E1(bp)) {
7422                /* in E3 this done in per-port section */
7423                if (!CHIP_IS_E3(bp))
7424                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7425        }
7426        if (CHIP_IS_E1H(bp))
7427                /* not applicable for E2 (and above ...) */
7428                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7429
7430        if (CHIP_REV_IS_SLOW(bp))
7431                msleep(200);
7432
7433        /* finish CFC init */
7434        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7435        if (val != 1) {
7436                BNX2X_ERR("CFC LL_INIT failed\n");
7437                return -EBUSY;
7438        }
7439        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7440        if (val != 1) {
7441                BNX2X_ERR("CFC AC_INIT failed\n");
7442                return -EBUSY;
7443        }
7444        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7445        if (val != 1) {
7446                BNX2X_ERR("CFC CAM_INIT failed\n");
7447                return -EBUSY;
7448        }
7449        REG_WR(bp, CFC_REG_DEBUG0, 0);
7450
7451        if (CHIP_IS_E1(bp)) {
7452                /* read NIG statistic
7453                   to see if this is our first up since powerup */
7454                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7455                val = *bnx2x_sp(bp, wb_data[0]);
7456
7457                /* do internal memory self test */
7458                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7459                        BNX2X_ERR("internal mem self test failed\n");
7460                        return -EBUSY;
7461                }
7462        }
7463
7464        bnx2x_setup_fan_failure_detection(bp);
7465
7466        /* clear PXP2 attentions */
7467        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7468
7469        bnx2x_enable_blocks_attention(bp);
7470        bnx2x_enable_blocks_parity(bp);
7471
7472        if (!BP_NOMCP(bp)) {
7473                if (CHIP_IS_E1x(bp))
7474                        bnx2x__common_init_phy(bp);
7475        } else
7476                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7477
7478        if (SHMEM2_HAS(bp, netproc_fw_ver))
7479                SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7480
7481        return 0;
7482}
7483
7484/**
7485 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7486 *
7487 * @bp:         driver handle
7488 */
7489static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7490{
7491        int rc = bnx2x_init_hw_common(bp);
7492
7493        if (rc)
7494                return rc;
7495
7496        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7497        if (!BP_NOMCP(bp))
7498                bnx2x__common_init_phy(bp);
7499
7500        return 0;
7501}
7502
7503static int bnx2x_init_hw_port(struct bnx2x *bp)
7504{
7505        int port = BP_PORT(bp);
7506        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7507        u32 low, high;
7508        u32 val, reg;
7509
7510        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7511
7512        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7513
7514        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7515        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7516        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7517
7518        /* Timers bug workaround: disables the pf_master bit in pglue at
7519         * common phase, we need to enable it here before any dmae access are
7520         * attempted. Therefore we manually added the enable-master to the
7521         * port phase (it also happens in the function phase)
7522         */
7523        if (!CHIP_IS_E1x(bp))
7524                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7525
7526        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7527        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7528        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7529        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7530
7531        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7532        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7533        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7534        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7535
7536        /* QM cid (connection) count */
7537        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7538
7539        if (CNIC_SUPPORT(bp)) {
7540                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7541                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7542                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7543        }
7544
7545        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7546
7547        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7548
7549        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7550
7551                if (IS_MF(bp))
7552                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7553                else if (bp->dev->mtu > 4096) {
7554                        if (bp->flags & ONE_PORT_FLAG)
7555                                low = 160;
7556                        else {
7557                                val = bp->dev->mtu;
7558                                /* (24*1024 + val*4)/256 */
7559                                low = 96 + (val/64) +
7560                                                ((val % 64) ? 1 : 0);
7561                        }
7562                } else
7563                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7564                high = low + 56;        /* 14*1024/256 */
7565                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7566                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7567        }
7568
7569        if (CHIP_MODE_IS_4_PORT(bp))
7570                REG_WR(bp, (BP_PORT(bp) ?
7571                            BRB1_REG_MAC_GUARANTIED_1 :
7572                            BRB1_REG_MAC_GUARANTIED_0), 40);
7573
7574        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7575        if (CHIP_IS_E3B0(bp)) {
7576                if (IS_MF_AFEX(bp)) {
7577                        /* configure headers for AFEX mode */
7578                        REG_WR(bp, BP_PORT(bp) ?
7579                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7581                        REG_WR(bp, BP_PORT(bp) ?
7582                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7583                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7584                        REG_WR(bp, BP_PORT(bp) ?
7585                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7586                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7587                } else {
7588                        /* Ovlan exists only if we are in multi-function +
7589                         * switch-dependent mode, in switch-independent there
7590                         * is no ovlan headers
7591                         */
7592                        REG_WR(bp, BP_PORT(bp) ?
7593                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7594                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7595                               (bp->path_has_ovlan ? 7 : 6));
7596                }
7597        }
7598
7599        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7600        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7601        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7602        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7603
7604        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7605        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7606        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7607        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7608
7609        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7610        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7611
7612        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7613
7614        if (CHIP_IS_E1x(bp)) {
7615                /* configure PBF to work without PAUSE mtu 9000 */
7616                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7617
7618                /* update threshold */
7619                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7620                /* update init credit */
7621                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7622
7623                /* probe changes */
7624                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7625                udelay(50);
7626                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7627        }
7628
7629        if (CNIC_SUPPORT(bp))
7630                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7631
7632        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7633        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7634
7635        if (CHIP_IS_E1(bp)) {
7636                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7637                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7638        }
7639        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7640
7641        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7642
7643        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7644        /* init aeu_mask_attn_func_0/1:
7645         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7646         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7647         *             bits 4-7 are used for "per vn group attention" */
7648        val = IS_MF(bp) ? 0xF7 : 0x7;
7649        /* Enable DCBX attention for all but E1 */
7650        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7651        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7652
7653        /* SCPAD_PARITY should NOT trigger close the gates */
7654        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7655        REG_WR(bp, reg,
7656               REG_RD(bp, reg) &
7657               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7658
7659        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7660        REG_WR(bp, reg,
7661               REG_RD(bp, reg) &
7662               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7663
7664        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7665
7666        if (!CHIP_IS_E1x(bp)) {
7667                /* Bit-map indicating which L2 hdrs may appear after the
7668                 * basic Ethernet header
7669                 */
7670                if (IS_MF_AFEX(bp))
7671                        REG_WR(bp, BP_PORT(bp) ?
7672                               NIG_REG_P1_HDRS_AFTER_BASIC :
7673                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7674                else
7675                        REG_WR(bp, BP_PORT(bp) ?
7676                               NIG_REG_P1_HDRS_AFTER_BASIC :
7677                               NIG_REG_P0_HDRS_AFTER_BASIC,
7678                               IS_MF_SD(bp) ? 7 : 6);
7679
7680                if (CHIP_IS_E3(bp))
7681                        REG_WR(bp, BP_PORT(bp) ?
7682                                   NIG_REG_LLH1_MF_MODE :
7683                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7684        }
7685        if (!CHIP_IS_E3(bp))
7686                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7687
7688        if (!CHIP_IS_E1(bp)) {
7689                /* 0x2 disable mf_ov, 0x1 enable */
7690                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7691                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7692
7693                if (!CHIP_IS_E1x(bp)) {
7694                        val = 0;
7695                        switch (bp->mf_mode) {
7696                        case MULTI_FUNCTION_SD:
7697                                val = 1;
7698                                break;
7699                        case MULTI_FUNCTION_SI:
7700                        case MULTI_FUNCTION_AFEX:
7701                                val = 2;
7702                                break;
7703                        }
7704
7705                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7706                                                  NIG_REG_LLH0_CLS_TYPE), val);
7707                }
7708                {
7709                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7710                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7711                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7712                }
7713        }
7714
7715        /* If SPIO5 is set to generate interrupts, enable it for this port */
7716        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7717        if (val & MISC_SPIO_SPIO5) {
7718                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7719                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7720                val = REG_RD(bp, reg_addr);
7721                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7722                REG_WR(bp, reg_addr, val);
7723        }
7724
7725        if (CHIP_IS_E3B0(bp))
7726                bp->flags |= PTP_SUPPORTED;
7727
7728        return 0;
7729}
7730
7731static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7732{
7733        int reg;
7734        u32 wb_write[2];
7735
7736        if (CHIP_IS_E1(bp))
7737                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7738        else
7739                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7740
7741        wb_write[0] = ONCHIP_ADDR1(addr);
7742        wb_write[1] = ONCHIP_ADDR2(addr);
7743        REG_WR_DMAE(bp, reg, wb_write, 2);
7744}
7745
7746void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7747{
7748        u32 data, ctl, cnt = 100;
7749        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7750        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7751        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7752        u32 sb_bit =  1 << (idu_sb_id%32);
7753        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7754        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7755
7756        /* Not supported in BC mode */
7757        if (CHIP_INT_MODE_IS_BC(bp))
7758                return;
7759
7760        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7761                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7762                IGU_REGULAR_CLEANUP_SET                         |
7763                IGU_REGULAR_BCLEANUP;
7764
7765        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7766              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7767              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7768
7769        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7770                         data, igu_addr_data);
7771        REG_WR(bp, igu_addr_data, data);
7772        barrier();
7773        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7774                          ctl, igu_addr_ctl);
7775        REG_WR(bp, igu_addr_ctl, ctl);
7776        barrier();
7777
7778        /* wait for clean up to finish */
7779        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7780                msleep(20);
7781
7782        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7783                DP(NETIF_MSG_HW,
7784                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7786        }
7787}
7788
7789static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7790{
7791        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7792}
7793
7794static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7795{
7796        u32 i, base = FUNC_ILT_BASE(func);
7797        for (i = base; i < base + ILT_PER_FUNC; i++)
7798                bnx2x_ilt_wr(bp, i, 0);
7799}
7800
7801static void bnx2x_init_searcher(struct bnx2x *bp)
7802{
7803        int port = BP_PORT(bp);
7804        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7805        /* T1 hash bits value determines the T1 number of entries */
7806        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7807}
7808
7809static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7810{
7811        int rc;
7812        struct bnx2x_func_state_params func_params = {NULL};
7813        struct bnx2x_func_switch_update_params *switch_update_params =
7814                &func_params.params.switch_update;
7815
7816        /* Prepare parameters for function state transitions */
7817        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7818        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7819
7820        func_params.f_obj = &bp->func_obj;
7821        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7822
7823        /* Function parameters */
7824        __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7825                  &switch_update_params->changes);
7826        if (suspend)
7827                __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7828                          &switch_update_params->changes);
7829
7830        rc = bnx2x_func_state_change(bp, &func_params);
7831
7832        return rc;
7833}
7834
7835static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7836{
7837        int rc, i, port = BP_PORT(bp);
7838        int vlan_en = 0, mac_en[NUM_MACS];
7839
7840        /* Close input from network */
7841        if (bp->mf_mode == SINGLE_FUNCTION) {
7842                bnx2x_set_rx_filter(&bp->link_params, 0);
7843        } else {
7844                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7845                                   NIG_REG_LLH0_FUNC_EN);
7846                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7847                          NIG_REG_LLH0_FUNC_EN, 0);
7848                for (i = 0; i < NUM_MACS; i++) {
7849                        mac_en[i] = REG_RD(bp, port ?
7850                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7851                                              4 * i) :
7852                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7853                                              4 * i));
7854                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7855                                              4 * i) :
7856                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7857                }
7858        }
7859
7860        /* Close BMC to host */
7861        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7862               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7863
7864        /* Suspend Tx switching to the PF. Completion of this ramrod
7865         * further guarantees that all the packets of that PF / child
7866         * VFs in BRB were processed by the Parser, so it is safe to
7867         * change the NIC_MODE register.
7868         */
7869        rc = bnx2x_func_switch_update(bp, 1);
7870        if (rc) {
7871                BNX2X_ERR("Can't suspend tx-switching!\n");
7872                return rc;
7873        }
7874
7875        /* Change NIC_MODE register */
7876        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7877
7878        /* Open input from network */
7879        if (bp->mf_mode == SINGLE_FUNCTION) {
7880                bnx2x_set_rx_filter(&bp->link_params, 1);
7881        } else {
7882                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7883                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7884                for (i = 0; i < NUM_MACS; i++) {
7885                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7886                                              4 * i) :
7887                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7888                                  mac_en[i]);
7889                }
7890        }
7891
7892        /* Enable BMC to host */
7893        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7894               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7895
7896        /* Resume Tx switching to the PF */
7897        rc = bnx2x_func_switch_update(bp, 0);
7898        if (rc) {
7899                BNX2X_ERR("Can't resume tx-switching!\n");
7900                return rc;
7901        }
7902
7903        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7904        return 0;
7905}
7906
7907int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7908{
7909        int rc;
7910
7911        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7912
7913        if (CONFIGURE_NIC_MODE(bp)) {
7914                /* Configure searcher as part of function hw init */
7915                bnx2x_init_searcher(bp);
7916
7917                /* Reset NIC mode */
7918                rc = bnx2x_reset_nic_mode(bp);
7919                if (rc)
7920                        BNX2X_ERR("Can't change NIC mode!\n");
7921                return rc;
7922        }
7923
7924        return 0;
7925}
7926
7927/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929 * the addresses of the transaction, resulting in was-error bit set in the pci
7930 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931 * to clear the interrupt which detected this from the pglueb and the was done
7932 * bit
7933 */
7934static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7935{
7936        if (!CHIP_IS_E1x(bp))
7937                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7938                       1 << BP_ABS_FUNC(bp));
7939}
7940
7941static int bnx2x_init_hw_func(struct bnx2x *bp)
7942{
7943        int port = BP_PORT(bp);
7944        int func = BP_FUNC(bp);
7945        int init_phase = PHASE_PF0 + func;
7946        struct bnx2x_ilt *ilt = BP_ILT(bp);
7947        u16 cdu_ilt_start;
7948        u32 addr, val;
7949        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7950        int i, main_mem_width, rc;
7951
7952        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7953
7954        /* FLR cleanup - hmmm */
7955        if (!CHIP_IS_E1x(bp)) {
7956                rc = bnx2x_pf_flr_clnup(bp);
7957                if (rc) {
7958                        bnx2x_fw_dump(bp);
7959                        return rc;
7960                }
7961        }
7962
7963        /* set MSI reconfigure capability */
7964        if (bp->common.int_block == INT_BLOCK_HC) {
7965                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7966                val = REG_RD(bp, addr);
7967                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7968                REG_WR(bp, addr, val);
7969        }
7970
7971        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7972        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7973
7974        ilt = BP_ILT(bp);
7975        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7976
7977        if (IS_SRIOV(bp))
7978                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7979        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7980
7981        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982         * those of the VFs, so start line should be reset
7983         */
7984        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7986                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7987                ilt->lines[cdu_ilt_start + i].page_mapping =
7988                        bp->context[i].cxt_mapping;
7989                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7990        }
7991
7992        bnx2x_ilt_init_op(bp, INITOP_SET);
7993
7994        if (!CONFIGURE_NIC_MODE(bp)) {
7995                bnx2x_init_searcher(bp);
7996                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7997                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7998        } else {
7999                /* Set NIC mode */
8000                REG_WR(bp, PRS_REG_NIC_MODE, 1);
8001                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8002        }
8003
8004        if (!CHIP_IS_E1x(bp)) {
8005                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8006
8007                /* Turn on a single ISR mode in IGU if driver is going to use
8008                 * INT#x or MSI
8009                 */
8010                if (!(bp->flags & USING_MSIX_FLAG))
8011                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8012                /*
8013                 * Timers workaround bug: function init part.
8014                 * Need to wait 20msec after initializing ILT,
8015                 * needed to make sure there are no requests in
8016                 * one of the PXP internal queues with "old" ILT addresses
8017                 */
8018                msleep(20);
8019                /*
8020                 * Master enable - Due to WB DMAE writes performed before this
8021                 * register is re-initialized as part of the regular function
8022                 * init
8023                 */
8024                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8025                /* Enable the function in IGU */
8026                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8027        }
8028
8029        bp->dmae_ready = 1;
8030
8031        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8032
8033        bnx2x_clean_pglue_errors(bp);
8034
8035        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8036        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8037        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8038        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8039        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8040        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8041        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8042        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8043        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8044        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8045        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8046        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8047        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8048
8049        if (!CHIP_IS_E1x(bp))
8050                REG_WR(bp, QM_REG_PF_EN, 1);
8051
8052        if (!CHIP_IS_E1x(bp)) {
8053                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8057        }
8058        bnx2x_init_block(bp, BLOCK_QM, init_phase);
8059
8060        bnx2x_init_block(bp, BLOCK_TM, init_phase);
8061        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8062        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8063
8064        bnx2x_iov_init_dq(bp);
8065
8066        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8067        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8068        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8069        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8070        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8071        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8072        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8073        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8074        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8075        if (!CHIP_IS_E1x(bp))
8076                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8077
8078        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8079
8080        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8081
8082        if (!CHIP_IS_E1x(bp))
8083                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8084
8085        if (IS_MF(bp)) {
8086                if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8087                        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8088                        REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8089                               bp->mf_ov);
8090                }
8091        }
8092
8093        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8094
8095        /* HC init per function */
8096        if (bp->common.int_block == INT_BLOCK_HC) {
8097                if (CHIP_IS_E1H(bp)) {
8098                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099
8100                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8101                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8102                }
8103                bnx2x_init_block(bp, BLOCK_HC, init_phase);
8104
8105        } else {
8106                int num_segs, sb_idx, prod_offset;
8107
8108                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109
8110                if (!CHIP_IS_E1x(bp)) {
8111                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8112                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8113                }
8114
8115                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8116
8117                if (!CHIP_IS_E1x(bp)) {
8118                        int dsb_idx = 0;
8119                        /**
8120                         * Producer memory:
8121                         * E2 mode: address 0-135 match to the mapping memory;
8122                         * 136 - PF0 default prod; 137 - PF1 default prod;
8123                         * 138 - PF2 default prod; 139 - PF3 default prod;
8124                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
8125                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
8126                         * 144-147 reserved.
8127                         *
8128                         * E1.5 mode - In backward compatible mode;
8129                         * for non default SB; each even line in the memory
8130                         * holds the U producer and each odd line hold
8131                         * the C producer. The first 128 producers are for
8132                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133                         * producers are for the DSB for each PF.
8134                         * Each PF has five segments: (the order inside each
8135                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137                         * 144-147 attn prods;
8138                         */
8139                        /* non-default-status-blocks */
8140                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8141                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8142                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8143                                prod_offset = (bp->igu_base_sb + sb_idx) *
8144                                        num_segs;
8145
8146                                for (i = 0; i < num_segs; i++) {
8147                                        addr = IGU_REG_PROD_CONS_MEMORY +
8148                                                        (prod_offset + i) * 4;
8149                                        REG_WR(bp, addr, 0);
8150                                }
8151                                /* send consumer update with value 0 */
8152                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8153                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8154                                bnx2x_igu_clear_sb(bp,
8155                                                   bp->igu_base_sb + sb_idx);
8156                        }
8157
8158                        /* default-status-blocks */
8159                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8160                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8161
8162                        if (CHIP_MODE_IS_4_PORT(bp))
8163                                dsb_idx = BP_FUNC(bp);
8164                        else
8165                                dsb_idx = BP_VN(bp);
8166
8167                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8168                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
8169                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8170
8171                        /*
8172                         * igu prods come in chunks of E1HVN_MAX (4) -
8173                         * does not matters what is the current chip mode
8174                         */
8175                        for (i = 0; i < (num_segs * E1HVN_MAX);
8176                             i += E1HVN_MAX) {
8177                                addr = IGU_REG_PROD_CONS_MEMORY +
8178                                                        (prod_offset + i)*4;
8179                                REG_WR(bp, addr, 0);
8180                        }
8181                        /* send consumer update with 0 */
8182                        if (CHIP_INT_MODE_IS_BC(bp)) {
8183                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8185                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
8187                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8188                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
8189                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
8191                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193                        } else {
8194                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8196                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8198                        }
8199                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8200
8201                        /* !!! These should become driver const once
8202                           rf-tool supports split-68 const */
8203                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8204                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8205                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8206                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8207                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8208                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8209                }
8210        }
8211
8212        /* Reset PCIE errors for debug */
8213        REG_WR(bp, 0x2114, 0xffffffff);
8214        REG_WR(bp, 0x2120, 0xffffffff);
8215
8216        if (CHIP_IS_E1x(bp)) {
8217                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8218                main_mem_base = HC_REG_MAIN_MEMORY +
8219                                BP_PORT(bp) * (main_mem_size * 4);
8220                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8221                main_mem_width = 8;
8222
8223                val = REG_RD(bp, main_mem_prty_clr);
8224                if (val)
8225                        DP(NETIF_MSG_HW,
8226                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8227                           val);
8228
8229                /* Clear "false" parity errors in MSI-X table */
8230                for (i = main_mem_base;
8231                     i < main_mem_base + main_mem_size * 4;
8232                     i += main_mem_width) {
8233                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
8234                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8235                                         i, main_mem_width / 4);
8236                }
8237                /* Clear HC parity attention */
8238                REG_RD(bp, main_mem_prty_clr);
8239        }
8240
8241#ifdef BNX2X_STOP_ON_ERROR
8242        /* Enable STORMs SP logging */
8243        REG_WR8(bp, BAR_USTRORM_INTMEM +
8244               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8245        REG_WR8(bp, BAR_TSTRORM_INTMEM +
8246               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8247        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8248               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8249        REG_WR8(bp, BAR_XSTRORM_INTMEM +
8250               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8251#endif
8252
8253        bnx2x_phy_probe(&bp->link_params);
8254
8255        return 0;
8256}
8257
8258void bnx2x_free_mem_cnic(struct bnx2x *bp)
8259{
8260        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8261
8262        if (!CHIP_IS_E1x(bp))
8263                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8264                               sizeof(struct host_hc_status_block_e2));
8265        else
8266                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8267                               sizeof(struct host_hc_status_block_e1x));
8268
8269        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8270}
8271
8272void bnx2x_free_mem(struct bnx2x *bp)
8273{
8274        int i;
8275
8276        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8277                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8278
8279        if (IS_VF(bp))
8280                return;
8281
8282        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8283                       sizeof(struct host_sp_status_block));
8284
8285        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8286                       sizeof(struct bnx2x_slowpath));
8287
8288        for (i = 0; i < L2_ILT_LINES(bp); i++)
8289                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8290                               bp->context[i].size);
8291        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8292
8293        BNX2X_FREE(bp->ilt->lines);
8294
8295        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8296
8297        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8298                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8299
8300        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8301
8302        bnx2x_iov_free_mem(bp);
8303}
8304
8305int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8306{
8307        if (!CHIP_IS_E1x(bp)) {
8308                /* size = the status block + ramrod buffers */
8309                bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310                                                    sizeof(struct host_hc_status_block_e2));
8311                if (!bp->cnic_sb.e2_sb)
8312                        goto alloc_mem_err;
8313        } else {
8314                bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315                                                     sizeof(struct host_hc_status_block_e1x));
8316                if (!bp->cnic_sb.e1x_sb)
8317                        goto alloc_mem_err;
8318        }
8319
8320        if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8321                /* allocate searcher T2 table, as it wasn't allocated before */
8322                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8323                if (!bp->t2)
8324                        goto alloc_mem_err;
8325        }
8326
8327        /* write address to which L5 should insert its values */
8328        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8329                &bp->slowpath->drv_info_to_mcp;
8330
8331        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8332                goto alloc_mem_err;
8333
8334        return 0;
8335
8336alloc_mem_err:
8337        bnx2x_free_mem_cnic(bp);
8338        BNX2X_ERR("Can't allocate memory\n");
8339        return -ENOMEM;
8340}
8341
8342int bnx2x_alloc_mem(struct bnx2x *bp)
8343{
8344        int i, allocated, context_size;
8345
8346        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8347                /* allocate searcher T2 table */
8348                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8349                if (!bp->t2)
8350                        goto alloc_mem_err;
8351        }
8352
8353        bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8354                                             sizeof(struct host_sp_status_block));
8355        if (!bp->def_status_blk)
8356                goto alloc_mem_err;
8357
8358        bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8359                                       sizeof(struct bnx2x_slowpath));
8360        if (!bp->slowpath)
8361                goto alloc_mem_err;
8362
8363        /* Allocate memory for CDU context:
8364         * This memory is allocated separately and not in the generic ILT
8365         * functions because CDU differs in few aspects:
8366         * 1. There are multiple entities allocating memory for context -
8367         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368         * its own ILT lines.
8369         * 2. Since CDU page-size is not a single 4KB page (which is the case
8370         * for the other ILT clients), to be efficient we want to support
8371         * allocation of sub-page-size in the last entry.
8372         * 3. Context pointers are used by the driver to pass to FW / update
8373         * the context (for the other ILT clients the pointers are used just to
8374         * free the memory during unload).
8375         */
8376        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8377
8378        for (i = 0, allocated = 0; allocated < context_size; i++) {
8379                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8380                                          (context_size - allocated));
8381                bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8382                                                      bp->context[i].size);
8383                if (!bp->context[i].vcxt)
8384                        goto alloc_mem_err;
8385                allocated += bp->context[i].size;
8386        }
8387        bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8388                                 GFP_KERNEL);
8389        if (!bp->ilt->lines)
8390                goto alloc_mem_err;
8391
8392        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8393                goto alloc_mem_err;
8394
8395        if (bnx2x_iov_alloc_mem(bp))
8396                goto alloc_mem_err;
8397
8398        /* Slow path ring */
8399        bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8400        if (!bp->spq)
8401                goto alloc_mem_err;
8402
8403        /* EQ */
8404        bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8405                                      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8406        if (!bp->eq_ring)
8407                goto alloc_mem_err;
8408
8409        return 0;
8410
8411alloc_mem_err:
8412        bnx2x_free_mem(bp);
8413        BNX2X_ERR("Can't allocate memory\n");
8414        return -ENOMEM;
8415}
8416
8417/*
8418 * Init service functions
8419 */
8420
8421int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8422                      struct bnx2x_vlan_mac_obj *obj, bool set,
8423                      int mac_type, unsigned long *ramrod_flags)
8424{
8425        int rc;
8426        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8427
8428        memset(&ramrod_param, 0, sizeof(ramrod_param));
8429
8430        /* Fill general parameters */
8431        ramrod_param.vlan_mac_obj = obj;
8432        ramrod_param.ramrod_flags = *ramrod_flags;
8433
8434        /* Fill a user request section if needed */
8435        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8436                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8437
8438                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8439
8440                /* Set the command: ADD or DEL */
8441                if (set)
8442                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8443                else
8444                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8445        }
8446
8447        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8448
8449        if (rc == -EEXIST) {
8450                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8451                /* do not treat adding same MAC as error */
8452                rc = 0;
8453        } else if (rc < 0)
8454                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8455
8456        return rc;
8457}
8458
8459int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8460                       struct bnx2x_vlan_mac_obj *obj, bool set,
8461                       unsigned long *ramrod_flags)
8462{
8463        int rc;
8464        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8465
8466        memset(&ramrod_param, 0, sizeof(ramrod_param));
8467
8468        /* Fill general parameters */
8469        ramrod_param.vlan_mac_obj = obj;
8470        ramrod_param.ramrod_flags = *ramrod_flags;
8471
8472        /* Fill a user request section if needed */
8473        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8474                ramrod_param.user_req.u.vlan.vlan = vlan;
8475                __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8476                /* Set the command: ADD or DEL */
8477                if (set)
8478                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8479                else
8480                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8481        }
8482
8483        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8484
8485        if (rc == -EEXIST) {
8486                /* Do not treat adding same vlan as error. */
8487                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8488                rc = 0;
8489        } else if (rc < 0) {
8490                BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8491        }
8492
8493        return rc;
8494}
8495
8496void bnx2x_clear_vlan_info(struct bnx2x *bp)
8497{
8498        struct bnx2x_vlan_entry *vlan;
8499
8500        /* Mark that hw forgot all entries */
8501        list_for_each_entry(vlan, &bp->vlan_reg, link)
8502                vlan->hw = false;
8503
8504        bp->vlan_cnt = 0;
8505}
8506
8507static int bnx2x_del_all_vlans(struct bnx2x *bp)
8508{
8509        struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8510        unsigned long ramrod_flags = 0, vlan_flags = 0;
8511        int rc;
8512
8513        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8514        __set_bit(BNX2X_VLAN, &vlan_flags);
8515        rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8516        if (rc)
8517                return rc;
8518
8519        bnx2x_clear_vlan_info(bp);
8520
8521        return 0;
8522}
8523
8524int bnx2x_del_all_macs(struct bnx2x *bp,
8525                       struct bnx2x_vlan_mac_obj *mac_obj,
8526                       int mac_type, bool wait_for_comp)
8527{
8528        int rc;
8529        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8530
8531        /* Wait for completion of requested */
8532        if (wait_for_comp)
8533                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8534
8535        /* Set the mac type of addresses we want to clear */
8536        __set_bit(mac_type, &vlan_mac_flags);
8537
8538        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8539        if (rc < 0)
8540                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8541
8542        return rc;
8543}
8544
8545int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8546{
8547        if (IS_PF(bp)) {
8548                unsigned long ramrod_flags = 0;
8549
8550                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8551                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8552                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8553                                         &bp->sp_objs->mac_obj, set,
8554                                         BNX2X_ETH_MAC, &ramrod_flags);
8555        } else { /* vf */
8556                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8557                                             bp->fp->index, set);
8558        }
8559}
8560
8561int bnx2x_setup_leading(struct bnx2x *bp)
8562{
8563        if (IS_PF(bp))
8564                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8565        else /* VF */
8566                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8567}
8568
8569/**
8570 * bnx2x_set_int_mode - configure interrupt mode
8571 *
8572 * @bp:         driver handle
8573 *
8574 * In case of MSI-X it will also try to enable MSI-X.
8575 */
8576int bnx2x_set_int_mode(struct bnx2x *bp)
8577{
8578        int rc = 0;
8579
8580        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8581                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8582                return -EINVAL;
8583        }
8584
8585        switch (int_mode) {
8586        case BNX2X_INT_MODE_MSIX:
8587                /* attempt to enable msix */
8588                rc = bnx2x_enable_msix(bp);
8589
8590                /* msix attained */
8591                if (!rc)
8592                        return 0;
8593
8594                /* vfs use only msix */
8595                if (rc && IS_VF(bp))
8596                        return rc;
8597
8598                /* failed to enable multiple MSI-X */
8599                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8600                               bp->num_queues,
8601                               1 + bp->num_cnic_queues);
8602
8603                fallthrough;
8604        case BNX2X_INT_MODE_MSI:
8605                bnx2x_enable_msi(bp);
8606
8607                fallthrough;
8608        case BNX2X_INT_MODE_INTX:
8609                bp->num_ethernet_queues = 1;
8610                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8611                BNX2X_DEV_INFO("set number of queues to 1\n");
8612                break;
8613        default:
8614                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8615                return -EINVAL;
8616        }
8617        return 0;
8618}
8619
8620/* must be called prior to any HW initializations */
8621static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8622{
8623        if (IS_SRIOV(bp))
8624                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8625        return L2_ILT_LINES(bp);
8626}
8627
8628void bnx2x_ilt_set_info(struct bnx2x *bp)
8629{
8630        struct ilt_client_info *ilt_client;
8631        struct bnx2x_ilt *ilt = BP_ILT(bp);
8632        u16 line = 0;
8633
8634        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8635        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8636
8637        /* CDU */
8638        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8639        ilt_client->client_num = ILT_CLIENT_CDU;
8640        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8641        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8642        ilt_client->start = line;
8643        line += bnx2x_cid_ilt_lines(bp);
8644
8645        if (CNIC_SUPPORT(bp))
8646                line += CNIC_ILT_LINES;
8647        ilt_client->end = line - 1;
8648
8649        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650           ilt_client->start,
8651           ilt_client->end,
8652           ilt_client->page_size,
8653           ilt_client->flags,
8654           ilog2(ilt_client->page_size >> 12));
8655
8656        /* QM */
8657        if (QM_INIT(bp->qm_cid_count)) {
8658                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8659                ilt_client->client_num = ILT_CLIENT_QM;
8660                ilt_client->page_size = QM_ILT_PAGE_SZ;
8661                ilt_client->flags = 0;
8662                ilt_client->start = line;
8663
8664                /* 4 bytes for each cid */
8665                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8666                                                         QM_ILT_PAGE_SZ);
8667
8668                ilt_client->end = line - 1;
8669
8670                DP(NETIF_MSG_IFUP,
8671                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8672                   ilt_client->start,
8673                   ilt_client->end,
8674                   ilt_client->page_size,
8675                   ilt_client->flags,
8676                   ilog2(ilt_client->page_size >> 12));
8677        }
8678
8679        if (CNIC_SUPPORT(bp)) {
8680                /* SRC */
8681                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8682                ilt_client->client_num = ILT_CLIENT_SRC;
8683                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8684                ilt_client->flags = 0;
8685                ilt_client->start = line;
8686                line += SRC_ILT_LINES;
8687                ilt_client->end = line - 1;
8688
8689                DP(NETIF_MSG_IFUP,
8690                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8691                   ilt_client->start,
8692                   ilt_client->end,
8693                   ilt_client->page_size,
8694                   ilt_client->flags,
8695                   ilog2(ilt_client->page_size >> 12));
8696
8697                /* TM */
8698                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8699                ilt_client->client_num = ILT_CLIENT_TM;
8700                ilt_client->page_size = TM_ILT_PAGE_SZ;
8701                ilt_client->flags = 0;
8702                ilt_client->start = line;
8703                line += TM_ILT_LINES;
8704                ilt_client->end = line - 1;
8705
8706                DP(NETIF_MSG_IFUP,
8707                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8708                   ilt_client->start,
8709                   ilt_client->end,
8710                   ilt_client->page_size,
8711                   ilt_client->flags,
8712                   ilog2(ilt_client->page_size >> 12));
8713        }
8714
8715        BUG_ON(line > ILT_MAX_LINES);
8716}
8717
8718/**
8719 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8720 *
8721 * @bp:                 driver handle
8722 * @fp:                 pointer to fastpath
8723 * @init_params:        pointer to parameters structure
8724 *
8725 * parameters configured:
8726 *      - HC configuration
8727 *      - Queue's CDU context
8728 */
8729static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8730        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8731{
8732        u8 cos;
8733        int cxt_index, cxt_offset;
8734
8735        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8736        if (!IS_FCOE_FP(fp)) {
8737                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8738                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8739
8740                /* If HC is supported, enable host coalescing in the transition
8741                 * to INIT state.
8742                 */
8743                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8744                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8745
8746                /* HC rate */
8747                init_params->rx.hc_rate = bp->rx_ticks ?
8748                        (1000000 / bp->rx_ticks) : 0;
8749                init_params->tx.hc_rate = bp->tx_ticks ?
8750                        (1000000 / bp->tx_ticks) : 0;
8751
8752                /* FW SB ID */
8753                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8754                        fp->fw_sb_id;
8755
8756                /*
8757                 * CQ index among the SB indices: FCoE clients uses the default
8758                 * SB, therefore it's different.
8759                 */
8760                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8761                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8762        }
8763
8764        /* set maximum number of COSs supported by this queue */
8765        init_params->max_cos = fp->max_cos;
8766
8767        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8768            fp->index, init_params->max_cos);
8769
8770        /* set the context pointers queue object */
8771        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8772                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8773                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8774                                ILT_PAGE_CIDS);
8775                init_params->cxts[cos] =
8776                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8777        }
8778}
8779
8780static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8781                        struct bnx2x_queue_state_params *q_params,
8782                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8783                        int tx_index, bool leading)
8784{
8785        memset(tx_only_params, 0, sizeof(*tx_only_params));
8786
8787        /* Set the command */
8788        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8789
8790        /* Set tx-only QUEUE flags: don't zero statistics */
8791        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8792
8793        /* choose the index of the cid to send the slow path on */
8794        tx_only_params->cid_index = tx_index;
8795
8796        /* Set general TX_ONLY_SETUP parameters */
8797        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8798
8799        /* Set Tx TX_ONLY_SETUP parameters */
8800        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8801
8802        DP(NETIF_MSG_IFUP,
8803           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8804           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8805           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8806           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8807
8808        /* send the ramrod */
8809        return bnx2x_queue_state_change(bp, q_params);
8810}
8811
8812/**
8813 * bnx2x_setup_queue - setup queue
8814 *
8815 * @bp:         driver handle
8816 * @fp:         pointer to fastpath
8817 * @leading:    is leading
8818 *
8819 * This function performs 2 steps in a Queue state machine
8820 *      actually: 1) RESET->INIT 2) INIT->SETUP
8821 */
8822
8823int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8824                       bool leading)
8825{
8826        struct bnx2x_queue_state_params q_params = {NULL};
8827        struct bnx2x_queue_setup_params *setup_params =
8828                                                &q_params.params.setup;
8829        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8830                                                &q_params.params.tx_only;
8831        int rc;
8832        u8 tx_index;
8833
8834        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8835
8836        /* reset IGU state skip FCoE L2 queue */
8837        if (!IS_FCOE_FP(fp))
8838                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8839                             IGU_INT_ENABLE, 0);
8840
8841        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8842        /* We want to wait for completion in this context */
8843        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8844
8845        /* Prepare the INIT parameters */
8846        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8847
8848        /* Set the command */
8849        q_params.cmd = BNX2X_Q_CMD_INIT;
8850
8851        /* Change the state to INIT */
8852        rc = bnx2x_queue_state_change(bp, &q_params);
8853        if (rc) {
8854                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8855                return rc;
8856        }
8857
8858        DP(NETIF_MSG_IFUP, "init complete\n");
8859
8860        /* Now move the Queue to the SETUP state... */
8861        memset(setup_params, 0, sizeof(*setup_params));
8862
8863        /* Set QUEUE flags */
8864        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8865
8866        /* Set general SETUP parameters */
8867        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8868                                FIRST_TX_COS_INDEX);
8869
8870        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8871                            &setup_params->rxq_params);
8872
8873        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8874                           FIRST_TX_COS_INDEX);
8875
8876        /* Set the command */
8877        q_params.cmd = BNX2X_Q_CMD_SETUP;
8878
8879        if (IS_FCOE_FP(fp))
8880                bp->fcoe_init = true;
8881
8882        /* Change the state to SETUP */
8883        rc = bnx2x_queue_state_change(bp, &q_params);
8884        if (rc) {
8885                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8886                return rc;
8887        }
8888
8889        /* loop through the relevant tx-only indices */
8890        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8891              tx_index < fp->max_cos;
8892              tx_index++) {
8893
8894                /* prepare and send tx-only ramrod*/
8895                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8896                                          tx_only_params, tx_index, leading);
8897                if (rc) {
8898                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8899                                  fp->index, tx_index);
8900                        return rc;
8901                }
8902        }
8903
8904        return rc;
8905}
8906
8907static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8908{
8909        struct bnx2x_fastpath *fp = &bp->fp[index];
8910        struct bnx2x_fp_txdata *txdata;
8911        struct bnx2x_queue_state_params q_params = {NULL};
8912        int rc, tx_index;
8913
8914        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8915
8916        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8917        /* We want to wait for completion in this context */
8918        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8919
8920        /* close tx-only connections */
8921        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8922             tx_index < fp->max_cos;
8923             tx_index++){
8924
8925                /* ascertain this is a normal queue*/
8926                txdata = fp->txdata_ptr[tx_index];
8927
8928                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8929                                                        txdata->txq_index);
8930
8931                /* send halt terminate on tx-only connection */
8932                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8933                memset(&q_params.params.terminate, 0,
8934                       sizeof(q_params.params.terminate));
8935                q_params.params.terminate.cid_index = tx_index;
8936
8937                rc = bnx2x_queue_state_change(bp, &q_params);
8938                if (rc)
8939                        return rc;
8940
8941                /* send halt terminate on tx-only connection */
8942                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8943                memset(&q_params.params.cfc_del, 0,
8944                       sizeof(q_params.params.cfc_del));
8945                q_params.params.cfc_del.cid_index = tx_index;
8946                rc = bnx2x_queue_state_change(bp, &q_params);
8947                if (rc)
8948                        return rc;
8949        }
8950        /* Stop the primary connection: */
8951        /* ...halt the connection */
8952        q_params.cmd = BNX2X_Q_CMD_HALT;
8953        rc = bnx2x_queue_state_change(bp, &q_params);
8954        if (rc)
8955                return rc;
8956
8957        /* ...terminate the connection */
8958        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8959        memset(&q_params.params.terminate, 0,
8960               sizeof(q_params.params.terminate));
8961        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8962        rc = bnx2x_queue_state_change(bp, &q_params);
8963        if (rc)
8964                return rc;
8965        /* ...delete cfc entry */
8966        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8967        memset(&q_params.params.cfc_del, 0,
8968               sizeof(q_params.params.cfc_del));
8969        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8970        return bnx2x_queue_state_change(bp, &q_params);
8971}
8972
8973static void bnx2x_reset_func(struct bnx2x *bp)
8974{
8975        int port = BP_PORT(bp);
8976        int func = BP_FUNC(bp);
8977        int i;
8978
8979        /* Disable the function in the FW */
8980        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8981        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8982        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8983        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8984
8985        /* FP SBs */
8986        for_each_eth_queue(bp, i) {
8987                struct bnx2x_fastpath *fp = &bp->fp[i];
8988                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8989                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8990                           SB_DISABLED);
8991        }
8992
8993        if (CNIC_LOADED(bp))
8994                /* CNIC SB */
8995                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8996                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8997                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8998
8999        /* SP SB */
9000        REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9002                SB_DISABLED);
9003
9004        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9005                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9006                       0);
9007
9008        /* Configure IGU */
9009        if (bp->common.int_block == INT_BLOCK_HC) {
9010                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9011                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9012        } else {
9013                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9014                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9015        }
9016
9017        if (CNIC_LOADED(bp)) {
9018                /* Disable Timer scan */
9019                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9020                /*
9021                 * Wait for at least 10ms and up to 2 second for the timers
9022                 * scan to complete
9023                 */
9024                for (i = 0; i < 200; i++) {
9025                        usleep_range(10000, 20000);
9026                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9027                                break;
9028                }
9029        }
9030        /* Clear ILT */
9031        bnx2x_clear_func_ilt(bp, func);
9032
9033        /* Timers workaround bug for E2: if this is vnic-3,
9034         * we need to set the entire ilt range for this timers.
9035         */
9036        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9037                struct ilt_client_info ilt_cli;
9038                /* use dummy TM client */
9039                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9040                ilt_cli.start = 0;
9041                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9042                ilt_cli.client_num = ILT_CLIENT_TM;
9043
9044                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9045        }
9046
9047        /* this assumes that reset_port() called before reset_func()*/
9048        if (!CHIP_IS_E1x(bp))
9049                bnx2x_pf_disable(bp);
9050
9051        bp->dmae_ready = 0;
9052}
9053
9054static void bnx2x_reset_port(struct bnx2x *bp)
9055{
9056        int port = BP_PORT(bp);
9057        u32 val;
9058
9059        /* Reset physical Link */
9060        bnx2x__link_reset(bp);
9061
9062        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9063
9064        /* Do not rcv packets to BRB */
9065        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9066        /* Do not direct rcv packets that are not for MCP to the BRB */
9067        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9068                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9069
9070        /* Configure AEU */
9071        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9072
9073        msleep(100);
9074        /* Check for BRB port occupancy */
9075        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9076        if (val)
9077                DP(NETIF_MSG_IFDOWN,
9078                   "BRB1 is not empty  %d blocks are occupied\n", val);
9079
9080        /* TODO: Close Doorbell port? */
9081}
9082
9083static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9084{
9085        struct bnx2x_func_state_params func_params = {NULL};
9086
9087        /* Prepare parameters for function state transitions */
9088        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9089
9090        func_params.f_obj = &bp->func_obj;
9091        func_params.cmd = BNX2X_F_CMD_HW_RESET;
9092
9093        func_params.params.hw_init.load_phase = load_code;
9094
9095        return bnx2x_func_state_change(bp, &func_params);
9096}
9097
9098static int bnx2x_func_stop(struct bnx2x *bp)
9099{
9100        struct bnx2x_func_state_params func_params = {NULL};
9101        int rc;
9102
9103        /* Prepare parameters for function state transitions */
9104        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9105        func_params.f_obj = &bp->func_obj;
9106        func_params.cmd = BNX2X_F_CMD_STOP;
9107
9108        /*
9109         * Try to stop the function the 'good way'. If fails (in case
9110         * of a parity error during bnx2x_chip_cleanup()) and we are
9111         * not in a debug mode, perform a state transaction in order to
9112         * enable further HW_RESET transaction.
9113         */
9114        rc = bnx2x_func_state_change(bp, &func_params);
9115        if (rc) {
9116#ifdef BNX2X_STOP_ON_ERROR
9117                return rc;
9118#else
9119                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9120                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9121                return bnx2x_func_state_change(bp, &func_params);
9122#endif
9123        }
9124
9125        return 0;
9126}
9127
9128/**
9129 * bnx2x_send_unload_req - request unload mode from the MCP.
9130 *
9131 * @bp:                 driver handle
9132 * @unload_mode:        requested function's unload mode
9133 *
9134 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9135 */
9136u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9137{
9138        u32 reset_code = 0;
9139        int port = BP_PORT(bp);
9140
9141        /* Select the UNLOAD request mode */
9142        if (unload_mode == UNLOAD_NORMAL)
9143                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9144
9145        else if (bp->flags & NO_WOL_FLAG)
9146                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9147
9148        else if (bp->wol) {
9149                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9150                u8 *mac_addr = bp->dev->dev_addr;
9151                struct pci_dev *pdev = bp->pdev;
9152                u32 val;
9153                u16 pmc;
9154
9155                /* The mac address is written to entries 1-4 to
9156                 * preserve entry 0 which is used by the PMF
9157                 */
9158                u8 entry = (BP_VN(bp) + 1)*8;
9159
9160                val = (mac_addr[0] << 8) | mac_addr[1];
9161                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9162
9163                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9164                      (mac_addr[4] << 8) | mac_addr[5];
9165                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9166
9167                /* Enable the PME and clear the status */
9168                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9169                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9170                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9171
9172                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9173
9174        } else
9175                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9176
9177        /* Send the request to the MCP */
9178        if (!BP_NOMCP(bp))
9179                reset_code = bnx2x_fw_command(bp, reset_code, 0);
9180        else {
9181                int path = BP_PATH(bp);
9182
9183                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9184                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9185                   bnx2x_load_count[path][2]);
9186                bnx2x_load_count[path][0]--;
9187                bnx2x_load_count[path][1 + port]--;
9188                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9189                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9190                   bnx2x_load_count[path][2]);
9191                if (bnx2x_load_count[path][0] == 0)
9192                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9193                else if (bnx2x_load_count[path][1 + port] == 0)
9194                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9195                else
9196                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9197        }
9198
9199        return reset_code;
9200}
9201
9202/**
9203 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9204 *
9205 * @bp:         driver handle
9206 * @keep_link:          true iff link should be kept up
9207 */
9208void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9209{
9210        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9211
9212        /* Report UNLOAD_DONE to MCP */
9213        if (!BP_NOMCP(bp))
9214                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9215}
9216
9217static int bnx2x_func_wait_started(struct bnx2x *bp)
9218{
9219        int tout = 50;
9220        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9221
9222        if (!bp->port.pmf)
9223                return 0;
9224
9225        /*
9226         * (assumption: No Attention from MCP at this stage)
9227         * PMF probably in the middle of TX disable/enable transaction
9228         * 1. Sync IRS for default SB
9229         * 2. Sync SP queue - this guarantees us that attention handling started
9230         * 3. Wait, that TX disable/enable transaction completes
9231         *
9232         * 1+2 guarantee that if DCBx attention was scheduled it already changed
9233         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9234         * received completion for the transaction the state is TX_STOPPED.
9235         * State will return to STARTED after completion of TX_STOPPED-->STARTED
9236         * transaction.
9237         */
9238
9239        /* make sure default SB ISR is done */
9240        if (msix)
9241                synchronize_irq(bp->msix_table[0].vector);
9242        else
9243                synchronize_irq(bp->pdev->irq);
9244
9245        flush_workqueue(bnx2x_wq);
9246        flush_workqueue(bnx2x_iov_wq);
9247
9248        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9249                                BNX2X_F_STATE_STARTED && tout--)
9250                msleep(20);
9251
9252        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9253                                                BNX2X_F_STATE_STARTED) {
9254#ifdef BNX2X_STOP_ON_ERROR
9255                BNX2X_ERR("Wrong function state\n");
9256                return -EBUSY;
9257#else
9258                /*
9259                 * Failed to complete the transaction in a "good way"
9260                 * Force both transactions with CLR bit
9261                 */
9262                struct bnx2x_func_state_params func_params = {NULL};
9263
9264                DP(NETIF_MSG_IFDOWN,
9265                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9266
9267                func_params.f_obj = &bp->func_obj;
9268                __set_bit(RAMROD_DRV_CLR_ONLY,
9269                                        &func_params.ramrod_flags);
9270
9271                /* STARTED-->TX_ST0PPED */
9272                func_params.cmd = BNX2X_F_CMD_TX_STOP;
9273                bnx2x_func_state_change(bp, &func_params);
9274
9275                /* TX_ST0PPED-->STARTED */
9276                func_params.cmd = BNX2X_F_CMD_TX_START;
9277                return bnx2x_func_state_change(bp, &func_params);
9278#endif
9279        }
9280
9281        return 0;
9282}
9283
9284static void bnx2x_disable_ptp(struct bnx2x *bp)
9285{
9286        int port = BP_PORT(bp);
9287
9288        /* Disable sending PTP packets to host */
9289        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9290               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9291
9292        /* Reset PTP event detection rules */
9293        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9294               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9295        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9296               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9297        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9298               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9299        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9300               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9301
9302        /* Disable the PTP feature */
9303        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9304               NIG_REG_P0_PTP_EN, 0x0);
9305}
9306
9307/* Called during unload, to stop PTP-related stuff */
9308static void bnx2x_stop_ptp(struct bnx2x *bp)
9309{
9310        /* Cancel PTP work queue. Should be done after the Tx queues are
9311         * drained to prevent additional scheduling.
9312         */
9313        cancel_work_sync(&bp->ptp_task);
9314
9315        if (bp->ptp_tx_skb) {
9316                dev_kfree_skb_any(bp->ptp_tx_skb);
9317                bp->ptp_tx_skb = NULL;
9318        }
9319
9320        /* Disable PTP in HW */
9321        bnx2x_disable_ptp(bp);
9322
9323        DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9324}
9325
9326void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9327{
9328        int port = BP_PORT(bp);
9329        int i, rc = 0;
9330        u8 cos;
9331        struct bnx2x_mcast_ramrod_params rparam = {NULL};
9332        u32 reset_code;
9333
9334        /* Wait until tx fastpath tasks complete */
9335        for_each_tx_queue(bp, i) {
9336                struct bnx2x_fastpath *fp = &bp->fp[i];
9337
9338                for_each_cos_in_tx_queue(fp, cos)
9339                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9340#ifdef BNX2X_STOP_ON_ERROR
9341                if (rc)
9342                        return;
9343#endif
9344        }
9345
9346        /* Give HW time to discard old tx messages */
9347        usleep_range(1000, 2000);
9348
9349        /* Clean all ETH MACs */
9350        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9351                                false);
9352        if (rc < 0)
9353                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9354
9355        /* Clean up UC list  */
9356        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9357                                true);
9358        if (rc < 0)
9359                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9360                          rc);
9361
9362        /* The whole *vlan_obj structure may be not initialized if VLAN
9363         * filtering offload is not supported by hardware. Currently this is
9364         * true for all hardware covered by CHIP_IS_E1x().
9365         */
9366        if (!CHIP_IS_E1x(bp)) {
9367                /* Remove all currently configured VLANs */
9368                rc = bnx2x_del_all_vlans(bp);
9369                if (rc < 0)
9370                        BNX2X_ERR("Failed to delete all VLANs\n");
9371        }
9372
9373        /* Disable LLH */
9374        if (!CHIP_IS_E1(bp))
9375                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9376
9377        /* Set "drop all" (stop Rx).
9378         * We need to take a netif_addr_lock() here in order to prevent
9379         * a race between the completion code and this code.
9380         */
9381        netif_addr_lock_bh(bp->dev);
9382        /* Schedule the rx_mode command */
9383        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9384                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9385        else if (bp->slowpath)
9386                bnx2x_set_storm_rx_mode(bp);
9387
9388        /* Cleanup multicast configuration */
9389        rparam.mcast_obj = &bp->mcast_obj;
9390        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9391        if (rc < 0)
9392                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9393
9394        netif_addr_unlock_bh(bp->dev);
9395
9396        bnx2x_iov_chip_cleanup(bp);
9397
9398        /*
9399         * Send the UNLOAD_REQUEST to the MCP. This will return if
9400         * this function should perform FUNC, PORT or COMMON HW
9401         * reset.
9402         */
9403        reset_code = bnx2x_send_unload_req(bp, unload_mode);
9404
9405        /*
9406         * (assumption: No Attention from MCP at this stage)
9407         * PMF probably in the middle of TX disable/enable transaction
9408         */
9409        rc = bnx2x_func_wait_started(bp);
9410        if (rc) {
9411                BNX2X_ERR("bnx2x_func_wait_started failed\n");
9412#ifdef BNX2X_STOP_ON_ERROR
9413                return;
9414#endif
9415        }
9416
9417        /* Close multi and leading connections
9418         * Completions for ramrods are collected in a synchronous way
9419         */
9420        for_each_eth_queue(bp, i)
9421                if (bnx2x_stop_queue(bp, i))
9422#ifdef BNX2X_STOP_ON_ERROR
9423                        return;
9424#else
9425                        goto unload_error;
9426#endif
9427
9428        if (CNIC_LOADED(bp)) {
9429                for_each_cnic_queue(bp, i)
9430                        if (bnx2x_stop_queue(bp, i))
9431#ifdef BNX2X_STOP_ON_ERROR
9432                                return;
9433#else
9434                                goto unload_error;
9435#endif
9436        }
9437
9438        /* If SP settings didn't get completed so far - something
9439         * very wrong has happen.
9440         */
9441        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9442                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9443
9444#ifndef BNX2X_STOP_ON_ERROR
9445unload_error:
9446#endif
9447        rc = bnx2x_func_stop(bp);
9448        if (rc) {
9449                BNX2X_ERR("Function stop failed!\n");
9450#ifdef BNX2X_STOP_ON_ERROR
9451                return;
9452#endif
9453        }
9454
9455        /* stop_ptp should be after the Tx queues are drained to prevent
9456         * scheduling to the cancelled PTP work queue. It should also be after
9457         * function stop ramrod is sent, since as part of this ramrod FW access
9458         * PTP registers.
9459         */
9460        if (bp->flags & PTP_SUPPORTED) {
9461                bnx2x_stop_ptp(bp);
9462                if (bp->ptp_clock) {
9463                        ptp_clock_unregister(bp->ptp_clock);
9464                        bp->ptp_clock = NULL;
9465                }
9466        }
9467
9468        /* Disable HW interrupts, NAPI */
9469        bnx2x_netif_stop(bp, 1);
9470        /* Delete all NAPI objects */
9471        bnx2x_del_all_napi(bp);
9472        if (CNIC_LOADED(bp))
9473                bnx2x_del_all_napi_cnic(bp);
9474
9475        /* Release IRQs */
9476        bnx2x_free_irq(bp);
9477
9478        /* Reset the chip, unless PCI function is offline. If we reach this
9479         * point following a PCI error handling, it means device is really
9480         * in a bad state and we're about to remove it, so reset the chip
9481         * is not a good idea.
9482         */
9483        if (!pci_channel_offline(bp->pdev)) {
9484                rc = bnx2x_reset_hw(bp, reset_code);
9485                if (rc)
9486                        BNX2X_ERR("HW_RESET failed\n");
9487        }
9488
9489        /* Report UNLOAD_DONE to MCP */
9490        bnx2x_send_unload_done(bp, keep_link);
9491}
9492
9493void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9494{
9495        u32 val;
9496
9497        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9498
9499        if (CHIP_IS_E1(bp)) {
9500                int port = BP_PORT(bp);
9501                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9502                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9503
9504                val = REG_RD(bp, addr);
9505                val &= ~(0x300);
9506                REG_WR(bp, addr, val);
9507        } else {
9508                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9509                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9510                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9511                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9512        }
9513}
9514
9515/* Close gates #2, #3 and #4: */
9516static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9517{
9518        u32 val;
9519
9520        /* Gates #2 and #4a are closed/opened for "not E1" only */
9521        if (!CHIP_IS_E1(bp)) {
9522                /* #4 */
9523                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9524                /* #2 */
9525                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9526        }
9527
9528        /* #3 */
9529        if (CHIP_IS_E1x(bp)) {
9530                /* Prevent interrupts from HC on both ports */
9531                val = REG_RD(bp, HC_REG_CONFIG_1);
9532                REG_WR(bp, HC_REG_CONFIG_1,
9533                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9534                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9535
9536                val = REG_RD(bp, HC_REG_CONFIG_0);
9537                REG_WR(bp, HC_REG_CONFIG_0,
9538                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9539                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9540        } else {
9541                /* Prevent incoming interrupts in IGU */
9542                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9543
9544                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9545                       (!close) ?
9546                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9547                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9548        }
9549
9550        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9551                close ? "closing" : "opening");
9552}
9553
9554#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9555
9556static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9557{
9558        /* Do some magic... */
9559        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9560        *magic_val = val & SHARED_MF_CLP_MAGIC;
9561        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9562}
9563
9564/**
9565 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9566 *
9567 * @bp:         driver handle
9568 * @magic_val:  old value of the `magic' bit.
9569 */
9570static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9571{
9572        /* Restore the `magic' bit value... */
9573        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9574        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9575                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9576}
9577
9578/**
9579 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9580 *
9581 * @bp:         driver handle
9582 * @magic_val:  old value of 'magic' bit.
9583 *
9584 * Takes care of CLP configurations.
9585 */
9586static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9587{
9588        u32 shmem;
9589        u32 validity_offset;
9590
9591        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9592
9593        /* Set `magic' bit in order to save MF config */
9594        if (!CHIP_IS_E1(bp))
9595                bnx2x_clp_reset_prep(bp, magic_val);
9596
9597        /* Get shmem offset */
9598        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9599        validity_offset =
9600                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9601
9602        /* Clear validity map flags */
9603        if (shmem > 0)
9604                REG_WR(bp, shmem + validity_offset, 0);
9605}
9606
9607#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9608#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9609
9610/**
9611 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9612 *
9613 * @bp: driver handle
9614 */
9615static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9616{
9617        /* special handling for emulation and FPGA,
9618           wait 10 times longer */
9619        if (CHIP_REV_IS_SLOW(bp))
9620                msleep(MCP_ONE_TIMEOUT*10);
9621        else
9622                msleep(MCP_ONE_TIMEOUT);
9623}
9624
9625/*
9626 * initializes bp->common.shmem_base and waits for validity signature to appear
9627 */
9628static int bnx2x_init_shmem(struct bnx2x *bp)
9629{
9630        int cnt = 0;
9631        u32 val = 0;
9632
9633        do {
9634                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9635
9636                /* If we read all 0xFFs, means we are in PCI error state and
9637                 * should bail out to avoid crashes on adapter's FW reads.
9638                 */
9639                if (bp->common.shmem_base == 0xFFFFFFFF) {
9640                        bp->flags |= NO_MCP_FLAG;
9641                        return -ENODEV;
9642                }
9643
9644                if (bp->common.shmem_base) {
9645                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9646                        if (val & SHR_MEM_VALIDITY_MB)
9647                                return 0;
9648                }
9649
9650                bnx2x_mcp_wait_one(bp);
9651
9652        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9653
9654        BNX2X_ERR("BAD MCP validity signature\n");
9655
9656        return -ENODEV;
9657}
9658
9659static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9660{
9661        int rc = bnx2x_init_shmem(bp);
9662
9663        /* Restore the `magic' bit value */
9664        if (!CHIP_IS_E1(bp))
9665                bnx2x_clp_reset_done(bp, magic_val);
9666
9667        return rc;
9668}
9669
9670static void bnx2x_pxp_prep(struct bnx2x *bp)
9671{
9672        if (!CHIP_IS_E1(bp)) {
9673                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9674                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9675        }
9676}
9677
9678/*
9679 * Reset the whole chip except for:
9680 *      - PCIE core
9681 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9682 *              one reset bit)
9683 *      - IGU
9684 *      - MISC (including AEU)
9685 *      - GRC
9686 *      - RBCN, RBCP
9687 */
9688static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9689{
9690        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9691        u32 global_bits2, stay_reset2;
9692
9693        /*
9694         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9695         * (per chip) blocks.
9696         */
9697        global_bits2 =
9698                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9699                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9700
9701        /* Don't reset the following blocks.
9702         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9703         *            reset, as in 4 port device they might still be owned
9704         *            by the MCP (there is only one leader per path).
9705         */
9706        not_reset_mask1 =
9707                MISC_REGISTERS_RESET_REG_1_RST_HC |
9708                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9709                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9710
9711        not_reset_mask2 =
9712                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9713                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9714                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9715                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9716                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9717                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9718                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9719                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9720                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9721                MISC_REGISTERS_RESET_REG_2_PGLC |
9722                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9723                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9724                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9725                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9726                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9727                MISC_REGISTERS_RESET_REG_2_UMAC1;
9728
9729        /*
9730         * Keep the following blocks in reset:
9731         *  - all xxMACs are handled by the bnx2x_link code.
9732         */
9733        stay_reset2 =
9734                MISC_REGISTERS_RESET_REG_2_XMAC |
9735                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9736
9737        /* Full reset masks according to the chip */
9738        reset_mask1 = 0xffffffff;
9739
9740        if (CHIP_IS_E1(bp))
9741                reset_mask2 = 0xffff;
9742        else if (CHIP_IS_E1H(bp))
9743                reset_mask2 = 0x1ffff;
9744        else if (CHIP_IS_E2(bp))
9745                reset_mask2 = 0xfffff;
9746        else /* CHIP_IS_E3 */
9747                reset_mask2 = 0x3ffffff;
9748
9749        /* Don't reset global blocks unless we need to */
9750        if (!global)
9751                reset_mask2 &= ~global_bits2;
9752
9753        /*
9754         * In case of attention in the QM, we need to reset PXP
9755         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9756         * because otherwise QM reset would release 'close the gates' shortly
9757         * before resetting the PXP, then the PSWRQ would send a write
9758         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9759         * read the payload data from PSWWR, but PSWWR would not
9760         * respond. The write queue in PGLUE would stuck, dmae commands
9761         * would not return. Therefore it's important to reset the second
9762         * reset register (containing the
9763         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9764         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9765         * bit).
9766         */
9767        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9768               reset_mask2 & (~not_reset_mask2));
9769
9770        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9771               reset_mask1 & (~not_reset_mask1));
9772
9773        barrier();
9774
9775        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9776               reset_mask2 & (~stay_reset2));
9777
9778        barrier();
9779
9780        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9781}
9782
9783/**
9784 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9785 * It should get cleared in no more than 1s.
9786 *
9787 * @bp: driver handle
9788 *
9789 * It should get cleared in no more than 1s. Returns 0 if
9790 * pending writes bit gets cleared.
9791 */
9792static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9793{
9794        u32 cnt = 1000;
9795        u32 pend_bits = 0;
9796
9797        do {
9798                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9799
9800                if (pend_bits == 0)
9801                        break;
9802
9803                usleep_range(1000, 2000);
9804        } while (cnt-- > 0);
9805
9806        if (cnt <= 0) {
9807                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9808                          pend_bits);
9809                return -EBUSY;
9810        }
9811
9812        return 0;
9813}
9814
9815static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9816{
9817        int cnt = 1000;
9818        u32 val = 0;
9819        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9820        u32 tags_63_32 = 0;
9821
9822        /* Empty the Tetris buffer, wait for 1s */
9823        do {
9824                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9825                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9826                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9827                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9828                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9829                if (CHIP_IS_E3(bp))
9830                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9831
9832                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9833                    ((port_is_idle_0 & 0x1) == 0x1) &&
9834                    ((port_is_idle_1 & 0x1) == 0x1) &&
9835                    (pgl_exp_rom2 == 0xffffffff) &&
9836                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9837                        break;
9838                usleep_range(1000, 2000);
9839        } while (cnt-- > 0);
9840
9841        if (cnt <= 0) {
9842                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9843                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9844                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9845                          pgl_exp_rom2);
9846                return -EAGAIN;
9847        }
9848
9849        barrier();
9850
9851        /* Close gates #2, #3 and #4 */
9852        bnx2x_set_234_gates(bp, true);
9853
9854        /* Poll for IGU VQs for 57712 and newer chips */
9855        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9856                return -EAGAIN;
9857
9858        /* TBD: Indicate that "process kill" is in progress to MCP */
9859
9860        /* Clear "unprepared" bit */
9861        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9862        barrier();
9863
9864        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9865         * PSWHST, GRC and PSWRD Tetris buffer.
9866         */
9867        usleep_range(1000, 2000);
9868
9869        /* Prepare to chip reset: */
9870        /* MCP */
9871        if (global)
9872                bnx2x_reset_mcp_prep(bp, &val);
9873
9874        /* PXP */
9875        bnx2x_pxp_prep(bp);
9876        barrier();
9877
9878        /* reset the chip */
9879        bnx2x_process_kill_chip_reset(bp, global);
9880        barrier();
9881
9882        /* clear errors in PGB */
9883        if (!CHIP_IS_E1x(bp))
9884                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9885
9886        /* Recover after reset: */
9887        /* MCP */
9888        if (global && bnx2x_reset_mcp_comp(bp, val))
9889                return -EAGAIN;
9890
9891        /* TBD: Add resetting the NO_MCP mode DB here */
9892
9893        /* Open the gates #2, #3 and #4 */
9894        bnx2x_set_234_gates(bp, false);
9895
9896        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9897         * reset state, re-enable attentions. */
9898
9899        return 0;
9900}
9901
9902static int bnx2x_leader_reset(struct bnx2x *bp)
9903{
9904        int rc = 0;
9905        bool global = bnx2x_reset_is_global(bp);
9906        u32 load_code;
9907
9908        /* if not going to reset MCP - load "fake" driver to reset HW while
9909         * driver is owner of the HW
9910         */
9911        if (!global && !BP_NOMCP(bp)) {
9912                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9913                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9914                if (!load_code) {
9915                        BNX2X_ERR("MCP response failure, aborting\n");
9916                        rc = -EAGAIN;
9917                        goto exit_leader_reset;
9918                }
9919                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9920                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9921                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9922                        rc = -EAGAIN;
9923                        goto exit_leader_reset2;
9924                }
9925                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9926                if (!load_code) {
9927                        BNX2X_ERR("MCP response failure, aborting\n");
9928                        rc = -EAGAIN;
9929                        goto exit_leader_reset2;
9930                }
9931        }
9932
9933        /* Try to recover after the failure */
9934        if (bnx2x_process_kill(bp, global)) {
9935                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9936                          BP_PATH(bp));
9937                rc = -EAGAIN;
9938                goto exit_leader_reset2;
9939        }
9940
9941        /*
9942         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9943         * state.
9944         */
9945        bnx2x_set_reset_done(bp);
9946        if (global)
9947                bnx2x_clear_reset_global(bp);
9948
9949exit_leader_reset2:
9950        /* unload "fake driver" if it was loaded */
9951        if (!global && !BP_NOMCP(bp)) {
9952                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9953                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9954        }
9955exit_leader_reset:
9956        bp->is_leader = 0;
9957        bnx2x_release_leader_lock(bp);
9958        smp_mb();
9959        return rc;
9960}
9961
9962static void bnx2x_recovery_failed(struct bnx2x *bp)
9963{
9964        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9965
9966        /* Disconnect this device */
9967        netif_device_detach(bp->dev);
9968
9969        /*
9970         * Block ifup for all function on this engine until "process kill"
9971         * or power cycle.
9972         */
9973        bnx2x_set_reset_in_progress(bp);
9974
9975        /* Shut down the power */
9976        bnx2x_set_power_state(bp, PCI_D3hot);
9977
9978        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9979
9980        smp_mb();
9981}
9982
9983/*
9984 * Assumption: runs under rtnl lock. This together with the fact
9985 * that it's called only from bnx2x_sp_rtnl() ensure that it
9986 * will never be called when netif_running(bp->dev) is false.
9987 */
9988static void bnx2x_parity_recover(struct bnx2x *bp)
9989{
9990        u32 error_recovered, error_unrecovered;
9991        bool is_parity, global = false;
9992#ifdef CONFIG_BNX2X_SRIOV
9993        int vf_idx;
9994
9995        for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9996                struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9997
9998                if (vf)
9999                        vf->state = VF_LOST;
10000        }
10001#endif
10002        DP(NETIF_MSG_HW, "Handling parity\n");
10003        while (1) {
10004                switch (bp->recovery_state) {
10005                case BNX2X_RECOVERY_INIT:
10006                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10007                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10008                        WARN_ON(!is_parity);
10009
10010                        /* Try to get a LEADER_LOCK HW lock */
10011                        if (bnx2x_trylock_leader_lock(bp)) {
10012                                bnx2x_set_reset_in_progress(bp);
10013                                /*
10014                                 * Check if there is a global attention and if
10015                                 * there was a global attention, set the global
10016                                 * reset bit.
10017                                 */
10018
10019                                if (global)
10020                                        bnx2x_set_reset_global(bp);
10021
10022                                bp->is_leader = 1;
10023                        }
10024
10025                        /* Stop the driver */
10026                        /* If interface has been removed - break */
10027                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10028                                return;
10029
10030                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
10031
10032                        /* Ensure "is_leader", MCP command sequence and
10033                         * "recovery_state" update values are seen on other
10034                         * CPUs.
10035                         */
10036                        smp_mb();
10037                        break;
10038
10039                case BNX2X_RECOVERY_WAIT:
10040                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10041                        if (bp->is_leader) {
10042                                int other_engine = BP_PATH(bp) ? 0 : 1;
10043                                bool other_load_status =
10044                                        bnx2x_get_load_status(bp, other_engine);
10045                                bool load_status =
10046                                        bnx2x_get_load_status(bp, BP_PATH(bp));
10047                                global = bnx2x_reset_is_global(bp);
10048
10049                                /*
10050                                 * In case of a parity in a global block, let
10051                                 * the first leader that performs a
10052                                 * leader_reset() reset the global blocks in
10053                                 * order to clear global attentions. Otherwise
10054                                 * the gates will remain closed for that
10055                                 * engine.
10056                                 */
10057                                if (load_status ||
10058                                    (global && other_load_status)) {
10059                                        /* Wait until all other functions get
10060                                         * down.
10061                                         */
10062                                        schedule_delayed_work(&bp->sp_rtnl_task,
10063                                                                HZ/10);
10064                                        return;
10065                                } else {
10066                                        /* If all other functions got down -
10067                                         * try to bring the chip back to
10068                                         * normal. In any case it's an exit
10069                                         * point for a leader.
10070                                         */
10071                                        if (bnx2x_leader_reset(bp)) {
10072                                                bnx2x_recovery_failed(bp);
10073                                                return;
10074                                        }
10075
10076                                        /* If we are here, means that the
10077                                         * leader has succeeded and doesn't
10078                                         * want to be a leader any more. Try
10079                                         * to continue as a none-leader.
10080                                         */
10081                                        break;
10082                                }
10083                        } else { /* non-leader */
10084                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10085                                        /* Try to get a LEADER_LOCK HW lock as
10086                                         * long as a former leader may have
10087                                         * been unloaded by the user or
10088                                         * released a leadership by another
10089                                         * reason.
10090                                         */
10091                                        if (bnx2x_trylock_leader_lock(bp)) {
10092                                                /* I'm a leader now! Restart a
10093                                                 * switch case.
10094                                                 */
10095                                                bp->is_leader = 1;
10096                                                break;
10097                                        }
10098
10099                                        schedule_delayed_work(&bp->sp_rtnl_task,
10100                                                                HZ/10);
10101                                        return;
10102
10103                                } else {
10104                                        /*
10105                                         * If there was a global attention, wait
10106                                         * for it to be cleared.
10107                                         */
10108                                        if (bnx2x_reset_is_global(bp)) {
10109                                                schedule_delayed_work(
10110                                                        &bp->sp_rtnl_task,
10111                                                        HZ/10);
10112                                                return;
10113                                        }
10114
10115                                        error_recovered =
10116                                          bp->eth_stats.recoverable_error;
10117                                        error_unrecovered =
10118                                          bp->eth_stats.unrecoverable_error;
10119                                        bp->recovery_state =
10120                                                BNX2X_RECOVERY_NIC_LOADING;
10121                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10122                                                error_unrecovered++;
10123                                                netdev_err(bp->dev,
10124                                                           "Recovery failed. Power cycle needed\n");
10125                                                /* Disconnect this device */
10126                                                netif_device_detach(bp->dev);
10127                                                /* Shut down the power */
10128                                                bnx2x_set_power_state(
10129                                                        bp, PCI_D3hot);
10130                                                smp_mb();
10131                                        } else {
10132                                                bp->recovery_state =
10133                                                        BNX2X_RECOVERY_DONE;
10134                                                error_recovered++;
10135                                                smp_mb();
10136                                        }
10137                                        bp->eth_stats.recoverable_error =
10138                                                error_recovered;
10139                                        bp->eth_stats.unrecoverable_error =
10140                                                error_unrecovered;
10141
10142                                        return;
10143                                }
10144                        }
10145                default:
10146                        return;
10147                }
10148        }
10149}
10150
10151static int bnx2x_udp_port_update(struct bnx2x *bp)
10152{
10153        struct bnx2x_func_switch_update_params *switch_update_params;
10154        struct bnx2x_func_state_params func_params = {NULL};
10155        u16 vxlan_port = 0, geneve_port = 0;
10156        int rc;
10157
10158        switch_update_params = &func_params.params.switch_update;
10159
10160        /* Prepare parameters for function state transitions */
10161        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10162        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10163
10164        func_params.f_obj = &bp->func_obj;
10165        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10166
10167        /* Function parameters */
10168        __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10169                  &switch_update_params->changes);
10170
10171        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10172                geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10173                switch_update_params->geneve_dst_port = geneve_port;
10174        }
10175
10176        if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10177                vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10178                switch_update_params->vxlan_dst_port = vxlan_port;
10179        }
10180
10181        /* Re-enable inner-rss for the offloaded UDP tunnels */
10182        __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10183                  &switch_update_params->changes);
10184
10185        rc = bnx2x_func_state_change(bp, &func_params);
10186        if (rc)
10187                BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10188                          vxlan_port, geneve_port, rc);
10189        else
10190                DP(BNX2X_MSG_SP,
10191                   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10192                   vxlan_port, geneve_port);
10193
10194        return rc;
10195}
10196
10197static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10198{
10199        struct bnx2x *bp = netdev_priv(netdev);
10200        struct udp_tunnel_info ti;
10201
10202        udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10203        bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10204
10205        return bnx2x_udp_port_update(bp);
10206}
10207
10208static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10209        .sync_table     = bnx2x_udp_tunnel_sync,
10210        .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10211                          UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10212        .tables         = {
10213                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10214                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10215        },
10216};
10217
10218static int bnx2x_close(struct net_device *dev);
10219
10220/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10221 * scheduled on a general queue in order to prevent a dead lock.
10222 */
10223static void bnx2x_sp_rtnl_task(struct work_struct *work)
10224{
10225        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10226
10227        rtnl_lock();
10228
10229        if (!netif_running(bp->dev)) {
10230                rtnl_unlock();
10231                return;
10232        }
10233
10234        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10235#ifdef BNX2X_STOP_ON_ERROR
10236                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10237                          "you will need to reboot when done\n");
10238                goto sp_rtnl_not_reset;
10239#endif
10240                /*
10241                 * Clear all pending SP commands as we are going to reset the
10242                 * function anyway.
10243                 */
10244                bp->sp_rtnl_state = 0;
10245                smp_mb();
10246
10247                bnx2x_parity_recover(bp);
10248
10249                rtnl_unlock();
10250                return;
10251        }
10252
10253        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10254#ifdef BNX2X_STOP_ON_ERROR
10255                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10256                          "you will need to reboot when done\n");
10257                goto sp_rtnl_not_reset;
10258#endif
10259
10260                /*
10261                 * Clear all pending SP commands as we are going to reset the
10262                 * function anyway.
10263                 */
10264                bp->sp_rtnl_state = 0;
10265                smp_mb();
10266
10267                /* Immediately indicate link as down */
10268                bp->link_vars.link_up = 0;
10269                bp->force_link_down = true;
10270                netif_carrier_off(bp->dev);
10271                BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10272
10273                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274                /* When ret value shows failure of allocation failure,
10275                 * the nic is rebooted again. If open still fails, a error
10276                 * message to notify the user.
10277                 */
10278                if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10279                        bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10280                        if (bnx2x_nic_load(bp, LOAD_NORMAL))
10281                                BNX2X_ERR("Open the NIC fails again!\n");
10282                }
10283                rtnl_unlock();
10284                return;
10285        }
10286#ifdef BNX2X_STOP_ON_ERROR
10287sp_rtnl_not_reset:
10288#endif
10289        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10290                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10291        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10292                bnx2x_after_function_update(bp);
10293        /*
10294         * in case of fan failure we need to reset id if the "stop on error"
10295         * debug flag is set, since we trying to prevent permanent overheating
10296         * damage
10297         */
10298        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10299                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10300                netif_device_detach(bp->dev);
10301                bnx2x_close(bp->dev);
10302                rtnl_unlock();
10303                return;
10304        }
10305
10306        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10307                DP(BNX2X_MSG_SP,
10308                   "sending set mcast vf pf channel message from rtnl sp-task\n");
10309                bnx2x_vfpf_set_mcast(bp->dev);
10310        }
10311        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10312                               &bp->sp_rtnl_state)){
10313                if (netif_carrier_ok(bp->dev)) {
10314                        bnx2x_tx_disable(bp);
10315                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10316                }
10317        }
10318
10319        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10320                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10321                bnx2x_set_rx_mode_inner(bp);
10322        }
10323
10324        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10325                               &bp->sp_rtnl_state))
10326                bnx2x_pf_set_vfs_vlan(bp);
10327
10328        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10329                bnx2x_dcbx_stop_hw_tx(bp);
10330                bnx2x_dcbx_resume_hw_tx(bp);
10331        }
10332
10333        if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10334                               &bp->sp_rtnl_state))
10335                bnx2x_update_mng_version(bp);
10336
10337        if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10338                bnx2x_handle_update_svid_cmd(bp);
10339
10340        /* work which needs rtnl lock not-taken (as it takes the lock itself and
10341         * can be called from other contexts as well)
10342         */
10343        rtnl_unlock();
10344
10345        /* enable SR-IOV if applicable */
10346        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10347                                               &bp->sp_rtnl_state)) {
10348                bnx2x_disable_sriov(bp);
10349                bnx2x_enable_sriov(bp);
10350        }
10351}
10352
10353static void bnx2x_period_task(struct work_struct *work)
10354{
10355        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10356
10357        if (!netif_running(bp->dev))
10358                goto period_task_exit;
10359
10360        if (CHIP_REV_IS_SLOW(bp)) {
10361                BNX2X_ERR("period task called on emulation, ignoring\n");
10362                goto period_task_exit;
10363        }
10364
10365        bnx2x_acquire_phy_lock(bp);
10366        /*
10367         * The barrier is needed to ensure the ordering between the writing to
10368         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10369         * the reading here.
10370         */
10371        smp_mb();
10372        if (bp->port.pmf) {
10373                bnx2x_period_func(&bp->link_params, &bp->link_vars);
10374
10375                /* Re-queue task in 1 sec */
10376                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10377        }
10378
10379        bnx2x_release_phy_lock(bp);
10380period_task_exit:
10381        return;
10382}
10383
10384/*
10385 * Init service functions
10386 */
10387
10388static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10389{
10390        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10391        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10392        return base + (BP_ABS_FUNC(bp)) * stride;
10393}
10394
10395static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10396                                         u8 port, u32 reset_reg,
10397                                         struct bnx2x_mac_vals *vals)
10398{
10399        u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10400        u32 base_addr;
10401
10402        if (!(mask & reset_reg))
10403                return false;
10404
10405        BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10406        base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10407        vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10408        vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10409        REG_WR(bp, vals->umac_addr[port], 0);
10410
10411        return true;
10412}
10413
10414static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10415                                        struct bnx2x_mac_vals *vals)
10416{
10417        u32 val, base_addr, offset, mask, reset_reg;
10418        bool mac_stopped = false;
10419        u8 port = BP_PORT(bp);
10420
10421        /* reset addresses as they also mark which values were changed */
10422        memset(vals, 0, sizeof(*vals));
10423
10424        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10425
10426        if (!CHIP_IS_E3(bp)) {
10427                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10428                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10429                if ((mask & reset_reg) && val) {
10430                        u32 wb_data[2];
10431                        BNX2X_DEV_INFO("Disable bmac Rx\n");
10432                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10433                                                : NIG_REG_INGRESS_BMAC0_MEM;
10434                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10435                                                : BIGMAC_REGISTER_BMAC_CONTROL;
10436
10437                        /*
10438                         * use rd/wr since we cannot use dmae. This is safe
10439                         * since MCP won't access the bus due to the request
10440                         * to unload, and no function on the path can be
10441                         * loaded at this time.
10442                         */
10443                        wb_data[0] = REG_RD(bp, base_addr + offset);
10444                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10445                        vals->bmac_addr = base_addr + offset;
10446                        vals->bmac_val[0] = wb_data[0];
10447                        vals->bmac_val[1] = wb_data[1];
10448                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10449                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
10450                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10451                }
10452                BNX2X_DEV_INFO("Disable emac Rx\n");
10453                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10454                vals->emac_val = REG_RD(bp, vals->emac_addr);
10455                REG_WR(bp, vals->emac_addr, 0);
10456                mac_stopped = true;
10457        } else {
10458                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10459                        BNX2X_DEV_INFO("Disable xmac Rx\n");
10460                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10461                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10462                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10463                               val & ~(1 << 1));
10464                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10465                               val | (1 << 1));
10466                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10467                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10468                        REG_WR(bp, vals->xmac_addr, 0);
10469                        mac_stopped = true;
10470                }
10471
10472                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10473                                                            reset_reg, vals);
10474                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10475                                                            reset_reg, vals);
10476        }
10477
10478        if (mac_stopped)
10479                msleep(20);
10480}
10481
10482#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10483#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10484                                        0x1848 + ((f) << 4))
10485#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10486#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10487#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10488
10489#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10490#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10491#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10492
10493static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10494{
10495        /* UNDI marks its presence in DORQ -
10496         * it initializes CID offset for normal bell to 0x7
10497         */
10498        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10499            MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10500                return false;
10501
10502        if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10503                BNX2X_DEV_INFO("UNDI previously loaded\n");
10504                return true;
10505        }
10506
10507        return false;
10508}
10509
10510static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10511{
10512        u16 rcq, bd;
10513        u32 addr, tmp_reg;
10514
10515        if (BP_FUNC(bp) < 2)
10516                addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10517        else
10518                addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10519
10520        tmp_reg = REG_RD(bp, addr);
10521        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10522        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10523
10524        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10525        REG_WR(bp, addr, tmp_reg);
10526
10527        BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10528                       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10529}
10530
10531static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10532{
10533        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10534                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10535        if (!rc) {
10536                BNX2X_ERR("MCP response failure, aborting\n");
10537                return -EBUSY;
10538        }
10539
10540        return 0;
10541}
10542
10543static struct bnx2x_prev_path_list *
10544                bnx2x_prev_path_get_entry(struct bnx2x *bp)
10545{
10546        struct bnx2x_prev_path_list *tmp_list;
10547
10548        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10549                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10550                    bp->pdev->bus->number == tmp_list->bus &&
10551                    BP_PATH(bp) == tmp_list->path)
10552                        return tmp_list;
10553
10554        return NULL;
10555}
10556
10557static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10558{
10559        struct bnx2x_prev_path_list *tmp_list;
10560        int rc;
10561
10562        rc = down_interruptible(&bnx2x_prev_sem);
10563        if (rc) {
10564                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10565                return rc;
10566        }
10567
10568        tmp_list = bnx2x_prev_path_get_entry(bp);
10569        if (tmp_list) {
10570                tmp_list->aer = 1;
10571                rc = 0;
10572        } else {
10573                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10574                          BP_PATH(bp));
10575        }
10576
10577        up(&bnx2x_prev_sem);
10578
10579        return rc;
10580}
10581
10582static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10583{
10584        struct bnx2x_prev_path_list *tmp_list;
10585        bool rc = false;
10586
10587        if (down_trylock(&bnx2x_prev_sem))
10588                return false;
10589
10590        tmp_list = bnx2x_prev_path_get_entry(bp);
10591        if (tmp_list) {
10592                if (tmp_list->aer) {
10593                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10594                           BP_PATH(bp));
10595                } else {
10596                        rc = true;
10597                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10598                                       BP_PATH(bp));
10599                }
10600        }
10601
10602        up(&bnx2x_prev_sem);
10603
10604        return rc;
10605}
10606
10607bool bnx2x_port_after_undi(struct bnx2x *bp)
10608{
10609        struct bnx2x_prev_path_list *entry;
10610        bool val;
10611
10612        down(&bnx2x_prev_sem);
10613
10614        entry = bnx2x_prev_path_get_entry(bp);
10615        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10616
10617        up(&bnx2x_prev_sem);
10618
10619        return val;
10620}
10621
10622static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10623{
10624        struct bnx2x_prev_path_list *tmp_list;
10625        int rc;
10626
10627        rc = down_interruptible(&bnx2x_prev_sem);
10628        if (rc) {
10629                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10630                return rc;
10631        }
10632
10633        /* Check whether the entry for this path already exists */
10634        tmp_list = bnx2x_prev_path_get_entry(bp);
10635        if (tmp_list) {
10636                if (!tmp_list->aer) {
10637                        BNX2X_ERR("Re-Marking the path.\n");
10638                } else {
10639                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10640                           BP_PATH(bp));
10641                        tmp_list->aer = 0;
10642                }
10643                up(&bnx2x_prev_sem);
10644                return 0;
10645        }
10646        up(&bnx2x_prev_sem);
10647
10648        /* Create an entry for this path and add it */
10649        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10650        if (!tmp_list) {
10651                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10652                return -ENOMEM;
10653        }
10654
10655        tmp_list->bus = bp->pdev->bus->number;
10656        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10657        tmp_list->path = BP_PATH(bp);
10658        tmp_list->aer = 0;
10659        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10660
10661        rc = down_interruptible(&bnx2x_prev_sem);
10662        if (rc) {
10663                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10664                kfree(tmp_list);
10665        } else {
10666                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10667                   BP_PATH(bp));
10668                list_add(&tmp_list->list, &bnx2x_prev_list);
10669                up(&bnx2x_prev_sem);
10670        }
10671
10672        return rc;
10673}
10674
10675static int bnx2x_do_flr(struct bnx2x *bp)
10676{
10677        struct pci_dev *dev = bp->pdev;
10678
10679        if (CHIP_IS_E1x(bp)) {
10680                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10681                return -EINVAL;
10682        }
10683
10684        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10685        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10686                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10687                          bp->common.bc_ver);
10688                return -EINVAL;
10689        }
10690
10691        if (!pci_wait_for_pending_transaction(dev))
10692                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10693
10694        BNX2X_DEV_INFO("Initiating FLR\n");
10695        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10696
10697        return 0;
10698}
10699
10700static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10701{
10702        int rc;
10703
10704        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10705
10706        /* Test if previous unload process was already finished for this path */
10707        if (bnx2x_prev_is_path_marked(bp))
10708                return bnx2x_prev_mcp_done(bp);
10709
10710        BNX2X_DEV_INFO("Path is unmarked\n");
10711
10712        /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10713        if (bnx2x_prev_is_after_undi(bp))
10714                goto out;
10715
10716        /* If function has FLR capabilities, and existing FW version matches
10717         * the one required, then FLR will be sufficient to clean any residue
10718         * left by previous driver
10719         */
10720        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10721
10722        if (!rc) {
10723                /* fw version is good */
10724                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10725                rc = bnx2x_do_flr(bp);
10726        }
10727
10728        if (!rc) {
10729                /* FLR was performed */
10730                BNX2X_DEV_INFO("FLR successful\n");
10731                return 0;
10732        }
10733
10734        BNX2X_DEV_INFO("Could not FLR\n");
10735
10736out:
10737        /* Close the MCP request, return failure*/
10738        rc = bnx2x_prev_mcp_done(bp);
10739        if (!rc)
10740                rc = BNX2X_PREV_WAIT_NEEDED;
10741
10742        return rc;
10743}
10744
10745static int bnx2x_prev_unload_common(struct bnx2x *bp)
10746{
10747        u32 reset_reg, tmp_reg = 0, rc;
10748        bool prev_undi = false;
10749        struct bnx2x_mac_vals mac_vals;
10750
10751        /* It is possible a previous function received 'common' answer,
10752         * but hasn't loaded yet, therefore creating a scenario of
10753         * multiple functions receiving 'common' on the same path.
10754         */
10755        BNX2X_DEV_INFO("Common unload Flow\n");
10756
10757        memset(&mac_vals, 0, sizeof(mac_vals));
10758
10759        if (bnx2x_prev_is_path_marked(bp))
10760                return bnx2x_prev_mcp_done(bp);
10761
10762        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10763
10764        /* Reset should be performed after BRB is emptied */
10765        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10766                u32 timer_count = 1000;
10767
10768                /* Close the MAC Rx to prevent BRB from filling up */
10769                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10770
10771                /* close LLH filters for both ports towards the BRB */
10772                bnx2x_set_rx_filter(&bp->link_params, 0);
10773                bp->link_params.port ^= 1;
10774                bnx2x_set_rx_filter(&bp->link_params, 0);
10775                bp->link_params.port ^= 1;
10776
10777                /* Check if the UNDI driver was previously loaded */
10778                if (bnx2x_prev_is_after_undi(bp)) {
10779                        prev_undi = true;
10780                        /* clear the UNDI indication */
10781                        REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10782                        /* clear possible idle check errors */
10783                        REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10784                }
10785                if (!CHIP_IS_E1x(bp))
10786                        /* block FW from writing to host */
10787                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10788
10789                /* wait until BRB is empty */
10790                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10791                while (timer_count) {
10792                        u32 prev_brb = tmp_reg;
10793
10794                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10795                        if (!tmp_reg)
10796                                break;
10797
10798                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10799
10800                        /* reset timer as long as BRB actually gets emptied */
10801                        if (prev_brb > tmp_reg)
10802                                timer_count = 1000;
10803                        else
10804                                timer_count--;
10805
10806                        /* If UNDI resides in memory, manually increment it */
10807                        if (prev_undi)
10808                                bnx2x_prev_unload_undi_inc(bp, 1);
10809
10810                        udelay(10);
10811                }
10812
10813                if (!timer_count)
10814                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10815        }
10816
10817        /* No packets are in the pipeline, path is ready for reset */
10818        bnx2x_reset_common(bp);
10819
10820        if (mac_vals.xmac_addr)
10821                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10822        if (mac_vals.umac_addr[0])
10823                REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10824        if (mac_vals.umac_addr[1])
10825                REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10826        if (mac_vals.emac_addr)
10827                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10828        if (mac_vals.bmac_addr) {
10829                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10830                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10831        }
10832
10833        rc = bnx2x_prev_mark_path(bp, prev_undi);
10834        if (rc) {
10835                bnx2x_prev_mcp_done(bp);
10836                return rc;
10837        }
10838
10839        return bnx2x_prev_mcp_done(bp);
10840}
10841
10842static int bnx2x_prev_unload(struct bnx2x *bp)
10843{
10844        int time_counter = 10;
10845        u32 rc, fw, hw_lock_reg, hw_lock_val;
10846        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10847
10848        /* clear hw from errors which may have resulted from an interrupted
10849         * dmae transaction.
10850         */
10851        bnx2x_clean_pglue_errors(bp);
10852
10853        /* Release previously held locks */
10854        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10855                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10856                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10857
10858        hw_lock_val = REG_RD(bp, hw_lock_reg);
10859        if (hw_lock_val) {
10860                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10861                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10862                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10863                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10864                }
10865
10866                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10867                REG_WR(bp, hw_lock_reg, 0xffffffff);
10868        } else
10869                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10870
10871        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10872                BNX2X_DEV_INFO("Release previously held alr\n");
10873                bnx2x_release_alr(bp);
10874        }
10875
10876        do {
10877                int aer = 0;
10878                /* Lock MCP using an unload request */
10879                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10880                if (!fw) {
10881                        BNX2X_ERR("MCP response failure, aborting\n");
10882                        rc = -EBUSY;
10883                        break;
10884                }
10885
10886                rc = down_interruptible(&bnx2x_prev_sem);
10887                if (rc) {
10888                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10889                                  rc);
10890                } else {
10891                        /* If Path is marked by EEH, ignore unload status */
10892                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10893                                 bnx2x_prev_path_get_entry(bp)->aer);
10894                        up(&bnx2x_prev_sem);
10895                }
10896
10897                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10898                        rc = bnx2x_prev_unload_common(bp);
10899                        break;
10900                }
10901
10902                /* non-common reply from MCP might require looping */
10903                rc = bnx2x_prev_unload_uncommon(bp);
10904                if (rc != BNX2X_PREV_WAIT_NEEDED)
10905                        break;
10906
10907                msleep(20);
10908        } while (--time_counter);
10909
10910        if (!time_counter || rc) {
10911                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10912                rc = -EPROBE_DEFER;
10913        }
10914
10915        /* Mark function if its port was used to boot from SAN */
10916        if (bnx2x_port_after_undi(bp))
10917                bp->link_params.feature_config_flags |=
10918                        FEATURE_CONFIG_BOOT_FROM_SAN;
10919
10920        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10921
10922        return rc;
10923}
10924
10925static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10926{
10927        u32 val, val2, val3, val4, id, boot_mode;
10928        u16 pmc;
10929
10930        /* Get the chip revision id and number. */
10931        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10932        val = REG_RD(bp, MISC_REG_CHIP_NUM);
10933        id = ((val & 0xffff) << 16);
10934        val = REG_RD(bp, MISC_REG_CHIP_REV);
10935        id |= ((val & 0xf) << 12);
10936
10937        /* Metal is read from PCI regs, but we can't access >=0x400 from
10938         * the configuration space (so we need to reg_rd)
10939         */
10940        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10941        id |= (((val >> 24) & 0xf) << 4);
10942        val = REG_RD(bp, MISC_REG_BOND_ID);
10943        id |= (val & 0xf);
10944        bp->common.chip_id = id;
10945
10946        /* force 57811 according to MISC register */
10947        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10948                if (CHIP_IS_57810(bp))
10949                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10950                                (bp->common.chip_id & 0x0000FFFF);
10951                else if (CHIP_IS_57810_MF(bp))
10952                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10953                                (bp->common.chip_id & 0x0000FFFF);
10954                bp->common.chip_id |= 0x1;
10955        }
10956
10957        /* Set doorbell size */
10958        bp->db_size = (1 << BNX2X_DB_SHIFT);
10959
10960        if (!CHIP_IS_E1x(bp)) {
10961                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10962                if ((val & 1) == 0)
10963                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10964                else
10965                        val = (val >> 1) & 1;
10966                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10967                                                       "2_PORT_MODE");
10968                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10969                                                 CHIP_2_PORT_MODE;
10970
10971                if (CHIP_MODE_IS_4_PORT(bp))
10972                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10973                else
10974                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10975        } else {
10976                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10977                bp->pfid = bp->pf_num;                  /* 0..7 */
10978        }
10979
10980        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10981
10982        bp->link_params.chip_id = bp->common.chip_id;
10983        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10984
10985        val = (REG_RD(bp, 0x2874) & 0x55);
10986        if ((bp->common.chip_id & 0x1) ||
10987            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10988                bp->flags |= ONE_PORT_FLAG;
10989                BNX2X_DEV_INFO("single port device\n");
10990        }
10991
10992        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10993        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10994                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10995        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10996                       bp->common.flash_size, bp->common.flash_size);
10997
10998        bnx2x_init_shmem(bp);
10999
11000        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11001                                        MISC_REG_GENERIC_CR_1 :
11002                                        MISC_REG_GENERIC_CR_0));
11003
11004        bp->link_params.shmem_base = bp->common.shmem_base;
11005        bp->link_params.shmem2_base = bp->common.shmem2_base;
11006        if (SHMEM2_RD(bp, size) >
11007            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11008                bp->link_params.lfa_base =
11009                REG_RD(bp, bp->common.shmem2_base +
11010                       (u32)offsetof(struct shmem2_region,
11011                                     lfa_host_addr[BP_PORT(bp)]));
11012        else
11013                bp->link_params.lfa_base = 0;
11014        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11015                       bp->common.shmem_base, bp->common.shmem2_base);
11016
11017        if (!bp->common.shmem_base) {
11018                BNX2X_DEV_INFO("MCP not active\n");
11019                bp->flags |= NO_MCP_FLAG;
11020                return;
11021        }
11022
11023        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11024        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11025
11026        bp->link_params.hw_led_mode = ((bp->common.hw_config &
11027                                        SHARED_HW_CFG_LED_MODE_MASK) >>
11028                                       SHARED_HW_CFG_LED_MODE_SHIFT);
11029
11030        bp->link_params.feature_config_flags = 0;
11031        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11032        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11033                bp->link_params.feature_config_flags |=
11034                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035        else
11036                bp->link_params.feature_config_flags &=
11037                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11038
11039        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11040        bp->common.bc_ver = val;
11041        BNX2X_DEV_INFO("bc_ver %X\n", val);
11042        if (val < BNX2X_BC_VER) {
11043                /* for now only warn
11044                 * later we might need to enforce this */
11045                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11046                          BNX2X_BC_VER, val);
11047        }
11048        bp->link_params.feature_config_flags |=
11049                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11050                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11051
11052        bp->link_params.feature_config_flags |=
11053                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11054                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11055        bp->link_params.feature_config_flags |=
11056                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11057                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11058        bp->link_params.feature_config_flags |=
11059                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11060                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11061
11062        bp->link_params.feature_config_flags |=
11063                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11064                FEATURE_CONFIG_MT_SUPPORT : 0;
11065
11066        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11067                        BC_SUPPORTS_PFC_STATS : 0;
11068
11069        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11070                        BC_SUPPORTS_FCOE_FEATURES : 0;
11071
11072        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11073                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11074
11075        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11076                        BC_SUPPORTS_RMMOD_CMD : 0;
11077
11078        boot_mode = SHMEM_RD(bp,
11079                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11080                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11081        switch (boot_mode) {
11082        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11083                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11084                break;
11085        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11086                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11087                break;
11088        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11089                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11090                break;
11091        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11092                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11093                break;
11094        }
11095
11096        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11097        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11098
11099        BNX2X_DEV_INFO("%sWoL capable\n",
11100                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11101
11102        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11103        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11104        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11105        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11106
11107        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11108                 val, val2, val3, val4);
11109}
11110
11111#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11112#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11113
11114static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11115{
11116        int pfid = BP_FUNC(bp);
11117        int igu_sb_id;
11118        u32 val;
11119        u8 fid, igu_sb_cnt = 0;
11120
11121        bp->igu_base_sb = 0xff;
11122        if (CHIP_INT_MODE_IS_BC(bp)) {
11123                int vn = BP_VN(bp);
11124                igu_sb_cnt = bp->igu_sb_cnt;
11125                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11126                        FP_SB_MAX_E1x;
11127
11128                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11129                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11130
11131                return 0;
11132        }
11133
11134        /* IGU in normal mode - read CAM */
11135        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11136             igu_sb_id++) {
11137                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11138                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11139                        continue;
11140                fid = IGU_FID(val);
11141                if ((fid & IGU_FID_ENCODE_IS_PF)) {
11142                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11143                                continue;
11144                        if (IGU_VEC(val) == 0)
11145                                /* default status block */
11146                                bp->igu_dsb_id = igu_sb_id;
11147                        else {
11148                                if (bp->igu_base_sb == 0xff)
11149                                        bp->igu_base_sb = igu_sb_id;
11150                                igu_sb_cnt++;
11151                        }
11152                }
11153        }
11154
11155#ifdef CONFIG_PCI_MSI
11156        /* Due to new PF resource allocation by MFW T7.4 and above, it's
11157         * optional that number of CAM entries will not be equal to the value
11158         * advertised in PCI.
11159         * Driver should use the minimal value of both as the actual status
11160         * block count
11161         */
11162        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11163#endif
11164
11165        if (igu_sb_cnt == 0) {
11166                BNX2X_ERR("CAM configuration error\n");
11167                return -EINVAL;
11168        }
11169
11170        return 0;
11171}
11172
11173static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11174{
11175        int cfg_size = 0, idx, port = BP_PORT(bp);
11176
11177        /* Aggregation of supported attributes of all external phys */
11178        bp->port.supported[0] = 0;
11179        bp->port.supported[1] = 0;
11180        switch (bp->link_params.num_phys) {
11181        case 1:
11182                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11183                cfg_size = 1;
11184                break;
11185        case 2:
11186                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11187                cfg_size = 1;
11188                break;
11189        case 3:
11190                if (bp->link_params.multi_phy_config &
11191                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11192                        bp->port.supported[1] =
11193                                bp->link_params.phy[EXT_PHY1].supported;
11194                        bp->port.supported[0] =
11195                                bp->link_params.phy[EXT_PHY2].supported;
11196                } else {
11197                        bp->port.supported[0] =
11198                                bp->link_params.phy[EXT_PHY1].supported;
11199                        bp->port.supported[1] =
11200                                bp->link_params.phy[EXT_PHY2].supported;
11201                }
11202                cfg_size = 2;
11203                break;
11204        }
11205
11206        if (!(bp->port.supported[0] || bp->port.supported[1])) {
11207                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11208                           SHMEM_RD(bp,
11209                           dev_info.port_hw_config[port].external_phy_config),
11210                           SHMEM_RD(bp,
11211                           dev_info.port_hw_config[port].external_phy_config2));
11212                return;
11213        }
11214
11215        if (CHIP_IS_E3(bp))
11216                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11217        else {
11218                switch (switch_cfg) {
11219                case SWITCH_CFG_1G:
11220                        bp->port.phy_addr = REG_RD(
11221                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11222                        break;
11223                case SWITCH_CFG_10G:
11224                        bp->port.phy_addr = REG_RD(
11225                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11226                        break;
11227                default:
11228                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11229                                  bp->port.link_config[0]);
11230                        return;
11231                }
11232        }
11233        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11234        /* mask what we support according to speed_cap_mask per configuration */
11235        for (idx = 0; idx < cfg_size; idx++) {
11236                if (!(bp->link_params.speed_cap_mask[idx] &
11237                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11238                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11239
11240                if (!(bp->link_params.speed_cap_mask[idx] &
11241                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11242                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11243
11244                if (!(bp->link_params.speed_cap_mask[idx] &
11245                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11246                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11247
11248                if (!(bp->link_params.speed_cap_mask[idx] &
11249                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11250                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11251
11252                if (!(bp->link_params.speed_cap_mask[idx] &
11253                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11254                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11255                                                     SUPPORTED_1000baseT_Full);
11256
11257                if (!(bp->link_params.speed_cap_mask[idx] &
11258                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11259                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11260
11261                if (!(bp->link_params.speed_cap_mask[idx] &
11262                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11263                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11264
11265                if (!(bp->link_params.speed_cap_mask[idx] &
11266                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11267                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11268        }
11269
11270        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11271                       bp->port.supported[1]);
11272}
11273
11274static void bnx2x_link_settings_requested(struct bnx2x *bp)
11275{
11276        u32 link_config, idx, cfg_size = 0;
11277        bp->port.advertising[0] = 0;
11278        bp->port.advertising[1] = 0;
11279        switch (bp->link_params.num_phys) {
11280        case 1:
11281        case 2:
11282                cfg_size = 1;
11283                break;
11284        case 3:
11285                cfg_size = 2;
11286                break;
11287        }
11288        for (idx = 0; idx < cfg_size; idx++) {
11289                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11290                link_config = bp->port.link_config[idx];
11291                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11292                case PORT_FEATURE_LINK_SPEED_AUTO:
11293                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11294                                bp->link_params.req_line_speed[idx] =
11295                                        SPEED_AUTO_NEG;
11296                                bp->port.advertising[idx] |=
11297                                        bp->port.supported[idx];
11298                                if (bp->link_params.phy[EXT_PHY1].type ==
11299                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11300                                        bp->port.advertising[idx] |=
11301                                        (SUPPORTED_100baseT_Half |
11302                                         SUPPORTED_100baseT_Full);
11303                        } else {
11304                                /* force 10G, no AN */
11305                                bp->link_params.req_line_speed[idx] =
11306                                        SPEED_10000;
11307                                bp->port.advertising[idx] |=
11308                                        (ADVERTISED_10000baseT_Full |
11309                                         ADVERTISED_FIBRE);
11310                                continue;
11311                        }
11312                        break;
11313
11314                case PORT_FEATURE_LINK_SPEED_10M_FULL:
11315                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11316                                bp->link_params.req_line_speed[idx] =
11317                                        SPEED_10;
11318                                bp->port.advertising[idx] |=
11319                                        (ADVERTISED_10baseT_Full |
11320                                         ADVERTISED_TP);
11321                        } else {
11322                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11323                                            link_config,
11324                                    bp->link_params.speed_cap_mask[idx]);
11325                                return;
11326                        }
11327                        break;
11328
11329                case PORT_FEATURE_LINK_SPEED_10M_HALF:
11330                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11331                                bp->link_params.req_line_speed[idx] =
11332                                        SPEED_10;
11333                                bp->link_params.req_duplex[idx] =
11334                                        DUPLEX_HALF;
11335                                bp->port.advertising[idx] |=
11336                                        (ADVERTISED_10baseT_Half |
11337                                         ADVERTISED_TP);
11338                        } else {
11339                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11340                                            link_config,
11341                                          bp->link_params.speed_cap_mask[idx]);
11342                                return;
11343                        }
11344                        break;
11345
11346                case PORT_FEATURE_LINK_SPEED_100M_FULL:
11347                        if (bp->port.supported[idx] &
11348                            SUPPORTED_100baseT_Full) {
11349                                bp->link_params.req_line_speed[idx] =
11350                                        SPEED_100;
11351                                bp->port.advertising[idx] |=
11352                                        (ADVERTISED_100baseT_Full |
11353                                         ADVERTISED_TP);
11354                        } else {
11355                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11356                                            link_config,
11357                                          bp->link_params.speed_cap_mask[idx]);
11358                                return;
11359                        }
11360                        break;
11361
11362                case PORT_FEATURE_LINK_SPEED_100M_HALF:
11363                        if (bp->port.supported[idx] &
11364                            SUPPORTED_100baseT_Half) {
11365                                bp->link_params.req_line_speed[idx] =
11366                                                                SPEED_100;
11367                                bp->link_params.req_duplex[idx] =
11368                                                                DUPLEX_HALF;
11369                                bp->port.advertising[idx] |=
11370                                        (ADVERTISED_100baseT_Half |
11371                                         ADVERTISED_TP);
11372                        } else {
11373                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11374                                    link_config,
11375                                    bp->link_params.speed_cap_mask[idx]);
11376                                return;
11377                        }
11378                        break;
11379
11380                case PORT_FEATURE_LINK_SPEED_1G:
11381                        if (bp->port.supported[idx] &
11382                            SUPPORTED_1000baseT_Full) {
11383                                bp->link_params.req_line_speed[idx] =
11384                                        SPEED_1000;
11385                                bp->port.advertising[idx] |=
11386                                        (ADVERTISED_1000baseT_Full |
11387                                         ADVERTISED_TP);
11388                        } else if (bp->port.supported[idx] &
11389                                   SUPPORTED_1000baseKX_Full) {
11390                                bp->link_params.req_line_speed[idx] =
11391                                        SPEED_1000;
11392                                bp->port.advertising[idx] |=
11393                                        ADVERTISED_1000baseKX_Full;
11394                        } else {
11395                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11396                                    link_config,
11397                                    bp->link_params.speed_cap_mask[idx]);
11398                                return;
11399                        }
11400                        break;
11401
11402                case PORT_FEATURE_LINK_SPEED_2_5G:
11403                        if (bp->port.supported[idx] &
11404                            SUPPORTED_2500baseX_Full) {
11405                                bp->link_params.req_line_speed[idx] =
11406                                        SPEED_2500;
11407                                bp->port.advertising[idx] |=
11408                                        (ADVERTISED_2500baseX_Full |
11409                                                ADVERTISED_TP);
11410                        } else {
11411                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11412                                    link_config,
11413                                    bp->link_params.speed_cap_mask[idx]);
11414                                return;
11415                        }
11416                        break;
11417
11418                case PORT_FEATURE_LINK_SPEED_10G_CX4:
11419                        if (bp->port.supported[idx] &
11420                            SUPPORTED_10000baseT_Full) {
11421                                bp->link_params.req_line_speed[idx] =
11422                                        SPEED_10000;
11423                                bp->port.advertising[idx] |=
11424                                        (ADVERTISED_10000baseT_Full |
11425                                                ADVERTISED_FIBRE);
11426                        } else if (bp->port.supported[idx] &
11427                                   SUPPORTED_10000baseKR_Full) {
11428                                bp->link_params.req_line_speed[idx] =
11429                                        SPEED_10000;
11430                                bp->port.advertising[idx] |=
11431                                        (ADVERTISED_10000baseKR_Full |
11432                                                ADVERTISED_FIBRE);
11433                        } else {
11434                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11435                                    link_config,
11436                                    bp->link_params.speed_cap_mask[idx]);
11437                                return;
11438                        }
11439                        break;
11440                case PORT_FEATURE_LINK_SPEED_20G:
11441                        bp->link_params.req_line_speed[idx] = SPEED_20000;
11442
11443                        break;
11444                default:
11445                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11446                                  link_config);
11447                                bp->link_params.req_line_speed[idx] =
11448                                                        SPEED_AUTO_NEG;
11449                                bp->port.advertising[idx] =
11450                                                bp->port.supported[idx];
11451                        break;
11452                }
11453
11454                bp->link_params.req_flow_ctrl[idx] = (link_config &
11455                                         PORT_FEATURE_FLOW_CONTROL_MASK);
11456                if (bp->link_params.req_flow_ctrl[idx] ==
11457                    BNX2X_FLOW_CTRL_AUTO) {
11458                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11459                                bp->link_params.req_flow_ctrl[idx] =
11460                                                        BNX2X_FLOW_CTRL_NONE;
11461                        else
11462                                bnx2x_set_requested_fc(bp);
11463                }
11464
11465                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11466                               bp->link_params.req_line_speed[idx],
11467                               bp->link_params.req_duplex[idx],
11468                               bp->link_params.req_flow_ctrl[idx],
11469                               bp->port.advertising[idx]);
11470        }
11471}
11472
11473static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11474{
11475        __be16 mac_hi_be = cpu_to_be16(mac_hi);
11476        __be32 mac_lo_be = cpu_to_be32(mac_lo);
11477        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11478        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11479}
11480
11481static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11482{
11483        int port = BP_PORT(bp);
11484        u32 config;
11485        u32 ext_phy_type, ext_phy_config, eee_mode;
11486
11487        bp->link_params.bp = bp;
11488        bp->link_params.port = port;
11489
11490        bp->link_params.lane_config =
11491                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11492
11493        bp->link_params.speed_cap_mask[0] =
11494                SHMEM_RD(bp,
11495                         dev_info.port_hw_config[port].speed_capability_mask) &
11496                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11497        bp->link_params.speed_cap_mask[1] =
11498                SHMEM_RD(bp,
11499                         dev_info.port_hw_config[port].speed_capability_mask2) &
11500                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11501        bp->port.link_config[0] =
11502                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11503
11504        bp->port.link_config[1] =
11505                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11506
11507        bp->link_params.multi_phy_config =
11508                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11509        /* If the device is capable of WoL, set the default state according
11510         * to the HW
11511         */
11512        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11513        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11514                   (config & PORT_FEATURE_WOL_ENABLED));
11515
11516        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11518                bp->flags |= NO_ISCSI_FLAG;
11519        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11520            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11521                bp->flags |= NO_FCOE_FLAG;
11522
11523        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11524                       bp->link_params.lane_config,
11525                       bp->link_params.speed_cap_mask[0],
11526                       bp->port.link_config[0]);
11527
11528        bp->link_params.switch_cfg = (bp->port.link_config[0] &
11529                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11530        bnx2x_phy_probe(&bp->link_params);
11531        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11532
11533        bnx2x_link_settings_requested(bp);
11534
11535        /*
11536         * If connected directly, work with the internal PHY, otherwise, work
11537         * with the external PHY
11538         */
11539        ext_phy_config =
11540                SHMEM_RD(bp,
11541                         dev_info.port_hw_config[port].external_phy_config);
11542        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11543        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11544                bp->mdio.prtad = bp->port.phy_addr;
11545
11546        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11547                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11548                bp->mdio.prtad =
11549                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11550
11551        /* Configure link feature according to nvram value */
11552        eee_mode = (((SHMEM_RD(bp, dev_info.
11553                      port_feature_config[port].eee_power_mode)) &
11554                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11555                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11556        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11557                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11558                                           EEE_MODE_ENABLE_LPI |
11559                                           EEE_MODE_OUTPUT_TIME;
11560        } else {
11561                bp->link_params.eee_mode = 0;
11562        }
11563}
11564
11565void bnx2x_get_iscsi_info(struct bnx2x *bp)
11566{
11567        u32 no_flags = NO_ISCSI_FLAG;
11568        int port = BP_PORT(bp);
11569        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11570                                drv_lic_key[port].max_iscsi_conn);
11571
11572        if (!CNIC_SUPPORT(bp)) {
11573                bp->flags |= no_flags;
11574                return;
11575        }
11576
11577        /* Get the number of maximum allowed iSCSI connections */
11578        bp->cnic_eth_dev.max_iscsi_conn =
11579                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11580                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11581
11582        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11583                       bp->cnic_eth_dev.max_iscsi_conn);
11584
11585        /*
11586         * If maximum allowed number of connections is zero -
11587         * disable the feature.
11588         */
11589        if (!bp->cnic_eth_dev.max_iscsi_conn)
11590                bp->flags |= no_flags;
11591}
11592
11593static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11594{
11595        /* Port info */
11596        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11597                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11598        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11599                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11600
11601        /* Node info */
11602        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11603                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11604        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11605                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11606}
11607
11608static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11609{
11610        u8 count = 0;
11611
11612        if (IS_MF(bp)) {
11613                u8 fid;
11614
11615                /* iterate over absolute function ids for this path: */
11616                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11617                        if (IS_MF_SD(bp)) {
11618                                u32 cfg = MF_CFG_RD(bp,
11619                                                    func_mf_config[fid].config);
11620
11621                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11622                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11623                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11624                                        count++;
11625                        } else {
11626                                u32 cfg = MF_CFG_RD(bp,
11627                                                    func_ext_config[fid].
11628                                                                      func_cfg);
11629
11630                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11631                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11632                                        count++;
11633                        }
11634                }
11635        } else { /* SF */
11636                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11637
11638                for (port = 0; port < port_cnt; port++) {
11639                        u32 lic = SHMEM_RD(bp,
11640                                           drv_lic_key[port].max_fcoe_conn) ^
11641                                  FW_ENCODE_32BIT_PATTERN;
11642                        if (lic)
11643                                count++;
11644                }
11645        }
11646
11647        return count;
11648}
11649
11650static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11651{
11652        int port = BP_PORT(bp);
11653        int func = BP_ABS_FUNC(bp);
11654        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11655                                drv_lic_key[port].max_fcoe_conn);
11656        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11657
11658        if (!CNIC_SUPPORT(bp)) {
11659                bp->flags |= NO_FCOE_FLAG;
11660                return;
11661        }
11662
11663        /* Get the number of maximum allowed FCoE connections */
11664        bp->cnic_eth_dev.max_fcoe_conn =
11665                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11666                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11667
11668        /* Calculate the number of maximum allowed FCoE tasks */
11669        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11670
11671        /* check if FCoE resources must be shared between different functions */
11672        if (num_fcoe_func)
11673                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11674
11675        /* Read the WWN: */
11676        if (!IS_MF(bp)) {
11677                /* Port info */
11678                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11679                        SHMEM_RD(bp,
11680                                 dev_info.port_hw_config[port].
11681                                 fcoe_wwn_port_name_upper);
11682                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11683                        SHMEM_RD(bp,
11684                                 dev_info.port_hw_config[port].
11685                                 fcoe_wwn_port_name_lower);
11686
11687                /* Node info */
11688                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11689                        SHMEM_RD(bp,
11690                                 dev_info.port_hw_config[port].
11691                                 fcoe_wwn_node_name_upper);
11692                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11693                        SHMEM_RD(bp,
11694                                 dev_info.port_hw_config[port].
11695                                 fcoe_wwn_node_name_lower);
11696        } else if (!IS_MF_SD(bp)) {
11697                /* Read the WWN info only if the FCoE feature is enabled for
11698                 * this function.
11699                 */
11700                if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11701                        bnx2x_get_ext_wwn_info(bp, func);
11702        } else {
11703                if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11704                        bnx2x_get_ext_wwn_info(bp, func);
11705        }
11706
11707        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11708
11709        /*
11710         * If maximum allowed number of connections is zero -
11711         * disable the feature.
11712         */
11713        if (!bp->cnic_eth_dev.max_fcoe_conn) {
11714                bp->flags |= NO_FCOE_FLAG;
11715                eth_zero_addr(bp->fip_mac);
11716        }
11717}
11718
11719static void bnx2x_get_cnic_info(struct bnx2x *bp)
11720{
11721        /*
11722         * iSCSI may be dynamically disabled but reading
11723         * info here we will decrease memory usage by driver
11724         * if the feature is disabled for good
11725         */
11726        bnx2x_get_iscsi_info(bp);
11727        bnx2x_get_fcoe_info(bp);
11728}
11729
11730static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11731{
11732        u32 val, val2;
11733        int func = BP_ABS_FUNC(bp);
11734        int port = BP_PORT(bp);
11735        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11736        u8 *fip_mac = bp->fip_mac;
11737
11738        if (IS_MF(bp)) {
11739                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11740                 * FCoE MAC then the appropriate feature should be disabled.
11741                 * In non SD mode features configuration comes from struct
11742                 * func_ext_config.
11743                 */
11744                if (!IS_MF_SD(bp)) {
11745                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11746                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11747                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11748                                                 iscsi_mac_addr_upper);
11749                                val = MF_CFG_RD(bp, func_ext_config[func].
11750                                                iscsi_mac_addr_lower);
11751                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11752                                BNX2X_DEV_INFO
11753                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11754                        } else {
11755                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11756                        }
11757
11758                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11759                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11760                                                 fcoe_mac_addr_upper);
11761                                val = MF_CFG_RD(bp, func_ext_config[func].
11762                                                fcoe_mac_addr_lower);
11763                                bnx2x_set_mac_buf(fip_mac, val, val2);
11764                                BNX2X_DEV_INFO
11765                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11766                        } else {
11767                                bp->flags |= NO_FCOE_FLAG;
11768                        }
11769
11770                        bp->mf_ext_config = cfg;
11771
11772                } else { /* SD MODE */
11773                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11774                                /* use primary mac as iscsi mac */
11775                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11776
11777                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11778                                BNX2X_DEV_INFO
11779                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11780                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11781                                /* use primary mac as fip mac */
11782                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11783                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11784                                BNX2X_DEV_INFO
11785                                        ("Read FIP MAC: %pM\n", fip_mac);
11786                        }
11787                }
11788
11789                /* If this is a storage-only interface, use SAN mac as
11790                 * primary MAC. Notice that for SD this is already the case,
11791                 * as the SAN mac was copied from the primary MAC.
11792                 */
11793                if (IS_MF_FCOE_AFEX(bp))
11794                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11795        } else {
11796                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11797                                iscsi_mac_upper);
11798                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11799                               iscsi_mac_lower);
11800                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11801
11802                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803                                fcoe_fip_mac_upper);
11804                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805                               fcoe_fip_mac_lower);
11806                bnx2x_set_mac_buf(fip_mac, val, val2);
11807        }
11808
11809        /* Disable iSCSI OOO if MAC configuration is invalid. */
11810        if (!is_valid_ether_addr(iscsi_mac)) {
11811                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11812                eth_zero_addr(iscsi_mac);
11813        }
11814
11815        /* Disable FCoE if MAC configuration is invalid. */
11816        if (!is_valid_ether_addr(fip_mac)) {
11817                bp->flags |= NO_FCOE_FLAG;
11818                eth_zero_addr(bp->fip_mac);
11819        }
11820}
11821
11822static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11823{
11824        u32 val, val2;
11825        int func = BP_ABS_FUNC(bp);
11826        int port = BP_PORT(bp);
11827
11828        /* Zero primary MAC configuration */
11829        eth_zero_addr(bp->dev->dev_addr);
11830
11831        if (BP_NOMCP(bp)) {
11832                BNX2X_ERROR("warning: random MAC workaround active\n");
11833                eth_hw_addr_random(bp->dev);
11834        } else if (IS_MF(bp)) {
11835                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11836                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11837                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11838                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11839                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11840
11841                if (CNIC_SUPPORT(bp))
11842                        bnx2x_get_cnic_mac_hwinfo(bp);
11843        } else {
11844                /* in SF read MACs from port configuration */
11845                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11846                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11847                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11848
11849                if (CNIC_SUPPORT(bp))
11850                        bnx2x_get_cnic_mac_hwinfo(bp);
11851        }
11852
11853        if (!BP_NOMCP(bp)) {
11854                /* Read physical port identifier from shmem */
11855                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11856                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11857                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11858                bp->flags |= HAS_PHYS_PORT_ID;
11859        }
11860
11861        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11862
11863        if (!is_valid_ether_addr(bp->dev->dev_addr))
11864                dev_err(&bp->pdev->dev,
11865                        "bad Ethernet MAC address configuration: %pM\n"
11866                        "change it manually before bringing up the appropriate network interface\n",
11867                        bp->dev->dev_addr);
11868}
11869
11870static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11871{
11872        int tmp;
11873        u32 cfg;
11874
11875        if (IS_VF(bp))
11876                return false;
11877
11878        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11879                /* Take function: tmp = func */
11880                tmp = BP_ABS_FUNC(bp);
11881                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11882                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11883        } else {
11884                /* Take port: tmp = port */
11885                tmp = BP_PORT(bp);
11886                cfg = SHMEM_RD(bp,
11887                               dev_info.port_hw_config[tmp].generic_features);
11888                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11889        }
11890        return cfg;
11891}
11892
11893static void validate_set_si_mode(struct bnx2x *bp)
11894{
11895        u8 func = BP_ABS_FUNC(bp);
11896        u32 val;
11897
11898        val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11899
11900        /* check for legal mac (upper bytes) */
11901        if (val != 0xffff) {
11902                bp->mf_mode = MULTI_FUNCTION_SI;
11903                bp->mf_config[BP_VN(bp)] =
11904                        MF_CFG_RD(bp, func_mf_config[func].config);
11905        } else
11906                BNX2X_DEV_INFO("illegal MAC address for SI\n");
11907}
11908
11909static int bnx2x_get_hwinfo(struct bnx2x *bp)
11910{
11911        int /*abs*/func = BP_ABS_FUNC(bp);
11912        int vn;
11913        u32 val = 0, val2 = 0;
11914        int rc = 0;
11915
11916        /* Validate that chip access is feasible */
11917        if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11918                dev_err(&bp->pdev->dev,
11919                        "Chip read returns all Fs. Preventing probe from continuing\n");
11920                return -EINVAL;
11921        }
11922
11923        bnx2x_get_common_hwinfo(bp);
11924
11925        /*
11926         * initialize IGU parameters
11927         */
11928        if (CHIP_IS_E1x(bp)) {
11929                bp->common.int_block = INT_BLOCK_HC;
11930
11931                bp->igu_dsb_id = DEF_SB_IGU_ID;
11932                bp->igu_base_sb = 0;
11933        } else {
11934                bp->common.int_block = INT_BLOCK_IGU;
11935
11936                /* do not allow device reset during IGU info processing */
11937                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11938
11939                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11940
11941                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11942                        int tout = 5000;
11943
11944                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
11945
11946                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11947                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11948                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11949
11950                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951                                tout--;
11952                                usleep_range(1000, 2000);
11953                        }
11954
11955                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11956                                dev_err(&bp->pdev->dev,
11957                                        "FORCING Normal Mode failed!!!\n");
11958                                bnx2x_release_hw_lock(bp,
11959                                                      HW_LOCK_RESOURCE_RESET);
11960                                return -EPERM;
11961                        }
11962                }
11963
11964                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11965                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11966                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11967                } else
11968                        BNX2X_DEV_INFO("IGU Normal Mode\n");
11969
11970                rc = bnx2x_get_igu_cam_info(bp);
11971                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11972                if (rc)
11973                        return rc;
11974        }
11975
11976        /*
11977         * set base FW non-default (fast path) status block id, this value is
11978         * used to initialize the fw_sb_id saved on the fp/queue structure to
11979         * determine the id used by the FW.
11980         */
11981        if (CHIP_IS_E1x(bp))
11982                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11983        else /*
11984              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11985              * the same queue are indicated on the same IGU SB). So we prefer
11986              * FW and IGU SBs to be the same value.
11987              */
11988                bp->base_fw_ndsb = bp->igu_base_sb;
11989
11990        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11991                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11992                       bp->igu_sb_cnt, bp->base_fw_ndsb);
11993
11994        /*
11995         * Initialize MF configuration
11996         */
11997        bp->mf_ov = 0;
11998        bp->mf_mode = 0;
11999        bp->mf_sub_mode = 0;
12000        vn = BP_VN(bp);
12001
12002        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12003                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12004                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
12005                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12006
12007                if (SHMEM2_HAS(bp, mf_cfg_addr))
12008                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12009                else
12010                        bp->common.mf_cfg_base = bp->common.shmem_base +
12011                                offsetof(struct shmem_region, func_mb) +
12012                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12013                /*
12014                 * get mf configuration:
12015                 * 1. Existence of MF configuration
12016                 * 2. MAC address must be legal (check only upper bytes)
12017                 *    for  Switch-Independent mode;
12018                 *    OVLAN must be legal for Switch-Dependent mode
12019                 * 3. SF_MODE configures specific MF mode
12020                 */
12021                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12022                        /* get mf configuration */
12023                        val = SHMEM_RD(bp,
12024                                       dev_info.shared_feature_config.config);
12025                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12026
12027                        switch (val) {
12028                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12029                                validate_set_si_mode(bp);
12030                                break;
12031                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12032                                if ((!CHIP_IS_E1x(bp)) &&
12033                                    (MF_CFG_RD(bp, func_mf_config[func].
12034                                               mac_upper) != 0xffff) &&
12035                                    (SHMEM2_HAS(bp,
12036                                                afex_driver_support))) {
12037                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
12038                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12039                                                func_mf_config[func].config);
12040                                } else {
12041                                        BNX2X_DEV_INFO("can not configure afex mode\n");
12042                                }
12043                                break;
12044                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12045                                /* get OV configuration */
12046                                val = MF_CFG_RD(bp,
12047                                        func_mf_config[FUNC_0].e1hov_tag);
12048                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12049
12050                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12051                                        bp->mf_mode = MULTI_FUNCTION_SD;
12052                                        bp->mf_config[vn] = MF_CFG_RD(bp,
12053                                                func_mf_config[func].config);
12054                                } else
12055                                        BNX2X_DEV_INFO("illegal OV for SD\n");
12056                                break;
12057                        case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12058                                bp->mf_mode = MULTI_FUNCTION_SD;
12059                                bp->mf_sub_mode = SUB_MF_MODE_BD;
12060                                bp->mf_config[vn] =
12061                                        MF_CFG_RD(bp,
12062                                                  func_mf_config[func].config);
12063
12064                                if (SHMEM2_HAS(bp, mtu_size)) {
12065                                        int mtu_idx = BP_FW_MB_IDX(bp);
12066                                        u16 mtu_size;
12067                                        u32 mtu;
12068
12069                                        mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12070                                        mtu_size = (u16)mtu;
12071                                        DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12072                                           mtu_size, mtu);
12073
12074                                        /* if valid: update device mtu */
12075                                        if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12076                                            (mtu_size <=
12077                                             ETH_MAX_JUMBO_PACKET_SIZE))
12078                                                bp->dev->mtu = mtu_size;
12079                                }
12080                                break;
12081                        case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12082                                bp->mf_mode = MULTI_FUNCTION_SD;
12083                                bp->mf_sub_mode = SUB_MF_MODE_UFP;
12084                                bp->mf_config[vn] =
12085                                        MF_CFG_RD(bp,
12086                                                  func_mf_config[func].config);
12087                                break;
12088                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12089                                bp->mf_config[vn] = 0;
12090                                break;
12091                        case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12092                                val2 = SHMEM_RD(bp,
12093                                        dev_info.shared_hw_config.config_3);
12094                                val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12095                                switch (val2) {
12096                                case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12097                                        validate_set_si_mode(bp);
12098                                        bp->mf_sub_mode =
12099                                                        SUB_MF_MODE_NPAR1_DOT_5;
12100                                        break;
12101                                default:
12102                                        /* Unknown configuration */
12103                                        bp->mf_config[vn] = 0;
12104                                        BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12105                                                       val);
12106                                }
12107                                break;
12108                        default:
12109                                /* Unknown configuration: reset mf_config */
12110                                bp->mf_config[vn] = 0;
12111                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12112                        }
12113                }
12114
12115                BNX2X_DEV_INFO("%s function mode\n",
12116                               IS_MF(bp) ? "multi" : "single");
12117
12118                switch (bp->mf_mode) {
12119                case MULTI_FUNCTION_SD:
12120                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12121                              FUNC_MF_CFG_E1HOV_TAG_MASK;
12122                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12123                                bp->mf_ov = val;
12124                                bp->path_has_ovlan = true;
12125
12126                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12127                                               func, bp->mf_ov, bp->mf_ov);
12128                        } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12129                                   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12130                                dev_err(&bp->pdev->dev,
12131                                        "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12132                                        func);
12133                                bp->path_has_ovlan = true;
12134                        } else {
12135                                dev_err(&bp->pdev->dev,
12136                                        "No valid MF OV for func %d, aborting\n",
12137                                        func);
12138                                return -EPERM;
12139                        }
12140                        break;
12141                case MULTI_FUNCTION_AFEX:
12142                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12143                        break;
12144                case MULTI_FUNCTION_SI:
12145                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12146                                       func);
12147                        break;
12148                default:
12149                        if (vn) {
12150                                dev_err(&bp->pdev->dev,
12151                                        "VN %d is in a single function mode, aborting\n",
12152                                        vn);
12153                                return -EPERM;
12154                        }
12155                        break;
12156                }
12157
12158                /* check if other port on the path needs ovlan:
12159                 * Since MF configuration is shared between ports
12160                 * Possible mixed modes are only
12161                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12162                 */
12163                if (CHIP_MODE_IS_4_PORT(bp) &&
12164                    !bp->path_has_ovlan &&
12165                    !IS_MF(bp) &&
12166                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12167                        u8 other_port = !BP_PORT(bp);
12168                        u8 other_func = BP_PATH(bp) + 2*other_port;
12169                        val = MF_CFG_RD(bp,
12170                                        func_mf_config[other_func].e1hov_tag);
12171                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12172                                bp->path_has_ovlan = true;
12173                }
12174        }
12175
12176        /* adjust igu_sb_cnt to MF for E1H */
12177        if (CHIP_IS_E1H(bp) && IS_MF(bp))
12178                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12179
12180        /* port info */
12181        bnx2x_get_port_hwinfo(bp);
12182
12183        /* Get MAC addresses */
12184        bnx2x_get_mac_hwinfo(bp);
12185
12186        bnx2x_get_cnic_info(bp);
12187
12188        return rc;
12189}
12190
12191static void bnx2x_read_fwinfo(struct bnx2x *bp)
12192{
12193        int cnt, i, block_end, rodi;
12194        char vpd_start[BNX2X_VPD_LEN+1];
12195        char str_id_reg[VENDOR_ID_LEN+1];
12196        char str_id_cap[VENDOR_ID_LEN+1];
12197        char *vpd_data;
12198        char *vpd_extended_data = NULL;
12199        u8 len;
12200
12201        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12202        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12203
12204        if (cnt < BNX2X_VPD_LEN)
12205                goto out_not_found;
12206
12207        /* VPD RO tag should be first tag after identifier string, hence
12208         * we should be able to find it in first BNX2X_VPD_LEN chars
12209         */
12210        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12211                             PCI_VPD_LRDT_RO_DATA);
12212        if (i < 0)
12213                goto out_not_found;
12214
12215        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12216                    pci_vpd_lrdt_size(&vpd_start[i]);
12217
12218        i += PCI_VPD_LRDT_TAG_SIZE;
12219
12220        if (block_end > BNX2X_VPD_LEN) {
12221                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12222                if (vpd_extended_data  == NULL)
12223                        goto out_not_found;
12224
12225                /* read rest of vpd image into vpd_extended_data */
12226                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12227                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12228                                   block_end - BNX2X_VPD_LEN,
12229                                   vpd_extended_data + BNX2X_VPD_LEN);
12230                if (cnt < (block_end - BNX2X_VPD_LEN))
12231                        goto out_not_found;
12232                vpd_data = vpd_extended_data;
12233        } else
12234                vpd_data = vpd_start;
12235
12236        /* now vpd_data holds full vpd content in both cases */
12237
12238        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12239                                   PCI_VPD_RO_KEYWORD_MFR_ID);
12240        if (rodi < 0)
12241                goto out_not_found;
12242
12243        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12244
12245        if (len != VENDOR_ID_LEN)
12246                goto out_not_found;
12247
12248        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12249
12250        /* vendor specific info */
12251        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12252        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12253        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12254            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12255
12256                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12257                                                PCI_VPD_RO_KEYWORD_VENDOR0);
12258                if (rodi >= 0) {
12259                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12260
12261                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12262
12263                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12264                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
12265                                bp->fw_ver[len] = ' ';
12266                        }
12267                }
12268                kfree(vpd_extended_data);
12269                return;
12270        }
12271out_not_found:
12272        kfree(vpd_extended_data);
12273        return;
12274}
12275
12276static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12277{
12278        u32 flags = 0;
12279
12280        if (CHIP_REV_IS_FPGA(bp))
12281                SET_FLAGS(flags, MODE_FPGA);
12282        else if (CHIP_REV_IS_EMUL(bp))
12283                SET_FLAGS(flags, MODE_EMUL);
12284        else
12285                SET_FLAGS(flags, MODE_ASIC);
12286
12287        if (CHIP_MODE_IS_4_PORT(bp))
12288                SET_FLAGS(flags, MODE_PORT4);
12289        else
12290                SET_FLAGS(flags, MODE_PORT2);
12291
12292        if (CHIP_IS_E2(bp))
12293                SET_FLAGS(flags, MODE_E2);
12294        else if (CHIP_IS_E3(bp)) {
12295                SET_FLAGS(flags, MODE_E3);
12296                if (CHIP_REV(bp) == CHIP_REV_Ax)
12297                        SET_FLAGS(flags, MODE_E3_A0);
12298                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12299                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12300        }
12301
12302        if (IS_MF(bp)) {
12303                SET_FLAGS(flags, MODE_MF);
12304                switch (bp->mf_mode) {
12305                case MULTI_FUNCTION_SD:
12306                        SET_FLAGS(flags, MODE_MF_SD);
12307                        break;
12308                case MULTI_FUNCTION_SI:
12309                        SET_FLAGS(flags, MODE_MF_SI);
12310                        break;
12311                case MULTI_FUNCTION_AFEX:
12312                        SET_FLAGS(flags, MODE_MF_AFEX);
12313                        break;
12314                }
12315        } else
12316                SET_FLAGS(flags, MODE_SF);
12317
12318#if defined(__LITTLE_ENDIAN)
12319        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12320#else /*(__BIG_ENDIAN)*/
12321        SET_FLAGS(flags, MODE_BIG_ENDIAN);
12322#endif
12323        INIT_MODE_FLAGS(bp) = flags;
12324}
12325
12326static int bnx2x_init_bp(struct bnx2x *bp)
12327{
12328        int func;
12329        int rc;
12330
12331        mutex_init(&bp->port.phy_mutex);
12332        mutex_init(&bp->fw_mb_mutex);
12333        mutex_init(&bp->drv_info_mutex);
12334        sema_init(&bp->stats_lock, 1);
12335        bp->drv_info_mng_owner = false;
12336        INIT_LIST_HEAD(&bp->vlan_reg);
12337
12338        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12339        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12340        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12341        INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12342        if (IS_PF(bp)) {
12343                rc = bnx2x_get_hwinfo(bp);
12344                if (rc)
12345                        return rc;
12346        } else {
12347                eth_zero_addr(bp->dev->dev_addr);
12348        }
12349
12350        bnx2x_set_modes_bitmap(bp);
12351
12352        rc = bnx2x_alloc_mem_bp(bp);
12353        if (rc)
12354                return rc;
12355
12356        bnx2x_read_fwinfo(bp);
12357
12358        func = BP_FUNC(bp);
12359
12360        /* need to reset chip if undi was active */
12361        if (IS_PF(bp) && !BP_NOMCP(bp)) {
12362                /* init fw_seq */
12363                bp->fw_seq =
12364                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12365                                                        DRV_MSG_SEQ_NUMBER_MASK;
12366                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12367
12368                rc = bnx2x_prev_unload(bp);
12369                if (rc) {
12370                        bnx2x_free_mem_bp(bp);
12371                        return rc;
12372                }
12373        }
12374
12375        if (CHIP_REV_IS_FPGA(bp))
12376                dev_err(&bp->pdev->dev, "FPGA detected\n");
12377
12378        if (BP_NOMCP(bp) && (func == 0))
12379                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12380
12381        bp->disable_tpa = disable_tpa;
12382        bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12383        /* Reduce memory usage in kdump environment by disabling TPA */
12384        bp->disable_tpa |= is_kdump_kernel();
12385
12386        /* Set TPA flags */
12387        if (bp->disable_tpa) {
12388                bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12389                bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12390        }
12391
12392        if (CHIP_IS_E1(bp))
12393                bp->dropless_fc = false;
12394        else
12395                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12396
12397        bp->mrrs = mrrs;
12398
12399        bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12400        if (IS_VF(bp))
12401                bp->rx_ring_size = MAX_RX_AVAIL;
12402
12403        /* make sure that the numbers are in the right granularity */
12404        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12405        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12406
12407        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12408
12409        timer_setup(&bp->timer, bnx2x_timer, 0);
12410        bp->timer.expires = jiffies + bp->current_interval;
12411
12412        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414            SHMEM2_HAS(bp, dcbx_en) &&
12415            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417            SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419                bnx2x_dcbx_init_params(bp);
12420        } else {
12421                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422        }
12423
12424        if (CHIP_IS_E1x(bp))
12425                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426        else
12427                bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428
12429        /* multiple tx priority */
12430        if (IS_VF(bp))
12431                bp->max_cos = 1;
12432        else if (CHIP_IS_E1x(bp))
12433                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436        else if (CHIP_IS_E3B0(bp))
12437                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438        else
12439                BNX2X_ERR("unknown chip %x revision %x\n",
12440                          CHIP_NUM(bp), CHIP_REV(bp));
12441        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442
12443        /* We need at least one default status block for slow-path events,
12444         * second status block for the L2 queue, and a third status block for
12445         * CNIC if supported.
12446         */
12447        if (IS_VF(bp))
12448                bp->min_msix_vec_cnt = 1;
12449        else if (CNIC_SUPPORT(bp))
12450                bp->min_msix_vec_cnt = 3;
12451        else /* PF w/o cnic */
12452                bp->min_msix_vec_cnt = 2;
12453        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454
12455        bp->dump_preset_idx = 1;
12456
12457        return rc;
12458}
12459
12460/****************************************************************************
12461* General service functions
12462****************************************************************************/
12463
12464/*
12465 * net_device service functions
12466 */
12467
12468/* called with rtnl_lock */
12469static int bnx2x_open(struct net_device *dev)
12470{
12471        struct bnx2x *bp = netdev_priv(dev);
12472        int rc;
12473
12474        bp->stats_init = true;
12475
12476        netif_carrier_off(dev);
12477
12478        bnx2x_set_power_state(bp, PCI_D0);
12479
12480        /* If parity had happen during the unload, then attentions
12481         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12482         * want the first function loaded on the current engine to
12483         * complete the recovery.
12484         * Parity recovery is only relevant for PF driver.
12485         */
12486        if (IS_PF(bp)) {
12487                int other_engine = BP_PATH(bp) ? 0 : 1;
12488                bool other_load_status, load_status;
12489                bool global = false;
12490
12491                other_load_status = bnx2x_get_load_status(bp, other_engine);
12492                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12493                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12494                    bnx2x_chk_parity_attn(bp, &global, true)) {
12495                        do {
12496                                /* If there are attentions and they are in a
12497                                 * global blocks, set the GLOBAL_RESET bit
12498                                 * regardless whether it will be this function
12499                                 * that will complete the recovery or not.
12500                                 */
12501                                if (global)
12502                                        bnx2x_set_reset_global(bp);
12503
12504                                /* Only the first function on the current
12505                                 * engine should try to recover in open. In case
12506                                 * of attentions in global blocks only the first
12507                                 * in the chip should try to recover.
12508                                 */
12509                                if ((!load_status &&
12510                                     (!global || !other_load_status)) &&
12511                                      bnx2x_trylock_leader_lock(bp) &&
12512                                      !bnx2x_leader_reset(bp)) {
12513                                        netdev_info(bp->dev,
12514                                                    "Recovered in open\n");
12515                                        break;
12516                                }
12517
12518                                /* recovery has failed... */
12519                                bnx2x_set_power_state(bp, PCI_D3hot);
12520                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
12521
12522                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12523                                          "If you still see this message after a few retries then power cycle is required.\n");
12524
12525                                return -EAGAIN;
12526                        } while (0);
12527                }
12528        }
12529
12530        bp->recovery_state = BNX2X_RECOVERY_DONE;
12531        rc = bnx2x_nic_load(bp, LOAD_OPEN);
12532        if (rc)
12533                return rc;
12534
12535        return 0;
12536}
12537
12538/* called with rtnl_lock */
12539static int bnx2x_close(struct net_device *dev)
12540{
12541        struct bnx2x *bp = netdev_priv(dev);
12542
12543        /* Unload the driver, release IRQs */
12544        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12545
12546        return 0;
12547}
12548
12549struct bnx2x_mcast_list_elem_group
12550{
12551        struct list_head mcast_group_link;
12552        struct bnx2x_mcast_list_elem mcast_elems[];
12553};
12554
12555#define MCAST_ELEMS_PER_PG \
12556        ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12557        sizeof(struct bnx2x_mcast_list_elem))
12558
12559static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12560{
12561        struct bnx2x_mcast_list_elem_group *current_mcast_group;
12562
12563        while (!list_empty(mcast_group_list)) {
12564                current_mcast_group = list_first_entry(mcast_group_list,
12565                                      struct bnx2x_mcast_list_elem_group,
12566                                      mcast_group_link);
12567                list_del(&current_mcast_group->mcast_group_link);
12568                free_page((unsigned long)current_mcast_group);
12569        }
12570}
12571
12572static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12573                                      struct bnx2x_mcast_ramrod_params *p,
12574                                      struct list_head *mcast_group_list)
12575{
12576        struct bnx2x_mcast_list_elem *mc_mac;
12577        struct netdev_hw_addr *ha;
12578        struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12579        int mc_count = netdev_mc_count(bp->dev);
12580        int offset = 0;
12581
12582        INIT_LIST_HEAD(&p->mcast_list);
12583        netdev_for_each_mc_addr(ha, bp->dev) {
12584                if (!offset) {
12585                        current_mcast_group =
12586                                (struct bnx2x_mcast_list_elem_group *)
12587                                __get_free_page(GFP_ATOMIC);
12588                        if (!current_mcast_group) {
12589                                bnx2x_free_mcast_macs_list(mcast_group_list);
12590                                BNX2X_ERR("Failed to allocate mc MAC list\n");
12591                                return -ENOMEM;
12592                        }
12593                        list_add(&current_mcast_group->mcast_group_link,
12594                                 mcast_group_list);
12595                }
12596                mc_mac = &current_mcast_group->mcast_elems[offset];
12597                mc_mac->mac = bnx2x_mc_addr(ha);
12598                list_add_tail(&mc_mac->link, &p->mcast_list);
12599                offset++;
12600                if (offset == MCAST_ELEMS_PER_PG)
12601                        offset = 0;
12602        }
12603        p->mcast_list_len = mc_count;
12604        return 0;
12605}
12606
12607/**
12608 * bnx2x_set_uc_list - configure a new unicast MACs list.
12609 *
12610 * @bp: driver handle
12611 *
12612 * We will use zero (0) as a MAC type for these MACs.
12613 */
12614static int bnx2x_set_uc_list(struct bnx2x *bp)
12615{
12616        int rc;
12617        struct net_device *dev = bp->dev;
12618        struct netdev_hw_addr *ha;
12619        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12620        unsigned long ramrod_flags = 0;
12621
12622        /* First schedule a cleanup up of old configuration */
12623        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12624        if (rc < 0) {
12625                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12626                return rc;
12627        }
12628
12629        netdev_for_each_uc_addr(ha, dev) {
12630                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12631                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12632                if (rc == -EEXIST) {
12633                        DP(BNX2X_MSG_SP,
12634                           "Failed to schedule ADD operations: %d\n", rc);
12635                        /* do not treat adding same MAC as error */
12636                        rc = 0;
12637
12638                } else if (rc < 0) {
12639
12640                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12641                                  rc);
12642                        return rc;
12643                }
12644        }
12645
12646        /* Execute the pending commands */
12647        __set_bit(RAMROD_CONT, &ramrod_flags);
12648        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12649                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12650}
12651
12652static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12653{
12654        LIST_HEAD(mcast_group_list);
12655        struct net_device *dev = bp->dev;
12656        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657        int rc = 0;
12658
12659        rparam.mcast_obj = &bp->mcast_obj;
12660
12661        /* first, clear all configured multicast MACs */
12662        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12663        if (rc < 0) {
12664                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12665                return rc;
12666        }
12667
12668        /* then, configure a new MACs list */
12669        if (netdev_mc_count(dev)) {
12670                rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12671                if (rc)
12672                        return rc;
12673
12674                /* Now add the new MACs */
12675                rc = bnx2x_config_mcast(bp, &rparam,
12676                                        BNX2X_MCAST_CMD_ADD);
12677                if (rc < 0)
12678                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12679                                  rc);
12680
12681                bnx2x_free_mcast_macs_list(&mcast_group_list);
12682        }
12683
12684        return rc;
12685}
12686
12687static int bnx2x_set_mc_list(struct bnx2x *bp)
12688{
12689        LIST_HEAD(mcast_group_list);
12690        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12691        struct net_device *dev = bp->dev;
12692        int rc = 0;
12693
12694        /* On older adapters, we need to flush and re-add filters */
12695        if (CHIP_IS_E1x(bp))
12696                return bnx2x_set_mc_list_e1x(bp);
12697
12698        rparam.mcast_obj = &bp->mcast_obj;
12699
12700        if (netdev_mc_count(dev)) {
12701                rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12702                if (rc)
12703                        return rc;
12704
12705                /* Override the curently configured set of mc filters */
12706                rc = bnx2x_config_mcast(bp, &rparam,
12707                                        BNX2X_MCAST_CMD_SET);
12708                if (rc < 0)
12709                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12710                                  rc);
12711
12712                bnx2x_free_mcast_macs_list(&mcast_group_list);
12713        } else {
12714                /* If no mc addresses are required, flush the configuration */
12715                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12716                if (rc < 0)
12717                        BNX2X_ERR("Failed to clear multicast configuration %d\n",
12718                                  rc);
12719        }
12720
12721        return rc;
12722}
12723
12724/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12725static void bnx2x_set_rx_mode(struct net_device *dev)
12726{
12727        struct bnx2x *bp = netdev_priv(dev);
12728
12729        if (bp->state != BNX2X_STATE_OPEN) {
12730                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12731                return;
12732        } else {
12733                /* Schedule an SP task to handle rest of change */
12734                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12735                                       NETIF_MSG_IFUP);
12736        }
12737}
12738
12739void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12740{
12741        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12742
12743        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12744
12745        netif_addr_lock_bh(bp->dev);
12746
12747        if (bp->dev->flags & IFF_PROMISC) {
12748                rx_mode = BNX2X_RX_MODE_PROMISC;
12749        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12750                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12751                    CHIP_IS_E1(bp))) {
12752                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12753        } else {
12754                if (IS_PF(bp)) {
12755                        /* some multicasts */
12756                        if (bnx2x_set_mc_list(bp) < 0)
12757                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12758
12759                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12760                        netif_addr_unlock_bh(bp->dev);
12761                        if (bnx2x_set_uc_list(bp) < 0)
12762                                rx_mode = BNX2X_RX_MODE_PROMISC;
12763                        netif_addr_lock_bh(bp->dev);
12764                } else {
12765                        /* configuring mcast to a vf involves sleeping (when we
12766                         * wait for the pf's response).
12767                         */
12768                        bnx2x_schedule_sp_rtnl(bp,
12769                                               BNX2X_SP_RTNL_VFPF_MCAST, 0);
12770                }
12771        }
12772
12773        bp->rx_mode = rx_mode;
12774        /* handle ISCSI SD mode */
12775        if (IS_MF_ISCSI_ONLY(bp))
12776                bp->rx_mode = BNX2X_RX_MODE_NONE;
12777
12778        /* Schedule the rx_mode command */
12779        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12780                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12781                netif_addr_unlock_bh(bp->dev);
12782                return;
12783        }
12784
12785        if (IS_PF(bp)) {
12786                bnx2x_set_storm_rx_mode(bp);
12787                netif_addr_unlock_bh(bp->dev);
12788        } else {
12789                /* VF will need to request the PF to make this change, and so
12790                 * the VF needs to release the bottom-half lock prior to the
12791                 * request (as it will likely require sleep on the VF side)
12792                 */
12793                netif_addr_unlock_bh(bp->dev);
12794                bnx2x_vfpf_storm_rx_mode(bp);
12795        }
12796}
12797
12798/* called with rtnl_lock */
12799static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12800                           int devad, u16 addr)
12801{
12802        struct bnx2x *bp = netdev_priv(netdev);
12803        u16 value;
12804        int rc;
12805
12806        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12807           prtad, devad, addr);
12808
12809        /* The HW expects different devad if CL22 is used */
12810        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12811
12812        bnx2x_acquire_phy_lock(bp);
12813        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12814        bnx2x_release_phy_lock(bp);
12815        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12816
12817        if (!rc)
12818                rc = value;
12819        return rc;
12820}
12821
12822/* called with rtnl_lock */
12823static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12824                            u16 addr, u16 value)
12825{
12826        struct bnx2x *bp = netdev_priv(netdev);
12827        int rc;
12828
12829        DP(NETIF_MSG_LINK,
12830           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12831           prtad, devad, addr, value);
12832
12833        /* The HW expects different devad if CL22 is used */
12834        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12835
12836        bnx2x_acquire_phy_lock(bp);
12837        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12838        bnx2x_release_phy_lock(bp);
12839        return rc;
12840}
12841
12842/* called with rtnl_lock */
12843static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12844{
12845        struct bnx2x *bp = netdev_priv(dev);
12846        struct mii_ioctl_data *mdio = if_mii(ifr);
12847
12848        if (!netif_running(dev))
12849                return -EAGAIN;
12850
12851        switch (cmd) {
12852        case SIOCSHWTSTAMP:
12853                return bnx2x_hwtstamp_ioctl(bp, ifr);
12854        default:
12855                DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12856                   mdio->phy_id, mdio->reg_num, mdio->val_in);
12857                return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12858        }
12859}
12860
12861static int bnx2x_validate_addr(struct net_device *dev)
12862{
12863        struct bnx2x *bp = netdev_priv(dev);
12864
12865        /* query the bulletin board for mac address configured by the PF */
12866        if (IS_VF(bp))
12867                bnx2x_sample_bulletin(bp);
12868
12869        if (!is_valid_ether_addr(dev->dev_addr)) {
12870                BNX2X_ERR("Non-valid Ethernet address\n");
12871                return -EADDRNOTAVAIL;
12872        }
12873        return 0;
12874}
12875
12876static int bnx2x_get_phys_port_id(struct net_device *netdev,
12877                                  struct netdev_phys_item_id *ppid)
12878{
12879        struct bnx2x *bp = netdev_priv(netdev);
12880
12881        if (!(bp->flags & HAS_PHYS_PORT_ID))
12882                return -EOPNOTSUPP;
12883
12884        ppid->id_len = sizeof(bp->phys_port_id);
12885        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12886
12887        return 0;
12888}
12889
12890static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12891                                              struct net_device *dev,
12892                                              netdev_features_t features)
12893{
12894        /*
12895         * A skb with gso_size + header length > 9700 will cause a
12896         * firmware panic. Drop GSO support.
12897         *
12898         * Eventually the upper layer should not pass these packets down.
12899         *
12900         * For speed, if the gso_size is <= 9000, assume there will
12901         * not be 700 bytes of headers and pass it through. Only do a
12902         * full (slow) validation if the gso_size is > 9000.
12903         *
12904         * (Due to the way SKB_BY_FRAGS works this will also do a full
12905         * validation in that case.)
12906         */
12907        if (unlikely(skb_is_gso(skb) &&
12908                     (skb_shinfo(skb)->gso_size > 9000) &&
12909                     !skb_gso_validate_mac_len(skb, 9700)))
12910                features &= ~NETIF_F_GSO_MASK;
12911
12912        features = vlan_features_check(skb, features);
12913        return vxlan_features_check(skb, features);
12914}
12915
12916static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12917{
12918        int rc;
12919
12920        if (IS_PF(bp)) {
12921                unsigned long ramrod_flags = 0;
12922
12923                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12924                rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12925                                        add, &ramrod_flags);
12926        } else {
12927                rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12928        }
12929
12930        return rc;
12931}
12932
12933static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12934{
12935        struct bnx2x_vlan_entry *vlan;
12936        int rc = 0;
12937
12938        /* Configure all non-configured entries */
12939        list_for_each_entry(vlan, &bp->vlan_reg, link) {
12940                if (vlan->hw)
12941                        continue;
12942
12943                if (bp->vlan_cnt >= bp->vlan_credit)
12944                        return -ENOBUFS;
12945
12946                rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12947                if (rc) {
12948                        BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12949                        return rc;
12950                }
12951
12952                DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12953                vlan->hw = true;
12954                bp->vlan_cnt++;
12955        }
12956
12957        return 0;
12958}
12959
12960static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12961{
12962        bool need_accept_any_vlan;
12963
12964        need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12965
12966        if (bp->accept_any_vlan != need_accept_any_vlan) {
12967                bp->accept_any_vlan = need_accept_any_vlan;
12968                DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12969                   bp->accept_any_vlan ? "raised" : "cleared");
12970                if (set_rx_mode) {
12971                        if (IS_PF(bp))
12972                                bnx2x_set_rx_mode_inner(bp);
12973                        else
12974                                bnx2x_vfpf_storm_rx_mode(bp);
12975                }
12976        }
12977}
12978
12979int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12980{
12981        /* Don't set rx mode here. Our caller will do it. */
12982        bnx2x_vlan_configure(bp, false);
12983
12984        return 0;
12985}
12986
12987static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12988{
12989        struct bnx2x *bp = netdev_priv(dev);
12990        struct bnx2x_vlan_entry *vlan;
12991
12992        DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12993
12994        vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12995        if (!vlan)
12996                return -ENOMEM;
12997
12998        vlan->vid = vid;
12999        vlan->hw = false;
13000        list_add_tail(&vlan->link, &bp->vlan_reg);
13001
13002        if (netif_running(dev))
13003                bnx2x_vlan_configure(bp, true);
13004
13005        return 0;
13006}
13007
13008static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13009{
13010        struct bnx2x *bp = netdev_priv(dev);
13011        struct bnx2x_vlan_entry *vlan;
13012        bool found = false;
13013        int rc = 0;
13014
13015        DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13016
13017        list_for_each_entry(vlan, &bp->vlan_reg, link)
13018                if (vlan->vid == vid) {
13019                        found = true;
13020                        break;
13021                }
13022
13023        if (!found) {
13024                BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13025                return -EINVAL;
13026        }
13027
13028        if (netif_running(dev) && vlan->hw) {
13029                rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13030                DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13031                bp->vlan_cnt--;
13032        }
13033
13034        list_del(&vlan->link);
13035        kfree(vlan);
13036
13037        if (netif_running(dev))
13038                bnx2x_vlan_configure(bp, true);
13039
13040        DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13041
13042        return rc;
13043}
13044
13045static const struct net_device_ops bnx2x_netdev_ops = {
13046        .ndo_open               = bnx2x_open,
13047        .ndo_stop               = bnx2x_close,
13048        .ndo_start_xmit         = bnx2x_start_xmit,
13049        .ndo_select_queue       = bnx2x_select_queue,
13050        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13051        .ndo_set_mac_address    = bnx2x_change_mac_addr,
13052        .ndo_validate_addr      = bnx2x_validate_addr,
13053        .ndo_do_ioctl           = bnx2x_ioctl,
13054        .ndo_change_mtu         = bnx2x_change_mtu,
13055        .ndo_fix_features       = bnx2x_fix_features,
13056        .ndo_set_features       = bnx2x_set_features,
13057        .ndo_tx_timeout         = bnx2x_tx_timeout,
13058        .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13059        .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13060        .ndo_setup_tc           = __bnx2x_setup_tc,
13061#ifdef CONFIG_BNX2X_SRIOV
13062        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13063        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13064        .ndo_get_vf_config      = bnx2x_get_vf_config,
13065        .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13066#endif
13067#ifdef NETDEV_FCOE_WWNN
13068        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13069#endif
13070
13071        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13072        .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13073        .ndo_features_check     = bnx2x_features_check,
13074        .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
13075        .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
13076};
13077
13078static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13079{
13080        struct device *dev = &bp->pdev->dev;
13081
13082        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13083            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13084                dev_err(dev, "System does not support DMA, aborting\n");
13085                return -EIO;
13086        }
13087
13088        return 0;
13089}
13090
13091static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13092{
13093        if (bp->flags & AER_ENABLED) {
13094                pci_disable_pcie_error_reporting(bp->pdev);
13095                bp->flags &= ~AER_ENABLED;
13096        }
13097}
13098
13099static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13100                          struct net_device *dev, unsigned long board_type)
13101{
13102        int rc;
13103        u32 pci_cfg_dword;
13104        bool chip_is_e1x = (board_type == BCM57710 ||
13105                            board_type == BCM57711 ||
13106                            board_type == BCM57711E);
13107
13108        SET_NETDEV_DEV(dev, &pdev->dev);
13109
13110        bp->dev = dev;
13111        bp->pdev = pdev;
13112
13113        rc = pci_enable_device(pdev);
13114        if (rc) {
13115                dev_err(&bp->pdev->dev,
13116                        "Cannot enable PCI device, aborting\n");
13117                goto err_out;
13118        }
13119
13120        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13121                dev_err(&bp->pdev->dev,
13122                        "Cannot find PCI device base address, aborting\n");
13123                rc = -ENODEV;
13124                goto err_out_disable;
13125        }
13126
13127        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13128                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13129                rc = -ENODEV;
13130                goto err_out_disable;
13131        }
13132
13133        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13134        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13135            PCICFG_REVESION_ID_ERROR_VAL) {
13136                pr_err("PCI device error, probably due to fan failure, aborting\n");
13137                rc = -ENODEV;
13138                goto err_out_disable;
13139        }
13140
13141        if (atomic_read(&pdev->enable_cnt) == 1) {
13142                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13143                if (rc) {
13144                        dev_err(&bp->pdev->dev,
13145                                "Cannot obtain PCI resources, aborting\n");
13146                        goto err_out_disable;
13147                }
13148
13149                pci_set_master(pdev);
13150                pci_save_state(pdev);
13151        }
13152
13153        if (IS_PF(bp)) {
13154                if (!pdev->pm_cap) {
13155                        dev_err(&bp->pdev->dev,
13156                                "Cannot find power management capability, aborting\n");
13157                        rc = -EIO;
13158                        goto err_out_release;
13159                }
13160        }
13161
13162        if (!pci_is_pcie(pdev)) {
13163                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13164                rc = -EIO;
13165                goto err_out_release;
13166        }
13167
13168        rc = bnx2x_set_coherency_mask(bp);
13169        if (rc)
13170                goto err_out_release;
13171
13172        dev->mem_start = pci_resource_start(pdev, 0);
13173        dev->base_addr = dev->mem_start;
13174        dev->mem_end = pci_resource_end(pdev, 0);
13175
13176        dev->irq = pdev->irq;
13177
13178        bp->regview = pci_ioremap_bar(pdev, 0);
13179        if (!bp->regview) {
13180                dev_err(&bp->pdev->dev,
13181                        "Cannot map register space, aborting\n");
13182                rc = -ENOMEM;
13183                goto err_out_release;
13184        }
13185
13186        /* In E1/E1H use pci device function given by kernel.
13187         * In E2/E3 read physical function from ME register since these chips
13188         * support Physical Device Assignment where kernel BDF maybe arbitrary
13189         * (depending on hypervisor).
13190         */
13191        if (chip_is_e1x) {
13192                bp->pf_num = PCI_FUNC(pdev->devfn);
13193        } else {
13194                /* chip is E2/3*/
13195                pci_read_config_dword(bp->pdev,
13196                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
13197                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13198                                  ME_REG_ABS_PF_NUM_SHIFT);
13199        }
13200        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13201
13202        /* clean indirect addresses */
13203        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13204                               PCICFG_VENDOR_ID_OFFSET);
13205
13206        /* Set PCIe reset type to fundamental for EEH recovery */
13207        pdev->needs_freset = 1;
13208
13209        /* AER (Advanced Error reporting) configuration */
13210        rc = pci_enable_pcie_error_reporting(pdev);
13211        if (!rc)
13212                bp->flags |= AER_ENABLED;
13213        else
13214                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13215
13216        /*
13217         * Clean the following indirect addresses for all functions since it
13218         * is not used by the driver.
13219         */
13220        if (IS_PF(bp)) {
13221                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13222                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13223                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13224                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13225
13226                if (chip_is_e1x) {
13227                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13228                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13229                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13230                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13231                }
13232
13233                /* Enable internal target-read (in case we are probed after PF
13234                 * FLR). Must be done prior to any BAR read access. Only for
13235                 * 57712 and up
13236                 */
13237                if (!chip_is_e1x)
13238                        REG_WR(bp,
13239                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13240        }
13241
13242        dev->watchdog_timeo = TX_TIMEOUT;
13243
13244        dev->netdev_ops = &bnx2x_netdev_ops;
13245        bnx2x_set_ethtool_ops(bp, dev);
13246
13247        dev->priv_flags |= IFF_UNICAST_FLT;
13248
13249        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13250                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13251                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13252                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13253        if (!chip_is_e1x) {
13254                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13255                                    NETIF_F_GSO_IPXIP4 |
13256                                    NETIF_F_GSO_UDP_TUNNEL |
13257                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13258                                    NETIF_F_GSO_PARTIAL;
13259
13260                dev->hw_enc_features =
13261                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13262                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13263                        NETIF_F_GSO_IPXIP4 |
13264                        NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13265                        NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13266                        NETIF_F_GSO_PARTIAL;
13267
13268                dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13269                                            NETIF_F_GSO_UDP_TUNNEL_CSUM;
13270
13271                if (IS_PF(bp))
13272                        dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13273        }
13274
13275        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13276                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13277
13278        if (IS_PF(bp)) {
13279                if (chip_is_e1x)
13280                        bp->accept_any_vlan = true;
13281                else
13282                        dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13283        }
13284        /* For VF we'll know whether to enable VLAN filtering after
13285         * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13286         */
13287
13288        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13289        dev->features |= NETIF_F_HIGHDMA;
13290        if (dev->features & NETIF_F_LRO)
13291                dev->features &= ~NETIF_F_GRO_HW;
13292
13293        /* Add Loopback capability to the device */
13294        dev->hw_features |= NETIF_F_LOOPBACK;
13295
13296#ifdef BCM_DCBNL
13297        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13298#endif
13299
13300        /* MTU range, 46 - 9600 */
13301        dev->min_mtu = ETH_MIN_PACKET_SIZE;
13302        dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13303
13304        /* get_port_hwinfo() will set prtad and mmds properly */
13305        bp->mdio.prtad = MDIO_PRTAD_NONE;
13306        bp->mdio.mmds = 0;
13307        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13308        bp->mdio.dev = dev;
13309        bp->mdio.mdio_read = bnx2x_mdio_read;
13310        bp->mdio.mdio_write = bnx2x_mdio_write;
13311
13312        return 0;
13313
13314err_out_release:
13315        if (atomic_read(&pdev->enable_cnt) == 1)
13316                pci_release_regions(pdev);
13317
13318err_out_disable:
13319        pci_disable_device(pdev);
13320
13321err_out:
13322        return rc;
13323}
13324
13325static int bnx2x_check_firmware(struct bnx2x *bp)
13326{
13327        const struct firmware *firmware = bp->firmware;
13328        struct bnx2x_fw_file_hdr *fw_hdr;
13329        struct bnx2x_fw_file_section *sections;
13330        u32 offset, len, num_ops;
13331        __be16 *ops_offsets;
13332        int i;
13333        const u8 *fw_ver;
13334
13335        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13336                BNX2X_ERR("Wrong FW size\n");
13337                return -EINVAL;
13338        }
13339
13340        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13341        sections = (struct bnx2x_fw_file_section *)fw_hdr;
13342
13343        /* Make sure none of the offsets and sizes make us read beyond
13344         * the end of the firmware data */
13345        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13346                offset = be32_to_cpu(sections[i].offset);
13347                len = be32_to_cpu(sections[i].len);
13348                if (offset + len > firmware->size) {
13349                        BNX2X_ERR("Section %d length is out of bounds\n", i);
13350                        return -EINVAL;
13351                }
13352        }
13353
13354        /* Likewise for the init_ops offsets */
13355        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13356        ops_offsets = (__force __be16 *)(firmware->data + offset);
13357        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13358
13359        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13360                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13361                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
13362                        return -EINVAL;
13363                }
13364        }
13365
13366        /* Check FW version */
13367        offset = be32_to_cpu(fw_hdr->fw_version.offset);
13368        fw_ver = firmware->data + offset;
13369        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13370            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13371            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13372            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13373                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13374                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13375                       BCM_5710_FW_MAJOR_VERSION,
13376                       BCM_5710_FW_MINOR_VERSION,
13377                       BCM_5710_FW_REVISION_VERSION,
13378                       BCM_5710_FW_ENGINEERING_VERSION);
13379                return -EINVAL;
13380        }
13381
13382        return 0;
13383}
13384
13385static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13386{
13387        const __be32 *source = (const __be32 *)_source;
13388        u32 *target = (u32 *)_target;
13389        u32 i;
13390
13391        for (i = 0; i < n/4; i++)
13392                target[i] = be32_to_cpu(source[i]);
13393}
13394
13395/*
13396   Ops array is stored in the following format:
13397   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13398 */
13399static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13400{
13401        const __be32 *source = (const __be32 *)_source;
13402        struct raw_op *target = (struct raw_op *)_target;
13403        u32 i, j, tmp;
13404
13405        for (i = 0, j = 0; i < n/8; i++, j += 2) {
13406                tmp = be32_to_cpu(source[j]);
13407                target[i].op = (tmp >> 24) & 0xff;
13408                target[i].offset = tmp & 0xffffff;
13409                target[i].raw_data = be32_to_cpu(source[j + 1]);
13410        }
13411}
13412
13413/* IRO array is stored in the following format:
13414 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13415 */
13416static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13417{
13418        const __be32 *source = (const __be32 *)_source;
13419        struct iro *target = (struct iro *)_target;
13420        u32 i, j, tmp;
13421
13422        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13423                target[i].base = be32_to_cpu(source[j]);
13424                j++;
13425                tmp = be32_to_cpu(source[j]);
13426                target[i].m1 = (tmp >> 16) & 0xffff;
13427                target[i].m2 = tmp & 0xffff;
13428                j++;
13429                tmp = be32_to_cpu(source[j]);
13430                target[i].m3 = (tmp >> 16) & 0xffff;
13431                target[i].size = tmp & 0xffff;
13432                j++;
13433        }
13434}
13435
13436static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13437{
13438        const __be16 *source = (const __be16 *)_source;
13439        u16 *target = (u16 *)_target;
13440        u32 i;
13441
13442        for (i = 0; i < n/2; i++)
13443                target[i] = be16_to_cpu(source[i]);
13444}
13445
13446#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13447do {                                                                    \
13448        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13449        bp->arr = kmalloc(len, GFP_KERNEL);                             \
13450        if (!bp->arr)                                                   \
13451                goto lbl;                                               \
13452        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13453             (u8 *)bp->arr, len);                                       \
13454} while (0)
13455
13456static int bnx2x_init_firmware(struct bnx2x *bp)
13457{
13458        const char *fw_file_name;
13459        struct bnx2x_fw_file_hdr *fw_hdr;
13460        int rc;
13461
13462        if (bp->firmware)
13463                return 0;
13464
13465        if (CHIP_IS_E1(bp))
13466                fw_file_name = FW_FILE_NAME_E1;
13467        else if (CHIP_IS_E1H(bp))
13468                fw_file_name = FW_FILE_NAME_E1H;
13469        else if (!CHIP_IS_E1x(bp))
13470                fw_file_name = FW_FILE_NAME_E2;
13471        else {
13472                BNX2X_ERR("Unsupported chip revision\n");
13473                return -EINVAL;
13474        }
13475        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13476
13477        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13478        if (rc) {
13479                BNX2X_ERR("Can't load firmware file %s\n",
13480                          fw_file_name);
13481                goto request_firmware_exit;
13482        }
13483
13484        rc = bnx2x_check_firmware(bp);
13485        if (rc) {
13486                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13487                goto request_firmware_exit;
13488        }
13489
13490        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13491
13492        /* Initialize the pointers to the init arrays */
13493        /* Blob */
13494        rc = -ENOMEM;
13495        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13496
13497        /* Opcodes */
13498        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13499
13500        /* Offsets */
13501        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13502                            be16_to_cpu_n);
13503
13504        /* STORMs firmware */
13505        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13506                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13507        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13508                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13509        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13510                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13511        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13512                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
13513        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13514                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13515        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13516                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13517        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13518                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13519        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13520                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
13521        /* IRO */
13522        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13523
13524        return 0;
13525
13526iro_alloc_err:
13527        kfree(bp->init_ops_offsets);
13528init_offsets_alloc_err:
13529        kfree(bp->init_ops);
13530init_ops_alloc_err:
13531        kfree(bp->init_data);
13532request_firmware_exit:
13533        release_firmware(bp->firmware);
13534        bp->firmware = NULL;
13535
13536        return rc;
13537}
13538
13539static void bnx2x_release_firmware(struct bnx2x *bp)
13540{
13541        kfree(bp->init_ops_offsets);
13542        kfree(bp->init_ops);
13543        kfree(bp->init_data);
13544        release_firmware(bp->firmware);
13545        bp->firmware = NULL;
13546}
13547
13548static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13549        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13550        .init_hw_cmn      = bnx2x_init_hw_common,
13551        .init_hw_port     = bnx2x_init_hw_port,
13552        .init_hw_func     = bnx2x_init_hw_func,
13553
13554        .reset_hw_cmn     = bnx2x_reset_common,
13555        .reset_hw_port    = bnx2x_reset_port,
13556        .reset_hw_func    = bnx2x_reset_func,
13557
13558        .gunzip_init      = bnx2x_gunzip_init,
13559        .gunzip_end       = bnx2x_gunzip_end,
13560
13561        .init_fw          = bnx2x_init_firmware,
13562        .release_fw       = bnx2x_release_firmware,
13563};
13564
13565void bnx2x__init_func_obj(struct bnx2x *bp)
13566{
13567        /* Prepare DMAE related driver resources */
13568        bnx2x_setup_dmae(bp);
13569
13570        bnx2x_init_func_obj(bp, &bp->func_obj,
13571                            bnx2x_sp(bp, func_rdata),
13572                            bnx2x_sp_mapping(bp, func_rdata),
13573                            bnx2x_sp(bp, func_afex_rdata),
13574                            bnx2x_sp_mapping(bp, func_afex_rdata),
13575                            &bnx2x_func_sp_drv);
13576}
13577
13578/* must be called after sriov-enable */
13579static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13580{
13581        int cid_count = BNX2X_L2_MAX_CID(bp);
13582
13583        if (IS_SRIOV(bp))
13584                cid_count += BNX2X_VF_CIDS;
13585
13586        if (CNIC_SUPPORT(bp))
13587                cid_count += CNIC_CID_MAX;
13588
13589        return roundup(cid_count, QM_CID_ROUND);
13590}
13591
13592/**
13593 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13594 * @pdev: pci device
13595 * @cnic_cnt: count
13596 *
13597 */
13598static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13599{
13600        int index;
13601        u16 control = 0;
13602
13603        /*
13604         * If MSI-X is not supported - return number of SBs needed to support
13605         * one fast path queue: one FP queue + SB for CNIC
13606         */
13607        if (!pdev->msix_cap) {
13608                dev_info(&pdev->dev, "no msix capability found\n");
13609                return 1 + cnic_cnt;
13610        }
13611        dev_info(&pdev->dev, "msix capability found\n");
13612
13613        /*
13614         * The value in the PCI configuration space is the index of the last
13615         * entry, namely one less than the actual size of the table, which is
13616         * exactly what we want to return from this function: number of all SBs
13617         * without the default SB.
13618         * For VFs there is no default SB, then we return (index+1).
13619         */
13620        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13621
13622        index = control & PCI_MSIX_FLAGS_QSIZE;
13623
13624        return index;
13625}
13626
13627static int set_max_cos_est(int chip_id)
13628{
13629        switch (chip_id) {
13630        case BCM57710:
13631        case BCM57711:
13632        case BCM57711E:
13633                return BNX2X_MULTI_TX_COS_E1X;
13634        case BCM57712:
13635        case BCM57712_MF:
13636                return BNX2X_MULTI_TX_COS_E2_E3A0;
13637        case BCM57800:
13638        case BCM57800_MF:
13639        case BCM57810:
13640        case BCM57810_MF:
13641        case BCM57840_4_10:
13642        case BCM57840_2_20:
13643        case BCM57840_O:
13644        case BCM57840_MFO:
13645        case BCM57840_MF:
13646        case BCM57811:
13647        case BCM57811_MF:
13648                return BNX2X_MULTI_TX_COS_E3B0;
13649        case BCM57712_VF:
13650        case BCM57800_VF:
13651        case BCM57810_VF:
13652        case BCM57840_VF:
13653        case BCM57811_VF:
13654                return 1;
13655        default:
13656                pr_err("Unknown board_type (%d), aborting\n", chip_id);
13657                return -ENODEV;
13658        }
13659}
13660
13661static int set_is_vf(int chip_id)
13662{
13663        switch (chip_id) {
13664        case BCM57712_VF:
13665        case BCM57800_VF:
13666        case BCM57810_VF:
13667        case BCM57840_VF:
13668        case BCM57811_VF:
13669                return true;
13670        default:
13671                return false;
13672        }
13673}
13674
13675/* nig_tsgen registers relative address */
13676#define tsgen_ctrl 0x0
13677#define tsgen_freecount 0x10
13678#define tsgen_synctime_t0 0x20
13679#define tsgen_offset_t0 0x28
13680#define tsgen_drift_t0 0x30
13681#define tsgen_synctime_t1 0x58
13682#define tsgen_offset_t1 0x60
13683#define tsgen_drift_t1 0x68
13684
13685/* FW workaround for setting drift */
13686static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13687                                          int best_val, int best_period)
13688{
13689        struct bnx2x_func_state_params func_params = {NULL};
13690        struct bnx2x_func_set_timesync_params *set_timesync_params =
13691                &func_params.params.set_timesync;
13692
13693        /* Prepare parameters for function state transitions */
13694        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13695        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13696
13697        func_params.f_obj = &bp->func_obj;
13698        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13699
13700        /* Function parameters */
13701        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13702        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13703        set_timesync_params->add_sub_drift_adjust_value =
13704                drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13705        set_timesync_params->drift_adjust_value = best_val;
13706        set_timesync_params->drift_adjust_period = best_period;
13707
13708        return bnx2x_func_state_change(bp, &func_params);
13709}
13710
13711static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13712{
13713        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13714        int rc;
13715        int drift_dir = 1;
13716        int val, period, period1, period2, dif, dif1, dif2;
13717        int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13718
13719        DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13720
13721        if (!netif_running(bp->dev)) {
13722                DP(BNX2X_MSG_PTP,
13723                   "PTP adjfreq called while the interface is down\n");
13724                return -ENETDOWN;
13725        }
13726
13727        if (ppb < 0) {
13728                ppb = -ppb;
13729                drift_dir = 0;
13730        }
13731
13732        if (ppb == 0) {
13733                best_val = 1;
13734                best_period = 0x1FFFFFF;
13735        } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13736                best_val = 31;
13737                best_period = 1;
13738        } else {
13739                /* Changed not to allow val = 8, 16, 24 as these values
13740                 * are not supported in workaround.
13741                 */
13742                for (val = 0; val <= 31; val++) {
13743                        if ((val & 0x7) == 0)
13744                                continue;
13745                        period1 = val * 1000000 / ppb;
13746                        period2 = period1 + 1;
13747                        if (period1 != 0)
13748                                dif1 = ppb - (val * 1000000 / period1);
13749                        else
13750                                dif1 = BNX2X_MAX_PHC_DRIFT;
13751                        if (dif1 < 0)
13752                                dif1 = -dif1;
13753                        dif2 = ppb - (val * 1000000 / period2);
13754                        if (dif2 < 0)
13755                                dif2 = -dif2;
13756                        dif = (dif1 < dif2) ? dif1 : dif2;
13757                        period = (dif1 < dif2) ? period1 : period2;
13758                        if (dif < best_dif) {
13759                                best_dif = dif;
13760                                best_val = val;
13761                                best_period = period;
13762                        }
13763                }
13764        }
13765
13766        rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13767                                            best_period);
13768        if (rc) {
13769                BNX2X_ERR("Failed to set drift\n");
13770                return -EFAULT;
13771        }
13772
13773        DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13774           best_period);
13775
13776        return 0;
13777}
13778
13779static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13780{
13781        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13782
13783        if (!netif_running(bp->dev)) {
13784                DP(BNX2X_MSG_PTP,
13785                   "PTP adjtime called while the interface is down\n");
13786                return -ENETDOWN;
13787        }
13788
13789        DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13790
13791        timecounter_adjtime(&bp->timecounter, delta);
13792
13793        return 0;
13794}
13795
13796static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13797{
13798        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13799        u64 ns;
13800
13801        if (!netif_running(bp->dev)) {
13802                DP(BNX2X_MSG_PTP,
13803                   "PTP gettime called while the interface is down\n");
13804                return -ENETDOWN;
13805        }
13806
13807        ns = timecounter_read(&bp->timecounter);
13808
13809        DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13810
13811        *ts = ns_to_timespec64(ns);
13812
13813        return 0;
13814}
13815
13816static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13817                             const struct timespec64 *ts)
13818{
13819        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13820        u64 ns;
13821
13822        if (!netif_running(bp->dev)) {
13823                DP(BNX2X_MSG_PTP,
13824                   "PTP settime called while the interface is down\n");
13825                return -ENETDOWN;
13826        }
13827
13828        ns = timespec64_to_ns(ts);
13829
13830        DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13831
13832        /* Re-init the timecounter */
13833        timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13834
13835        return 0;
13836}
13837
13838/* Enable (or disable) ancillary features of the phc subsystem */
13839static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13840                            struct ptp_clock_request *rq, int on)
13841{
13842        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13843
13844        BNX2X_ERR("PHC ancillary features are not supported\n");
13845        return -ENOTSUPP;
13846}
13847
13848void bnx2x_register_phc(struct bnx2x *bp)
13849{
13850        /* Fill the ptp_clock_info struct and register PTP clock*/
13851        bp->ptp_clock_info.owner = THIS_MODULE;
13852        snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13853        bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13854        bp->ptp_clock_info.n_alarm = 0;
13855        bp->ptp_clock_info.n_ext_ts = 0;
13856        bp->ptp_clock_info.n_per_out = 0;
13857        bp->ptp_clock_info.pps = 0;
13858        bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13859        bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13860        bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13861        bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13862        bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13863
13864        bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13865        if (IS_ERR(bp->ptp_clock)) {
13866                bp->ptp_clock = NULL;
13867                BNX2X_ERR("PTP clock registration failed\n");
13868        }
13869}
13870
13871static int bnx2x_init_one(struct pci_dev *pdev,
13872                                    const struct pci_device_id *ent)
13873{
13874        struct net_device *dev = NULL;
13875        struct bnx2x *bp;
13876        int rc, max_non_def_sbs;
13877        int rx_count, tx_count, rss_count, doorbell_size;
13878        int max_cos_est;
13879        bool is_vf;
13880        int cnic_cnt;
13881
13882        /* Management FW 'remembers' living interfaces. Allow it some time
13883         * to forget previously living interfaces, allowing a proper re-load.
13884         */
13885        if (is_kdump_kernel()) {
13886                ktime_t now = ktime_get_boottime();
13887                ktime_t fw_ready_time = ktime_set(5, 0);
13888
13889                if (ktime_before(now, fw_ready_time))
13890                        msleep(ktime_ms_delta(fw_ready_time, now));
13891        }
13892
13893        /* An estimated maximum supported CoS number according to the chip
13894         * version.
13895         * We will try to roughly estimate the maximum number of CoSes this chip
13896         * may support in order to minimize the memory allocated for Tx
13897         * netdev_queue's. This number will be accurately calculated during the
13898         * initialization of bp->max_cos based on the chip versions AND chip
13899         * revision in the bnx2x_init_bp().
13900         */
13901        max_cos_est = set_max_cos_est(ent->driver_data);
13902        if (max_cos_est < 0)
13903                return max_cos_est;
13904        is_vf = set_is_vf(ent->driver_data);
13905        cnic_cnt = is_vf ? 0 : 1;
13906
13907        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13908
13909        /* add another SB for VF as it has no default SB */
13910        max_non_def_sbs += is_vf ? 1 : 0;
13911
13912        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13913        rss_count = max_non_def_sbs - cnic_cnt;
13914
13915        if (rss_count < 1)
13916                return -EINVAL;
13917
13918        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13919        rx_count = rss_count + cnic_cnt;
13920
13921        /* Maximum number of netdev Tx queues:
13922         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13923         */
13924        tx_count = rss_count * max_cos_est + cnic_cnt;
13925
13926        /* dev zeroed in init_etherdev */
13927        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13928        if (!dev)
13929                return -ENOMEM;
13930
13931        bp = netdev_priv(dev);
13932
13933        bp->flags = 0;
13934        if (is_vf)
13935                bp->flags |= IS_VF_FLAG;
13936
13937        bp->igu_sb_cnt = max_non_def_sbs;
13938        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13939        bp->msg_enable = debug;
13940        bp->cnic_support = cnic_cnt;
13941        bp->cnic_probe = bnx2x_cnic_probe;
13942
13943        pci_set_drvdata(pdev, dev);
13944
13945        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13946        if (rc < 0) {
13947                free_netdev(dev);
13948                return rc;
13949        }
13950
13951        BNX2X_DEV_INFO("This is a %s function\n",
13952                       IS_PF(bp) ? "physical" : "virtual");
13953        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13954        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13955        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13956                       tx_count, rx_count);
13957
13958        rc = bnx2x_init_bp(bp);
13959        if (rc)
13960                goto init_one_exit;
13961
13962        /* Map doorbells here as we need the real value of bp->max_cos which
13963         * is initialized in bnx2x_init_bp() to determine the number of
13964         * l2 connections.
13965         */
13966        if (IS_VF(bp)) {
13967                bp->doorbells = bnx2x_vf_doorbells(bp);
13968                rc = bnx2x_vf_pci_alloc(bp);
13969                if (rc)
13970                        goto init_one_freemem;
13971        } else {
13972                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13973                if (doorbell_size > pci_resource_len(pdev, 2)) {
13974                        dev_err(&bp->pdev->dev,
13975                                "Cannot map doorbells, bar size too small, aborting\n");
13976                        rc = -ENOMEM;
13977                        goto init_one_freemem;
13978                }
13979                bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13980                                                doorbell_size);
13981        }
13982        if (!bp->doorbells) {
13983                dev_err(&bp->pdev->dev,
13984                        "Cannot map doorbell space, aborting\n");
13985                rc = -ENOMEM;
13986                goto init_one_freemem;
13987        }
13988
13989        if (IS_VF(bp)) {
13990                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13991                if (rc)
13992                        goto init_one_freemem;
13993
13994#ifdef CONFIG_BNX2X_SRIOV
13995                /* VF with OLD Hypervisor or old PF do not support filtering */
13996                if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13997                        dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13998                        dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13999                }
14000#endif
14001        }
14002
14003        /* Enable SRIOV if capability found in configuration space */
14004        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14005        if (rc)
14006                goto init_one_freemem;
14007
14008        /* calc qm_cid_count */
14009        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14010        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14011
14012        /* disable FCOE L2 queue for E1x*/
14013        if (CHIP_IS_E1x(bp))
14014                bp->flags |= NO_FCOE_FLAG;
14015
14016        /* Set bp->num_queues for MSI-X mode*/
14017        bnx2x_set_num_queues(bp);
14018
14019        /* Configure interrupt mode: try to enable MSI-X/MSI if
14020         * needed.
14021         */
14022        rc = bnx2x_set_int_mode(bp);
14023        if (rc) {
14024                dev_err(&pdev->dev, "Cannot set interrupts\n");
14025                goto init_one_freemem;
14026        }
14027        BNX2X_DEV_INFO("set interrupts successfully\n");
14028
14029        /* register the net device */
14030        rc = register_netdev(dev);
14031        if (rc) {
14032                dev_err(&pdev->dev, "Cannot register net device\n");
14033                goto init_one_freemem;
14034        }
14035        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14036
14037        if (!NO_FCOE(bp)) {
14038                /* Add storage MAC address */
14039                rtnl_lock();
14040                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14041                rtnl_unlock();
14042        }
14043        BNX2X_DEV_INFO(
14044               "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14045               board_info[ent->driver_data].name,
14046               (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14047               dev->base_addr, bp->pdev->irq, dev->dev_addr);
14048        pcie_print_link_status(bp->pdev);
14049
14050        if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14051                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14052
14053        return 0;
14054
14055init_one_freemem:
14056        bnx2x_free_mem_bp(bp);
14057
14058init_one_exit:
14059        bnx2x_disable_pcie_error_reporting(bp);
14060
14061        if (bp->regview)
14062                iounmap(bp->regview);
14063
14064        if (IS_PF(bp) && bp->doorbells)
14065                iounmap(bp->doorbells);
14066
14067        free_netdev(dev);
14068
14069        if (atomic_read(&pdev->enable_cnt) == 1)
14070                pci_release_regions(pdev);
14071
14072        pci_disable_device(pdev);
14073
14074        return rc;
14075}
14076
14077static void __bnx2x_remove(struct pci_dev *pdev,
14078                           struct net_device *dev,
14079                           struct bnx2x *bp,
14080                           bool remove_netdev)
14081{
14082        /* Delete storage MAC address */
14083        if (!NO_FCOE(bp)) {
14084                rtnl_lock();
14085                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14086                rtnl_unlock();
14087        }
14088
14089#ifdef BCM_DCBNL
14090        /* Delete app tlvs from dcbnl */
14091        bnx2x_dcbnl_update_applist(bp, true);
14092#endif
14093
14094        if (IS_PF(bp) &&
14095            !BP_NOMCP(bp) &&
14096            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14097                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14098
14099        /* Close the interface - either directly or implicitly */
14100        if (remove_netdev) {
14101                unregister_netdev(dev);
14102        } else {
14103                rtnl_lock();
14104                dev_close(dev);
14105                rtnl_unlock();
14106        }
14107
14108        bnx2x_iov_remove_one(bp);
14109
14110        /* Power on: we can't let PCI layer write to us while we are in D3 */
14111        if (IS_PF(bp)) {
14112                bnx2x_set_power_state(bp, PCI_D0);
14113                bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14114
14115                /* Set endianity registers to reset values in case next driver
14116                 * boots in different endianty environment.
14117                 */
14118                bnx2x_reset_endianity(bp);
14119        }
14120
14121        /* Disable MSI/MSI-X */
14122        bnx2x_disable_msi(bp);
14123
14124        /* Power off */
14125        if (IS_PF(bp))
14126                bnx2x_set_power_state(bp, PCI_D3hot);
14127
14128        /* Make sure RESET task is not scheduled before continuing */
14129        cancel_delayed_work_sync(&bp->sp_rtnl_task);
14130
14131        /* send message via vfpf channel to release the resources of this vf */
14132        if (IS_VF(bp))
14133                bnx2x_vfpf_release(bp);
14134
14135        /* Assumes no further PCIe PM changes will occur */
14136        if (system_state == SYSTEM_POWER_OFF) {
14137                pci_wake_from_d3(pdev, bp->wol);
14138                pci_set_power_state(pdev, PCI_D3hot);
14139        }
14140
14141        bnx2x_disable_pcie_error_reporting(bp);
14142        if (remove_netdev) {
14143                if (bp->regview)
14144                        iounmap(bp->regview);
14145
14146                /* For vfs, doorbells are part of the regview and were unmapped
14147                 * along with it. FW is only loaded by PF.
14148                 */
14149                if (IS_PF(bp)) {
14150                        if (bp->doorbells)
14151                                iounmap(bp->doorbells);
14152
14153                        bnx2x_release_firmware(bp);
14154                } else {
14155                        bnx2x_vf_pci_dealloc(bp);
14156                }
14157                bnx2x_free_mem_bp(bp);
14158
14159                free_netdev(dev);
14160
14161                if (atomic_read(&pdev->enable_cnt) == 1)
14162                        pci_release_regions(pdev);
14163
14164                pci_disable_device(pdev);
14165        }
14166}
14167
14168static void bnx2x_remove_one(struct pci_dev *pdev)
14169{
14170        struct net_device *dev = pci_get_drvdata(pdev);
14171        struct bnx2x *bp;
14172
14173        if (!dev) {
14174                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14175                return;
14176        }
14177        bp = netdev_priv(dev);
14178
14179        __bnx2x_remove(pdev, dev, bp, true);
14180}
14181
14182static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14183{
14184        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14185
14186        bp->rx_mode = BNX2X_RX_MODE_NONE;
14187
14188        if (CNIC_LOADED(bp))
14189                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14190
14191        /* Stop Tx */
14192        bnx2x_tx_disable(bp);
14193        /* Delete all NAPI objects */
14194        bnx2x_del_all_napi(bp);
14195        if (CNIC_LOADED(bp))
14196                bnx2x_del_all_napi_cnic(bp);
14197        netdev_reset_tc(bp->dev);
14198
14199        del_timer_sync(&bp->timer);
14200        cancel_delayed_work_sync(&bp->sp_task);
14201        cancel_delayed_work_sync(&bp->period_task);
14202
14203        if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14204                bp->stats_state = STATS_STATE_DISABLED;
14205                up(&bp->stats_lock);
14206        }
14207
14208        bnx2x_save_statistics(bp);
14209
14210        netif_carrier_off(bp->dev);
14211
14212        return 0;
14213}
14214
14215/**
14216 * bnx2x_io_error_detected - called when PCI error is detected
14217 * @pdev: Pointer to PCI device
14218 * @state: The current pci connection state
14219 *
14220 * This function is called after a PCI bus error affecting
14221 * this device has been detected.
14222 */
14223static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14224                                                pci_channel_state_t state)
14225{
14226        struct net_device *dev = pci_get_drvdata(pdev);
14227        struct bnx2x *bp = netdev_priv(dev);
14228
14229        rtnl_lock();
14230
14231        BNX2X_ERR("IO error detected\n");
14232
14233        netif_device_detach(dev);
14234
14235        if (state == pci_channel_io_perm_failure) {
14236                rtnl_unlock();
14237                return PCI_ERS_RESULT_DISCONNECT;
14238        }
14239
14240        if (netif_running(dev))
14241                bnx2x_eeh_nic_unload(bp);
14242
14243        bnx2x_prev_path_mark_eeh(bp);
14244
14245        pci_disable_device(pdev);
14246
14247        rtnl_unlock();
14248
14249        /* Request a slot reset */
14250        return PCI_ERS_RESULT_NEED_RESET;
14251}
14252
14253/**
14254 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14255 * @pdev: Pointer to PCI device
14256 *
14257 * Restart the card from scratch, as if from a cold-boot.
14258 */
14259static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14260{
14261        struct net_device *dev = pci_get_drvdata(pdev);
14262        struct bnx2x *bp = netdev_priv(dev);
14263        int i;
14264
14265        rtnl_lock();
14266        BNX2X_ERR("IO slot reset initializing...\n");
14267        if (pci_enable_device(pdev)) {
14268                dev_err(&pdev->dev,
14269                        "Cannot re-enable PCI device after reset\n");
14270                rtnl_unlock();
14271                return PCI_ERS_RESULT_DISCONNECT;
14272        }
14273
14274        pci_set_master(pdev);
14275        pci_restore_state(pdev);
14276        pci_save_state(pdev);
14277
14278        if (netif_running(dev))
14279                bnx2x_set_power_state(bp, PCI_D0);
14280
14281        if (netif_running(dev)) {
14282                BNX2X_ERR("IO slot reset --> driver unload\n");
14283
14284                /* MCP should have been reset; Need to wait for validity */
14285                if (bnx2x_init_shmem(bp)) {
14286                        rtnl_unlock();
14287                        return PCI_ERS_RESULT_DISCONNECT;
14288                }
14289
14290                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14291                        u32 v;
14292
14293                        v = SHMEM2_RD(bp,
14294                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14295                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14296                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14297                }
14298                bnx2x_drain_tx_queues(bp);
14299                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14300                bnx2x_netif_stop(bp, 1);
14301                bnx2x_free_irq(bp);
14302
14303                /* Report UNLOAD_DONE to MCP */
14304                bnx2x_send_unload_done(bp, true);
14305
14306                bp->sp_state = 0;
14307                bp->port.pmf = 0;
14308
14309                bnx2x_prev_unload(bp);
14310
14311                /* We should have reseted the engine, so It's fair to
14312                 * assume the FW will no longer write to the bnx2x driver.
14313                 */
14314                bnx2x_squeeze_objects(bp);
14315                bnx2x_free_skbs(bp);
14316                for_each_rx_queue(bp, i)
14317                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14318                bnx2x_free_fp_mem(bp);
14319                bnx2x_free_mem(bp);
14320
14321                bp->state = BNX2X_STATE_CLOSED;
14322        }
14323
14324        rtnl_unlock();
14325
14326        return PCI_ERS_RESULT_RECOVERED;
14327}
14328
14329/**
14330 * bnx2x_io_resume - called when traffic can start flowing again
14331 * @pdev: Pointer to PCI device
14332 *
14333 * This callback is called when the error recovery driver tells us that
14334 * its OK to resume normal operation.
14335 */
14336static void bnx2x_io_resume(struct pci_dev *pdev)
14337{
14338        struct net_device *dev = pci_get_drvdata(pdev);
14339        struct bnx2x *bp = netdev_priv(dev);
14340
14341        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14342                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14343                return;
14344        }
14345
14346        rtnl_lock();
14347
14348        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14349                                                        DRV_MSG_SEQ_NUMBER_MASK;
14350
14351        if (netif_running(dev))
14352                bnx2x_nic_load(bp, LOAD_NORMAL);
14353
14354        netif_device_attach(dev);
14355
14356        rtnl_unlock();
14357}
14358
14359static const struct pci_error_handlers bnx2x_err_handler = {
14360        .error_detected = bnx2x_io_error_detected,
14361        .slot_reset     = bnx2x_io_slot_reset,
14362        .resume         = bnx2x_io_resume,
14363};
14364
14365static void bnx2x_shutdown(struct pci_dev *pdev)
14366{
14367        struct net_device *dev = pci_get_drvdata(pdev);
14368        struct bnx2x *bp;
14369
14370        if (!dev)
14371                return;
14372
14373        bp = netdev_priv(dev);
14374        if (!bp)
14375                return;
14376
14377        rtnl_lock();
14378        netif_device_detach(dev);
14379        rtnl_unlock();
14380
14381        /* Don't remove the netdevice, as there are scenarios which will cause
14382         * the kernel to hang, e.g., when trying to remove bnx2i while the
14383         * rootfs is mounted from SAN.
14384         */
14385        __bnx2x_remove(pdev, dev, bp, false);
14386}
14387
14388static struct pci_driver bnx2x_pci_driver = {
14389        .name        = DRV_MODULE_NAME,
14390        .id_table    = bnx2x_pci_tbl,
14391        .probe       = bnx2x_init_one,
14392        .remove      = bnx2x_remove_one,
14393        .driver.pm   = &bnx2x_pm_ops,
14394        .err_handler = &bnx2x_err_handler,
14395#ifdef CONFIG_BNX2X_SRIOV
14396        .sriov_configure = bnx2x_sriov_configure,
14397#endif
14398        .shutdown    = bnx2x_shutdown,
14399};
14400
14401static int __init bnx2x_init(void)
14402{
14403        int ret;
14404
14405        bnx2x_wq = create_singlethread_workqueue("bnx2x");
14406        if (bnx2x_wq == NULL) {
14407                pr_err("Cannot create workqueue\n");
14408                return -ENOMEM;
14409        }
14410        bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14411        if (!bnx2x_iov_wq) {
14412                pr_err("Cannot create iov workqueue\n");
14413                destroy_workqueue(bnx2x_wq);
14414                return -ENOMEM;
14415        }
14416
14417        ret = pci_register_driver(&bnx2x_pci_driver);
14418        if (ret) {
14419                pr_err("Cannot register driver\n");
14420                destroy_workqueue(bnx2x_wq);
14421                destroy_workqueue(bnx2x_iov_wq);
14422        }
14423        return ret;
14424}
14425
14426static void __exit bnx2x_cleanup(void)
14427{
14428        struct list_head *pos, *q;
14429
14430        pci_unregister_driver(&bnx2x_pci_driver);
14431
14432        destroy_workqueue(bnx2x_wq);
14433        destroy_workqueue(bnx2x_iov_wq);
14434
14435        /* Free globally allocated resources */
14436        list_for_each_safe(pos, q, &bnx2x_prev_list) {
14437                struct bnx2x_prev_path_list *tmp =
14438                        list_entry(pos, struct bnx2x_prev_path_list, list);
14439                list_del(pos);
14440                kfree(tmp);
14441        }
14442}
14443
14444void bnx2x_notify_link_changed(struct bnx2x *bp)
14445{
14446        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14447}
14448
14449module_init(bnx2x_init);
14450module_exit(bnx2x_cleanup);
14451
14452/**
14453 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14454 * @bp:         driver handle
14455 *
14456 * This function will wait until the ramrod completion returns.
14457 * Return 0 if success, -ENODEV if ramrod doesn't return.
14458 */
14459static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14460{
14461        unsigned long ramrod_flags = 0;
14462
14463        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14464        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14465                                 &bp->iscsi_l2_mac_obj, true,
14466                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14467}
14468
14469/* count denotes the number of new completions we have seen */
14470static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14471{
14472        struct eth_spe *spe;
14473        int cxt_index, cxt_offset;
14474
14475#ifdef BNX2X_STOP_ON_ERROR
14476        if (unlikely(bp->panic))
14477                return;
14478#endif
14479
14480        spin_lock_bh(&bp->spq_lock);
14481        BUG_ON(bp->cnic_spq_pending < count);
14482        bp->cnic_spq_pending -= count;
14483
14484        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14485                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14486                                & SPE_HDR_CONN_TYPE) >>
14487                                SPE_HDR_CONN_TYPE_SHIFT;
14488                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14489                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14490
14491                /* Set validation for iSCSI L2 client before sending SETUP
14492                 *  ramrod
14493                 */
14494                if (type == ETH_CONNECTION_TYPE) {
14495                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14496                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14497                                        ILT_PAGE_CIDS;
14498                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14499                                        (cxt_index * ILT_PAGE_CIDS);
14500                                bnx2x_set_ctx_validation(bp,
14501                                        &bp->context[cxt_index].
14502                                                         vcxt[cxt_offset].eth,
14503                                        BNX2X_ISCSI_ETH_CID(bp));
14504                        }
14505                }
14506
14507                /*
14508                 * There may be not more than 8 L2, not more than 8 L5 SPEs
14509                 * and in the air. We also check that number of outstanding
14510                 * COMMON ramrods is not more than the EQ and SPQ can
14511                 * accommodate.
14512                 */
14513                if (type == ETH_CONNECTION_TYPE) {
14514                        if (!atomic_read(&bp->cq_spq_left))
14515                                break;
14516                        else
14517                                atomic_dec(&bp->cq_spq_left);
14518                } else if (type == NONE_CONNECTION_TYPE) {
14519                        if (!atomic_read(&bp->eq_spq_left))
14520                                break;
14521                        else
14522                                atomic_dec(&bp->eq_spq_left);
14523                } else if ((type == ISCSI_CONNECTION_TYPE) ||
14524                           (type == FCOE_CONNECTION_TYPE)) {
14525                        if (bp->cnic_spq_pending >=
14526                            bp->cnic_eth_dev.max_kwqe_pending)
14527                                break;
14528                        else
14529                                bp->cnic_spq_pending++;
14530                } else {
14531                        BNX2X_ERR("Unknown SPE type: %d\n", type);
14532                        bnx2x_panic();
14533                        break;
14534                }
14535
14536                spe = bnx2x_sp_get_next(bp);
14537                *spe = *bp->cnic_kwq_cons;
14538
14539                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14540                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14541
14542                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14543                        bp->cnic_kwq_cons = bp->cnic_kwq;
14544                else
14545                        bp->cnic_kwq_cons++;
14546        }
14547        bnx2x_sp_prod_update(bp);
14548        spin_unlock_bh(&bp->spq_lock);
14549}
14550
14551static int bnx2x_cnic_sp_queue(struct net_device *dev,
14552                               struct kwqe_16 *kwqes[], u32 count)
14553{
14554        struct bnx2x *bp = netdev_priv(dev);
14555        int i;
14556
14557#ifdef BNX2X_STOP_ON_ERROR
14558        if (unlikely(bp->panic)) {
14559                BNX2X_ERR("Can't post to SP queue while panic\n");
14560                return -EIO;
14561        }
14562#endif
14563
14564        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14565            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14566                BNX2X_ERR("Handling parity error recovery. Try again later\n");
14567                return -EAGAIN;
14568        }
14569
14570        spin_lock_bh(&bp->spq_lock);
14571
14572        for (i = 0; i < count; i++) {
14573                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14574
14575                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14576                        break;
14577
14578                *bp->cnic_kwq_prod = *spe;
14579
14580                bp->cnic_kwq_pending++;
14581
14582                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14583                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14584                   spe->data.update_data_addr.hi,
14585                   spe->data.update_data_addr.lo,
14586                   bp->cnic_kwq_pending);
14587
14588                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14589                        bp->cnic_kwq_prod = bp->cnic_kwq;
14590                else
14591                        bp->cnic_kwq_prod++;
14592        }
14593
14594        spin_unlock_bh(&bp->spq_lock);
14595
14596        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14597                bnx2x_cnic_sp_post(bp, 0);
14598
14599        return i;
14600}
14601
14602static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14603{
14604        struct cnic_ops *c_ops;
14605        int rc = 0;
14606
14607        mutex_lock(&bp->cnic_mutex);
14608        c_ops = rcu_dereference_protected(bp->cnic_ops,
14609                                          lockdep_is_held(&bp->cnic_mutex));
14610        if (c_ops)
14611                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14612        mutex_unlock(&bp->cnic_mutex);
14613
14614        return rc;
14615}
14616
14617static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14618{
14619        struct cnic_ops *c_ops;
14620        int rc = 0;
14621
14622        rcu_read_lock();
14623        c_ops = rcu_dereference(bp->cnic_ops);
14624        if (c_ops)
14625                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14626        rcu_read_unlock();
14627
14628        return rc;
14629}
14630
14631/*
14632 * for commands that have no data
14633 */
14634int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14635{
14636        struct cnic_ctl_info ctl = {0};
14637
14638        ctl.cmd = cmd;
14639
14640        return bnx2x_cnic_ctl_send(bp, &ctl);
14641}
14642
14643static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14644{
14645        struct cnic_ctl_info ctl = {0};
14646
14647        /* first we tell CNIC and only then we count this as a completion */
14648        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14649        ctl.data.comp.cid = cid;
14650        ctl.data.comp.error = err;
14651
14652        bnx2x_cnic_ctl_send_bh(bp, &ctl);
14653        bnx2x_cnic_sp_post(bp, 0);
14654}
14655
14656/* Called with netif_addr_lock_bh() taken.
14657 * Sets an rx_mode config for an iSCSI ETH client.
14658 * Doesn't block.
14659 * Completion should be checked outside.
14660 */
14661static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14662{
14663        unsigned long accept_flags = 0, ramrod_flags = 0;
14664        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14665        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14666
14667        if (start) {
14668                /* Start accepting on iSCSI L2 ring. Accept all multicasts
14669                 * because it's the only way for UIO Queue to accept
14670                 * multicasts (in non-promiscuous mode only one Queue per
14671                 * function will receive multicast packets (leading in our
14672                 * case).
14673                 */
14674                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14675                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14676                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14677                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14678
14679                /* Clear STOP_PENDING bit if START is requested */
14680                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14681
14682                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14683        } else
14684                /* Clear START_PENDING bit if STOP is requested */
14685                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14686
14687        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14688                set_bit(sched_state, &bp->sp_state);
14689        else {
14690                __set_bit(RAMROD_RX, &ramrod_flags);
14691                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14692                                    ramrod_flags);
14693        }
14694}
14695
14696static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14697{
14698        struct bnx2x *bp = netdev_priv(dev);
14699        int rc = 0;
14700
14701        switch (ctl->cmd) {
14702        case DRV_CTL_CTXTBL_WR_CMD: {
14703                u32 index = ctl->data.io.offset;
14704                dma_addr_t addr = ctl->data.io.dma_addr;
14705
14706                bnx2x_ilt_wr(bp, index, addr);
14707                break;
14708        }
14709
14710        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14711                int count = ctl->data.credit.credit_count;
14712
14713                bnx2x_cnic_sp_post(bp, count);
14714                break;
14715        }
14716
14717        /* rtnl_lock is held.  */
14718        case DRV_CTL_START_L2_CMD: {
14719                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14720                unsigned long sp_bits = 0;
14721
14722                /* Configure the iSCSI classification object */
14723                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14724                                   cp->iscsi_l2_client_id,
14725                                   cp->iscsi_l2_cid, BP_FUNC(bp),
14726                                   bnx2x_sp(bp, mac_rdata),
14727                                   bnx2x_sp_mapping(bp, mac_rdata),
14728                                   BNX2X_FILTER_MAC_PENDING,
14729                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14730                                   &bp->macs_pool);
14731
14732                /* Set iSCSI MAC address */
14733                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14734                if (rc)
14735                        break;
14736
14737                barrier();
14738
14739                /* Start accepting on iSCSI L2 ring */
14740
14741                netif_addr_lock_bh(dev);
14742                bnx2x_set_iscsi_eth_rx_mode(bp, true);
14743                netif_addr_unlock_bh(dev);
14744
14745                /* bits to wait on */
14746                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14747                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14748
14749                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14750                        BNX2X_ERR("rx_mode completion timed out!\n");
14751
14752                break;
14753        }
14754
14755        /* rtnl_lock is held.  */
14756        case DRV_CTL_STOP_L2_CMD: {
14757                unsigned long sp_bits = 0;
14758
14759                /* Stop accepting on iSCSI L2 ring */
14760                netif_addr_lock_bh(dev);
14761                bnx2x_set_iscsi_eth_rx_mode(bp, false);
14762                netif_addr_unlock_bh(dev);
14763
14764                /* bits to wait on */
14765                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14766                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14767
14768                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14769                        BNX2X_ERR("rx_mode completion timed out!\n");
14770
14771                barrier();
14772
14773                /* Unset iSCSI L2 MAC */
14774                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14775                                        BNX2X_ISCSI_ETH_MAC, true);
14776                break;
14777        }
14778        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14779                int count = ctl->data.credit.credit_count;
14780
14781                smp_mb__before_atomic();
14782                atomic_add(count, &bp->cq_spq_left);
14783                smp_mb__after_atomic();
14784                break;
14785        }
14786        case DRV_CTL_ULP_REGISTER_CMD: {
14787                int ulp_type = ctl->data.register_data.ulp_type;
14788
14789                if (CHIP_IS_E3(bp)) {
14790                        int idx = BP_FW_MB_IDX(bp);
14791                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14792                        int path = BP_PATH(bp);
14793                        int port = BP_PORT(bp);
14794                        int i;
14795                        u32 scratch_offset;
14796                        u32 *host_addr;
14797
14798                        /* first write capability to shmem2 */
14799                        if (ulp_type == CNIC_ULP_ISCSI)
14800                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801                        else if (ulp_type == CNIC_ULP_FCOE)
14802                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14804
14805                        if ((ulp_type != CNIC_ULP_FCOE) ||
14806                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14807                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14808                                break;
14809
14810                        /* if reached here - should write fcoe capabilities */
14811                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14812                        if (!scratch_offset)
14813                                break;
14814                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
14815                                                   fcoe_features[path][port]);
14816                        host_addr = (u32 *) &(ctl->data.register_data.
14817                                              fcoe_features);
14818                        for (i = 0; i < sizeof(struct fcoe_capabilities);
14819                             i += 4)
14820                                REG_WR(bp, scratch_offset + i,
14821                                       *(host_addr + i/4));
14822                }
14823                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14824                break;
14825        }
14826
14827        case DRV_CTL_ULP_UNREGISTER_CMD: {
14828                int ulp_type = ctl->data.ulp_type;
14829
14830                if (CHIP_IS_E3(bp)) {
14831                        int idx = BP_FW_MB_IDX(bp);
14832                        u32 cap;
14833
14834                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14835                        if (ulp_type == CNIC_ULP_ISCSI)
14836                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14837                        else if (ulp_type == CNIC_ULP_FCOE)
14838                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14839                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14840                }
14841                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14842                break;
14843        }
14844
14845        default:
14846                BNX2X_ERR("unknown command %x\n", ctl->cmd);
14847                rc = -EINVAL;
14848        }
14849
14850        /* For storage-only interfaces, change driver state */
14851        if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14852                switch (ctl->drv_state) {
14853                case DRV_NOP:
14854                        break;
14855                case DRV_ACTIVE:
14856                        bnx2x_set_os_driver_state(bp,
14857                                                  OS_DRIVER_STATE_ACTIVE);
14858                        break;
14859                case DRV_INACTIVE:
14860                        bnx2x_set_os_driver_state(bp,
14861                                                  OS_DRIVER_STATE_DISABLED);
14862                        break;
14863                case DRV_UNLOADED:
14864                        bnx2x_set_os_driver_state(bp,
14865                                                  OS_DRIVER_STATE_NOT_LOADED);
14866                        break;
14867                default:
14868                BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14869                }
14870        }
14871
14872        return rc;
14873}
14874
14875static int bnx2x_get_fc_npiv(struct net_device *dev,
14876                             struct cnic_fc_npiv_tbl *cnic_tbl)
14877{
14878        struct bnx2x *bp = netdev_priv(dev);
14879        struct bdn_fc_npiv_tbl *tbl = NULL;
14880        u32 offset, entries;
14881        int rc = -EINVAL;
14882        int i;
14883
14884        if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14885                goto out;
14886
14887        DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14888
14889        tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14890        if (!tbl) {
14891                BNX2X_ERR("Failed to allocate fc_npiv table\n");
14892                goto out;
14893        }
14894
14895        offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14896        if (!offset) {
14897                DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14898                goto out;
14899        }
14900        DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14901
14902        /* Read the table contents from nvram */
14903        if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14904                BNX2X_ERR("Failed to read FC-NPIV table\n");
14905                goto out;
14906        }
14907
14908        /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14909         * the number of entries back to cpu endianness.
14910         */
14911        entries = tbl->fc_npiv_cfg.num_of_npiv;
14912        entries = (__force u32)be32_to_cpu((__force __be32)entries);
14913        tbl->fc_npiv_cfg.num_of_npiv = entries;
14914
14915        if (!tbl->fc_npiv_cfg.num_of_npiv) {
14916                DP(BNX2X_MSG_MCP,
14917                   "No FC-NPIV table [valid, simply not present]\n");
14918                goto out;
14919        } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14920                BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14921                          tbl->fc_npiv_cfg.num_of_npiv);
14922                goto out;
14923        } else {
14924                DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14925                   tbl->fc_npiv_cfg.num_of_npiv);
14926        }
14927
14928        /* Copy the data into cnic-provided struct */
14929        cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14930        for (i = 0; i < cnic_tbl->count; i++) {
14931                memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14932                memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14933        }
14934
14935        rc = 0;
14936out:
14937        kfree(tbl);
14938        return rc;
14939}
14940
14941void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14942{
14943        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14944
14945        if (bp->flags & USING_MSIX_FLAG) {
14946                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14947                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14948                cp->irq_arr[0].vector = bp->msix_table[1].vector;
14949        } else {
14950                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14951                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14952        }
14953        if (!CHIP_IS_E1x(bp))
14954                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14955        else
14956                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14957
14958        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14959        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14960        cp->irq_arr[1].status_blk = bp->def_status_blk;
14961        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14962        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14963
14964        cp->num_irq = 2;
14965}
14966
14967void bnx2x_setup_cnic_info(struct bnx2x *bp)
14968{
14969        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14970
14971        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14972                             bnx2x_cid_ilt_lines(bp);
14973        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14974        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14975        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14976
14977        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14978           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14979           cp->iscsi_l2_cid);
14980
14981        if (NO_ISCSI_OOO(bp))
14982                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14983}
14984
14985static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14986                               void *data)
14987{
14988        struct bnx2x *bp = netdev_priv(dev);
14989        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14990        int rc;
14991
14992        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14993
14994        if (ops == NULL) {
14995                BNX2X_ERR("NULL ops received\n");
14996                return -EINVAL;
14997        }
14998
14999        if (!CNIC_SUPPORT(bp)) {
15000                BNX2X_ERR("Can't register CNIC when not supported\n");
15001                return -EOPNOTSUPP;
15002        }
15003
15004        if (!CNIC_LOADED(bp)) {
15005                rc = bnx2x_load_cnic(bp);
15006                if (rc) {
15007                        BNX2X_ERR("CNIC-related load failed\n");
15008                        return rc;
15009                }
15010        }
15011
15012        bp->cnic_enabled = true;
15013
15014        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15015        if (!bp->cnic_kwq)
15016                return -ENOMEM;
15017
15018        bp->cnic_kwq_cons = bp->cnic_kwq;
15019        bp->cnic_kwq_prod = bp->cnic_kwq;
15020        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15021
15022        bp->cnic_spq_pending = 0;
15023        bp->cnic_kwq_pending = 0;
15024
15025        bp->cnic_data = data;
15026
15027        cp->num_irq = 0;
15028        cp->drv_state |= CNIC_DRV_STATE_REGD;
15029        cp->iro_arr = bp->iro_arr;
15030
15031        bnx2x_setup_cnic_irq_info(bp);
15032
15033        rcu_assign_pointer(bp->cnic_ops, ops);
15034
15035        /* Schedule driver to read CNIC driver versions */
15036        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15037
15038        return 0;
15039}
15040
15041static int bnx2x_unregister_cnic(struct net_device *dev)
15042{
15043        struct bnx2x *bp = netdev_priv(dev);
15044        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15045
15046        mutex_lock(&bp->cnic_mutex);
15047        cp->drv_state = 0;
15048        RCU_INIT_POINTER(bp->cnic_ops, NULL);
15049        mutex_unlock(&bp->cnic_mutex);
15050        synchronize_rcu();
15051        bp->cnic_enabled = false;
15052        kfree(bp->cnic_kwq);
15053        bp->cnic_kwq = NULL;
15054
15055        return 0;
15056}
15057
15058static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15059{
15060        struct bnx2x *bp = netdev_priv(dev);
15061        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15062
15063        /* If both iSCSI and FCoE are disabled - return NULL in
15064         * order to indicate CNIC that it should not try to work
15065         * with this device.
15066         */
15067        if (NO_ISCSI(bp) && NO_FCOE(bp))
15068                return NULL;
15069
15070        cp->drv_owner = THIS_MODULE;
15071        cp->chip_id = CHIP_ID(bp);
15072        cp->pdev = bp->pdev;
15073        cp->io_base = bp->regview;
15074        cp->io_base2 = bp->doorbells;
15075        cp->max_kwqe_pending = 8;
15076        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15077        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15078                             bnx2x_cid_ilt_lines(bp);
15079        cp->ctx_tbl_len = CNIC_ILT_LINES;
15080        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15081        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15082        cp->drv_ctl = bnx2x_drv_ctl;
15083        cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15084        cp->drv_register_cnic = bnx2x_register_cnic;
15085        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15086        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15087        cp->iscsi_l2_client_id =
15088                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15089        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15090
15091        if (NO_ISCSI_OOO(bp))
15092                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15093
15094        if (NO_ISCSI(bp))
15095                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15096
15097        if (NO_FCOE(bp))
15098                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15099
15100        BNX2X_DEV_INFO(
15101                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15102           cp->ctx_blk_size,
15103           cp->ctx_tbl_offset,
15104           cp->ctx_tbl_len,
15105           cp->starting_cid);
15106        return cp;
15107}
15108
15109static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15110{
15111        struct bnx2x *bp = fp->bp;
15112        u32 offset = BAR_USTRORM_INTMEM;
15113
15114        if (IS_VF(bp))
15115                return bnx2x_vf_ustorm_prods_offset(bp, fp);
15116        else if (!CHIP_IS_E1x(bp))
15117                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15118        else
15119                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15120
15121        return offset;
15122}
15123
15124/* called only on E1H or E2.
15125 * When pretending to be PF, the pretend value is the function number 0...7
15126 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15127 * combination
15128 */
15129int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15130{
15131        u32 pretend_reg;
15132
15133        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15134                return -1;
15135
15136        /* get my own pretend register */
15137        pretend_reg = bnx2x_get_pretend_reg(bp);
15138        REG_WR(bp, pretend_reg, pretend_func_val);
15139        REG_RD(bp, pretend_reg);
15140        return 0;
15141}
15142
15143static void bnx2x_ptp_task(struct work_struct *work)
15144{
15145        struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15146        int port = BP_PORT(bp);
15147        u32 val_seq;
15148        u64 timestamp, ns;
15149        struct skb_shared_hwtstamps shhwtstamps;
15150        bool bail = true;
15151        int i;
15152
15153        /* FW may take a while to complete timestamping; try a bit and if it's
15154         * still not complete, may indicate an error state - bail out then.
15155         */
15156        for (i = 0; i < 10; i++) {
15157                /* Read Tx timestamp registers */
15158                val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15159                                 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15160                if (val_seq & 0x10000) {
15161                        bail = false;
15162                        break;
15163                }
15164                msleep(1 << i);
15165        }
15166
15167        if (!bail) {
15168                /* There is a valid timestamp value */
15169                timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15170                                   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15171                timestamp <<= 32;
15172                timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15173                                    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15174                /* Reset timestamp register to allow new timestamp */
15175                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15176                       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15177                ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15178
15179                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15180                shhwtstamps.hwtstamp = ns_to_ktime(ns);
15181                skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15182
15183                DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15184                   timestamp, ns);
15185        } else {
15186                DP(BNX2X_MSG_PTP,
15187                   "Tx timestamp is not recorded (register read=%u)\n",
15188                   val_seq);
15189                bp->eth_stats.ptp_skip_tx_ts++;
15190        }
15191
15192        dev_kfree_skb_any(bp->ptp_tx_skb);
15193        bp->ptp_tx_skb = NULL;
15194}
15195
15196void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15197{
15198        int port = BP_PORT(bp);
15199        u64 timestamp, ns;
15200
15201        timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15202                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15203        timestamp <<= 32;
15204        timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15205                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15206
15207        /* Reset timestamp register to allow new timestamp */
15208        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15209               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15210
15211        ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15212
15213        skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15214
15215        DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15216           timestamp, ns);
15217}
15218
15219/* Read the PHC */
15220static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15221{
15222        struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15223        int port = BP_PORT(bp);
15224        u32 wb_data[2];
15225        u64 phc_cycles;
15226
15227        REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15228                    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15229        phc_cycles = wb_data[1];
15230        phc_cycles = (phc_cycles << 32) + wb_data[0];
15231
15232        DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15233
15234        return phc_cycles;
15235}
15236
15237static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15238{
15239        memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15240        bp->cyclecounter.read = bnx2x_cyclecounter_read;
15241        bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15242        bp->cyclecounter.shift = 0;
15243        bp->cyclecounter.mult = 1;
15244}
15245
15246static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15247{
15248        struct bnx2x_func_state_params func_params = {NULL};
15249        struct bnx2x_func_set_timesync_params *set_timesync_params =
15250                &func_params.params.set_timesync;
15251
15252        /* Prepare parameters for function state transitions */
15253        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15254        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15255
15256        func_params.f_obj = &bp->func_obj;
15257        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15258
15259        /* Function parameters */
15260        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15261        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15262
15263        return bnx2x_func_state_change(bp, &func_params);
15264}
15265
15266static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15267{
15268        struct bnx2x_queue_state_params q_params;
15269        int rc, i;
15270
15271        /* send queue update ramrod to enable PTP packets */
15272        memset(&q_params, 0, sizeof(q_params));
15273        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15274        q_params.cmd = BNX2X_Q_CMD_UPDATE;
15275        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15276                  &q_params.params.update.update_flags);
15277        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15278                  &q_params.params.update.update_flags);
15279
15280        /* send the ramrod on all the queues of the PF */
15281        for_each_eth_queue(bp, i) {
15282                struct bnx2x_fastpath *fp = &bp->fp[i];
15283
15284                /* Set the appropriate Queue object */
15285                q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15286
15287                /* Update the Queue state */
15288                rc = bnx2x_queue_state_change(bp, &q_params);
15289                if (rc) {
15290                        BNX2X_ERR("Failed to enable PTP packets\n");
15291                        return rc;
15292                }
15293        }
15294
15295        return 0;
15296}
15297
15298#define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15299#define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15300#define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15301#define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15302#define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15303#define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15304#define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15305#define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15306#define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15307#define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15308#define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15309#define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15310
15311int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15312{
15313        int port = BP_PORT(bp);
15314        u32 param, rule;
15315        int rc;
15316
15317        if (!bp->hwtstamp_ioctl_called)
15318                return 0;
15319
15320        param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15321                NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15322        rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15323                NIG_REG_P0_TLLH_PTP_RULE_MASK;
15324        switch (bp->tx_type) {
15325        case HWTSTAMP_TX_ON:
15326                bp->flags |= TX_TIMESTAMPING_EN;
15327                REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15328                REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15329                break;
15330        case HWTSTAMP_TX_ONESTEP_SYNC:
15331        case HWTSTAMP_TX_ONESTEP_P2P:
15332                BNX2X_ERR("One-step timestamping is not supported\n");
15333                return -ERANGE;
15334        }
15335
15336        param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15337                NIG_REG_P0_LLH_PTP_PARAM_MASK;
15338        rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15339                NIG_REG_P0_LLH_PTP_RULE_MASK;
15340        switch (bp->rx_filter) {
15341        case HWTSTAMP_FILTER_NONE:
15342                break;
15343        case HWTSTAMP_FILTER_ALL:
15344        case HWTSTAMP_FILTER_SOME:
15345        case HWTSTAMP_FILTER_NTP_ALL:
15346                bp->rx_filter = HWTSTAMP_FILTER_NONE;
15347                break;
15348        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15349        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15350        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15351                bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15352                /* Initialize PTP detection for UDP/IPv4 events */
15353                REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15354                REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15355                break;
15356        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15357        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15358        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15359                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15360                /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15361                REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15362                REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15363                break;
15364        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15365        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15366        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15367                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15368                /* Initialize PTP detection L2 events */
15369                REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15370                REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15371
15372                break;
15373        case HWTSTAMP_FILTER_PTP_V2_EVENT:
15374        case HWTSTAMP_FILTER_PTP_V2_SYNC:
15375        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15376                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15377                /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15378                REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15379                REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15380                break;
15381        }
15382
15383        /* Indicate to FW that this PF expects recorded PTP packets */
15384        rc = bnx2x_enable_ptp_packets(bp);
15385        if (rc)
15386                return rc;
15387
15388        /* Enable sending PTP packets to host */
15389        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15390               NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15391
15392        return 0;
15393}
15394
15395static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15396{
15397        struct hwtstamp_config config;
15398        int rc;
15399
15400        DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15401
15402        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15403                return -EFAULT;
15404
15405        DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15406           config.tx_type, config.rx_filter);
15407
15408        if (config.flags) {
15409                BNX2X_ERR("config.flags is reserved for future use\n");
15410                return -EINVAL;
15411        }
15412
15413        bp->hwtstamp_ioctl_called = true;
15414        bp->tx_type = config.tx_type;
15415        bp->rx_filter = config.rx_filter;
15416
15417        rc = bnx2x_configure_ptp_filters(bp);
15418        if (rc)
15419                return rc;
15420
15421        config.rx_filter = bp->rx_filter;
15422
15423        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15424                -EFAULT : 0;
15425}
15426
15427/* Configures HW for PTP */
15428static int bnx2x_configure_ptp(struct bnx2x *bp)
15429{
15430        int rc, port = BP_PORT(bp);
15431        u32 wb_data[2];
15432
15433        /* Reset PTP event detection rules - will be configured in the IOCTL */
15434        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15435               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15436        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15437               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15438        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15439               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15440        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15441               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15442
15443        /* Disable PTP packets to host - will be configured in the IOCTL*/
15444        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15445               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15446
15447        /* Enable the PTP feature */
15448        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15449               NIG_REG_P0_PTP_EN, 0x3F);
15450
15451        /* Enable the free-running counter */
15452        wb_data[0] = 0;
15453        wb_data[1] = 0;
15454        REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15455
15456        /* Reset drift register (offset register is not reset) */
15457        rc = bnx2x_send_reset_timesync_ramrod(bp);
15458        if (rc) {
15459                BNX2X_ERR("Failed to reset PHC drift register\n");
15460                return -EFAULT;
15461        }
15462
15463        /* Reset possibly old timestamps */
15464        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15465               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15466        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15467               NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15468
15469        return 0;
15470}
15471
15472/* Called during load, to initialize PTP-related stuff */
15473void bnx2x_init_ptp(struct bnx2x *bp)
15474{
15475        int rc;
15476
15477        /* Configure PTP in HW */
15478        rc = bnx2x_configure_ptp(bp);
15479        if (rc) {
15480                BNX2X_ERR("Stopping PTP initialization\n");
15481                return;
15482        }
15483
15484        /* Init work queue for Tx timestamping */
15485        INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15486
15487        /* Init cyclecounter and timecounter. This is done only in the first
15488         * load. If done in every load, PTP application will fail when doing
15489         * unload / load (e.g. MTU change) while it is running.
15490         */
15491        if (!bp->timecounter_init_done) {
15492                bnx2x_init_cyclecounter(bp);
15493                timecounter_init(&bp->timecounter, &bp->cyclecounter,
15494                                 ktime_to_ns(ktime_get_real()));
15495                bp->timecounter_init_done = true;
15496        }
15497
15498        DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15499}
15500