linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <linux/uaccess.h>
  66#include <linux/crash_dump.h>
  67#include <net/udp_tunnel.h>
  68#include <net/xfrm.h>
  69#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
  70#include <net/tls.h>
  71#endif
  72
  73#include "cxgb4.h"
  74#include "cxgb4_filter.h"
  75#include "t4_regs.h"
  76#include "t4_values.h"
  77#include "t4_msg.h"
  78#include "t4fw_api.h"
  79#include "t4fw_version.h"
  80#include "cxgb4_dcb.h"
  81#include "srq.h"
  82#include "cxgb4_debugfs.h"
  83#include "clip_tbl.h"
  84#include "l2t.h"
  85#include "smt.h"
  86#include "sched.h"
  87#include "cxgb4_tc_u32.h"
  88#include "cxgb4_tc_flower.h"
  89#include "cxgb4_tc_mqprio.h"
  90#include "cxgb4_tc_matchall.h"
  91#include "cxgb4_ptp.h"
  92#include "cxgb4_cudbg.h"
  93
  94char cxgb4_driver_name[] = KBUILD_MODNAME;
  95
  96#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  97
  98#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  99                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 100                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 101
 102/* Macros needed to support the PCI Device ID Table ...
 103 */
 104#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 105        static const struct pci_device_id cxgb4_pci_tbl[] = {
 106#define CXGB4_UNIFIED_PF 0x4
 107
 108#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
 109
 110/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 111 * called for both.
 112 */
 113#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 114
 115#define CH_PCI_ID_TABLE_ENTRY(devid) \
 116                {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
 117
 118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 119                { 0, } \
 120        }
 121
 122#include "t4_pci_id_tbl.h"
 123
 124#define FW4_FNAME "cxgb4/t4fw.bin"
 125#define FW5_FNAME "cxgb4/t5fw.bin"
 126#define FW6_FNAME "cxgb4/t6fw.bin"
 127#define FW4_CFNAME "cxgb4/t4-config.txt"
 128#define FW5_CFNAME "cxgb4/t5-config.txt"
 129#define FW6_CFNAME "cxgb4/t6-config.txt"
 130#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 131#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 132#define PHY_AQ1202_DEVICEID 0x4409
 133#define PHY_BCM84834_DEVICEID 0x4486
 134
 135MODULE_DESCRIPTION(DRV_DESC);
 136MODULE_AUTHOR("Chelsio Communications");
 137MODULE_LICENSE("Dual BSD/GPL");
 138MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 139MODULE_FIRMWARE(FW4_FNAME);
 140MODULE_FIRMWARE(FW5_FNAME);
 141MODULE_FIRMWARE(FW6_FNAME);
 142
 143/*
 144 * The driver uses the best interrupt scheme available on a platform in the
 145 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 146 * of these schemes the driver may consider as follows:
 147 *
 148 * msi = 2: choose from among all three options
 149 * msi = 1: only consider MSI and INTx interrupts
 150 * msi = 0: force INTx interrupts
 151 */
 152static int msi = 2;
 153
 154module_param(msi, int, 0644);
 155MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 156
 157/*
 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 160 * boundaries.  This is a requirement for many architectures which will throw
 161 * a machine check fault if an attempt is made to access one of the 4-byte IP
 162 * header fields on a non-4-byte boundary.  And it's a major performance issue
 163 * even on some architectures which allow it like some implementations of the
 164 * x86 ISA.  However, some architectures don't mind this and for some very
 165 * edge-case performance sensitive applications (like forwarding large volumes
 166 * of small packets), setting this DMA offset to 0 will decrease the number of
 167 * PCI-E Bus transfers enough to measurably affect performance.
 168 */
 169static int rx_dma_offset = 2;
 170
 171/* TX Queue select used to determine what algorithm to use for selecting TX
 172 * queue. Select between the kernel provided function (select_queue=0) or user
 173 * cxgb_select_queue function (select_queue=1)
 174 *
 175 * Default: select_queue=0
 176 */
 177static int select_queue;
 178module_param(select_queue, int, 0644);
 179MODULE_PARM_DESC(select_queue,
 180                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 181
 182static struct dentry *cxgb4_debugfs_root;
 183
 184LIST_HEAD(adapter_list);
 185DEFINE_MUTEX(uld_mutex);
 186LIST_HEAD(uld_list);
 187
 188static int cfg_queues(struct adapter *adap);
 189
 190static void link_report(struct net_device *dev)
 191{
 192        if (!netif_carrier_ok(dev))
 193                netdev_info(dev, "link down\n");
 194        else {
 195                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 196
 197                const char *s;
 198                const struct port_info *p = netdev_priv(dev);
 199
 200                switch (p->link_cfg.speed) {
 201                case 100:
 202                        s = "100Mbps";
 203                        break;
 204                case 1000:
 205                        s = "1Gbps";
 206                        break;
 207                case 10000:
 208                        s = "10Gbps";
 209                        break;
 210                case 25000:
 211                        s = "25Gbps";
 212                        break;
 213                case 40000:
 214                        s = "40Gbps";
 215                        break;
 216                case 50000:
 217                        s = "50Gbps";
 218                        break;
 219                case 100000:
 220                        s = "100Gbps";
 221                        break;
 222                default:
 223                        pr_info("%s: unsupported speed: %d\n",
 224                                dev->name, p->link_cfg.speed);
 225                        return;
 226                }
 227
 228                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 229                            fc[p->link_cfg.fc]);
 230        }
 231}
 232
 233#ifdef CONFIG_CHELSIO_T4_DCB
 234/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 235static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 236{
 237        struct port_info *pi = netdev_priv(dev);
 238        struct adapter *adap = pi->adapter;
 239        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 240        int i;
 241
 242        /* We use a simple mapping of Port TX Queue Index to DCB
 243         * Priority when we're enabling DCB.
 244         */
 245        for (i = 0; i < pi->nqsets; i++, txq++) {
 246                u32 name, value;
 247                int err;
 248
 249                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 250                        FW_PARAMS_PARAM_X_V(
 251                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 252                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 253                value = enable ? i : 0xffffffff;
 254
 255                /* Since we can be called while atomic (from "interrupt
 256                 * level") we need to issue the Set Parameters Commannd
 257                 * without sleeping (timeout < 0).
 258                 */
 259                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 260                                            &name, &value,
 261                                            -FW_CMD_MAX_TIMEOUT);
 262
 263                if (err)
 264                        dev_err(adap->pdev_dev,
 265                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 266                                enable ? "set" : "unset", pi->port_id, i, -err);
 267                else
 268                        txq->dcb_prio = enable ? value : 0;
 269        }
 270}
 271
 272int cxgb4_dcb_enabled(const struct net_device *dev)
 273{
 274        struct port_info *pi = netdev_priv(dev);
 275
 276        if (!pi->dcb.enabled)
 277                return 0;
 278
 279        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 280                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 281}
 282#endif /* CONFIG_CHELSIO_T4_DCB */
 283
 284void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 285{
 286        struct net_device *dev = adapter->port[port_id];
 287
 288        /* Skip changes from disabled ports. */
 289        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 290                if (link_stat)
 291                        netif_carrier_on(dev);
 292                else {
 293#ifdef CONFIG_CHELSIO_T4_DCB
 294                        if (cxgb4_dcb_enabled(dev)) {
 295                                cxgb4_dcb_reset(dev);
 296                                dcb_tx_queue_prio_enable(dev, false);
 297                        }
 298#endif /* CONFIG_CHELSIO_T4_DCB */
 299                        netif_carrier_off(dev);
 300                }
 301
 302                link_report(dev);
 303        }
 304}
 305
 306void t4_os_portmod_changed(struct adapter *adap, int port_id)
 307{
 308        static const char *mod_str[] = {
 309                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 310        };
 311
 312        struct net_device *dev = adap->port[port_id];
 313        struct port_info *pi = netdev_priv(dev);
 314
 315        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 316                netdev_info(dev, "port module unplugged\n");
 317        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 318                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 319        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 320                netdev_info(dev, "%s: unsupported port module inserted\n",
 321                            dev->name);
 322        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 323                netdev_info(dev, "%s: unknown port module inserted\n",
 324                            dev->name);
 325        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 326                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 327        else
 328                netdev_info(dev, "%s: unknown module type %d inserted\n",
 329                            dev->name, pi->mod_type);
 330
 331        /* If the interface is running, then we'll need any "sticky" Link
 332         * Parameters redone with a new Transceiver Module.
 333         */
 334        pi->link_cfg.redo_l1cfg = netif_running(dev);
 335}
 336
 337int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 338module_param(dbfifo_int_thresh, int, 0644);
 339MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 340
 341/*
 342 * usecs to sleep while draining the dbfifo
 343 */
 344static int dbfifo_drain_delay = 1000;
 345module_param(dbfifo_drain_delay, int, 0644);
 346MODULE_PARM_DESC(dbfifo_drain_delay,
 347                 "usecs to sleep while draining the dbfifo");
 348
 349static inline int cxgb4_set_addr_hash(struct port_info *pi)
 350{
 351        struct adapter *adap = pi->adapter;
 352        u64 vec = 0;
 353        bool ucast = false;
 354        struct hash_mac_addr *entry;
 355
 356        /* Calculate the hash vector for the updated list and program it */
 357        list_for_each_entry(entry, &adap->mac_hlist, list) {
 358                ucast |= is_unicast_ether_addr(entry->addr);
 359                vec |= (1ULL << hash_mac_addr(entry->addr));
 360        }
 361        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 362                                vec, false);
 363}
 364
 365static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 366{
 367        struct port_info *pi = netdev_priv(netdev);
 368        struct adapter *adap = pi->adapter;
 369        int ret;
 370        u64 mhash = 0;
 371        u64 uhash = 0;
 372        /* idx stores the index of allocated filters,
 373         * its size should be modified based on the number of
 374         * MAC addresses that we allocate filters for
 375         */
 376
 377        u16 idx[1] = {};
 378        bool free = false;
 379        bool ucast = is_unicast_ether_addr(mac_addr);
 380        const u8 *maclist[1] = {mac_addr};
 381        struct hash_mac_addr *new_entry;
 382
 383        ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
 384                                   idx, ucast ? &uhash : &mhash, false);
 385        if (ret < 0)
 386                goto out;
 387        /* if hash != 0, then add the addr to hash addr list
 388         * so on the end we will calculate the hash for the
 389         * list and program it
 390         */
 391        if (uhash || mhash) {
 392                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 393                if (!new_entry)
 394                        return -ENOMEM;
 395                ether_addr_copy(new_entry->addr, mac_addr);
 396                list_add_tail(&new_entry->list, &adap->mac_hlist);
 397                ret = cxgb4_set_addr_hash(pi);
 398        }
 399out:
 400        return ret < 0 ? ret : 0;
 401}
 402
 403static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 404{
 405        struct port_info *pi = netdev_priv(netdev);
 406        struct adapter *adap = pi->adapter;
 407        int ret;
 408        const u8 *maclist[1] = {mac_addr};
 409        struct hash_mac_addr *entry, *tmp;
 410
 411        /* If the MAC address to be removed is in the hash addr
 412         * list, delete it from the list and update hash vector
 413         */
 414        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 415                if (ether_addr_equal(entry->addr, mac_addr)) {
 416                        list_del(&entry->list);
 417                        kfree(entry);
 418                        return cxgb4_set_addr_hash(pi);
 419                }
 420        }
 421
 422        ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
 423        return ret < 0 ? -EINVAL : 0;
 424}
 425
 426/*
 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 428 * If @mtu is -1 it is left unchanged.
 429 */
 430static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 431{
 432        struct port_info *pi = netdev_priv(dev);
 433        struct adapter *adapter = pi->adapter;
 434
 435        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 436        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 437
 438        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
 439                             mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
 440                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 441                             sleep_ok);
 442}
 443
 444/**
 445 *      cxgb4_change_mac - Update match filter for a MAC address.
 446 *      @pi: the port_info
 447 *      @viid: the VI id
 448 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 449 *                 or -1
 450 *      @addr: the new MAC address value
 451 *      @persist: whether a new MAC allocation should be persistent
 452 *      @smt_idx: the destination to store the new SMT index.
 453 *
 454 *      Modifies an MPS filter and sets it to the new MAC address if
 455 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 456 *      @tcam_idx < 0. In the latter case the address is added persistently
 457 *      if @persist is %true.
 458 *      Addresses are programmed to hash region, if tcam runs out of entries.
 459 *
 460 */
 461int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
 462                     int *tcam_idx, const u8 *addr, bool persist,
 463                     u8 *smt_idx)
 464{
 465        struct adapter *adapter = pi->adapter;
 466        struct hash_mac_addr *entry, *new_entry;
 467        int ret;
 468
 469        ret = t4_change_mac(adapter, adapter->mbox, viid,
 470                            *tcam_idx, addr, persist, smt_idx);
 471        /* We ran out of TCAM entries. try programming hash region. */
 472        if (ret == -ENOMEM) {
 473                /* If the MAC address to be updated is in the hash addr
 474                 * list, update it from the list
 475                 */
 476                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 477                        if (entry->iface_mac) {
 478                                ether_addr_copy(entry->addr, addr);
 479                                goto set_hash;
 480                        }
 481                }
 482                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 483                if (!new_entry)
 484                        return -ENOMEM;
 485                ether_addr_copy(new_entry->addr, addr);
 486                new_entry->iface_mac = true;
 487                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 488set_hash:
 489                ret = cxgb4_set_addr_hash(pi);
 490        } else if (ret >= 0) {
 491                *tcam_idx = ret;
 492                ret = 0;
 493        }
 494
 495        return ret;
 496}
 497
 498/*
 499 *      link_start - enable a port
 500 *      @dev: the port to enable
 501 *
 502 *      Performs the MAC and PHY actions needed to enable a port.
 503 */
 504static int link_start(struct net_device *dev)
 505{
 506        struct port_info *pi = netdev_priv(dev);
 507        unsigned int mb = pi->adapter->mbox;
 508        int ret;
 509
 510        /*
 511         * We do not set address filters and promiscuity here, the stack does
 512         * that step explicitly.
 513         */
 514        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
 515                            dev->mtu, -1, -1, -1,
 516                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 517        if (ret == 0)
 518                ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
 519                                            dev->dev_addr, true, &pi->smt_idx);
 520        if (ret == 0)
 521                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 522                                    &pi->link_cfg);
 523        if (ret == 0) {
 524                local_bh_disable();
 525                ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
 526                                          true, CXGB4_DCB_ENABLED);
 527                local_bh_enable();
 528        }
 529
 530        return ret;
 531}
 532
 533#ifdef CONFIG_CHELSIO_T4_DCB
 534/* Handle a Data Center Bridging update message from the firmware. */
 535static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 536{
 537        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 538        struct net_device *dev = adap->port[adap->chan_map[port]];
 539        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 540        int new_dcb_enabled;
 541
 542        cxgb4_dcb_handle_fw_update(adap, pcmd);
 543        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 544
 545        /* If the DCB has become enabled or disabled on the port then we're
 546         * going to need to set up/tear down DCB Priority parameters for the
 547         * TX Queues associated with the port.
 548         */
 549        if (new_dcb_enabled != old_dcb_enabled)
 550                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 551}
 552#endif /* CONFIG_CHELSIO_T4_DCB */
 553
 554/* Response queue handler for the FW event queue.
 555 */
 556static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 557                          const struct pkt_gl *gl)
 558{
 559        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 560
 561        rsp++;                                          /* skip RSS header */
 562
 563        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 564         */
 565        if (unlikely(opcode == CPL_FW4_MSG &&
 566           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 567                rsp++;
 568                opcode = ((const struct rss_header *)rsp)->opcode;
 569                rsp++;
 570                if (opcode != CPL_SGE_EGR_UPDATE) {
 571                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 572                                , opcode);
 573                        goto out;
 574                }
 575        }
 576
 577        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 578                const struct cpl_sge_egr_update *p = (void *)rsp;
 579                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 580                struct sge_txq *txq;
 581
 582                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 583                txq->restarts++;
 584                if (txq->q_type == CXGB4_TXQ_ETH) {
 585                        struct sge_eth_txq *eq;
 586
 587                        eq = container_of(txq, struct sge_eth_txq, q);
 588                        t4_sge_eth_txq_egress_update(q->adap, eq, -1);
 589                } else {
 590                        struct sge_uld_txq *oq;
 591
 592                        oq = container_of(txq, struct sge_uld_txq, q);
 593                        tasklet_schedule(&oq->qresume_tsk);
 594                }
 595        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 596                const struct cpl_fw6_msg *p = (void *)rsp;
 597
 598#ifdef CONFIG_CHELSIO_T4_DCB
 599                const struct fw_port_cmd *pcmd = (const void *)p->data;
 600                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 601                unsigned int action =
 602                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 603
 604                if (cmd == FW_PORT_CMD &&
 605                    (action == FW_PORT_ACTION_GET_PORT_INFO ||
 606                     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
 607                        int port = FW_PORT_CMD_PORTID_G(
 608                                        be32_to_cpu(pcmd->op_to_portid));
 609                        struct net_device *dev;
 610                        int dcbxdis, state_input;
 611
 612                        dev = q->adap->port[q->adap->chan_map[port]];
 613                        dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
 614                          ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
 615                          : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
 616                               & FW_PORT_CMD_DCBXDIS32_F));
 617                        state_input = (dcbxdis
 618                                       ? CXGB4_DCB_INPUT_FW_DISABLED
 619                                       : CXGB4_DCB_INPUT_FW_ENABLED);
 620
 621                        cxgb4_dcb_state_fsm(dev, state_input);
 622                }
 623
 624                if (cmd == FW_PORT_CMD &&
 625                    action == FW_PORT_ACTION_L2_DCB_CFG)
 626                        dcb_rpl(q->adap, pcmd);
 627                else
 628#endif
 629                        if (p->type == 0)
 630                                t4_handle_fw_rpl(q->adap, p->data);
 631        } else if (opcode == CPL_L2T_WRITE_RPL) {
 632                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 633
 634                do_l2t_write_rpl(q->adap, p);
 635        } else if (opcode == CPL_SMT_WRITE_RPL) {
 636                const struct cpl_smt_write_rpl *p = (void *)rsp;
 637
 638                do_smt_write_rpl(q->adap, p);
 639        } else if (opcode == CPL_SET_TCB_RPL) {
 640                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 641
 642                filter_rpl(q->adap, p);
 643        } else if (opcode == CPL_ACT_OPEN_RPL) {
 644                const struct cpl_act_open_rpl *p = (void *)rsp;
 645
 646                hash_filter_rpl(q->adap, p);
 647        } else if (opcode == CPL_ABORT_RPL_RSS) {
 648                const struct cpl_abort_rpl_rss *p = (void *)rsp;
 649
 650                hash_del_filter_rpl(q->adap, p);
 651        } else if (opcode == CPL_SRQ_TABLE_RPL) {
 652                const struct cpl_srq_table_rpl *p = (void *)rsp;
 653
 654                do_srq_table_rpl(q->adap, p);
 655        } else
 656                dev_err(q->adap->pdev_dev,
 657                        "unexpected CPL %#x on FW event queue\n", opcode);
 658out:
 659        return 0;
 660}
 661
 662static void disable_msi(struct adapter *adapter)
 663{
 664        if (adapter->flags & CXGB4_USING_MSIX) {
 665                pci_disable_msix(adapter->pdev);
 666                adapter->flags &= ~CXGB4_USING_MSIX;
 667        } else if (adapter->flags & CXGB4_USING_MSI) {
 668                pci_disable_msi(adapter->pdev);
 669                adapter->flags &= ~CXGB4_USING_MSI;
 670        }
 671}
 672
 673/*
 674 * Interrupt handler for non-data events used with MSI-X.
 675 */
 676static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 677{
 678        struct adapter *adap = cookie;
 679        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 680
 681        if (v & PFSW_F) {
 682                adap->swintr = 1;
 683                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 684        }
 685        if (adap->flags & CXGB4_MASTER_PF)
 686                t4_slow_intr_handler(adap);
 687        return IRQ_HANDLED;
 688}
 689
 690int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
 691                       cpumask_var_t *aff_mask, int idx)
 692{
 693        int rv;
 694
 695        if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
 696                dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
 697                return -ENOMEM;
 698        }
 699
 700        cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
 701                        *aff_mask);
 702
 703        rv = irq_set_affinity_hint(vec, *aff_mask);
 704        if (rv)
 705                dev_warn(adap->pdev_dev,
 706                         "irq_set_affinity_hint %u failed %d\n",
 707                         vec, rv);
 708
 709        return 0;
 710}
 711
 712void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
 713{
 714        irq_set_affinity_hint(vec, NULL);
 715        free_cpumask_var(aff_mask);
 716}
 717
 718static int request_msix_queue_irqs(struct adapter *adap)
 719{
 720        struct sge *s = &adap->sge;
 721        struct msix_info *minfo;
 722        int err, ethqidx;
 723
 724        if (s->fwevtq_msix_idx < 0)
 725                return -ENOMEM;
 726
 727        err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
 728                          t4_sge_intr_msix, 0,
 729                          adap->msix_info[s->fwevtq_msix_idx].desc,
 730                          &s->fw_evtq);
 731        if (err)
 732                return err;
 733
 734        for_each_ethrxq(s, ethqidx) {
 735                minfo = s->ethrxq[ethqidx].msix;
 736                err = request_irq(minfo->vec,
 737                                  t4_sge_intr_msix, 0,
 738                                  minfo->desc,
 739                                  &s->ethrxq[ethqidx].rspq);
 740                if (err)
 741                        goto unwind;
 742
 743                cxgb4_set_msix_aff(adap, minfo->vec,
 744                                   &minfo->aff_mask, ethqidx);
 745        }
 746        return 0;
 747
 748unwind:
 749        while (--ethqidx >= 0) {
 750                minfo = s->ethrxq[ethqidx].msix;
 751                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 752                free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
 753        }
 754        free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
 755        return err;
 756}
 757
 758static void free_msix_queue_irqs(struct adapter *adap)
 759{
 760        struct sge *s = &adap->sge;
 761        struct msix_info *minfo;
 762        int i;
 763
 764        free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
 765        for_each_ethrxq(s, i) {
 766                minfo = s->ethrxq[i].msix;
 767                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 768                free_irq(minfo->vec, &s->ethrxq[i].rspq);
 769        }
 770}
 771
 772static int setup_ppod_edram(struct adapter *adap)
 773{
 774        unsigned int param, val;
 775        int ret;
 776
 777        /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
 778         * if firmware supports ppod edram feature or not. If firmware
 779         * returns 1, then driver can enable this feature by sending
 780         * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
 781         * enable ppod edram feature.
 782         */
 783        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 784                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
 785
 786        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 787        if (ret < 0) {
 788                dev_warn(adap->pdev_dev,
 789                         "querying PPOD_EDRAM support failed: %d\n",
 790                         ret);
 791                return -1;
 792        }
 793
 794        if (val != 1)
 795                return -1;
 796
 797        ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 798        if (ret < 0) {
 799                dev_err(adap->pdev_dev,
 800                        "setting PPOD_EDRAM failed: %d\n", ret);
 801                return -1;
 802        }
 803        return 0;
 804}
 805
 806static void adap_config_hpfilter(struct adapter *adapter)
 807{
 808        u32 param, val = 0;
 809        int ret;
 810
 811        /* Enable HP filter region. Older fw will fail this request and
 812         * it is fine.
 813         */
 814        param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
 815        ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
 816                            1, &param, &val);
 817
 818        /* An error means FW doesn't know about HP filter support,
 819         * it's not a problem, don't return an error.
 820         */
 821        if (ret < 0)
 822                dev_err(adapter->pdev_dev,
 823                        "HP filter region isn't supported by FW\n");
 824}
 825
 826static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
 827                            u16 rss_size, u16 viid)
 828{
 829        struct adapter *adap = pi->adapter;
 830        int ret;
 831
 832        ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
 833                                  rss_size);
 834        if (ret)
 835                return ret;
 836
 837        /* If Tunnel All Lookup isn't specified in the global RSS
 838         * Configuration, then we need to specify a default Ingress
 839         * Queue for any ingress packets which aren't hashed.  We'll
 840         * use our first ingress queue ...
 841         */
 842        return t4_config_vi_rss(adap, adap->mbox, viid,
 843                                FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 844                                FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 845                                FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 846                                FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 847                                FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 848                                rss[0]);
 849}
 850
 851/**
 852 *      cxgb4_write_rss - write the RSS table for a given port
 853 *      @pi: the port
 854 *      @queues: array of queue indices for RSS
 855 *
 856 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 857 *      packets to the Rx queues in @queues.
 858 *      Should never be called before setting up sge eth rx queues
 859 */
 860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 861{
 862        struct adapter *adapter = pi->adapter;
 863        const struct sge_eth_rxq *rxq;
 864        int i, err;
 865        u16 *rss;
 866
 867        rxq = &adapter->sge.ethrxq[pi->first_qset];
 868        rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
 869        if (!rss)
 870                return -ENOMEM;
 871
 872        /* map the queue indices to queue ids */
 873        for (i = 0; i < pi->rss_size; i++, queues++)
 874                rss[i] = rxq[*queues].rspq.abs_id;
 875
 876        err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
 877        kfree(rss);
 878        return err;
 879}
 880
 881/**
 882 *      setup_rss - configure RSS
 883 *      @adap: the adapter
 884 *
 885 *      Sets up RSS for each port.
 886 */
 887static int setup_rss(struct adapter *adap)
 888{
 889        int i, j, err;
 890
 891        for_each_port(adap, i) {
 892                const struct port_info *pi = adap2pinfo(adap, i);
 893
 894                /* Fill default values with equal distribution */
 895                for (j = 0; j < pi->rss_size; j++)
 896                        pi->rss[j] = j % pi->nqsets;
 897
 898                err = cxgb4_write_rss(pi, pi->rss);
 899                if (err)
 900                        return err;
 901        }
 902        return 0;
 903}
 904
 905/*
 906 * Return the channel of the ingress queue with the given qid.
 907 */
 908static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 909{
 910        qid -= p->ingr_start;
 911        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 912}
 913
 914void cxgb4_quiesce_rx(struct sge_rspq *q)
 915{
 916        if (q->handler)
 917                napi_disable(&q->napi);
 918}
 919
 920/*
 921 * Wait until all NAPI handlers are descheduled.
 922 */
 923static void quiesce_rx(struct adapter *adap)
 924{
 925        int i;
 926
 927        for (i = 0; i < adap->sge.ingr_sz; i++) {
 928                struct sge_rspq *q = adap->sge.ingr_map[i];
 929
 930                if (!q)
 931                        continue;
 932
 933                cxgb4_quiesce_rx(q);
 934        }
 935}
 936
 937/* Disable interrupt and napi handler */
 938static void disable_interrupts(struct adapter *adap)
 939{
 940        struct sge *s = &adap->sge;
 941
 942        if (adap->flags & CXGB4_FULL_INIT_DONE) {
 943                t4_intr_disable(adap);
 944                if (adap->flags & CXGB4_USING_MSIX) {
 945                        free_msix_queue_irqs(adap);
 946                        free_irq(adap->msix_info[s->nd_msix_idx].vec,
 947                                 adap);
 948                } else {
 949                        free_irq(adap->pdev->irq, adap);
 950                }
 951                quiesce_rx(adap);
 952        }
 953}
 954
 955void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
 956{
 957        if (q->handler)
 958                napi_enable(&q->napi);
 959
 960        /* 0-increment GTS to start the timer and enable interrupts */
 961        t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 962                     SEINTARM_V(q->intr_params) |
 963                     INGRESSQID_V(q->cntxt_id));
 964}
 965
 966/*
 967 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 968 */
 969static void enable_rx(struct adapter *adap)
 970{
 971        int i;
 972
 973        for (i = 0; i < adap->sge.ingr_sz; i++) {
 974                struct sge_rspq *q = adap->sge.ingr_map[i];
 975
 976                if (!q)
 977                        continue;
 978
 979                cxgb4_enable_rx(adap, q);
 980        }
 981}
 982
 983static int setup_non_data_intr(struct adapter *adap)
 984{
 985        int msix;
 986
 987        adap->sge.nd_msix_idx = -1;
 988        if (!(adap->flags & CXGB4_USING_MSIX))
 989                return 0;
 990
 991        /* Request MSI-X vector for non-data interrupt */
 992        msix = cxgb4_get_msix_idx_from_bmap(adap);
 993        if (msix < 0)
 994                return -ENOMEM;
 995
 996        snprintf(adap->msix_info[msix].desc,
 997                 sizeof(adap->msix_info[msix].desc),
 998                 "%s", adap->port[0]->name);
 999
1000        adap->sge.nd_msix_idx = msix;
1001        return 0;
1002}
1003
1004static int setup_fw_sge_queues(struct adapter *adap)
1005{
1006        struct sge *s = &adap->sge;
1007        int msix, err = 0;
1008
1009        bitmap_zero(s->starving_fl, s->egr_sz);
1010        bitmap_zero(s->txq_maperr, s->egr_sz);
1011
1012        if (adap->flags & CXGB4_USING_MSIX) {
1013                s->fwevtq_msix_idx = -1;
1014                msix = cxgb4_get_msix_idx_from_bmap(adap);
1015                if (msix < 0)
1016                        return -ENOMEM;
1017
1018                snprintf(adap->msix_info[msix].desc,
1019                         sizeof(adap->msix_info[msix].desc),
1020                         "%s-FWeventq", adap->port[0]->name);
1021        } else {
1022                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023                                       NULL, NULL, NULL, -1);
1024                if (err)
1025                        return err;
1026                msix = -((int)s->intrq.abs_id + 1);
1027        }
1028
1029        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030                               msix, NULL, fwevtq_handler, NULL, -1);
1031        if (err && msix >= 0)
1032                cxgb4_free_msix_idx_in_bmap(adap, msix);
1033
1034        s->fwevtq_msix_idx = msix;
1035        return err;
1036}
1037
1038/**
1039 *      setup_sge_queues - configure SGE Tx/Rx/response queues
1040 *      @adap: the adapter
1041 *
1042 *      Determines how many sets of SGE queues to use and initializes them.
1043 *      We support multiple queue sets per port if we have MSI-X, otherwise
1044 *      just one queue set per port.
1045 */
1046static int setup_sge_queues(struct adapter *adap)
1047{
1048        struct sge_uld_rxq_info *rxq_info = NULL;
1049        struct sge *s = &adap->sge;
1050        unsigned int cmplqid = 0;
1051        int err, i, j, msix = 0;
1052
1053        if (is_uld(adap))
1054                rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055
1056        if (!(adap->flags & CXGB4_USING_MSIX))
1057                msix = -((int)s->intrq.abs_id + 1);
1058
1059        for_each_port(adap, i) {
1060                struct net_device *dev = adap->port[i];
1061                struct port_info *pi = netdev_priv(dev);
1062                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064
1065                for (j = 0; j < pi->nqsets; j++, q++) {
1066                        if (msix >= 0) {
1067                                msix = cxgb4_get_msix_idx_from_bmap(adap);
1068                                if (msix < 0) {
1069                                        err = msix;
1070                                        goto freeout;
1071                                }
1072
1073                                snprintf(adap->msix_info[msix].desc,
1074                                         sizeof(adap->msix_info[msix].desc),
1075                                         "%s-Rx%d", dev->name, j);
1076                                q->msix = &adap->msix_info[msix];
1077                        }
1078
1079                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080                                               msix, &q->fl,
1081                                               t4_ethrx_handler,
1082                                               NULL,
1083                                               t4_get_tp_ch_map(adap,
1084                                                                pi->tx_chan));
1085                        if (err)
1086                                goto freeout;
1087                        q->rspq.idx = j;
1088                        memset(&q->stats, 0, sizeof(q->stats));
1089                }
1090
1091                q = &s->ethrxq[pi->first_qset];
1092                for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1094                                        netdev_get_tx_queue(dev, j),
1095                                        q->rspq.cntxt_id,
1096                                        !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097                        if (err)
1098                                goto freeout;
1099                }
1100        }
1101
1102        for_each_port(adap, i) {
1103                /* Note that cmplqid below is 0 if we don't
1104                 * have RDMA queues, and that's the right value.
1105                 */
1106                if (rxq_info)
1107                        cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1108
1109                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110                                            s->fw_evtq.cntxt_id, cmplqid);
1111                if (err)
1112                        goto freeout;
1113        }
1114
1115        if (!is_t4(adap->params.chip)) {
1116                err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117                                           netdev_get_tx_queue(adap->port[0], 0)
1118                                           , s->fw_evtq.cntxt_id, false);
1119                if (err)
1120                        goto freeout;
1121        }
1122
1123        t4_write_reg(adap, is_t4(adap->params.chip) ?
1124                                MPS_TRC_RSS_CONTROL_A :
1125                                MPS_T5_TRC_RSS_CONTROL_A,
1126                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128        return 0;
1129freeout:
1130        dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131        t4_free_sge_resources(adap);
1132        return err;
1133}
1134
1135static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136                             struct net_device *sb_dev)
1137{
1138        int txq;
1139
1140#ifdef CONFIG_CHELSIO_T4_DCB
1141        /* If a Data Center Bridging has been successfully negotiated on this
1142         * link then we'll use the skb's priority to map it to a TX Queue.
1143         * The skb's priority is determined via the VLAN Tag Priority Code
1144         * Point field.
1145         */
1146        if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147                u16 vlan_tci;
1148                int err;
1149
1150                err = vlan_get_tag(skb, &vlan_tci);
1151                if (unlikely(err)) {
1152                        if (net_ratelimit())
1153                                netdev_warn(dev,
1154                                            "TX Packet without VLAN Tag on DCB Link\n");
1155                        txq = 0;
1156                } else {
1157                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158#ifdef CONFIG_CHELSIO_T4_FCOE
1159                        if (skb->protocol == htons(ETH_P_FCOE))
1160                                txq = skb->priority & 0x7;
1161#endif /* CONFIG_CHELSIO_T4_FCOE */
1162                }
1163                return txq;
1164        }
1165#endif /* CONFIG_CHELSIO_T4_DCB */
1166
1167        if (dev->num_tc) {
1168                struct port_info *pi = netdev2pinfo(dev);
1169                u8 ver, proto;
1170
1171                ver = ip_hdr(skb)->version;
1172                proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173                                     ip_hdr(skb)->protocol;
1174
1175                /* Send unsupported traffic pattern to normal NIC queues. */
1176                txq = netdev_pick_tx(dev, skb, sb_dev);
1177                if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178                    skb->encapsulation ||
1179                    cxgb4_is_ktls_skb(skb) ||
1180                    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1181                        txq = txq % pi->nqsets;
1182
1183                return txq;
1184        }
1185
1186        if (select_queue) {
1187                txq = (skb_rx_queue_recorded(skb)
1188                        ? skb_get_rx_queue(skb)
1189                        : smp_processor_id());
1190
1191                while (unlikely(txq >= dev->real_num_tx_queues))
1192                        txq -= dev->real_num_tx_queues;
1193
1194                return txq;
1195        }
1196
1197        return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1198}
1199
1200static int closest_timer(const struct sge *s, int time)
1201{
1202        int i, delta, match = 0, min_delta = INT_MAX;
1203
1204        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1205                delta = time - s->timer_val[i];
1206                if (delta < 0)
1207                        delta = -delta;
1208                if (delta < min_delta) {
1209                        min_delta = delta;
1210                        match = i;
1211                }
1212        }
1213        return match;
1214}
1215
1216static int closest_thres(const struct sge *s, int thres)
1217{
1218        int i, delta, match = 0, min_delta = INT_MAX;
1219
1220        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1221                delta = thres - s->counter_val[i];
1222                if (delta < 0)
1223                        delta = -delta;
1224                if (delta < min_delta) {
1225                        min_delta = delta;
1226                        match = i;
1227                }
1228        }
1229        return match;
1230}
1231
1232/**
1233 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1234 *      @q: the Rx queue
1235 *      @us: the hold-off time in us, or 0 to disable timer
1236 *      @cnt: the hold-off packet count, or 0 to disable counter
1237 *
1238 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1239 *      one of the two needs to be enabled for the queue to generate interrupts.
1240 */
1241int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1242                               unsigned int us, unsigned int cnt)
1243{
1244        struct adapter *adap = q->adap;
1245
1246        if ((us | cnt) == 0)
1247                cnt = 1;
1248
1249        if (cnt) {
1250                int err;
1251                u32 v, new_idx;
1252
1253                new_idx = closest_thres(&adap->sge, cnt);
1254                if (q->desc && q->pktcnt_idx != new_idx) {
1255                        /* the queue has already been created, update it */
1256                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1257                            FW_PARAMS_PARAM_X_V(
1258                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1259                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1260                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1261                                            &v, &new_idx);
1262                        if (err)
1263                                return err;
1264                }
1265                q->pktcnt_idx = new_idx;
1266        }
1267
1268        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1269        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1270        return 0;
1271}
1272
1273static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1274{
1275        netdev_features_t changed = dev->features ^ features;
1276        const struct port_info *pi = netdev_priv(dev);
1277        int err;
1278
1279        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1280                return 0;
1281
1282        err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1283                            pi->viid_mirror, -1, -1, -1, -1,
1284                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1285        if (unlikely(err))
1286                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1287        return err;
1288}
1289
1290static int setup_debugfs(struct adapter *adap)
1291{
1292        if (IS_ERR_OR_NULL(adap->debugfs_root))
1293                return -1;
1294
1295#ifdef CONFIG_DEBUG_FS
1296        t4_setup_debugfs(adap);
1297#endif
1298        return 0;
1299}
1300
1301static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1302                                       struct sge_eth_rxq *mirror_rxq)
1303{
1304        if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1305            !(adap->flags & CXGB4_SHUTTING_DOWN))
1306                cxgb4_quiesce_rx(&mirror_rxq->rspq);
1307
1308        if (adap->flags & CXGB4_USING_MSIX) {
1309                cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1310                                     mirror_rxq->msix->aff_mask);
1311                free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1312                cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1313        }
1314
1315        free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1316}
1317
1318static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1319{
1320        struct port_info *pi = netdev2pinfo(dev);
1321        struct adapter *adap = netdev2adap(dev);
1322        struct sge_eth_rxq *mirror_rxq;
1323        struct sge *s = &adap->sge;
1324        int ret = 0, msix = 0;
1325        u16 i, rxqid;
1326        u16 *rss;
1327
1328        if (!pi->vi_mirror_count)
1329                return 0;
1330
1331        if (s->mirror_rxq[pi->port_id])
1332                return 0;
1333
1334        mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1335        if (!mirror_rxq)
1336                return -ENOMEM;
1337
1338        s->mirror_rxq[pi->port_id] = mirror_rxq;
1339
1340        if (!(adap->flags & CXGB4_USING_MSIX))
1341                msix = -((int)adap->sge.intrq.abs_id + 1);
1342
1343        for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1344                mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1345
1346                /* Allocate Mirror Rxqs */
1347                if (msix >= 0) {
1348                        msix = cxgb4_get_msix_idx_from_bmap(adap);
1349                        if (msix < 0) {
1350                                ret = msix;
1351                                goto out_free_queues;
1352                        }
1353
1354                        mirror_rxq->msix = &adap->msix_info[msix];
1355                        snprintf(mirror_rxq->msix->desc,
1356                                 sizeof(mirror_rxq->msix->desc),
1357                                 "%s-mirrorrxq%d", dev->name, i);
1358                }
1359
1360                init_rspq(adap, &mirror_rxq->rspq,
1361                          CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1362                          CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1363                          CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1364                          CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1365
1366                mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1367
1368                ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1369                                       dev, msix, &mirror_rxq->fl,
1370                                       t4_ethrx_handler, NULL, 0);
1371                if (ret)
1372                        goto out_free_msix_idx;
1373
1374                /* Setup MSI-X vectors for Mirror Rxqs */
1375                if (adap->flags & CXGB4_USING_MSIX) {
1376                        ret = request_irq(mirror_rxq->msix->vec,
1377                                          t4_sge_intr_msix, 0,
1378                                          mirror_rxq->msix->desc,
1379                                          &mirror_rxq->rspq);
1380                        if (ret)
1381                                goto out_free_rxq;
1382
1383                        cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1384                                           &mirror_rxq->msix->aff_mask, i);
1385                }
1386
1387                /* Start NAPI for Mirror Rxqs */
1388                cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1389        }
1390
1391        /* Setup RSS for Mirror Rxqs */
1392        rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1393        if (!rss) {
1394                ret = -ENOMEM;
1395                goto out_free_queues;
1396        }
1397
1398        mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1399        for (i = 0; i < pi->rss_size; i++)
1400                rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1401
1402        ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1403        kfree(rss);
1404        if (ret)
1405                goto out_free_queues;
1406
1407        return 0;
1408
1409out_free_rxq:
1410        free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1411
1412out_free_msix_idx:
1413        cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1414
1415out_free_queues:
1416        while (rxqid-- > 0)
1417                cxgb4_port_mirror_free_rxq(adap,
1418                                           &s->mirror_rxq[pi->port_id][rxqid]);
1419
1420        kfree(s->mirror_rxq[pi->port_id]);
1421        s->mirror_rxq[pi->port_id] = NULL;
1422        return ret;
1423}
1424
1425static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1426{
1427        struct port_info *pi = netdev2pinfo(dev);
1428        struct adapter *adap = netdev2adap(dev);
1429        struct sge *s = &adap->sge;
1430        u16 i;
1431
1432        if (!pi->vi_mirror_count)
1433                return;
1434
1435        if (!s->mirror_rxq[pi->port_id])
1436                return;
1437
1438        for (i = 0; i < pi->nmirrorqsets; i++)
1439                cxgb4_port_mirror_free_rxq(adap,
1440                                           &s->mirror_rxq[pi->port_id][i]);
1441
1442        kfree(s->mirror_rxq[pi->port_id]);
1443        s->mirror_rxq[pi->port_id] = NULL;
1444}
1445
1446static int cxgb4_port_mirror_start(struct net_device *dev)
1447{
1448        struct port_info *pi = netdev2pinfo(dev);
1449        struct adapter *adap = netdev2adap(dev);
1450        int ret, idx = -1;
1451
1452        if (!pi->vi_mirror_count)
1453                return 0;
1454
1455        /* Mirror VIs can be created dynamically after stack had
1456         * already setup Rx modes like MTU, promisc, allmulti, etc.
1457         * on main VI. So, parse what the stack had setup on the
1458         * main VI and update the same on the mirror VI.
1459         */
1460        ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1461                            dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1462                            (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1463                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1464        if (ret) {
1465                dev_err(adap->pdev_dev,
1466                        "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1467                        pi->viid_mirror, ret);
1468                return ret;
1469        }
1470
1471        /* Enable replication bit for the device's MAC address
1472         * in MPS TCAM, so that the packets for the main VI are
1473         * replicated to mirror VI.
1474         */
1475        ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1476                                    dev->dev_addr, true, NULL);
1477        if (ret) {
1478                dev_err(adap->pdev_dev,
1479                        "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1480                        pi->viid_mirror, ret);
1481                return ret;
1482        }
1483
1484        /* Enabling a Virtual Interface can result in an interrupt
1485         * during the processing of the VI Enable command and, in some
1486         * paths, result in an attempt to issue another command in the
1487         * interrupt context. Thus, we disable interrupts during the
1488         * course of the VI Enable command ...
1489         */
1490        local_bh_disable();
1491        ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1492                                  false);
1493        local_bh_enable();
1494        if (ret)
1495                dev_err(adap->pdev_dev,
1496                        "Failed starting Mirror VI 0x%x, ret: %d\n",
1497                        pi->viid_mirror, ret);
1498
1499        return ret;
1500}
1501
1502static void cxgb4_port_mirror_stop(struct net_device *dev)
1503{
1504        struct port_info *pi = netdev2pinfo(dev);
1505        struct adapter *adap = netdev2adap(dev);
1506
1507        if (!pi->vi_mirror_count)
1508                return;
1509
1510        t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1511                            false);
1512}
1513
1514int cxgb4_port_mirror_alloc(struct net_device *dev)
1515{
1516        struct port_info *pi = netdev2pinfo(dev);
1517        struct adapter *adap = netdev2adap(dev);
1518        int ret = 0;
1519
1520        if (!pi->nmirrorqsets)
1521                return -EOPNOTSUPP;
1522
1523        mutex_lock(&pi->vi_mirror_mutex);
1524        if (pi->viid_mirror) {
1525                pi->vi_mirror_count++;
1526                goto out_unlock;
1527        }
1528
1529        ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1530                                  &pi->viid_mirror);
1531        if (ret)
1532                goto out_unlock;
1533
1534        pi->vi_mirror_count = 1;
1535
1536        if (adap->flags & CXGB4_FULL_INIT_DONE) {
1537                ret = cxgb4_port_mirror_alloc_queues(dev);
1538                if (ret)
1539                        goto out_free_vi;
1540
1541                ret = cxgb4_port_mirror_start(dev);
1542                if (ret)
1543                        goto out_free_queues;
1544        }
1545
1546        mutex_unlock(&pi->vi_mirror_mutex);
1547        return 0;
1548
1549out_free_queues:
1550        cxgb4_port_mirror_free_queues(dev);
1551
1552out_free_vi:
1553        pi->vi_mirror_count = 0;
1554        t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1555        pi->viid_mirror = 0;
1556
1557out_unlock:
1558        mutex_unlock(&pi->vi_mirror_mutex);
1559        return ret;
1560}
1561
1562void cxgb4_port_mirror_free(struct net_device *dev)
1563{
1564        struct port_info *pi = netdev2pinfo(dev);
1565        struct adapter *adap = netdev2adap(dev);
1566
1567        mutex_lock(&pi->vi_mirror_mutex);
1568        if (!pi->viid_mirror)
1569                goto out_unlock;
1570
1571        if (pi->vi_mirror_count > 1) {
1572                pi->vi_mirror_count--;
1573                goto out_unlock;
1574        }
1575
1576        cxgb4_port_mirror_stop(dev);
1577        cxgb4_port_mirror_free_queues(dev);
1578
1579        pi->vi_mirror_count = 0;
1580        t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1581        pi->viid_mirror = 0;
1582
1583out_unlock:
1584        mutex_unlock(&pi->vi_mirror_mutex);
1585}
1586
1587/*
1588 * upper-layer driver support
1589 */
1590
1591/*
1592 * Allocate an active-open TID and set it to the supplied value.
1593 */
1594int cxgb4_alloc_atid(struct tid_info *t, void *data)
1595{
1596        int atid = -1;
1597
1598        spin_lock_bh(&t->atid_lock);
1599        if (t->afree) {
1600                union aopen_entry *p = t->afree;
1601
1602                atid = (p - t->atid_tab) + t->atid_base;
1603                t->afree = p->next;
1604                p->data = data;
1605                t->atids_in_use++;
1606        }
1607        spin_unlock_bh(&t->atid_lock);
1608        return atid;
1609}
1610EXPORT_SYMBOL(cxgb4_alloc_atid);
1611
1612/*
1613 * Release an active-open TID.
1614 */
1615void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1616{
1617        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1618
1619        spin_lock_bh(&t->atid_lock);
1620        p->next = t->afree;
1621        t->afree = p;
1622        t->atids_in_use--;
1623        spin_unlock_bh(&t->atid_lock);
1624}
1625EXPORT_SYMBOL(cxgb4_free_atid);
1626
1627/*
1628 * Allocate a server TID and set it to the supplied value.
1629 */
1630int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1631{
1632        int stid;
1633
1634        spin_lock_bh(&t->stid_lock);
1635        if (family == PF_INET) {
1636                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1637                if (stid < t->nstids)
1638                        __set_bit(stid, t->stid_bmap);
1639                else
1640                        stid = -1;
1641        } else {
1642                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1643                if (stid < 0)
1644                        stid = -1;
1645        }
1646        if (stid >= 0) {
1647                t->stid_tab[stid].data = data;
1648                stid += t->stid_base;
1649                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1650                 * This is equivalent to 4 TIDs. With CLIP enabled it
1651                 * needs 2 TIDs.
1652                 */
1653                if (family == PF_INET6) {
1654                        t->stids_in_use += 2;
1655                        t->v6_stids_in_use += 2;
1656                } else {
1657                        t->stids_in_use++;
1658                }
1659        }
1660        spin_unlock_bh(&t->stid_lock);
1661        return stid;
1662}
1663EXPORT_SYMBOL(cxgb4_alloc_stid);
1664
1665/* Allocate a server filter TID and set it to the supplied value.
1666 */
1667int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1668{
1669        int stid;
1670
1671        spin_lock_bh(&t->stid_lock);
1672        if (family == PF_INET) {
1673                stid = find_next_zero_bit(t->stid_bmap,
1674                                t->nstids + t->nsftids, t->nstids);
1675                if (stid < (t->nstids + t->nsftids))
1676                        __set_bit(stid, t->stid_bmap);
1677                else
1678                        stid = -1;
1679        } else {
1680                stid = -1;
1681        }
1682        if (stid >= 0) {
1683                t->stid_tab[stid].data = data;
1684                stid -= t->nstids;
1685                stid += t->sftid_base;
1686                t->sftids_in_use++;
1687        }
1688        spin_unlock_bh(&t->stid_lock);
1689        return stid;
1690}
1691EXPORT_SYMBOL(cxgb4_alloc_sftid);
1692
1693/* Release a server TID.
1694 */
1695void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1696{
1697        /* Is it a server filter TID? */
1698        if (t->nsftids && (stid >= t->sftid_base)) {
1699                stid -= t->sftid_base;
1700                stid += t->nstids;
1701        } else {
1702                stid -= t->stid_base;
1703        }
1704
1705        spin_lock_bh(&t->stid_lock);
1706        if (family == PF_INET)
1707                __clear_bit(stid, t->stid_bmap);
1708        else
1709                bitmap_release_region(t->stid_bmap, stid, 1);
1710        t->stid_tab[stid].data = NULL;
1711        if (stid < t->nstids) {
1712                if (family == PF_INET6) {
1713                        t->stids_in_use -= 2;
1714                        t->v6_stids_in_use -= 2;
1715                } else {
1716                        t->stids_in_use--;
1717                }
1718        } else {
1719                t->sftids_in_use--;
1720        }
1721
1722        spin_unlock_bh(&t->stid_lock);
1723}
1724EXPORT_SYMBOL(cxgb4_free_stid);
1725
1726/*
1727 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1728 */
1729static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1730                           unsigned int tid)
1731{
1732        struct cpl_tid_release *req;
1733
1734        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1735        req = __skb_put(skb, sizeof(*req));
1736        INIT_TP_WR(req, tid);
1737        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1738}
1739
1740/*
1741 * Queue a TID release request and if necessary schedule a work queue to
1742 * process it.
1743 */
1744static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1745                                    unsigned int tid)
1746{
1747        struct adapter *adap = container_of(t, struct adapter, tids);
1748        void **p = &t->tid_tab[tid - t->tid_base];
1749
1750        spin_lock_bh(&adap->tid_release_lock);
1751        *p = adap->tid_release_head;
1752        /* Low 2 bits encode the Tx channel number */
1753        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1754        if (!adap->tid_release_task_busy) {
1755                adap->tid_release_task_busy = true;
1756                queue_work(adap->workq, &adap->tid_release_task);
1757        }
1758        spin_unlock_bh(&adap->tid_release_lock);
1759}
1760
1761/*
1762 * Process the list of pending TID release requests.
1763 */
1764static void process_tid_release_list(struct work_struct *work)
1765{
1766        struct sk_buff *skb;
1767        struct adapter *adap;
1768
1769        adap = container_of(work, struct adapter, tid_release_task);
1770
1771        spin_lock_bh(&adap->tid_release_lock);
1772        while (adap->tid_release_head) {
1773                void **p = adap->tid_release_head;
1774                unsigned int chan = (uintptr_t)p & 3;
1775                p = (void *)p - chan;
1776
1777                adap->tid_release_head = *p;
1778                *p = NULL;
1779                spin_unlock_bh(&adap->tid_release_lock);
1780
1781                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1782                                         GFP_KERNEL)))
1783                        schedule_timeout_uninterruptible(1);
1784
1785                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1786                t4_ofld_send(adap, skb);
1787                spin_lock_bh(&adap->tid_release_lock);
1788        }
1789        adap->tid_release_task_busy = false;
1790        spin_unlock_bh(&adap->tid_release_lock);
1791}
1792
1793/*
1794 * Release a TID and inform HW.  If we are unable to allocate the release
1795 * message we defer to a work queue.
1796 */
1797void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1798                      unsigned short family)
1799{
1800        struct adapter *adap = container_of(t, struct adapter, tids);
1801        struct sk_buff *skb;
1802
1803        WARN_ON(tid_out_of_range(&adap->tids, tid));
1804
1805        if (t->tid_tab[tid - adap->tids.tid_base]) {
1806                t->tid_tab[tid - adap->tids.tid_base] = NULL;
1807                atomic_dec(&t->conns_in_use);
1808                if (t->hash_base && (tid >= t->hash_base)) {
1809                        if (family == AF_INET6)
1810                                atomic_sub(2, &t->hash_tids_in_use);
1811                        else
1812                                atomic_dec(&t->hash_tids_in_use);
1813                } else {
1814                        if (family == AF_INET6)
1815                                atomic_sub(2, &t->tids_in_use);
1816                        else
1817                                atomic_dec(&t->tids_in_use);
1818                }
1819        }
1820
1821        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1822        if (likely(skb)) {
1823                mk_tid_release(skb, chan, tid);
1824                t4_ofld_send(adap, skb);
1825        } else
1826                cxgb4_queue_tid_release(t, chan, tid);
1827}
1828EXPORT_SYMBOL(cxgb4_remove_tid);
1829
1830/*
1831 * Allocate and initialize the TID tables.  Returns 0 on success.
1832 */
1833static int tid_init(struct tid_info *t)
1834{
1835        struct adapter *adap = container_of(t, struct adapter, tids);
1836        unsigned int max_ftids = t->nftids + t->nsftids;
1837        unsigned int natids = t->natids;
1838        unsigned int hpftid_bmap_size;
1839        unsigned int eotid_bmap_size;
1840        unsigned int stid_bmap_size;
1841        unsigned int ftid_bmap_size;
1842        size_t size;
1843
1844        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1845        ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1846        hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1847        eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1848        size = t->ntids * sizeof(*t->tid_tab) +
1849               natids * sizeof(*t->atid_tab) +
1850               t->nstids * sizeof(*t->stid_tab) +
1851               t->nsftids * sizeof(*t->stid_tab) +
1852               stid_bmap_size * sizeof(long) +
1853               t->nhpftids * sizeof(*t->hpftid_tab) +
1854               hpftid_bmap_size * sizeof(long) +
1855               max_ftids * sizeof(*t->ftid_tab) +
1856               ftid_bmap_size * sizeof(long) +
1857               t->neotids * sizeof(*t->eotid_tab) +
1858               eotid_bmap_size * sizeof(long);
1859
1860        t->tid_tab = kvzalloc(size, GFP_KERNEL);
1861        if (!t->tid_tab)
1862                return -ENOMEM;
1863
1864        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1865        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1866        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1867        t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1868        t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1869        t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1870        t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1871        t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1872        t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1873        spin_lock_init(&t->stid_lock);
1874        spin_lock_init(&t->atid_lock);
1875        spin_lock_init(&t->ftid_lock);
1876
1877        t->stids_in_use = 0;
1878        t->v6_stids_in_use = 0;
1879        t->sftids_in_use = 0;
1880        t->afree = NULL;
1881        t->atids_in_use = 0;
1882        atomic_set(&t->tids_in_use, 0);
1883        atomic_set(&t->conns_in_use, 0);
1884        atomic_set(&t->hash_tids_in_use, 0);
1885        atomic_set(&t->eotids_in_use, 0);
1886
1887        /* Setup the free list for atid_tab and clear the stid bitmap. */
1888        if (natids) {
1889                while (--natids)
1890                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1891                t->afree = t->atid_tab;
1892        }
1893
1894        if (is_offload(adap)) {
1895                bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1896                /* Reserve stid 0 for T4/T5 adapters */
1897                if (!t->stid_base &&
1898                    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1899                        __set_bit(0, t->stid_bmap);
1900
1901                if (t->neotids)
1902                        bitmap_zero(t->eotid_bmap, t->neotids);
1903        }
1904
1905        if (t->nhpftids)
1906                bitmap_zero(t->hpftid_bmap, t->nhpftids);
1907        bitmap_zero(t->ftid_bmap, t->nftids);
1908        return 0;
1909}
1910
1911/**
1912 *      cxgb4_create_server - create an IP server
1913 *      @dev: the device
1914 *      @stid: the server TID
1915 *      @sip: local IP address to bind server to
1916 *      @sport: the server's TCP port
1917 *      @vlan: the VLAN header information
1918 *      @queue: queue to direct messages from this server to
1919 *
1920 *      Create an IP server for the given port and address.
1921 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1922 */
1923int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1924                        __be32 sip, __be16 sport, __be16 vlan,
1925                        unsigned int queue)
1926{
1927        unsigned int chan;
1928        struct sk_buff *skb;
1929        struct adapter *adap;
1930        struct cpl_pass_open_req *req;
1931        int ret;
1932
1933        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1934        if (!skb)
1935                return -ENOMEM;
1936
1937        adap = netdev2adap(dev);
1938        req = __skb_put(skb, sizeof(*req));
1939        INIT_TP_WR(req, 0);
1940        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1941        req->local_port = sport;
1942        req->peer_port = htons(0);
1943        req->local_ip = sip;
1944        req->peer_ip = htonl(0);
1945        chan = rxq_to_chan(&adap->sge, queue);
1946        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1947        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1948                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1949        ret = t4_mgmt_tx(adap, skb);
1950        return net_xmit_eval(ret);
1951}
1952EXPORT_SYMBOL(cxgb4_create_server);
1953
1954/*      cxgb4_create_server6 - create an IPv6 server
1955 *      @dev: the device
1956 *      @stid: the server TID
1957 *      @sip: local IPv6 address to bind server to
1958 *      @sport: the server's TCP port
1959 *      @queue: queue to direct messages from this server to
1960 *
1961 *      Create an IPv6 server for the given port and address.
1962 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1963 */
1964int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1965                         const struct in6_addr *sip, __be16 sport,
1966                         unsigned int queue)
1967{
1968        unsigned int chan;
1969        struct sk_buff *skb;
1970        struct adapter *adap;
1971        struct cpl_pass_open_req6 *req;
1972        int ret;
1973
1974        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1975        if (!skb)
1976                return -ENOMEM;
1977
1978        adap = netdev2adap(dev);
1979        req = __skb_put(skb, sizeof(*req));
1980        INIT_TP_WR(req, 0);
1981        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1982        req->local_port = sport;
1983        req->peer_port = htons(0);
1984        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1985        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1986        req->peer_ip_hi = cpu_to_be64(0);
1987        req->peer_ip_lo = cpu_to_be64(0);
1988        chan = rxq_to_chan(&adap->sge, queue);
1989        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1990        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1991                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1992        ret = t4_mgmt_tx(adap, skb);
1993        return net_xmit_eval(ret);
1994}
1995EXPORT_SYMBOL(cxgb4_create_server6);
1996
1997int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1998                        unsigned int queue, bool ipv6)
1999{
2000        struct sk_buff *skb;
2001        struct adapter *adap;
2002        struct cpl_close_listsvr_req *req;
2003        int ret;
2004
2005        adap = netdev2adap(dev);
2006
2007        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2008        if (!skb)
2009                return -ENOMEM;
2010
2011        req = __skb_put(skb, sizeof(*req));
2012        INIT_TP_WR(req, 0);
2013        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2014        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2015                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2016        ret = t4_mgmt_tx(adap, skb);
2017        return net_xmit_eval(ret);
2018}
2019EXPORT_SYMBOL(cxgb4_remove_server);
2020
2021/**
2022 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2023 *      @mtus: the HW MTU table
2024 *      @mtu: the target MTU
2025 *      @idx: index of selected entry in the MTU table
2026 *
2027 *      Returns the index and the value in the HW MTU table that is closest to
2028 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2029 *      table, in which case that smallest available value is selected.
2030 */
2031unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2032                            unsigned int *idx)
2033{
2034        unsigned int i = 0;
2035
2036        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2037                ++i;
2038        if (idx)
2039                *idx = i;
2040        return mtus[i];
2041}
2042EXPORT_SYMBOL(cxgb4_best_mtu);
2043
2044/**
2045 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2046 *     @mtus: the HW MTU table
2047 *     @header_size: Header Size
2048 *     @data_size_max: maximum Data Segment Size
2049 *     @data_size_align: desired Data Segment Size Alignment (2^N)
2050 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2051 *
2052 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2053 *     MTU Table based solely on a Maximum MTU parameter, we break that
2054 *     parameter up into a Header Size and Maximum Data Segment Size, and
2055 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2056 *     the Hardware MTU Table which will result in a Data Segment Size with
2057 *     the requested alignment _and_ that MTU isn't "too far" from the
2058 *     closest MTU, then we'll return that rather than the closest MTU.
2059 */
2060unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2061                                    unsigned short header_size,
2062                                    unsigned short data_size_max,
2063                                    unsigned short data_size_align,
2064                                    unsigned int *mtu_idxp)
2065{
2066        unsigned short max_mtu = header_size + data_size_max;
2067        unsigned short data_size_align_mask = data_size_align - 1;
2068        int mtu_idx, aligned_mtu_idx;
2069
2070        /* Scan the MTU Table till we find an MTU which is larger than our
2071         * Maximum MTU or we reach the end of the table.  Along the way,
2072         * record the last MTU found, if any, which will result in a Data
2073         * Segment Length matching the requested alignment.
2074         */
2075        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2076                unsigned short data_size = mtus[mtu_idx] - header_size;
2077
2078                /* If this MTU minus the Header Size would result in a
2079                 * Data Segment Size of the desired alignment, remember it.
2080                 */
2081                if ((data_size & data_size_align_mask) == 0)
2082                        aligned_mtu_idx = mtu_idx;
2083
2084                /* If we're not at the end of the Hardware MTU Table and the
2085                 * next element is larger than our Maximum MTU, drop out of
2086                 * the loop.
2087                 */
2088                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2089                        break;
2090        }
2091
2092        /* If we fell out of the loop because we ran to the end of the table,
2093         * then we just have to use the last [largest] entry.
2094         */
2095        if (mtu_idx == NMTUS)
2096                mtu_idx--;
2097
2098        /* If we found an MTU which resulted in the requested Data Segment
2099         * Length alignment and that's "not far" from the largest MTU which is
2100         * less than or equal to the maximum MTU, then use that.
2101         */
2102        if (aligned_mtu_idx >= 0 &&
2103            mtu_idx - aligned_mtu_idx <= 1)
2104                mtu_idx = aligned_mtu_idx;
2105
2106        /* If the caller has passed in an MTU Index pointer, pass the
2107         * MTU Index back.  Return the MTU value.
2108         */
2109        if (mtu_idxp)
2110                *mtu_idxp = mtu_idx;
2111        return mtus[mtu_idx];
2112}
2113EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2114
2115/**
2116 *      cxgb4_port_chan - get the HW channel of a port
2117 *      @dev: the net device for the port
2118 *
2119 *      Return the HW Tx channel of the given port.
2120 */
2121unsigned int cxgb4_port_chan(const struct net_device *dev)
2122{
2123        return netdev2pinfo(dev)->tx_chan;
2124}
2125EXPORT_SYMBOL(cxgb4_port_chan);
2126
2127/**
2128 *      cxgb4_port_e2cchan - get the HW c-channel of a port
2129 *      @dev: the net device for the port
2130 *
2131 *      Return the HW RX c-channel of the given port.
2132 */
2133unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2134{
2135        return netdev2pinfo(dev)->rx_cchan;
2136}
2137EXPORT_SYMBOL(cxgb4_port_e2cchan);
2138
2139unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2140{
2141        struct adapter *adap = netdev2adap(dev);
2142        u32 v1, v2, lp_count, hp_count;
2143
2144        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2145        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2146        if (is_t4(adap->params.chip)) {
2147                lp_count = LP_COUNT_G(v1);
2148                hp_count = HP_COUNT_G(v1);
2149        } else {
2150                lp_count = LP_COUNT_T5_G(v1);
2151                hp_count = HP_COUNT_T5_G(v2);
2152        }
2153        return lpfifo ? lp_count : hp_count;
2154}
2155EXPORT_SYMBOL(cxgb4_dbfifo_count);
2156
2157/**
2158 *      cxgb4_port_viid - get the VI id of a port
2159 *      @dev: the net device for the port
2160 *
2161 *      Return the VI id of the given port.
2162 */
2163unsigned int cxgb4_port_viid(const struct net_device *dev)
2164{
2165        return netdev2pinfo(dev)->viid;
2166}
2167EXPORT_SYMBOL(cxgb4_port_viid);
2168
2169/**
2170 *      cxgb4_port_idx - get the index of a port
2171 *      @dev: the net device for the port
2172 *
2173 *      Return the index of the given port.
2174 */
2175unsigned int cxgb4_port_idx(const struct net_device *dev)
2176{
2177        return netdev2pinfo(dev)->port_id;
2178}
2179EXPORT_SYMBOL(cxgb4_port_idx);
2180
2181void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2182                         struct tp_tcp_stats *v6)
2183{
2184        struct adapter *adap = pci_get_drvdata(pdev);
2185
2186        spin_lock(&adap->stats_lock);
2187        t4_tp_get_tcp_stats(adap, v4, v6, false);
2188        spin_unlock(&adap->stats_lock);
2189}
2190EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2191
2192void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2193                      const unsigned int *pgsz_order)
2194{
2195        struct adapter *adap = netdev2adap(dev);
2196
2197        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2198        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2199                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2200                     HPZ3_V(pgsz_order[3]));
2201}
2202EXPORT_SYMBOL(cxgb4_iscsi_init);
2203
2204int cxgb4_flush_eq_cache(struct net_device *dev)
2205{
2206        struct adapter *adap = netdev2adap(dev);
2207
2208        return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2209}
2210EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2211
2212static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2213{
2214        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2215        __be64 indices;
2216        int ret;
2217
2218        spin_lock(&adap->win0_lock);
2219        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2220                           sizeof(indices), (__be32 *)&indices,
2221                           T4_MEMORY_READ);
2222        spin_unlock(&adap->win0_lock);
2223        if (!ret) {
2224                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2225                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2226        }
2227        return ret;
2228}
2229
2230int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2231                        u16 size)
2232{
2233        struct adapter *adap = netdev2adap(dev);
2234        u16 hw_pidx, hw_cidx;
2235        int ret;
2236
2237        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2238        if (ret)
2239                goto out;
2240
2241        if (pidx != hw_pidx) {
2242                u16 delta;
2243                u32 val;
2244
2245                if (pidx >= hw_pidx)
2246                        delta = pidx - hw_pidx;
2247                else
2248                        delta = size - hw_pidx + pidx;
2249
2250                if (is_t4(adap->params.chip))
2251                        val = PIDX_V(delta);
2252                else
2253                        val = PIDX_T5_V(delta);
2254                wmb();
2255                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2256                             QID_V(qid) | val);
2257        }
2258out:
2259        return ret;
2260}
2261EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2262
2263int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2264{
2265        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2266        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2267        u32 offset, memtype, memaddr;
2268        struct adapter *adap;
2269        u32 hma_size = 0;
2270        int ret;
2271
2272        adap = netdev2adap(dev);
2273
2274        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2275
2276        /* Figure out where the offset lands in the Memory Type/Address scheme.
2277         * This code assumes that the memory is laid out starting at offset 0
2278         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2279         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2280         * MC0, and some have both MC0 and MC1.
2281         */
2282        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2283        edc0_size = EDRAM0_SIZE_G(size) << 20;
2284        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2285        edc1_size = EDRAM1_SIZE_G(size) << 20;
2286        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2287        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2288
2289        if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2290                size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2291                hma_size = EXT_MEM1_SIZE_G(size) << 20;
2292        }
2293        edc0_end = edc0_size;
2294        edc1_end = edc0_end + edc1_size;
2295        mc0_end = edc1_end + mc0_size;
2296
2297        if (offset < edc0_end) {
2298                memtype = MEM_EDC0;
2299                memaddr = offset;
2300        } else if (offset < edc1_end) {
2301                memtype = MEM_EDC1;
2302                memaddr = offset - edc0_end;
2303        } else {
2304                if (hma_size && (offset < (edc1_end + hma_size))) {
2305                        memtype = MEM_HMA;
2306                        memaddr = offset - edc1_end;
2307                } else if (offset < mc0_end) {
2308                        memtype = MEM_MC0;
2309                        memaddr = offset - edc1_end;
2310                } else if (is_t5(adap->params.chip)) {
2311                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2312                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2313                        mc1_end = mc0_end + mc1_size;
2314                        if (offset < mc1_end) {
2315                                memtype = MEM_MC1;
2316                                memaddr = offset - mc0_end;
2317                        } else {
2318                                /* offset beyond the end of any memory */
2319                                goto err;
2320                        }
2321                } else {
2322                        /* T4/T6 only has a single memory channel */
2323                        goto err;
2324                }
2325        }
2326
2327        spin_lock(&adap->win0_lock);
2328        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2329        spin_unlock(&adap->win0_lock);
2330        return ret;
2331
2332err:
2333        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2334                stag, offset);
2335        return -EINVAL;
2336}
2337EXPORT_SYMBOL(cxgb4_read_tpte);
2338
2339u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2340{
2341        u32 hi, lo;
2342        struct adapter *adap;
2343
2344        adap = netdev2adap(dev);
2345        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2346        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2347
2348        return ((u64)hi << 32) | (u64)lo;
2349}
2350EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2351
2352int cxgb4_bar2_sge_qregs(struct net_device *dev,
2353                         unsigned int qid,
2354                         enum cxgb4_bar2_qtype qtype,
2355                         int user,
2356                         u64 *pbar2_qoffset,
2357                         unsigned int *pbar2_qid)
2358{
2359        return t4_bar2_sge_qregs(netdev2adap(dev),
2360                                 qid,
2361                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2362                                  ? T4_BAR2_QTYPE_EGRESS
2363                                  : T4_BAR2_QTYPE_INGRESS),
2364                                 user,
2365                                 pbar2_qoffset,
2366                                 pbar2_qid);
2367}
2368EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2369
2370static struct pci_driver cxgb4_driver;
2371
2372static void check_neigh_update(struct neighbour *neigh)
2373{
2374        const struct device *parent;
2375        const struct net_device *netdev = neigh->dev;
2376
2377        if (is_vlan_dev(netdev))
2378                netdev = vlan_dev_real_dev(netdev);
2379        parent = netdev->dev.parent;
2380        if (parent && parent->driver == &cxgb4_driver.driver)
2381                t4_l2t_update(dev_get_drvdata(parent), neigh);
2382}
2383
2384static int netevent_cb(struct notifier_block *nb, unsigned long event,
2385                       void *data)
2386{
2387        switch (event) {
2388        case NETEVENT_NEIGH_UPDATE:
2389                check_neigh_update(data);
2390                break;
2391        case NETEVENT_REDIRECT:
2392        default:
2393                break;
2394        }
2395        return 0;
2396}
2397
2398static bool netevent_registered;
2399static struct notifier_block cxgb4_netevent_nb = {
2400        .notifier_call = netevent_cb
2401};
2402
2403static void drain_db_fifo(struct adapter *adap, int usecs)
2404{
2405        u32 v1, v2, lp_count, hp_count;
2406
2407        do {
2408                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2409                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2410                if (is_t4(adap->params.chip)) {
2411                        lp_count = LP_COUNT_G(v1);
2412                        hp_count = HP_COUNT_G(v1);
2413                } else {
2414                        lp_count = LP_COUNT_T5_G(v1);
2415                        hp_count = HP_COUNT_T5_G(v2);
2416                }
2417
2418                if (lp_count == 0 && hp_count == 0)
2419                        break;
2420                set_current_state(TASK_UNINTERRUPTIBLE);
2421                schedule_timeout(usecs_to_jiffies(usecs));
2422        } while (1);
2423}
2424
2425static void disable_txq_db(struct sge_txq *q)
2426{
2427        unsigned long flags;
2428
2429        spin_lock_irqsave(&q->db_lock, flags);
2430        q->db_disabled = 1;
2431        spin_unlock_irqrestore(&q->db_lock, flags);
2432}
2433
2434static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2435{
2436        spin_lock_irq(&q->db_lock);
2437        if (q->db_pidx_inc) {
2438                /* Make sure that all writes to the TX descriptors
2439                 * are committed before we tell HW about them.
2440                 */
2441                wmb();
2442                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2443                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2444                q->db_pidx_inc = 0;
2445        }
2446        q->db_disabled = 0;
2447        spin_unlock_irq(&q->db_lock);
2448}
2449
2450static void disable_dbs(struct adapter *adap)
2451{
2452        int i;
2453
2454        for_each_ethrxq(&adap->sge, i)
2455                disable_txq_db(&adap->sge.ethtxq[i].q);
2456        if (is_offload(adap)) {
2457                struct sge_uld_txq_info *txq_info =
2458                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2459
2460                if (txq_info) {
2461                        for_each_ofldtxq(&adap->sge, i) {
2462                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2463
2464                                disable_txq_db(&txq->q);
2465                        }
2466                }
2467        }
2468        for_each_port(adap, i)
2469                disable_txq_db(&adap->sge.ctrlq[i].q);
2470}
2471
2472static void enable_dbs(struct adapter *adap)
2473{
2474        int i;
2475
2476        for_each_ethrxq(&adap->sge, i)
2477                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2478        if (is_offload(adap)) {
2479                struct sge_uld_txq_info *txq_info =
2480                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2481
2482                if (txq_info) {
2483                        for_each_ofldtxq(&adap->sge, i) {
2484                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2485
2486                                enable_txq_db(adap, &txq->q);
2487                        }
2488                }
2489        }
2490        for_each_port(adap, i)
2491                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2492}
2493
2494static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2495{
2496        enum cxgb4_uld type = CXGB4_ULD_RDMA;
2497
2498        if (adap->uld && adap->uld[type].handle)
2499                adap->uld[type].control(adap->uld[type].handle, cmd);
2500}
2501
2502static void process_db_full(struct work_struct *work)
2503{
2504        struct adapter *adap;
2505
2506        adap = container_of(work, struct adapter, db_full_task);
2507
2508        drain_db_fifo(adap, dbfifo_drain_delay);
2509        enable_dbs(adap);
2510        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2511        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2512                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2513                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2514                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2515        else
2516                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2517                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2518}
2519
2520static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2521{
2522        u16 hw_pidx, hw_cidx;
2523        int ret;
2524
2525        spin_lock_irq(&q->db_lock);
2526        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2527        if (ret)
2528                goto out;
2529        if (q->db_pidx != hw_pidx) {
2530                u16 delta;
2531                u32 val;
2532
2533                if (q->db_pidx >= hw_pidx)
2534                        delta = q->db_pidx - hw_pidx;
2535                else
2536                        delta = q->size - hw_pidx + q->db_pidx;
2537
2538                if (is_t4(adap->params.chip))
2539                        val = PIDX_V(delta);
2540                else
2541                        val = PIDX_T5_V(delta);
2542                wmb();
2543                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2544                             QID_V(q->cntxt_id) | val);
2545        }
2546out:
2547        q->db_disabled = 0;
2548        q->db_pidx_inc = 0;
2549        spin_unlock_irq(&q->db_lock);
2550        if (ret)
2551                CH_WARN(adap, "DB drop recovery failed.\n");
2552}
2553
2554static void recover_all_queues(struct adapter *adap)
2555{
2556        int i;
2557
2558        for_each_ethrxq(&adap->sge, i)
2559                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2560        if (is_offload(adap)) {
2561                struct sge_uld_txq_info *txq_info =
2562                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2563                if (txq_info) {
2564                        for_each_ofldtxq(&adap->sge, i) {
2565                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2566
2567                                sync_txq_pidx(adap, &txq->q);
2568                        }
2569                }
2570        }
2571        for_each_port(adap, i)
2572                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2573}
2574
2575static void process_db_drop(struct work_struct *work)
2576{
2577        struct adapter *adap;
2578
2579        adap = container_of(work, struct adapter, db_drop_task);
2580
2581        if (is_t4(adap->params.chip)) {
2582                drain_db_fifo(adap, dbfifo_drain_delay);
2583                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2584                drain_db_fifo(adap, dbfifo_drain_delay);
2585                recover_all_queues(adap);
2586                drain_db_fifo(adap, dbfifo_drain_delay);
2587                enable_dbs(adap);
2588                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2589        } else if (is_t5(adap->params.chip)) {
2590                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2591                u16 qid = (dropped_db >> 15) & 0x1ffff;
2592                u16 pidx_inc = dropped_db & 0x1fff;
2593                u64 bar2_qoffset;
2594                unsigned int bar2_qid;
2595                int ret;
2596
2597                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2598                                        0, &bar2_qoffset, &bar2_qid);
2599                if (ret)
2600                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2601                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2602                else
2603                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2604                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2605
2606                /* Re-enable BAR2 WC */
2607                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2608        }
2609
2610        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2611                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2612}
2613
2614void t4_db_full(struct adapter *adap)
2615{
2616        if (is_t4(adap->params.chip)) {
2617                disable_dbs(adap);
2618                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2619                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2620                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2621                queue_work(adap->workq, &adap->db_full_task);
2622        }
2623}
2624
2625void t4_db_dropped(struct adapter *adap)
2626{
2627        if (is_t4(adap->params.chip)) {
2628                disable_dbs(adap);
2629                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2630        }
2631        queue_work(adap->workq, &adap->db_drop_task);
2632}
2633
2634void t4_register_netevent_notifier(void)
2635{
2636        if (!netevent_registered) {
2637                register_netevent_notifier(&cxgb4_netevent_nb);
2638                netevent_registered = true;
2639        }
2640}
2641
2642static void detach_ulds(struct adapter *adap)
2643{
2644        unsigned int i;
2645
2646        mutex_lock(&uld_mutex);
2647        list_del(&adap->list_node);
2648
2649        for (i = 0; i < CXGB4_ULD_MAX; i++)
2650                if (adap->uld && adap->uld[i].handle)
2651                        adap->uld[i].state_change(adap->uld[i].handle,
2652                                             CXGB4_STATE_DETACH);
2653
2654        if (netevent_registered && list_empty(&adapter_list)) {
2655                unregister_netevent_notifier(&cxgb4_netevent_nb);
2656                netevent_registered = false;
2657        }
2658        mutex_unlock(&uld_mutex);
2659}
2660
2661static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2662{
2663        unsigned int i;
2664
2665        mutex_lock(&uld_mutex);
2666        for (i = 0; i < CXGB4_ULD_MAX; i++)
2667                if (adap->uld && adap->uld[i].handle)
2668                        adap->uld[i].state_change(adap->uld[i].handle,
2669                                                  new_state);
2670        mutex_unlock(&uld_mutex);
2671}
2672
2673#if IS_ENABLED(CONFIG_IPV6)
2674static int cxgb4_inet6addr_handler(struct notifier_block *this,
2675                                   unsigned long event, void *data)
2676{
2677        struct inet6_ifaddr *ifa = data;
2678        struct net_device *event_dev = ifa->idev->dev;
2679        const struct device *parent = NULL;
2680#if IS_ENABLED(CONFIG_BONDING)
2681        struct adapter *adap;
2682#endif
2683        if (is_vlan_dev(event_dev))
2684                event_dev = vlan_dev_real_dev(event_dev);
2685#if IS_ENABLED(CONFIG_BONDING)
2686        if (event_dev->flags & IFF_MASTER) {
2687                list_for_each_entry(adap, &adapter_list, list_node) {
2688                        switch (event) {
2689                        case NETDEV_UP:
2690                                cxgb4_clip_get(adap->port[0],
2691                                               (const u32 *)ifa, 1);
2692                                break;
2693                        case NETDEV_DOWN:
2694                                cxgb4_clip_release(adap->port[0],
2695                                                   (const u32 *)ifa, 1);
2696                                break;
2697                        default:
2698                                break;
2699                        }
2700                }
2701                return NOTIFY_OK;
2702        }
2703#endif
2704
2705        if (event_dev)
2706                parent = event_dev->dev.parent;
2707
2708        if (parent && parent->driver == &cxgb4_driver.driver) {
2709                switch (event) {
2710                case NETDEV_UP:
2711                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2712                        break;
2713                case NETDEV_DOWN:
2714                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2715                        break;
2716                default:
2717                        break;
2718                }
2719        }
2720        return NOTIFY_OK;
2721}
2722
2723static bool inet6addr_registered;
2724static struct notifier_block cxgb4_inet6addr_notifier = {
2725        .notifier_call = cxgb4_inet6addr_handler
2726};
2727
2728static void update_clip(const struct adapter *adap)
2729{
2730        int i;
2731        struct net_device *dev;
2732        int ret;
2733
2734        rcu_read_lock();
2735
2736        for (i = 0; i < MAX_NPORTS; i++) {
2737                dev = adap->port[i];
2738                ret = 0;
2739
2740                if (dev)
2741                        ret = cxgb4_update_root_dev_clip(dev);
2742
2743                if (ret < 0)
2744                        break;
2745        }
2746        rcu_read_unlock();
2747}
2748#endif /* IS_ENABLED(CONFIG_IPV6) */
2749
2750/**
2751 *      cxgb_up - enable the adapter
2752 *      @adap: adapter being enabled
2753 *
2754 *      Called when the first port is enabled, this function performs the
2755 *      actions necessary to make an adapter operational, such as completing
2756 *      the initialization of HW modules, and enabling interrupts.
2757 *
2758 *      Must be called with the rtnl lock held.
2759 */
2760static int cxgb_up(struct adapter *adap)
2761{
2762        struct sge *s = &adap->sge;
2763        int err;
2764
2765        mutex_lock(&uld_mutex);
2766        err = setup_sge_queues(adap);
2767        if (err)
2768                goto rel_lock;
2769        err = setup_rss(adap);
2770        if (err)
2771                goto freeq;
2772
2773        if (adap->flags & CXGB4_USING_MSIX) {
2774                if (s->nd_msix_idx < 0) {
2775                        err = -ENOMEM;
2776                        goto irq_err;
2777                }
2778
2779                err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2780                                  t4_nondata_intr, 0,
2781                                  adap->msix_info[s->nd_msix_idx].desc, adap);
2782                if (err)
2783                        goto irq_err;
2784
2785                err = request_msix_queue_irqs(adap);
2786                if (err)
2787                        goto irq_err_free_nd_msix;
2788        } else {
2789                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2790                                  (adap->flags & CXGB4_USING_MSI) ? 0
2791                                                                  : IRQF_SHARED,
2792                                  adap->port[0]->name, adap);
2793                if (err)
2794                        goto irq_err;
2795        }
2796
2797        enable_rx(adap);
2798        t4_sge_start(adap);
2799        t4_intr_enable(adap);
2800        adap->flags |= CXGB4_FULL_INIT_DONE;
2801        mutex_unlock(&uld_mutex);
2802
2803        notify_ulds(adap, CXGB4_STATE_UP);
2804#if IS_ENABLED(CONFIG_IPV6)
2805        update_clip(adap);
2806#endif
2807        return err;
2808
2809irq_err_free_nd_msix:
2810        free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2811irq_err:
2812        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2813freeq:
2814        t4_free_sge_resources(adap);
2815rel_lock:
2816        mutex_unlock(&uld_mutex);
2817        return err;
2818}
2819
2820static void cxgb_down(struct adapter *adapter)
2821{
2822        cancel_work_sync(&adapter->tid_release_task);
2823        cancel_work_sync(&adapter->db_full_task);
2824        cancel_work_sync(&adapter->db_drop_task);
2825        adapter->tid_release_task_busy = false;
2826        adapter->tid_release_head = NULL;
2827
2828        t4_sge_stop(adapter);
2829        t4_free_sge_resources(adapter);
2830
2831        adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2832}
2833
2834/*
2835 * net_device operations
2836 */
2837int cxgb_open(struct net_device *dev)
2838{
2839        struct port_info *pi = netdev_priv(dev);
2840        struct adapter *adapter = pi->adapter;
2841        int err;
2842
2843        netif_carrier_off(dev);
2844
2845        if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2846                err = cxgb_up(adapter);
2847                if (err < 0)
2848                        return err;
2849        }
2850
2851        /* It's possible that the basic port information could have
2852         * changed since we first read it.
2853         */
2854        err = t4_update_port_info(pi);
2855        if (err < 0)
2856                return err;
2857
2858        err = link_start(dev);
2859        if (err)
2860                return err;
2861
2862        if (pi->nmirrorqsets) {
2863                mutex_lock(&pi->vi_mirror_mutex);
2864                err = cxgb4_port_mirror_alloc_queues(dev);
2865                if (err)
2866                        goto out_unlock;
2867
2868                err = cxgb4_port_mirror_start(dev);
2869                if (err)
2870                        goto out_free_queues;
2871                mutex_unlock(&pi->vi_mirror_mutex);
2872        }
2873
2874        netif_tx_start_all_queues(dev);
2875        return 0;
2876
2877out_free_queues:
2878        cxgb4_port_mirror_free_queues(dev);
2879
2880out_unlock:
2881        mutex_unlock(&pi->vi_mirror_mutex);
2882        return err;
2883}
2884
2885int cxgb_close(struct net_device *dev)
2886{
2887        struct port_info *pi = netdev_priv(dev);
2888        struct adapter *adapter = pi->adapter;
2889        int ret;
2890
2891        netif_tx_stop_all_queues(dev);
2892        netif_carrier_off(dev);
2893        ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2894                                  false, false, false);
2895#ifdef CONFIG_CHELSIO_T4_DCB
2896        cxgb4_dcb_reset(dev);
2897        dcb_tx_queue_prio_enable(dev, false);
2898#endif
2899        if (ret)
2900                return ret;
2901
2902        if (pi->nmirrorqsets) {
2903                mutex_lock(&pi->vi_mirror_mutex);
2904                cxgb4_port_mirror_stop(dev);
2905                cxgb4_port_mirror_free_queues(dev);
2906                mutex_unlock(&pi->vi_mirror_mutex);
2907        }
2908
2909        return 0;
2910}
2911
2912int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2913                __be32 sip, __be16 sport, __be16 vlan,
2914                unsigned int queue, unsigned char port, unsigned char mask)
2915{
2916        int ret;
2917        struct filter_entry *f;
2918        struct adapter *adap;
2919        int i;
2920        u8 *val;
2921
2922        adap = netdev2adap(dev);
2923
2924        /* Adjust stid to correct filter index */
2925        stid -= adap->tids.sftid_base;
2926        stid += adap->tids.nftids;
2927
2928        /* Check to make sure the filter requested is writable ...
2929         */
2930        f = &adap->tids.ftid_tab[stid];
2931        ret = writable_filter(f);
2932        if (ret)
2933                return ret;
2934
2935        /* Clear out any old resources being used by the filter before
2936         * we start constructing the new filter.
2937         */
2938        if (f->valid)
2939                clear_filter(adap, f);
2940
2941        /* Clear out filter specifications */
2942        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2943        f->fs.val.lport = be16_to_cpu(sport);
2944        f->fs.mask.lport  = ~0;
2945        val = (u8 *)&sip;
2946        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2947                for (i = 0; i < 4; i++) {
2948                        f->fs.val.lip[i] = val[i];
2949                        f->fs.mask.lip[i] = ~0;
2950                }
2951                if (adap->params.tp.vlan_pri_map & PORT_F) {
2952                        f->fs.val.iport = port;
2953                        f->fs.mask.iport = mask;
2954                }
2955        }
2956
2957        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2958                f->fs.val.proto = IPPROTO_TCP;
2959                f->fs.mask.proto = ~0;
2960        }
2961
2962        f->fs.dirsteer = 1;
2963        f->fs.iq = queue;
2964        /* Mark filter as locked */
2965        f->locked = 1;
2966        f->fs.rpttid = 1;
2967
2968        /* Save the actual tid. We need this to get the corresponding
2969         * filter entry structure in filter_rpl.
2970         */
2971        f->tid = stid + adap->tids.ftid_base;
2972        ret = set_filter_wr(adap, stid);
2973        if (ret) {
2974                clear_filter(adap, f);
2975                return ret;
2976        }
2977
2978        return 0;
2979}
2980EXPORT_SYMBOL(cxgb4_create_server_filter);
2981
2982int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2983                unsigned int queue, bool ipv6)
2984{
2985        struct filter_entry *f;
2986        struct adapter *adap;
2987
2988        adap = netdev2adap(dev);
2989
2990        /* Adjust stid to correct filter index */
2991        stid -= adap->tids.sftid_base;
2992        stid += adap->tids.nftids;
2993
2994        f = &adap->tids.ftid_tab[stid];
2995        /* Unlock the filter */
2996        f->locked = 0;
2997
2998        return delete_filter(adap, stid);
2999}
3000EXPORT_SYMBOL(cxgb4_remove_server_filter);
3001
3002static void cxgb_get_stats(struct net_device *dev,
3003                           struct rtnl_link_stats64 *ns)
3004{
3005        struct port_stats stats;
3006        struct port_info *p = netdev_priv(dev);
3007        struct adapter *adapter = p->adapter;
3008
3009        /* Block retrieving statistics during EEH error
3010         * recovery. Otherwise, the recovery might fail
3011         * and the PCI device will be removed permanently
3012         */
3013        spin_lock(&adapter->stats_lock);
3014        if (!netif_device_present(dev)) {
3015                spin_unlock(&adapter->stats_lock);
3016                return;
3017        }
3018        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3019                                 &p->stats_base);
3020        spin_unlock(&adapter->stats_lock);
3021
3022        ns->tx_bytes   = stats.tx_octets;
3023        ns->tx_packets = stats.tx_frames;
3024        ns->rx_bytes   = stats.rx_octets;
3025        ns->rx_packets = stats.rx_frames;
3026        ns->multicast  = stats.rx_mcast_frames;
3027
3028        /* detailed rx_errors */
3029        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3030                               stats.rx_runt;
3031        ns->rx_over_errors   = 0;
3032        ns->rx_crc_errors    = stats.rx_fcs_err;
3033        ns->rx_frame_errors  = stats.rx_symbol_err;
3034        ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
3035                               stats.rx_ovflow2 + stats.rx_ovflow3 +
3036                               stats.rx_trunc0 + stats.rx_trunc1 +
3037                               stats.rx_trunc2 + stats.rx_trunc3;
3038        ns->rx_missed_errors = 0;
3039
3040        /* detailed tx_errors */
3041        ns->tx_aborted_errors   = 0;
3042        ns->tx_carrier_errors   = 0;
3043        ns->tx_fifo_errors      = 0;
3044        ns->tx_heartbeat_errors = 0;
3045        ns->tx_window_errors    = 0;
3046
3047        ns->tx_errors = stats.tx_error_frames;
3048        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3049                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3050}
3051
3052static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3053{
3054        unsigned int mbox;
3055        int ret = 0, prtad, devad;
3056        struct port_info *pi = netdev_priv(dev);
3057        struct adapter *adapter = pi->adapter;
3058        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3059
3060        switch (cmd) {
3061        case SIOCGMIIPHY:
3062                if (pi->mdio_addr < 0)
3063                        return -EOPNOTSUPP;
3064                data->phy_id = pi->mdio_addr;
3065                break;
3066        case SIOCGMIIREG:
3067        case SIOCSMIIREG:
3068                if (mdio_phy_id_is_c45(data->phy_id)) {
3069                        prtad = mdio_phy_id_prtad(data->phy_id);
3070                        devad = mdio_phy_id_devad(data->phy_id);
3071                } else if (data->phy_id < 32) {
3072                        prtad = data->phy_id;
3073                        devad = 0;
3074                        data->reg_num &= 0x1f;
3075                } else
3076                        return -EINVAL;
3077
3078                mbox = pi->adapter->pf;
3079                if (cmd == SIOCGMIIREG)
3080                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3081                                         data->reg_num, &data->val_out);
3082                else
3083                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3084                                         data->reg_num, data->val_in);
3085                break;
3086        case SIOCGHWTSTAMP:
3087                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3088                                    sizeof(pi->tstamp_config)) ?
3089                        -EFAULT : 0;
3090        case SIOCSHWTSTAMP:
3091                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3092                                   sizeof(pi->tstamp_config)))
3093                        return -EFAULT;
3094
3095                if (!is_t4(adapter->params.chip)) {
3096                        switch (pi->tstamp_config.tx_type) {
3097                        case HWTSTAMP_TX_OFF:
3098                        case HWTSTAMP_TX_ON:
3099                                break;
3100                        default:
3101                                return -ERANGE;
3102                        }
3103
3104                        switch (pi->tstamp_config.rx_filter) {
3105                        case HWTSTAMP_FILTER_NONE:
3106                                pi->rxtstamp = false;
3107                                break;
3108                        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3109                        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3110                                cxgb4_ptprx_timestamping(pi, pi->port_id,
3111                                                         PTP_TS_L4);
3112                                break;
3113                        case HWTSTAMP_FILTER_PTP_V2_EVENT:
3114                                cxgb4_ptprx_timestamping(pi, pi->port_id,
3115                                                         PTP_TS_L2_L4);
3116                                break;
3117                        case HWTSTAMP_FILTER_ALL:
3118                        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3119                        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3120                        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3121                        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3122                                pi->rxtstamp = true;
3123                                break;
3124                        default:
3125                                pi->tstamp_config.rx_filter =
3126                                        HWTSTAMP_FILTER_NONE;
3127                                return -ERANGE;
3128                        }
3129
3130                        if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3131                            (pi->tstamp_config.rx_filter ==
3132                                HWTSTAMP_FILTER_NONE)) {
3133                                if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3134                                        pi->ptp_enable = false;
3135                        }
3136
3137                        if (pi->tstamp_config.rx_filter !=
3138                                HWTSTAMP_FILTER_NONE) {
3139                                if (cxgb4_ptp_redirect_rx_packet(adapter,
3140                                                                 pi) >= 0)
3141                                        pi->ptp_enable = true;
3142                        }
3143                } else {
3144                        /* For T4 Adapters */
3145                        switch (pi->tstamp_config.rx_filter) {
3146                        case HWTSTAMP_FILTER_NONE:
3147                        pi->rxtstamp = false;
3148                        break;
3149                        case HWTSTAMP_FILTER_ALL:
3150                        pi->rxtstamp = true;
3151                        break;
3152                        default:
3153                        pi->tstamp_config.rx_filter =
3154                        HWTSTAMP_FILTER_NONE;
3155                        return -ERANGE;
3156                        }
3157                }
3158                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3159                                    sizeof(pi->tstamp_config)) ?
3160                        -EFAULT : 0;
3161        default:
3162                return -EOPNOTSUPP;
3163        }
3164        return ret;
3165}
3166
3167static void cxgb_set_rxmode(struct net_device *dev)
3168{
3169        /* unfortunately we can't return errors to the stack */
3170        set_rxmode(dev, -1, false);
3171}
3172
3173static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3174{
3175        struct port_info *pi = netdev_priv(dev);
3176        int ret;
3177
3178        ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3179                            pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3180        if (!ret)
3181                dev->mtu = new_mtu;
3182        return ret;
3183}
3184
3185#ifdef CONFIG_PCI_IOV
3186static int cxgb4_mgmt_open(struct net_device *dev)
3187{
3188        /* Turn carrier off since we don't have to transmit anything on this
3189         * interface.
3190         */
3191        netif_carrier_off(dev);
3192        return 0;
3193}
3194
3195/* Fill MAC address that will be assigned by the FW */
3196static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3197{
3198        u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3199        unsigned int i, vf, nvfs;
3200        u16 a, b;
3201        int err;
3202        u8 *na;
3203
3204        adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
3205                                                            PCI_CAP_ID_VPD);
3206        err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207        if (err)
3208                return;
3209
3210        na = adap->params.vpd.na;
3211        for (i = 0; i < ETH_ALEN; i++)
3212                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213                              hex2val(na[2 * i + 1]));
3214
3215        a = (hw_addr[0] << 8) | hw_addr[1];
3216        b = (hw_addr[1] << 8) | hw_addr[2];
3217        a ^= b;
3218        a |= 0x0200;    /* locally assigned Ethernet MAC address */
3219        a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3220        macaddr[0] = a >> 8;
3221        macaddr[1] = a & 0xff;
3222
3223        for (i = 2; i < 5; i++)
3224                macaddr[i] = hw_addr[i + 1];
3225
3226        for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227                vf < nvfs; vf++) {
3228                macaddr[5] = adap->pf * nvfs + vf;
3229                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230        }
3231}
3232
3233static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234{
3235        struct port_info *pi = netdev_priv(dev);
3236        struct adapter *adap = pi->adapter;
3237        int ret;
3238
3239        /* verify MAC addr is valid */
3240        if (!is_valid_ether_addr(mac)) {
3241                dev_err(pi->adapter->pdev_dev,
3242                        "Invalid Ethernet address %pM for VF %d\n",
3243                        mac, vf);
3244                return -EINVAL;
3245        }
3246
3247        dev_info(pi->adapter->pdev_dev,
3248                 "Setting MAC %pM on VF %d\n", mac, vf);
3249        ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250        if (!ret)
3251                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252        return ret;
3253}
3254
3255static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256                                    int vf, struct ifla_vf_info *ivi)
3257{
3258        struct port_info *pi = netdev_priv(dev);
3259        struct adapter *adap = pi->adapter;
3260        struct vf_info *vfinfo;
3261
3262        if (vf >= adap->num_vfs)
3263                return -EINVAL;
3264        vfinfo = &adap->vfinfo[vf];
3265
3266        ivi->vf = vf;
3267        ivi->max_tx_rate = vfinfo->tx_rate;
3268        ivi->min_tx_rate = 0;
3269        ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270        ivi->vlan = vfinfo->vlan;
3271        ivi->linkstate = vfinfo->link_state;
3272        return 0;
3273}
3274
3275static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276                                       struct netdev_phys_item_id *ppid)
3277{
3278        struct port_info *pi = netdev_priv(dev);
3279        unsigned int phy_port_id;
3280
3281        phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282        ppid->id_len = sizeof(phy_port_id);
3283        memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284        return 0;
3285}
3286
3287static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288                                  int min_tx_rate, int max_tx_rate)
3289{
3290        struct port_info *pi = netdev_priv(dev);
3291        struct adapter *adap = pi->adapter;
3292        unsigned int link_ok, speed, mtu;
3293        u32 fw_pfvf, fw_class;
3294        int class_id = vf;
3295        int ret;
3296        u16 pktsize;
3297
3298        if (vf >= adap->num_vfs)
3299                return -EINVAL;
3300
3301        if (min_tx_rate) {
3302                dev_err(adap->pdev_dev,
3303                        "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304                        min_tx_rate, vf);
3305                return -EINVAL;
3306        }
3307
3308        if (max_tx_rate == 0) {
3309                /* unbind VF to to any Traffic Class */
3310                fw_pfvf =
3311                    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313                fw_class = 0xffffffff;
3314                ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315                                    &fw_pfvf, &fw_class);
3316                if (ret) {
3317                        dev_err(adap->pdev_dev,
3318                                "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319                                ret, adap->pf, vf);
3320                        return -EINVAL;
3321                }
3322                dev_info(adap->pdev_dev,
3323                         "PF %d VF %d is unbound from TX Rate Limiting\n",
3324                         adap->pf, vf);
3325                adap->vfinfo[vf].tx_rate = 0;
3326                return 0;
3327        }
3328
3329        ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330        if (ret != FW_SUCCESS) {
3331                dev_err(adap->pdev_dev,
3332                        "Failed to get link information for VF %d\n", vf);
3333                return -EINVAL;
3334        }
3335
3336        if (!link_ok) {
3337                dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338                return -EINVAL;
3339        }
3340
3341        if (max_tx_rate > speed) {
3342                dev_err(adap->pdev_dev,
3343                        "Max tx rate %d for VF %d can't be > link-speed %u",
3344                        max_tx_rate, vf, speed);
3345                return -EINVAL;
3346        }
3347
3348        pktsize = mtu;
3349        /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350        pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351        /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352        pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353        /* configure Traffic Class for rate-limiting */
3354        ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355                              SCHED_CLASS_LEVEL_CL_RL,
3356                              SCHED_CLASS_MODE_CLASS,
3357                              SCHED_CLASS_RATEUNIT_BITS,
3358                              SCHED_CLASS_RATEMODE_ABS,
3359                              pi->tx_chan, class_id, 0,
3360                              max_tx_rate * 1000, 0, pktsize, 0);
3361        if (ret) {
3362                dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363                        ret);
3364                return -EINVAL;
3365        }
3366        dev_info(adap->pdev_dev,
3367                 "Class %d with MSS %u configured with rate %u\n",
3368                 class_id, pktsize, max_tx_rate);
3369
3370        /* bind VF to configured Traffic Class */
3371        fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372                   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373        fw_class = class_id;
3374        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375                            &fw_class);
3376        if (ret) {
3377                dev_err(adap->pdev_dev,
3378                        "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379                        ret, adap->pf, vf, class_id);
3380                return -EINVAL;
3381        }
3382        dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383                 adap->pf, vf, class_id);
3384        adap->vfinfo[vf].tx_rate = max_tx_rate;
3385        return 0;
3386}
3387
3388static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389                                  u16 vlan, u8 qos, __be16 vlan_proto)
3390{
3391        struct port_info *pi = netdev_priv(dev);
3392        struct adapter *adap = pi->adapter;
3393        int ret;
3394
3395        if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396                return -EINVAL;
3397
3398        if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399                return -EPROTONOSUPPORT;
3400
3401        ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402        if (!ret) {
3403                adap->vfinfo[vf].vlan = vlan;
3404                return 0;
3405        }
3406
3407        dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408                ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409        return ret;
3410}
3411
3412static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413                                        int link)
3414{
3415        struct port_info *pi = netdev_priv(dev);
3416        struct adapter *adap = pi->adapter;
3417        u32 param, val;
3418        int ret = 0;
3419
3420        if (vf >= adap->num_vfs)
3421                return -EINVAL;
3422
3423        switch (link) {
3424        case IFLA_VF_LINK_STATE_AUTO:
3425                val = FW_VF_LINK_STATE_AUTO;
3426                break;
3427
3428        case IFLA_VF_LINK_STATE_ENABLE:
3429                val = FW_VF_LINK_STATE_ENABLE;
3430                break;
3431
3432        case IFLA_VF_LINK_STATE_DISABLE:
3433                val = FW_VF_LINK_STATE_DISABLE;
3434                break;
3435
3436        default:
3437                return -EINVAL;
3438        }
3439
3440        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443                            &param, &val);
3444        if (ret) {
3445                dev_err(adap->pdev_dev,
3446                        "Error %d in setting PF %d VF %d link state\n",
3447                        ret, adap->pf, vf);
3448                return -EINVAL;
3449        }
3450
3451        adap->vfinfo[vf].link_state = link;
3452        return ret;
3453}
3454#endif /* CONFIG_PCI_IOV */
3455
3456static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457{
3458        int ret;
3459        struct sockaddr *addr = p;
3460        struct port_info *pi = netdev_priv(dev);
3461
3462        if (!is_valid_ether_addr(addr->sa_data))
3463                return -EADDRNOTAVAIL;
3464
3465        ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466                                    addr->sa_data, true, &pi->smt_idx);
3467        if (ret < 0)
3468                return ret;
3469
3470        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3471        return 0;
3472}
3473
3474#ifdef CONFIG_NET_POLL_CONTROLLER
3475static void cxgb_netpoll(struct net_device *dev)
3476{
3477        struct port_info *pi = netdev_priv(dev);
3478        struct adapter *adap = pi->adapter;
3479
3480        if (adap->flags & CXGB4_USING_MSIX) {
3481                int i;
3482                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483
3484                for (i = pi->nqsets; i; i--, rx++)
3485                        t4_sge_intr_msix(0, &rx->rspq);
3486        } else
3487                t4_intr_handler(adap)(0, adap);
3488}
3489#endif
3490
3491static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492{
3493        struct port_info *pi = netdev_priv(dev);
3494        struct adapter *adap = pi->adapter;
3495        struct ch_sched_queue qe = { 0 };
3496        struct ch_sched_params p = { 0 };
3497        struct sched_class *e;
3498        u32 req_rate;
3499        int err = 0;
3500
3501        if (!can_sched(dev))
3502                return -ENOTSUPP;
3503
3504        if (index < 0 || index > pi->nqsets - 1)
3505                return -EINVAL;
3506
3507        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508                dev_err(adap->pdev_dev,
3509                        "Failed to rate limit on queue %d. Link Down?\n",
3510                        index);
3511                return -EINVAL;
3512        }
3513
3514        qe.queue = index;
3515        e = cxgb4_sched_queue_lookup(dev, &qe);
3516        if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517                dev_err(adap->pdev_dev,
3518                        "Queue %u already bound to class %u of type: %u\n",
3519                        index, e->idx, e->info.u.params.level);
3520                return -EBUSY;
3521        }
3522
3523        /* Convert from Mbps to Kbps */
3524        req_rate = rate * 1000;
3525
3526        /* Max rate is 100 Gbps */
3527        if (req_rate > SCHED_MAX_RATE_KBPS) {
3528                dev_err(adap->pdev_dev,
3529                        "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530                        rate, SCHED_MAX_RATE_KBPS / 1000);
3531                return -ERANGE;
3532        }
3533
3534        /* First unbind the queue from any existing class */
3535        memset(&qe, 0, sizeof(qe));
3536        qe.queue = index;
3537        qe.class = SCHED_CLS_NONE;
3538
3539        err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540        if (err) {
3541                dev_err(adap->pdev_dev,
3542                        "Unbinding Queue %d on port %d fail. Err: %d\n",
3543                        index, pi->port_id, err);
3544                return err;
3545        }
3546
3547        /* Queue already unbound */
3548        if (!req_rate)
3549                return 0;
3550
3551        /* Fetch any available unused or matching scheduling class */
3552        p.type = SCHED_CLASS_TYPE_PACKET;
3553        p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3554        p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3555        p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556        p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557        p.u.params.channel  = pi->tx_chan;
3558        p.u.params.class    = SCHED_CLS_NONE;
3559        p.u.params.minrate  = 0;
3560        p.u.params.maxrate  = req_rate;
3561        p.u.params.weight   = 0;
3562        p.u.params.pktsize  = dev->mtu;
3563
3564        e = cxgb4_sched_class_alloc(dev, &p);
3565        if (!e)
3566                return -ENOMEM;
3567
3568        /* Bind the queue to a scheduling class */
3569        memset(&qe, 0, sizeof(qe));
3570        qe.queue = index;
3571        qe.class = e->idx;
3572
3573        err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574        if (err)
3575                dev_err(adap->pdev_dev,
3576                        "Queue rate limiting failed. Err: %d\n", err);
3577        return err;
3578}
3579
3580static int cxgb_setup_tc_flower(struct net_device *dev,
3581                                struct flow_cls_offload *cls_flower)
3582{
3583        switch (cls_flower->command) {
3584        case FLOW_CLS_REPLACE:
3585                return cxgb4_tc_flower_replace(dev, cls_flower);
3586        case FLOW_CLS_DESTROY:
3587                return cxgb4_tc_flower_destroy(dev, cls_flower);
3588        case FLOW_CLS_STATS:
3589                return cxgb4_tc_flower_stats(dev, cls_flower);
3590        default:
3591                return -EOPNOTSUPP;
3592        }
3593}
3594
3595static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596                                 struct tc_cls_u32_offload *cls_u32)
3597{
3598        switch (cls_u32->command) {
3599        case TC_CLSU32_NEW_KNODE:
3600        case TC_CLSU32_REPLACE_KNODE:
3601                return cxgb4_config_knode(dev, cls_u32);
3602        case TC_CLSU32_DELETE_KNODE:
3603                return cxgb4_delete_knode(dev, cls_u32);
3604        default:
3605                return -EOPNOTSUPP;
3606        }
3607}
3608
3609static int cxgb_setup_tc_matchall(struct net_device *dev,
3610                                  struct tc_cls_matchall_offload *cls_matchall,
3611                                  bool ingress)
3612{
3613        struct adapter *adap = netdev2adap(dev);
3614
3615        if (!adap->tc_matchall)
3616                return -ENOMEM;
3617
3618        switch (cls_matchall->command) {
3619        case TC_CLSMATCHALL_REPLACE:
3620                return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621        case TC_CLSMATCHALL_DESTROY:
3622                return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623        case TC_CLSMATCHALL_STATS:
3624                if (ingress)
3625                        return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626                break;
3627        default:
3628                break;
3629        }
3630
3631        return -EOPNOTSUPP;
3632}
3633
3634static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635                                          void *type_data, void *cb_priv)
3636{
3637        struct net_device *dev = cb_priv;
3638        struct port_info *pi = netdev2pinfo(dev);
3639        struct adapter *adap = netdev2adap(dev);
3640
3641        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642                dev_err(adap->pdev_dev,
3643                        "Failed to setup tc on port %d. Link Down?\n",
3644                        pi->port_id);
3645                return -EINVAL;
3646        }
3647
3648        if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649                return -EOPNOTSUPP;
3650
3651        switch (type) {
3652        case TC_SETUP_CLSU32:
3653                return cxgb_setup_tc_cls_u32(dev, type_data);
3654        case TC_SETUP_CLSFLOWER:
3655                return cxgb_setup_tc_flower(dev, type_data);
3656        case TC_SETUP_CLSMATCHALL:
3657                return cxgb_setup_tc_matchall(dev, type_data, true);
3658        default:
3659                return -EOPNOTSUPP;
3660        }
3661}
3662
3663static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664                                         void *type_data, void *cb_priv)
3665{
3666        struct net_device *dev = cb_priv;
3667        struct port_info *pi = netdev2pinfo(dev);
3668        struct adapter *adap = netdev2adap(dev);
3669
3670        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671                dev_err(adap->pdev_dev,
3672                        "Failed to setup tc on port %d. Link Down?\n",
3673                        pi->port_id);
3674                return -EINVAL;
3675        }
3676
3677        if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678                return -EOPNOTSUPP;
3679
3680        switch (type) {
3681        case TC_SETUP_CLSMATCHALL:
3682                return cxgb_setup_tc_matchall(dev, type_data, false);
3683        default:
3684                break;
3685        }
3686
3687        return -EOPNOTSUPP;
3688}
3689
3690static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691                                struct tc_mqprio_qopt_offload *mqprio)
3692{
3693        struct adapter *adap = netdev2adap(dev);
3694
3695        if (!is_ethofld(adap) || !adap->tc_mqprio)
3696                return -ENOMEM;
3697
3698        return cxgb4_setup_tc_mqprio(dev, mqprio);
3699}
3700
3701static LIST_HEAD(cxgb_block_cb_list);
3702
3703static int cxgb_setup_tc_block(struct net_device *dev,
3704                               struct flow_block_offload *f)
3705{
3706        struct port_info *pi = netdev_priv(dev);
3707        flow_setup_cb_t *cb;
3708        bool ingress_only;
3709
3710        pi->tc_block_shared = f->block_shared;
3711        if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712                cb = cxgb_setup_tc_block_egress_cb;
3713                ingress_only = false;
3714        } else {
3715                cb = cxgb_setup_tc_block_ingress_cb;
3716                ingress_only = true;
3717        }
3718
3719        return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720                                          cb, pi, dev, ingress_only);
3721}
3722
3723static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724                         void *type_data)
3725{
3726        switch (type) {
3727        case TC_SETUP_QDISC_MQPRIO:
3728                return cxgb_setup_tc_mqprio(dev, type_data);
3729        case TC_SETUP_BLOCK:
3730                return cxgb_setup_tc_block(dev, type_data);
3731        default:
3732                return -EOPNOTSUPP;
3733        }
3734}
3735
3736static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737                                      unsigned int table, unsigned int entry,
3738                                      struct udp_tunnel_info *ti)
3739{
3740        struct port_info *pi = netdev_priv(netdev);
3741        struct adapter *adapter = pi->adapter;
3742        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743        int ret = 0, i;
3744
3745        switch (ti->type) {
3746        case UDP_TUNNEL_TYPE_VXLAN:
3747                adapter->vxlan_port = 0;
3748                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749                break;
3750        case UDP_TUNNEL_TYPE_GENEVE:
3751                adapter->geneve_port = 0;
3752                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753                break;
3754        default:
3755                return -EINVAL;
3756        }
3757
3758        /* Matchall mac entries can be deleted only after all tunnel ports
3759         * are brought down or removed.
3760         */
3761        if (!adapter->rawf_cnt)
3762                return 0;
3763        for_each_port(adapter, i) {
3764                pi = adap2pinfo(adapter, i);
3765                ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766                                           match_all_mac, match_all_mac,
3767                                           adapter->rawf_start + pi->port_id,
3768                                           1, pi->port_id, false);
3769                if (ret < 0) {
3770                        netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771                                    i);
3772                        return ret;
3773                }
3774        }
3775
3776        return 0;
3777}
3778
3779static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780                                    unsigned int table, unsigned int entry,
3781                                    struct udp_tunnel_info *ti)
3782{
3783        struct port_info *pi = netdev_priv(netdev);
3784        struct adapter *adapter = pi->adapter;
3785        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786        int i, ret;
3787
3788        switch (ti->type) {
3789        case UDP_TUNNEL_TYPE_VXLAN:
3790                adapter->vxlan_port = ti->port;
3791                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792                             VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793                break;
3794        case UDP_TUNNEL_TYPE_GENEVE:
3795                adapter->geneve_port = ti->port;
3796                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797                             GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798                break;
3799        default:
3800                return -EINVAL;
3801        }
3802
3803        /* Create a 'match all' mac filter entry for inner mac,
3804         * if raw mac interface is supported. Once the linux kernel provides
3805         * driver entry points for adding/deleting the inner mac addresses,
3806         * we will remove this 'match all' entry and fallback to adding
3807         * exact match filters.
3808         */
3809        for_each_port(adapter, i) {
3810                pi = adap2pinfo(adapter, i);
3811
3812                ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813                                            match_all_mac,
3814                                            match_all_mac,
3815                                            adapter->rawf_start + pi->port_id,
3816                                            1, pi->port_id, false);
3817                if (ret < 0) {
3818                        netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819                                    be16_to_cpu(ti->port));
3820                        return ret;
3821                }
3822        }
3823
3824        return 0;
3825}
3826
3827static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828        .set_port       = cxgb_udp_tunnel_set_port,
3829        .unset_port     = cxgb_udp_tunnel_unset_port,
3830        .tables         = {
3831                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3832                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833        },
3834};
3835
3836static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837                                             struct net_device *dev,
3838                                             netdev_features_t features)
3839{
3840        struct port_info *pi = netdev_priv(dev);
3841        struct adapter *adapter = pi->adapter;
3842
3843        if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844                return features;
3845
3846        /* Check if hw supports offload for this packet */
3847        if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848                return features;
3849
3850        /* Offload is not supported for this encapsulated packet */
3851        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852}
3853
3854static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855                                           netdev_features_t features)
3856{
3857        /* Disable GRO, if RX_CSUM is disabled */
3858        if (!(features & NETIF_F_RXCSUM))
3859                features &= ~NETIF_F_GRO;
3860
3861        return features;
3862}
3863
3864static const struct net_device_ops cxgb4_netdev_ops = {
3865        .ndo_open             = cxgb_open,
3866        .ndo_stop             = cxgb_close,
3867        .ndo_start_xmit       = t4_start_xmit,
3868        .ndo_select_queue     = cxgb_select_queue,
3869        .ndo_get_stats64      = cxgb_get_stats,
3870        .ndo_set_rx_mode      = cxgb_set_rxmode,
3871        .ndo_set_mac_address  = cxgb_set_mac_addr,
3872        .ndo_set_features     = cxgb_set_features,
3873        .ndo_validate_addr    = eth_validate_addr,
3874        .ndo_do_ioctl         = cxgb_ioctl,
3875        .ndo_change_mtu       = cxgb_change_mtu,
3876#ifdef CONFIG_NET_POLL_CONTROLLER
3877        .ndo_poll_controller  = cxgb_netpoll,
3878#endif
3879#ifdef CONFIG_CHELSIO_T4_FCOE
3880        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3881        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3882#endif /* CONFIG_CHELSIO_T4_FCOE */
3883        .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3884        .ndo_setup_tc         = cxgb_setup_tc,
3885        .ndo_udp_tunnel_add   = udp_tunnel_nic_add_port,
3886        .ndo_udp_tunnel_del   = udp_tunnel_nic_del_port,
3887        .ndo_features_check   = cxgb_features_check,
3888        .ndo_fix_features     = cxgb_fix_features,
3889};
3890
3891#ifdef CONFIG_PCI_IOV
3892static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3893        .ndo_open               = cxgb4_mgmt_open,
3894        .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3895        .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3896        .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3897        .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3898        .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3899        .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3900};
3901#endif
3902
3903static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3904                                   struct ethtool_drvinfo *info)
3905{
3906        struct adapter *adapter = netdev2adap(dev);
3907
3908        strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3909        strlcpy(info->bus_info, pci_name(adapter->pdev),
3910                sizeof(info->bus_info));
3911}
3912
3913static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3914        .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3915};
3916
3917static void notify_fatal_err(struct work_struct *work)
3918{
3919        struct adapter *adap;
3920
3921        adap = container_of(work, struct adapter, fatal_err_notify_task);
3922        notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3923}
3924
3925void t4_fatal_err(struct adapter *adap)
3926{
3927        int port;
3928
3929        if (pci_channel_offline(adap->pdev))
3930                return;
3931
3932        /* Disable the SGE since ULDs are going to free resources that
3933         * could be exposed to the adapter.  RDMA MWs for example...
3934         */
3935        t4_shutdown_adapter(adap);
3936        for_each_port(adap, port) {
3937                struct net_device *dev = adap->port[port];
3938
3939                /* If we get here in very early initialization the network
3940                 * devices may not have been set up yet.
3941                 */
3942                if (!dev)
3943                        continue;
3944
3945                netif_tx_stop_all_queues(dev);
3946                netif_carrier_off(dev);
3947        }
3948        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3949        queue_work(adap->workq, &adap->fatal_err_notify_task);
3950}
3951
3952static void setup_memwin(struct adapter *adap)
3953{
3954        u32 nic_win_base = t4_get_util_window(adap);
3955
3956        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3957}
3958
3959static void setup_memwin_rdma(struct adapter *adap)
3960{
3961        if (adap->vres.ocq.size) {
3962                u32 start;
3963                unsigned int sz_kb;
3964
3965                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3966                start &= PCI_BASE_ADDRESS_MEM_MASK;
3967                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3968                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3969                t4_write_reg(adap,
3970                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3971                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3972                t4_write_reg(adap,
3973                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3974                             adap->vres.ocq.start);
3975                t4_read_reg(adap,
3976                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3977        }
3978}
3979
3980/* HMA Definitions */
3981
3982/* The maximum number of address that can be send in a single FW cmd */
3983#define HMA_MAX_ADDR_IN_CMD     5
3984
3985#define HMA_PAGE_SIZE           PAGE_SIZE
3986
3987#define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3988
3989#define HMA_PAGE_ORDER                                  \
3990        ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3991        ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3992
3993/* The minimum and maximum possible HMA sizes that can be specified in the FW
3994 * configuration(in units of MB).
3995 */
3996#define HMA_MIN_TOTAL_SIZE      1
3997#define HMA_MAX_TOTAL_SIZE                              \
3998        (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3999          HMA_MAX_NO_FW_ADDRESS) >> 20)
4000
4001static void adap_free_hma_mem(struct adapter *adapter)
4002{
4003        struct scatterlist *iter;
4004        struct page *page;
4005        int i;
4006
4007        if (!adapter->hma.sgt)
4008                return;
4009
4010        if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4011                dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4012                             adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4013                adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4014        }
4015
4016        for_each_sg(adapter->hma.sgt->sgl, iter,
4017                    adapter->hma.sgt->orig_nents, i) {
4018                page = sg_page(iter);
4019                if (page)
4020                        __free_pages(page, HMA_PAGE_ORDER);
4021        }
4022
4023        kfree(adapter->hma.phy_addr);
4024        sg_free_table(adapter->hma.sgt);
4025        kfree(adapter->hma.sgt);
4026        adapter->hma.sgt = NULL;
4027}
4028
4029static int adap_config_hma(struct adapter *adapter)
4030{
4031        struct scatterlist *sgl, *iter;
4032        struct sg_table *sgt;
4033        struct page *newpage;
4034        unsigned int i, j, k;
4035        u32 param, hma_size;
4036        unsigned int ncmds;
4037        size_t page_size;
4038        u32 page_order;
4039        int node, ret;
4040
4041        /* HMA is supported only for T6+ cards.
4042         * Avoid initializing HMA in kdump kernels.
4043         */
4044        if (is_kdump_kernel() ||
4045            CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4046                return 0;
4047
4048        /* Get the HMA region size required by fw */
4049        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4050                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4051        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4052                              1, &param, &hma_size);
4053        /* An error means card has its own memory or HMA is not supported by
4054         * the firmware. Return without any errors.
4055         */
4056        if (ret || !hma_size)
4057                return 0;
4058
4059        if (hma_size < HMA_MIN_TOTAL_SIZE ||
4060            hma_size > HMA_MAX_TOTAL_SIZE) {
4061                dev_err(adapter->pdev_dev,
4062                        "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4063                        hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4064                return -EINVAL;
4065        }
4066
4067        page_size = HMA_PAGE_SIZE;
4068        page_order = HMA_PAGE_ORDER;
4069        adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4070        if (unlikely(!adapter->hma.sgt)) {
4071                dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4072                return -ENOMEM;
4073        }
4074        sgt = adapter->hma.sgt;
4075        /* FW returned value will be in MB's
4076         */
4077        sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4078        if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4079                dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4080                kfree(adapter->hma.sgt);
4081                adapter->hma.sgt = NULL;
4082                return -ENOMEM;
4083        }
4084
4085        sgl = adapter->hma.sgt->sgl;
4086        node = dev_to_node(adapter->pdev_dev);
4087        for_each_sg(sgl, iter, sgt->orig_nents, i) {
4088                newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4089                                           __GFP_ZERO, page_order);
4090                if (!newpage) {
4091                        dev_err(adapter->pdev_dev,
4092                                "Not enough memory for HMA page allocation\n");
4093                        ret = -ENOMEM;
4094                        goto free_hma;
4095                }
4096                sg_set_page(iter, newpage, page_size << page_order, 0);
4097        }
4098
4099        sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4100                                DMA_BIDIRECTIONAL);
4101        if (!sgt->nents) {
4102                dev_err(adapter->pdev_dev,
4103                        "Not enough memory for HMA DMA mapping");
4104                ret = -ENOMEM;
4105                goto free_hma;
4106        }
4107        adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4108
4109        adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4110                                        GFP_KERNEL);
4111        if (unlikely(!adapter->hma.phy_addr))
4112                goto free_hma;
4113
4114        for_each_sg(sgl, iter, sgt->nents, i) {
4115                newpage = sg_page(iter);
4116                adapter->hma.phy_addr[i] = sg_dma_address(iter);
4117        }
4118
4119        ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4120        /* Pass on the addresses to firmware */
4121        for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4122                struct fw_hma_cmd hma_cmd;
4123                u8 naddr = HMA_MAX_ADDR_IN_CMD;
4124                u8 soc = 0, eoc = 0;
4125                u8 hma_mode = 1; /* Presently we support only Page table mode */
4126
4127                soc = (i == 0) ? 1 : 0;
4128                eoc = (i == ncmds - 1) ? 1 : 0;
4129
4130                /* For last cmd, set naddr corresponding to remaining
4131                 * addresses
4132                 */
4133                if (i == ncmds - 1) {
4134                        naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4135                        naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4136                }
4137                memset(&hma_cmd, 0, sizeof(hma_cmd));
4138                hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4139                                       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4140                hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4141
4142                hma_cmd.mode_to_pcie_params =
4143                        htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4144                              FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4145
4146                /* HMA cmd size specified in MB's */
4147                hma_cmd.naddr_size =
4148                        htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4149                              FW_HMA_CMD_NADDR_V(naddr));
4150
4151                /* Total Page size specified in units of 4K */
4152                hma_cmd.addr_size_pkd =
4153                        htonl(FW_HMA_CMD_ADDR_SIZE_V
4154                                ((page_size << page_order) >> 12));
4155
4156                /* Fill the 5 addresses */
4157                for (j = 0; j < naddr; j++) {
4158                        hma_cmd.phy_address[j] =
4159                                cpu_to_be64(adapter->hma.phy_addr[j + k]);
4160                }
4161                ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4162                                 sizeof(hma_cmd), &hma_cmd);
4163                if (ret) {
4164                        dev_err(adapter->pdev_dev,
4165                                "HMA FW command failed with err %d\n", ret);
4166                        goto free_hma;
4167                }
4168        }
4169
4170        if (!ret)
4171                dev_info(adapter->pdev_dev,
4172                         "Reserved %uMB host memory for HMA\n", hma_size);
4173        return ret;
4174
4175free_hma:
4176        adap_free_hma_mem(adapter);
4177        return ret;
4178}
4179
4180static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4181{
4182        u32 v;
4183        int ret;
4184
4185        /* Now that we've successfully configured and initialized the adapter
4186         * can ask the Firmware what resources it has provisioned for us.
4187         */
4188        ret = t4_get_pfres(adap);
4189        if (ret) {
4190                dev_err(adap->pdev_dev,
4191                        "Unable to retrieve resource provisioning information\n");
4192                return ret;
4193        }
4194
4195        /* get device capabilities */
4196        memset(c, 0, sizeof(*c));
4197        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4198                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
4199        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4200        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4201        if (ret < 0)
4202                return ret;
4203
4204        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4205                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4206        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4207        if (ret < 0)
4208                return ret;
4209
4210        ret = t4_config_glbl_rss(adap, adap->pf,
4211                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4212                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4213                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4214        if (ret < 0)
4215                return ret;
4216
4217        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4218                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4219                          FW_CMD_CAP_PF);
4220        if (ret < 0)
4221                return ret;
4222
4223        t4_sge_init(adap);
4224
4225        /* tweak some settings */
4226        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4227        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4228        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4229        v = t4_read_reg(adap, TP_PIO_DATA_A);
4230        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4231
4232        /* first 4 Tx modulation queues point to consecutive Tx channels */
4233        adap->params.tp.tx_modq_map = 0xE4;
4234        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4235                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4236
4237        /* associate each Tx modulation queue with consecutive Tx channels */
4238        v = 0x84218421;
4239        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240                          &v, 1, TP_TX_SCHED_HDR_A);
4241        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242                          &v, 1, TP_TX_SCHED_FIFO_A);
4243        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4244                          &v, 1, TP_TX_SCHED_PCMD_A);
4245
4246#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4247        if (is_offload(adap)) {
4248                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4249                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4251                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4252                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4253                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4254                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4256                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4257                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4258        }
4259
4260        /* get basic stuff going */
4261        return t4_early_init(adap, adap->pf);
4262}
4263
4264/*
4265 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4266 */
4267#define MAX_ATIDS 8192U
4268
4269/*
4270 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4271 *
4272 * If the firmware we're dealing with has Configuration File support, then
4273 * we use that to perform all configuration
4274 */
4275
4276/*
4277 * Tweak configuration based on module parameters, etc.  Most of these have
4278 * defaults assigned to them by Firmware Configuration Files (if we're using
4279 * them) but need to be explicitly set if we're using hard-coded
4280 * initialization.  But even in the case of using Firmware Configuration
4281 * Files, we'd like to expose the ability to change these via module
4282 * parameters so these are essentially common tweaks/settings for
4283 * Configuration Files and hard-coded initialization ...
4284 */
4285static int adap_init0_tweaks(struct adapter *adapter)
4286{
4287        /*
4288         * Fix up various Host-Dependent Parameters like Page Size, Cache
4289         * Line Size, etc.  The firmware default is for a 4KB Page Size and
4290         * 64B Cache Line Size ...
4291         */
4292        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4293
4294        /*
4295         * Process module parameters which affect early initialization.
4296         */
4297        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4298                dev_err(&adapter->pdev->dev,
4299                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
4300                        rx_dma_offset);
4301                rx_dma_offset = 2;
4302        }
4303        t4_set_reg_field(adapter, SGE_CONTROL_A,
4304                         PKTSHIFT_V(PKTSHIFT_M),
4305                         PKTSHIFT_V(rx_dma_offset));
4306
4307        /*
4308         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4309         * adds the pseudo header itself.
4310         */
4311        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4312                               CSUM_HAS_PSEUDO_HDR_F, 0);
4313
4314        return 0;
4315}
4316
4317/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4318 * unto themselves and they contain their own firmware to perform their
4319 * tasks ...
4320 */
4321static int phy_aq1202_version(const u8 *phy_fw_data,
4322                              size_t phy_fw_size)
4323{
4324        int offset;
4325
4326        /* At offset 0x8 you're looking for the primary image's
4327         * starting offset which is 3 Bytes wide
4328         *
4329         * At offset 0xa of the primary image, you look for the offset
4330         * of the DRAM segment which is 3 Bytes wide.
4331         *
4332         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4333         * wide
4334         */
4335        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4336        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4337        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4338
4339        offset = le24(phy_fw_data + 0x8) << 12;
4340        offset = le24(phy_fw_data + offset + 0xa);
4341        return be16(phy_fw_data + offset + 0x27e);
4342
4343        #undef be16
4344        #undef le16
4345        #undef le24
4346}
4347
4348static struct info_10gbt_phy_fw {
4349        unsigned int phy_fw_id;         /* PCI Device ID */
4350        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
4351        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4352        int phy_flash;                  /* Has FLASH for PHY Firmware */
4353} phy_info_array[] = {
4354        {
4355                PHY_AQ1202_DEVICEID,
4356                PHY_AQ1202_FIRMWARE,
4357                phy_aq1202_version,
4358                1,
4359        },
4360        {
4361                PHY_BCM84834_DEVICEID,
4362                PHY_BCM84834_FIRMWARE,
4363                NULL,
4364                0,
4365        },
4366        { 0, NULL, NULL },
4367};
4368
4369static struct info_10gbt_phy_fw *find_phy_info(int devid)
4370{
4371        int i;
4372
4373        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4374                if (phy_info_array[i].phy_fw_id == devid)
4375                        return &phy_info_array[i];
4376        }
4377        return NULL;
4378}
4379
4380/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4381 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4382 * we return a negative error number.  If we transfer new firmware we return 1
4383 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4384 */
4385static int adap_init0_phy(struct adapter *adap)
4386{
4387        const struct firmware *phyf;
4388        int ret;
4389        struct info_10gbt_phy_fw *phy_info;
4390
4391        /* Use the device ID to determine which PHY file to flash.
4392         */
4393        phy_info = find_phy_info(adap->pdev->device);
4394        if (!phy_info) {
4395                dev_warn(adap->pdev_dev,
4396                         "No PHY Firmware file found for this PHY\n");
4397                return -EOPNOTSUPP;
4398        }
4399
4400        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4401         * use that. The adapter firmware provides us with a memory buffer
4402         * where we can load a PHY firmware file from the host if we want to
4403         * override the PHY firmware File in flash.
4404         */
4405        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4406                                      adap->pdev_dev);
4407        if (ret < 0) {
4408                /* For adapters without FLASH attached to PHY for their
4409                 * firmware, it's obviously a fatal error if we can't get the
4410                 * firmware to the adapter.  For adapters with PHY firmware
4411                 * FLASH storage, it's worth a warning if we can't find the
4412                 * PHY Firmware but we'll neuter the error ...
4413                 */
4414                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4415                        "/lib/firmware/%s, error %d\n",
4416                        phy_info->phy_fw_file, -ret);
4417                if (phy_info->phy_flash) {
4418                        int cur_phy_fw_ver = 0;
4419
4420                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4421                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4422                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4423                        ret = 0;
4424                }
4425
4426                return ret;
4427        }
4428
4429        /* Load PHY Firmware onto adapter.
4430         */
4431        spin_lock_bh(&adap->win0_lock);
4432        ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4433                             (u8 *)phyf->data, phyf->size);
4434        spin_unlock_bh(&adap->win0_lock);
4435        if (ret < 0)
4436                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4437                        -ret);
4438        else if (ret > 0) {
4439                int new_phy_fw_ver = 0;
4440
4441                if (phy_info->phy_fw_version)
4442                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4443                                                                  phyf->size);
4444                dev_info(adap->pdev_dev, "Successfully transferred PHY "
4445                         "Firmware /lib/firmware/%s, version %#x\n",
4446                         phy_info->phy_fw_file, new_phy_fw_ver);
4447        }
4448
4449        release_firmware(phyf);
4450
4451        return ret;
4452}
4453
4454/*
4455 * Attempt to initialize the adapter via a Firmware Configuration File.
4456 */
4457static int adap_init0_config(struct adapter *adapter, int reset)
4458{
4459        char *fw_config_file, fw_config_file_path[256];
4460        u32 finiver, finicsum, cfcsum, param, val;
4461        struct fw_caps_config_cmd caps_cmd;
4462        unsigned long mtype = 0, maddr = 0;
4463        const struct firmware *cf;
4464        char *config_name = NULL;
4465        int config_issued = 0;
4466        int ret;
4467
4468        /*
4469         * Reset device if necessary.
4470         */
4471        if (reset) {
4472                ret = t4_fw_reset(adapter, adapter->mbox,
4473                                  PIORSTMODE_F | PIORST_F);
4474                if (ret < 0)
4475                        goto bye;
4476        }
4477
4478        /* If this is a 10Gb/s-BT adapter make sure the chip-external
4479         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4480         * to be performed after any global adapter RESET above since some
4481         * PHYs only have local RAM copies of the PHY firmware.
4482         */
4483        if (is_10gbt_device(adapter->pdev->device)) {
4484                ret = adap_init0_phy(adapter);
4485                if (ret < 0)
4486                        goto bye;
4487        }
4488        /*
4489         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4490         * then use that.  Otherwise, use the configuration file stored
4491         * in the adapter flash ...
4492         */
4493        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4494        case CHELSIO_T4:
4495                fw_config_file = FW4_CFNAME;
4496                break;
4497        case CHELSIO_T5:
4498                fw_config_file = FW5_CFNAME;
4499                break;
4500        case CHELSIO_T6:
4501                fw_config_file = FW6_CFNAME;
4502                break;
4503        default:
4504                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4505                       adapter->pdev->device);
4506                ret = -EINVAL;
4507                goto bye;
4508        }
4509
4510        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4511        if (ret < 0) {
4512                config_name = "On FLASH";
4513                mtype = FW_MEMTYPE_CF_FLASH;
4514                maddr = t4_flash_cfg_addr(adapter);
4515        } else {
4516                u32 params[7], val[7];
4517
4518                sprintf(fw_config_file_path,
4519                        "/lib/firmware/%s", fw_config_file);
4520                config_name = fw_config_file_path;
4521
4522                if (cf->size >= FLASH_CFG_MAX_SIZE)
4523                        ret = -ENOMEM;
4524                else {
4525                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4526                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4527                        ret = t4_query_params(adapter, adapter->mbox,
4528                                              adapter->pf, 0, 1, params, val);
4529                        if (ret == 0) {
4530                                /*
4531                                 * For t4_memory_rw() below addresses and
4532                                 * sizes have to be in terms of multiples of 4
4533                                 * bytes.  So, if the Configuration File isn't
4534                                 * a multiple of 4 bytes in length we'll have
4535                                 * to write that out separately since we can't
4536                                 * guarantee that the bytes following the
4537                                 * residual byte in the buffer returned by
4538                                 * request_firmware() are zeroed out ...
4539                                 */
4540                                size_t resid = cf->size & 0x3;
4541                                size_t size = cf->size & ~0x3;
4542                                __be32 *data = (__be32 *)cf->data;
4543
4544                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4545                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4546
4547                                spin_lock(&adapter->win0_lock);
4548                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
4549                                                   size, data, T4_MEMORY_WRITE);
4550                                if (ret == 0 && resid != 0) {
4551                                        union {
4552                                                __be32 word;
4553                                                char buf[4];
4554                                        } last;
4555                                        int i;
4556
4557                                        last.word = data[size >> 2];
4558                                        for (i = resid; i < 4; i++)
4559                                                last.buf[i] = 0;
4560                                        ret = t4_memory_rw(adapter, 0, mtype,
4561                                                           maddr + size,
4562                                                           4, &last.word,
4563                                                           T4_MEMORY_WRITE);
4564                                }
4565                                spin_unlock(&adapter->win0_lock);
4566                        }
4567                }
4568
4569                release_firmware(cf);
4570                if (ret)
4571                        goto bye;
4572        }
4573
4574        val = 0;
4575
4576        /* Ofld + Hash filter is supported. Older fw will fail this request and
4577         * it is fine.
4578         */
4579        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4580                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4581        ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4582                            1, &param, &val);
4583
4584        /* FW doesn't know about Hash filter + ofld support,
4585         * it's not a problem, don't return an error.
4586         */
4587        if (ret < 0) {
4588                dev_warn(adapter->pdev_dev,
4589                         "Hash filter with ofld is not supported by FW\n");
4590        }
4591
4592        /*
4593         * Issue a Capability Configuration command to the firmware to get it
4594         * to parse the Configuration File.  We don't use t4_fw_config_file()
4595         * because we want the ability to modify various features after we've
4596         * processed the configuration file ...
4597         */
4598        memset(&caps_cmd, 0, sizeof(caps_cmd));
4599        caps_cmd.op_to_write =
4600                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4601                      FW_CMD_REQUEST_F |
4602                      FW_CMD_READ_F);
4603        caps_cmd.cfvalid_to_len16 =
4604                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4605                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4606                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4607                      FW_LEN16(caps_cmd));
4608        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4609                         &caps_cmd);
4610
4611        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4612         * Configuration File in FLASH), our last gasp effort is to use the
4613         * Firmware Configuration File which is embedded in the firmware.  A
4614         * very few early versions of the firmware didn't have one embedded
4615         * but we can ignore those.
4616         */
4617        if (ret == -ENOENT) {
4618                memset(&caps_cmd, 0, sizeof(caps_cmd));
4619                caps_cmd.op_to_write =
4620                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4621                                        FW_CMD_REQUEST_F |
4622                                        FW_CMD_READ_F);
4623                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4624                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4625                                sizeof(caps_cmd), &caps_cmd);
4626                config_name = "Firmware Default";
4627        }
4628
4629        config_issued = 1;
4630        if (ret < 0)
4631                goto bye;
4632
4633        finiver = ntohl(caps_cmd.finiver);
4634        finicsum = ntohl(caps_cmd.finicsum);
4635        cfcsum = ntohl(caps_cmd.cfcsum);
4636        if (finicsum != cfcsum)
4637                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4638                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4639                         finicsum, cfcsum);
4640
4641        /*
4642         * And now tell the firmware to use the configuration we just loaded.
4643         */
4644        caps_cmd.op_to_write =
4645                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4646                      FW_CMD_REQUEST_F |
4647                      FW_CMD_WRITE_F);
4648        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4649        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4650                         NULL);
4651        if (ret < 0)
4652                goto bye;
4653
4654        /*
4655         * Tweak configuration based on system architecture, module
4656         * parameters, etc.
4657         */
4658        ret = adap_init0_tweaks(adapter);
4659        if (ret < 0)
4660                goto bye;
4661
4662        /* We will proceed even if HMA init fails. */
4663        ret = adap_config_hma(adapter);
4664        if (ret)
4665                dev_err(adapter->pdev_dev,
4666                        "HMA configuration failed with error %d\n", ret);
4667
4668        if (is_t6(adapter->params.chip)) {
4669                adap_config_hpfilter(adapter);
4670                ret = setup_ppod_edram(adapter);
4671                if (!ret)
4672                        dev_info(adapter->pdev_dev, "Successfully enabled "
4673                                 "ppod edram feature\n");
4674        }
4675
4676        /*
4677         * And finally tell the firmware to initialize itself using the
4678         * parameters from the Configuration File.
4679         */
4680        ret = t4_fw_initialize(adapter, adapter->mbox);
4681        if (ret < 0)
4682                goto bye;
4683
4684        /* Emit Firmware Configuration File information and return
4685         * successfully.
4686         */
4687        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4688                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4689                 config_name, finiver, cfcsum);
4690        return 0;
4691
4692        /*
4693         * Something bad happened.  Return the error ...  (If the "error"
4694         * is that there's no Configuration File on the adapter we don't
4695         * want to issue a warning since this is fairly common.)
4696         */
4697bye:
4698        if (config_issued && ret != -ENOENT)
4699                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4700                         config_name, -ret);
4701        return ret;
4702}
4703
4704static struct fw_info fw_info_array[] = {
4705        {
4706                .chip = CHELSIO_T4,
4707                .fs_name = FW4_CFNAME,
4708                .fw_mod_name = FW4_FNAME,
4709                .fw_hdr = {
4710                        .chip = FW_HDR_CHIP_T4,
4711                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4712                        .intfver_nic = FW_INTFVER(T4, NIC),
4713                        .intfver_vnic = FW_INTFVER(T4, VNIC),
4714                        .intfver_ri = FW_INTFVER(T4, RI),
4715                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4716                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
4717                },
4718        }, {
4719                .chip = CHELSIO_T5,
4720                .fs_name = FW5_CFNAME,
4721                .fw_mod_name = FW5_FNAME,
4722                .fw_hdr = {
4723                        .chip = FW_HDR_CHIP_T5,
4724                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4725                        .intfver_nic = FW_INTFVER(T5, NIC),
4726                        .intfver_vnic = FW_INTFVER(T5, VNIC),
4727                        .intfver_ri = FW_INTFVER(T5, RI),
4728                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4729                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
4730                },
4731        }, {
4732                .chip = CHELSIO_T6,
4733                .fs_name = FW6_CFNAME,
4734                .fw_mod_name = FW6_FNAME,
4735                .fw_hdr = {
4736                        .chip = FW_HDR_CHIP_T6,
4737                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4738                        .intfver_nic = FW_INTFVER(T6, NIC),
4739                        .intfver_vnic = FW_INTFVER(T6, VNIC),
4740                        .intfver_ofld = FW_INTFVER(T6, OFLD),
4741                        .intfver_ri = FW_INTFVER(T6, RI),
4742                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4743                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4744                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4745                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
4746                },
4747        }
4748
4749};
4750
4751static struct fw_info *find_fw_info(int chip)
4752{
4753        int i;
4754
4755        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4756                if (fw_info_array[i].chip == chip)
4757                        return &fw_info_array[i];
4758        }
4759        return NULL;
4760}
4761
4762/*
4763 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4764 */
4765static int adap_init0(struct adapter *adap, int vpd_skip)
4766{
4767        struct fw_caps_config_cmd caps_cmd;
4768        u32 params[7], val[7];
4769        enum dev_state state;
4770        u32 v, port_vec;
4771        int reset = 1;
4772        int ret;
4773
4774        /* Grab Firmware Device Log parameters as early as possible so we have
4775         * access to it for debugging, etc.
4776         */
4777        ret = t4_init_devlog_params(adap);
4778        if (ret < 0)
4779                return ret;
4780
4781        /* Contact FW, advertising Master capability */
4782        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4783                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4784        if (ret < 0) {
4785                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4786                        ret);
4787                return ret;
4788        }
4789        if (ret == adap->mbox)
4790                adap->flags |= CXGB4_MASTER_PF;
4791
4792        /*
4793         * If we're the Master PF Driver and the device is uninitialized,
4794         * then let's consider upgrading the firmware ...  (We always want
4795         * to check the firmware version number in order to A. get it for
4796         * later reporting and B. to warn if the currently loaded firmware
4797         * is excessively mismatched relative to the driver.)
4798         */
4799
4800        t4_get_version_info(adap);
4801        ret = t4_check_fw_version(adap);
4802        /* If firmware is too old (not supported by driver) force an update. */
4803        if (ret)
4804                state = DEV_STATE_UNINIT;
4805        if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4806                struct fw_info *fw_info;
4807                struct fw_hdr *card_fw;
4808                const struct firmware *fw;
4809                const u8 *fw_data = NULL;
4810                unsigned int fw_size = 0;
4811
4812                /* This is the firmware whose headers the driver was compiled
4813                 * against
4814                 */
4815                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4816                if (fw_info == NULL) {
4817                        dev_err(adap->pdev_dev,
4818                                "unable to get firmware info for chip %d.\n",
4819                                CHELSIO_CHIP_VERSION(adap->params.chip));
4820                        return -EINVAL;
4821                }
4822
4823                /* allocate memory to read the header of the firmware on the
4824                 * card
4825                 */
4826                card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4827                if (!card_fw) {
4828                        ret = -ENOMEM;
4829                        goto bye;
4830                }
4831
4832                /* Get FW from from /lib/firmware/ */
4833                ret = request_firmware(&fw, fw_info->fw_mod_name,
4834                                       adap->pdev_dev);
4835                if (ret < 0) {
4836                        dev_err(adap->pdev_dev,
4837                                "unable to load firmware image %s, error %d\n",
4838                                fw_info->fw_mod_name, ret);
4839                } else {
4840                        fw_data = fw->data;
4841                        fw_size = fw->size;
4842                }
4843
4844                /* upgrade FW logic */
4845                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4846                                 state, &reset);
4847
4848                /* Cleaning up */
4849                release_firmware(fw);
4850                kvfree(card_fw);
4851
4852                if (ret < 0)
4853                        goto bye;
4854        }
4855
4856        /* If the firmware is initialized already, emit a simply note to that
4857         * effect. Otherwise, it's time to try initializing the adapter.
4858         */
4859        if (state == DEV_STATE_INIT) {
4860                ret = adap_config_hma(adap);
4861                if (ret)
4862                        dev_err(adap->pdev_dev,
4863                                "HMA configuration failed with error %d\n",
4864                                ret);
4865                dev_info(adap->pdev_dev, "Coming up as %s: "\
4866                         "Adapter already initialized\n",
4867                         adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4868        } else {
4869                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4870                         "Initializing adapter\n");
4871
4872                /* Find out whether we're dealing with a version of the
4873                 * firmware which has configuration file support.
4874                 */
4875                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4876                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4877                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4878                                      params, val);
4879
4880                /* If the firmware doesn't support Configuration Files,
4881                 * return an error.
4882                 */
4883                if (ret < 0) {
4884                        dev_err(adap->pdev_dev, "firmware doesn't support "
4885                                "Firmware Configuration Files\n");
4886                        goto bye;
4887                }
4888
4889                /* The firmware provides us with a memory buffer where we can
4890                 * load a Configuration File from the host if we want to
4891                 * override the Configuration File in flash.
4892                 */
4893                ret = adap_init0_config(adap, reset);
4894                if (ret == -ENOENT) {
4895                        dev_err(adap->pdev_dev, "no Configuration File "
4896                                "present on adapter.\n");
4897                        goto bye;
4898                }
4899                if (ret < 0) {
4900                        dev_err(adap->pdev_dev, "could not initialize "
4901                                "adapter, error %d\n", -ret);
4902                        goto bye;
4903                }
4904        }
4905
4906        /* Now that we've successfully configured and initialized the adapter
4907         * (or found it already initialized), we can ask the Firmware what
4908         * resources it has provisioned for us.
4909         */
4910        ret = t4_get_pfres(adap);
4911        if (ret) {
4912                dev_err(adap->pdev_dev,
4913                        "Unable to retrieve resource provisioning information\n");
4914                goto bye;
4915        }
4916
4917        /* Grab VPD parameters.  This should be done after we establish a
4918         * connection to the firmware since some of the VPD parameters
4919         * (notably the Core Clock frequency) are retrieved via requests to
4920         * the firmware.  On the other hand, we need these fairly early on
4921         * so we do this right after getting ahold of the firmware.
4922         *
4923         * We need to do this after initializing the adapter because someone
4924         * could have FLASHed a new VPD which won't be read by the firmware
4925         * until we do the RESET ...
4926         */
4927        if (!vpd_skip) {
4928                ret = t4_get_vpd_params(adap, &adap->params.vpd);
4929                if (ret < 0)
4930                        goto bye;
4931        }
4932
4933        /* Find out what ports are available to us.  Note that we need to do
4934         * this before calling adap_init0_no_config() since it needs nports
4935         * and portvec ...
4936         */
4937        v =
4938            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4939            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4940        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4941        if (ret < 0)
4942                goto bye;
4943
4944        adap->params.nports = hweight32(port_vec);
4945        adap->params.portvec = port_vec;
4946
4947        /* Give the SGE code a chance to pull in anything that it needs ...
4948         * Note that this must be called after we retrieve our VPD parameters
4949         * in order to know how to convert core ticks to seconds, etc.
4950         */
4951        ret = t4_sge_init(adap);
4952        if (ret < 0)
4953                goto bye;
4954
4955        /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4956         * indicates that the Firmware and Hardware support this.
4957         */
4958        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4959                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4960        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4961                              1, params, val);
4962
4963        if (!ret) {
4964                adap->sge.dbqtimer_tick = val[0];
4965                ret = t4_read_sge_dbqtimers(adap,
4966                                            ARRAY_SIZE(adap->sge.dbqtimer_val),
4967                                            adap->sge.dbqtimer_val);
4968        }
4969
4970        if (!ret)
4971                adap->flags |= CXGB4_SGE_DBQ_TIMER;
4972
4973        if (is_bypass_device(adap->pdev->device))
4974                adap->params.bypass = 1;
4975
4976        /*
4977         * Grab some of our basic fundamental operating parameters.
4978         */
4979        params[0] = FW_PARAM_PFVF(EQ_START);
4980        params[1] = FW_PARAM_PFVF(L2T_START);
4981        params[2] = FW_PARAM_PFVF(L2T_END);
4982        params[3] = FW_PARAM_PFVF(FILTER_START);
4983        params[4] = FW_PARAM_PFVF(FILTER_END);
4984        params[5] = FW_PARAM_PFVF(IQFLINT_START);
4985        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4986        if (ret < 0)
4987                goto bye;
4988        adap->sge.egr_start = val[0];
4989        adap->l2t_start = val[1];
4990        adap->l2t_end = val[2];
4991        adap->tids.ftid_base = val[3];
4992        adap->tids.nftids = val[4] - val[3] + 1;
4993        adap->sge.ingr_start = val[5];
4994
4995        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4996                params[0] = FW_PARAM_PFVF(HPFILTER_START);
4997                params[1] = FW_PARAM_PFVF(HPFILTER_END);
4998                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4999                                      params, val);
5000                if (ret < 0)
5001                        goto bye;
5002
5003                adap->tids.hpftid_base = val[0];
5004                adap->tids.nhpftids = val[1] - val[0] + 1;
5005
5006                /* Read the raw mps entries. In T6, the last 2 tcam entries
5007                 * are reserved for raw mac addresses (rawf = 2, one per port).
5008                 */
5009                params[0] = FW_PARAM_PFVF(RAWF_START);
5010                params[1] = FW_PARAM_PFVF(RAWF_END);
5011                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5012                                      params, val);
5013                if (ret == 0) {
5014                        adap->rawf_start = val[0];
5015                        adap->rawf_cnt = val[1] - val[0] + 1;
5016                }
5017
5018                adap->tids.tid_base =
5019                        t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5020        }
5021
5022        /* qids (ingress/egress) returned from firmware can be anywhere
5023         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5024         * Hence driver needs to allocate memory for this range to
5025         * store the queue info. Get the highest IQFLINT/EQ index returned
5026         * in FW_EQ_*_CMD.alloc command.
5027         */
5028        params[0] = FW_PARAM_PFVF(EQ_END);
5029        params[1] = FW_PARAM_PFVF(IQFLINT_END);
5030        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5031        if (ret < 0)
5032                goto bye;
5033        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5034        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5035
5036        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5037                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5038        if (!adap->sge.egr_map) {
5039                ret = -ENOMEM;
5040                goto bye;
5041        }
5042
5043        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5044                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5045        if (!adap->sge.ingr_map) {
5046                ret = -ENOMEM;
5047                goto bye;
5048        }
5049
5050        /* Allocate the memory for the vaious egress queue bitmaps
5051         * ie starving_fl, txq_maperr and blocked_fl.
5052         */
5053        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5054                                        sizeof(long), GFP_KERNEL);
5055        if (!adap->sge.starving_fl) {
5056                ret = -ENOMEM;
5057                goto bye;
5058        }
5059
5060        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5061                                       sizeof(long), GFP_KERNEL);
5062        if (!adap->sge.txq_maperr) {
5063                ret = -ENOMEM;
5064                goto bye;
5065        }
5066
5067#ifdef CONFIG_DEBUG_FS
5068        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5069                                       sizeof(long), GFP_KERNEL);
5070        if (!adap->sge.blocked_fl) {
5071                ret = -ENOMEM;
5072                goto bye;
5073        }
5074#endif
5075
5076        params[0] = FW_PARAM_PFVF(CLIP_START);
5077        params[1] = FW_PARAM_PFVF(CLIP_END);
5078        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5079        if (ret < 0)
5080                goto bye;
5081        adap->clipt_start = val[0];
5082        adap->clipt_end = val[1];
5083
5084        /* Get the supported number of traffic classes */
5085        params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5086        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5087        if (ret < 0) {
5088                /* We couldn't retrieve the number of Traffic Classes
5089                 * supported by the hardware/firmware. So we hard
5090                 * code it here.
5091                 */
5092                adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5093        } else {
5094                adap->params.nsched_cls = val[0];
5095        }
5096
5097        /* query params related to active filter region */
5098        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5099        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5100        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5101        /* If Active filter size is set we enable establishing
5102         * offload connection through firmware work request
5103         */
5104        if ((val[0] != val[1]) && (ret >= 0)) {
5105                adap->flags |= CXGB4_FW_OFLD_CONN;
5106                adap->tids.aftid_base = val[0];
5107                adap->tids.aftid_end = val[1];
5108        }
5109
5110        /* If we're running on newer firmware, let it know that we're
5111         * prepared to deal with encapsulated CPL messages.  Older
5112         * firmware won't understand this and we'll just get
5113         * unencapsulated messages ...
5114         */
5115        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5116        val[0] = 1;
5117        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5118
5119        /*
5120         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5121         * capability.  Earlier versions of the firmware didn't have the
5122         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5123         * permission to use ULPTX MEMWRITE DSGL.
5124         */
5125        if (is_t4(adap->params.chip)) {
5126                adap->params.ulptx_memwrite_dsgl = false;
5127        } else {
5128                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5129                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130                                      1, params, val);
5131                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5132        }
5133
5134        /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5135        params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5136        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5137                              1, params, val);
5138        adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5139
5140        /* See if FW supports FW_FILTER2 work request */
5141        if (is_t4(adap->params.chip)) {
5142                adap->params.filter2_wr_support = 0;
5143        } else {
5144                params[0] = FW_PARAM_DEV(FILTER2_WR);
5145                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5146                                      1, params, val);
5147                adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5148        }
5149
5150        /* Check if FW supports returning vin and smt index.
5151         * If this is not supported, driver will interpret
5152         * these values from viid.
5153         */
5154        params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5155        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5156                              1, params, val);
5157        adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5158
5159        /*
5160         * Get device capabilities so we can determine what resources we need
5161         * to manage.
5162         */
5163        memset(&caps_cmd, 0, sizeof(caps_cmd));
5164        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5165                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5166        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5167        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5168                         &caps_cmd);
5169        if (ret < 0)
5170                goto bye;
5171
5172        /* hash filter has some mandatory register settings to be tested and for
5173         * that it needs to test whether offload is enabled or not, hence
5174         * checking and setting it here.
5175         */
5176        if (caps_cmd.ofldcaps)
5177                adap->params.offload = 1;
5178
5179        if (caps_cmd.ofldcaps ||
5180            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5181            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5182                /* query offload-related parameters */
5183                params[0] = FW_PARAM_DEV(NTID);
5184                params[1] = FW_PARAM_PFVF(SERVER_START);
5185                params[2] = FW_PARAM_PFVF(SERVER_END);
5186                params[3] = FW_PARAM_PFVF(TDDP_START);
5187                params[4] = FW_PARAM_PFVF(TDDP_END);
5188                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5189                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5190                                      params, val);
5191                if (ret < 0)
5192                        goto bye;
5193                adap->tids.ntids = val[0];
5194                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5195                adap->tids.stid_base = val[1];
5196                adap->tids.nstids = val[2] - val[1] + 1;
5197                /*
5198                 * Setup server filter region. Divide the available filter
5199                 * region into two parts. Regular filters get 1/3rd and server
5200                 * filters get 2/3rd part. This is only enabled if workarond
5201                 * path is enabled.
5202                 * 1. For regular filters.
5203                 * 2. Server filter: This are special filters which are used
5204                 * to redirect SYN packets to offload queue.
5205                 */
5206                if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5207                        adap->tids.sftid_base = adap->tids.ftid_base +
5208                                        DIV_ROUND_UP(adap->tids.nftids, 3);
5209                        adap->tids.nsftids = adap->tids.nftids -
5210                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5211                        adap->tids.nftids = adap->tids.sftid_base -
5212                                                adap->tids.ftid_base;
5213                }
5214                adap->vres.ddp.start = val[3];
5215                adap->vres.ddp.size = val[4] - val[3] + 1;
5216                adap->params.ofldq_wr_cred = val[5];
5217
5218                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5219                        init_hash_filter(adap);
5220                } else {
5221                        adap->num_ofld_uld += 1;
5222                }
5223
5224                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5225                        params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5226                        params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5227                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5228                                              params, val);
5229                        if (!ret) {
5230                                adap->tids.eotid_base = val[0];
5231                                adap->tids.neotids = min_t(u32, MAX_ATIDS,
5232                                                           val[1] - val[0] + 1);
5233                                adap->params.ethofld = 1;
5234                        }
5235                }
5236        }
5237        if (caps_cmd.rdmacaps) {
5238                params[0] = FW_PARAM_PFVF(STAG_START);
5239                params[1] = FW_PARAM_PFVF(STAG_END);
5240                params[2] = FW_PARAM_PFVF(RQ_START);
5241                params[3] = FW_PARAM_PFVF(RQ_END);
5242                params[4] = FW_PARAM_PFVF(PBL_START);
5243                params[5] = FW_PARAM_PFVF(PBL_END);
5244                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5245                                      params, val);
5246                if (ret < 0)
5247                        goto bye;
5248                adap->vres.stag.start = val[0];
5249                adap->vres.stag.size = val[1] - val[0] + 1;
5250                adap->vres.rq.start = val[2];
5251                adap->vres.rq.size = val[3] - val[2] + 1;
5252                adap->vres.pbl.start = val[4];
5253                adap->vres.pbl.size = val[5] - val[4] + 1;
5254
5255                params[0] = FW_PARAM_PFVF(SRQ_START);
5256                params[1] = FW_PARAM_PFVF(SRQ_END);
5257                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5258                                      params, val);
5259                if (!ret) {
5260                        adap->vres.srq.start = val[0];
5261                        adap->vres.srq.size = val[1] - val[0] + 1;
5262                }
5263                if (adap->vres.srq.size) {
5264                        adap->srq = t4_init_srq(adap->vres.srq.size);
5265                        if (!adap->srq)
5266                                dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5267                }
5268
5269                params[0] = FW_PARAM_PFVF(SQRQ_START);
5270                params[1] = FW_PARAM_PFVF(SQRQ_END);
5271                params[2] = FW_PARAM_PFVF(CQ_START);
5272                params[3] = FW_PARAM_PFVF(CQ_END);
5273                params[4] = FW_PARAM_PFVF(OCQ_START);
5274                params[5] = FW_PARAM_PFVF(OCQ_END);
5275                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5276                                      val);
5277                if (ret < 0)
5278                        goto bye;
5279                adap->vres.qp.start = val[0];
5280                adap->vres.qp.size = val[1] - val[0] + 1;
5281                adap->vres.cq.start = val[2];
5282                adap->vres.cq.size = val[3] - val[2] + 1;
5283                adap->vres.ocq.start = val[4];
5284                adap->vres.ocq.size = val[5] - val[4] + 1;
5285
5286                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5287                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5288                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5289                                      val);
5290                if (ret < 0) {
5291                        adap->params.max_ordird_qp = 8;
5292                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5293                        ret = 0;
5294                } else {
5295                        adap->params.max_ordird_qp = val[0];
5296                        adap->params.max_ird_adapter = val[1];
5297                }
5298                dev_info(adap->pdev_dev,
5299                         "max_ordird_qp %d max_ird_adapter %d\n",
5300                         adap->params.max_ordird_qp,
5301                         adap->params.max_ird_adapter);
5302
5303                /* Enable write_with_immediate if FW supports it */
5304                params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5305                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5306                                      val);
5307                adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5308
5309                /* Enable write_cmpl if FW supports it */
5310                params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5311                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5312                                      val);
5313                adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5314                adap->num_ofld_uld += 2;
5315        }
5316        if (caps_cmd.iscsicaps) {
5317                params[0] = FW_PARAM_PFVF(ISCSI_START);
5318                params[1] = FW_PARAM_PFVF(ISCSI_END);
5319                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5320                                      params, val);
5321                if (ret < 0)
5322                        goto bye;
5323                adap->vres.iscsi.start = val[0];
5324                adap->vres.iscsi.size = val[1] - val[0] + 1;
5325                if (is_t6(adap->params.chip)) {
5326                        params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5327                        params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5328                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5329                                              params, val);
5330                        if (!ret) {
5331                                adap->vres.ppod_edram.start = val[0];
5332                                adap->vres.ppod_edram.size =
5333                                        val[1] - val[0] + 1;
5334
5335                                dev_info(adap->pdev_dev,
5336                                         "ppod edram start 0x%x end 0x%x size 0x%x\n",
5337                                         val[0], val[1],
5338                                         adap->vres.ppod_edram.size);
5339                        }
5340                }
5341                /* LIO target and cxgb4i initiaitor */
5342                adap->num_ofld_uld += 2;
5343        }
5344        if (caps_cmd.cryptocaps) {
5345                if (ntohs(caps_cmd.cryptocaps) &
5346                    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5347                        params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5348                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5349                                              2, params, val);
5350                        if (ret < 0) {
5351                                if (ret != -EINVAL)
5352                                        goto bye;
5353                        } else {
5354                                adap->vres.ncrypto_fc = val[0];
5355                        }
5356                        adap->num_ofld_uld += 1;
5357                }
5358                if (ntohs(caps_cmd.cryptocaps) &
5359                    FW_CAPS_CONFIG_TLS_INLINE) {
5360                        params[0] = FW_PARAM_PFVF(TLS_START);
5361                        params[1] = FW_PARAM_PFVF(TLS_END);
5362                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5363                                              2, params, val);
5364                        if (ret < 0)
5365                                goto bye;
5366                        adap->vres.key.start = val[0];
5367                        adap->vres.key.size = val[1] - val[0] + 1;
5368                        adap->num_uld += 1;
5369                }
5370                adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5371        }
5372
5373        /* The MTU/MSS Table is initialized by now, so load their values.  If
5374         * we're initializing the adapter, then we'll make any modifications
5375         * we want to the MTU/MSS Table and also initialize the congestion
5376         * parameters.
5377         */
5378        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5379        if (state != DEV_STATE_INIT) {
5380                int i;
5381
5382                /* The default MTU Table contains values 1492 and 1500.
5383                 * However, for TCP, it's better to have two values which are
5384                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5385                 * This allows us to have a TCP Data Payload which is a
5386                 * multiple of 8 regardless of what combination of TCP Options
5387                 * are in use (always a multiple of 4 bytes) which is
5388                 * important for performance reasons.  For instance, if no
5389                 * options are in use, then we have a 20-byte IP header and a
5390                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5391                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5392                 * which is not a multiple of 8.  So using an MSS of 1488 in
5393                 * this case results in a TCP Data Payload of 1448 bytes which
5394                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5395                 * Stamps have been negotiated, then an MTU of 1500 bytes
5396                 * results in a TCP Data Payload of 1448 bytes which, as
5397                 * above, is a multiple of 8 bytes ...
5398                 */
5399                for (i = 0; i < NMTUS; i++)
5400                        if (adap->params.mtus[i] == 1492) {
5401                                adap->params.mtus[i] = 1488;
5402                                break;
5403                        }
5404
5405                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5406                             adap->params.b_wnd);
5407        }
5408        t4_init_sge_params(adap);
5409        adap->flags |= CXGB4_FW_OK;
5410        t4_init_tp_params(adap, true);
5411        return 0;
5412
5413        /*
5414         * Something bad happened.  If a command timed out or failed with EIO
5415         * FW does not operate within its spec or something catastrophic
5416         * happened to HW/FW, stop issuing commands.
5417         */
5418bye:
5419        adap_free_hma_mem(adap);
5420        kfree(adap->sge.egr_map);
5421        kfree(adap->sge.ingr_map);
5422        kfree(adap->sge.starving_fl);
5423        kfree(adap->sge.txq_maperr);
5424#ifdef CONFIG_DEBUG_FS
5425        kfree(adap->sge.blocked_fl);
5426#endif
5427        if (ret != -ETIMEDOUT && ret != -EIO)
5428                t4_fw_bye(adap, adap->mbox);
5429        return ret;
5430}
5431
5432/* EEH callbacks */
5433
5434static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5435                                         pci_channel_state_t state)
5436{
5437        int i;
5438        struct adapter *adap = pci_get_drvdata(pdev);
5439
5440        if (!adap)
5441                goto out;
5442
5443        rtnl_lock();
5444        adap->flags &= ~CXGB4_FW_OK;
5445        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5446        spin_lock(&adap->stats_lock);
5447        for_each_port(adap, i) {
5448                struct net_device *dev = adap->port[i];
5449                if (dev) {
5450                        netif_device_detach(dev);
5451                        netif_carrier_off(dev);
5452                }
5453        }
5454        spin_unlock(&adap->stats_lock);
5455        disable_interrupts(adap);
5456        if (adap->flags & CXGB4_FULL_INIT_DONE)
5457                cxgb_down(adap);
5458        rtnl_unlock();
5459        if ((adap->flags & CXGB4_DEV_ENABLED)) {
5460                pci_disable_device(pdev);
5461                adap->flags &= ~CXGB4_DEV_ENABLED;
5462        }
5463out:    return state == pci_channel_io_perm_failure ?
5464                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5465}
5466
5467static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5468{
5469        int i, ret;
5470        struct fw_caps_config_cmd c;
5471        struct adapter *adap = pci_get_drvdata(pdev);
5472
5473        if (!adap) {
5474                pci_restore_state(pdev);
5475                pci_save_state(pdev);
5476                return PCI_ERS_RESULT_RECOVERED;
5477        }
5478
5479        if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5480                if (pci_enable_device(pdev)) {
5481                        dev_err(&pdev->dev, "Cannot reenable PCI "
5482                                            "device after reset\n");
5483                        return PCI_ERS_RESULT_DISCONNECT;
5484                }
5485                adap->flags |= CXGB4_DEV_ENABLED;
5486        }
5487
5488        pci_set_master(pdev);
5489        pci_restore_state(pdev);
5490        pci_save_state(pdev);
5491
5492        if (t4_wait_dev_ready(adap->regs) < 0)
5493                return PCI_ERS_RESULT_DISCONNECT;
5494        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5495                return PCI_ERS_RESULT_DISCONNECT;
5496        adap->flags |= CXGB4_FW_OK;
5497        if (adap_init1(adap, &c))
5498                return PCI_ERS_RESULT_DISCONNECT;
5499
5500        for_each_port(adap, i) {
5501                struct port_info *pi = adap2pinfo(adap, i);
5502                u8 vivld = 0, vin = 0;
5503
5504                ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5505                                  NULL, NULL, &vivld, &vin);
5506                if (ret < 0)
5507                        return PCI_ERS_RESULT_DISCONNECT;
5508                pi->viid = ret;
5509                pi->xact_addr_filt = -1;
5510                /* If fw supports returning the VIN as part of FW_VI_CMD,
5511                 * save the returned values.
5512                 */
5513                if (adap->params.viid_smt_extn_support) {
5514                        pi->vivld = vivld;
5515                        pi->vin = vin;
5516                } else {
5517                        /* Retrieve the values from VIID */
5518                        pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5519                        pi->vin = FW_VIID_VIN_G(pi->viid);
5520                }
5521        }
5522
5523        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5524                     adap->params.b_wnd);
5525        setup_memwin(adap);
5526        if (cxgb_up(adap))
5527                return PCI_ERS_RESULT_DISCONNECT;
5528        return PCI_ERS_RESULT_RECOVERED;
5529}
5530
5531static void eeh_resume(struct pci_dev *pdev)
5532{
5533        int i;
5534        struct adapter *adap = pci_get_drvdata(pdev);
5535
5536        if (!adap)
5537                return;
5538
5539        rtnl_lock();
5540        for_each_port(adap, i) {
5541                struct net_device *dev = adap->port[i];
5542                if (dev) {
5543                        if (netif_running(dev)) {
5544                                link_start(dev);
5545                                cxgb_set_rxmode(dev);
5546                        }
5547                        netif_device_attach(dev);
5548                }
5549        }
5550        rtnl_unlock();
5551}
5552
5553static void eeh_reset_prepare(struct pci_dev *pdev)
5554{
5555        struct adapter *adapter = pci_get_drvdata(pdev);
5556        int i;
5557
5558        if (adapter->pf != 4)
5559                return;
5560
5561        adapter->flags &= ~CXGB4_FW_OK;
5562
5563        notify_ulds(adapter, CXGB4_STATE_DOWN);
5564
5565        for_each_port(adapter, i)
5566                if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5567                        cxgb_close(adapter->port[i]);
5568
5569        disable_interrupts(adapter);
5570        cxgb4_free_mps_ref_entries(adapter);
5571
5572        adap_free_hma_mem(adapter);
5573
5574        if (adapter->flags & CXGB4_FULL_INIT_DONE)
5575                cxgb_down(adapter);
5576}
5577
5578static void eeh_reset_done(struct pci_dev *pdev)
5579{
5580        struct adapter *adapter = pci_get_drvdata(pdev);
5581        int err, i;
5582
5583        if (adapter->pf != 4)
5584                return;
5585
5586        err = t4_wait_dev_ready(adapter->regs);
5587        if (err < 0) {
5588                dev_err(adapter->pdev_dev,
5589                        "Device not ready, err %d", err);
5590                return;
5591        }
5592
5593        setup_memwin(adapter);
5594
5595        err = adap_init0(adapter, 1);
5596        if (err) {
5597                dev_err(adapter->pdev_dev,
5598                        "Adapter init failed, err %d", err);
5599                return;
5600        }
5601
5602        setup_memwin_rdma(adapter);
5603
5604        if (adapter->flags & CXGB4_FW_OK) {
5605                err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5606                if (err) {
5607                        dev_err(adapter->pdev_dev,
5608                                "Port init failed, err %d", err);
5609                        return;
5610                }
5611        }
5612
5613        err = cfg_queues(adapter);
5614        if (err) {
5615                dev_err(adapter->pdev_dev,
5616                        "Config queues failed, err %d", err);
5617                return;
5618        }
5619
5620        cxgb4_init_mps_ref_entries(adapter);
5621
5622        err = setup_fw_sge_queues(adapter);
5623        if (err) {
5624                dev_err(adapter->pdev_dev,
5625                        "FW sge queue allocation failed, err %d", err);
5626                return;
5627        }
5628
5629        for_each_port(adapter, i)
5630                if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5631                        cxgb_open(adapter->port[i]);
5632}
5633
5634static const struct pci_error_handlers cxgb4_eeh = {
5635        .error_detected = eeh_err_detected,
5636        .slot_reset     = eeh_slot_reset,
5637        .resume         = eeh_resume,
5638        .reset_prepare  = eeh_reset_prepare,
5639        .reset_done     = eeh_reset_done,
5640};
5641
5642/* Return true if the Link Configuration supports "High Speeds" (those greater
5643 * than 1Gb/s).
5644 */
5645static inline bool is_x_10g_port(const struct link_config *lc)
5646{
5647        unsigned int speeds, high_speeds;
5648
5649        speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5650        high_speeds = speeds &
5651                        ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5652
5653        return high_speeds != 0;
5654}
5655
5656/* Perform default configuration of DMA queues depending on the number and type
5657 * of ports we found and the number of available CPUs.  Most settings can be
5658 * modified by the admin prior to actual use.
5659 */
5660static int cfg_queues(struct adapter *adap)
5661{
5662        u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5663        u32 ncpus = num_online_cpus();
5664        u32 niqflint, neq, num_ulds;
5665        struct sge *s = &adap->sge;
5666        u32 i, n10g = 0, qidx = 0;
5667        u32 q10g = 0, q1g;
5668
5669        /* Reduce memory usage in kdump environment, disable all offload. */
5670        if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5671                adap->params.offload = 0;
5672                adap->params.crypto = 0;
5673                adap->params.ethofld = 0;
5674        }
5675
5676        /* Calculate the number of Ethernet Queue Sets available based on
5677         * resources provisioned for us.  We always have an Asynchronous
5678         * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5679         * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5680         * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5681         * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5682         *
5683         * Note that we should also take into account all of the various
5684         * Offload Queues.  But, in any situation where we're operating in
5685         * a Resource Constrained Provisioning environment, doing any Offload
5686         * at all is problematic ...
5687         */
5688        niqflint = adap->params.pfres.niqflint - 1;
5689        if (!(adap->flags & CXGB4_USING_MSIX))
5690                niqflint--;
5691        neq = adap->params.pfres.neq / 2;
5692        avail_qsets = min(niqflint, neq);
5693
5694        if (avail_qsets < adap->params.nports) {
5695                dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5696                        avail_qsets, adap->params.nports);
5697                return -ENOMEM;
5698        }
5699
5700        /* Count the number of 10Gb/s or better ports */
5701        for_each_port(adap, i)
5702                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5703
5704        avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5705
5706        /* We default to 1 queue per non-10G port and up to # of cores queues
5707         * per 10G port.
5708         */
5709        if (n10g)
5710                q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5711
5712#ifdef CONFIG_CHELSIO_T4_DCB
5713        /* For Data Center Bridging support we need to be able to support up
5714         * to 8 Traffic Priorities; each of which will be assigned to its
5715         * own TX Queue in order to prevent Head-Of-Line Blocking.
5716         */
5717        q1g = 8;
5718        if (adap->params.nports * 8 > avail_eth_qsets) {
5719                dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5720                        avail_eth_qsets, adap->params.nports * 8);
5721                return -ENOMEM;
5722        }
5723
5724        if (adap->params.nports * ncpus < avail_eth_qsets)
5725                q10g = max(8U, ncpus);
5726        else
5727                q10g = max(8U, q10g);
5728
5729        while ((q10g * n10g) >
5730               (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5731                q10g--;
5732
5733#else /* !CONFIG_CHELSIO_T4_DCB */
5734        q1g = 1;
5735        q10g = min(q10g, ncpus);
5736#endif /* !CONFIG_CHELSIO_T4_DCB */
5737        if (is_kdump_kernel()) {
5738                q10g = 1;
5739                q1g = 1;
5740        }
5741
5742        for_each_port(adap, i) {
5743                struct port_info *pi = adap2pinfo(adap, i);
5744
5745                pi->first_qset = qidx;
5746                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5747                qidx += pi->nqsets;
5748        }
5749
5750        s->ethqsets = qidx;
5751        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5752        avail_qsets -= qidx;
5753
5754        if (is_uld(adap)) {
5755                /* For offload we use 1 queue/channel if all ports are up to 1G,
5756                 * otherwise we divide all available queues amongst the channels
5757                 * capped by the number of available cores.
5758                 */
5759                num_ulds = adap->num_uld + adap->num_ofld_uld;
5760                i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5761                avail_uld_qsets = roundup(i, adap->params.nports);
5762                if (avail_qsets < num_ulds * adap->params.nports) {
5763                        adap->params.offload = 0;
5764                        adap->params.crypto = 0;
5765                        s->ofldqsets = 0;
5766                } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5767                        s->ofldqsets = adap->params.nports;
5768                } else {
5769                        s->ofldqsets = avail_uld_qsets;
5770                }
5771
5772                avail_qsets -= num_ulds * s->ofldqsets;
5773        }
5774
5775        /* ETHOFLD Queues used for QoS offload should follow same
5776         * allocation scheme as normal Ethernet Queues.
5777         */
5778        if (is_ethofld(adap)) {
5779                if (avail_qsets < s->max_ethqsets) {
5780                        adap->params.ethofld = 0;
5781                        s->eoqsets = 0;
5782                } else {
5783                        s->eoqsets = s->max_ethqsets;
5784                }
5785                avail_qsets -= s->eoqsets;
5786        }
5787
5788        /* Mirror queues must follow same scheme as normal Ethernet
5789         * Queues, when there are enough queues available. Otherwise,
5790         * allocate at least 1 queue per port. If even 1 queue is not
5791         * available, then disable mirror queues support.
5792         */
5793        if (avail_qsets >= s->max_ethqsets)
5794                s->mirrorqsets = s->max_ethqsets;
5795        else if (avail_qsets >= adap->params.nports)
5796                s->mirrorqsets = adap->params.nports;
5797        else
5798                s->mirrorqsets = 0;
5799        avail_qsets -= s->mirrorqsets;
5800
5801        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5802                struct sge_eth_rxq *r = &s->ethrxq[i];
5803
5804                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5805                r->fl.size = 72;
5806        }
5807
5808        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5809                s->ethtxq[i].q.size = 1024;
5810
5811        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5812                s->ctrlq[i].q.size = 512;
5813
5814        if (!is_t4(adap->params.chip))
5815                s->ptptxq.q.size = 8;
5816
5817        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5818        init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5819
5820        return 0;
5821}
5822
5823/*
5824 * Reduce the number of Ethernet queues across all ports to at most n.
5825 * n provides at least one queue per port.
5826 */
5827static void reduce_ethqs(struct adapter *adap, int n)
5828{
5829        int i;
5830        struct port_info *pi;
5831
5832        while (n < adap->sge.ethqsets)
5833                for_each_port(adap, i) {
5834                        pi = adap2pinfo(adap, i);
5835                        if (pi->nqsets > 1) {
5836                                pi->nqsets--;
5837                                adap->sge.ethqsets--;
5838                                if (adap->sge.ethqsets <= n)
5839                                        break;
5840                        }
5841                }
5842
5843        n = 0;
5844        for_each_port(adap, i) {
5845                pi = adap2pinfo(adap, i);
5846                pi->first_qset = n;
5847                n += pi->nqsets;
5848        }
5849}
5850
5851static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5852{
5853        struct msix_info *msix_info;
5854
5855        msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5856        if (!msix_info)
5857                return -ENOMEM;
5858
5859        adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5860                                            sizeof(long), GFP_KERNEL);
5861        if (!adap->msix_bmap.msix_bmap) {
5862                kfree(msix_info);
5863                return -ENOMEM;
5864        }
5865
5866        spin_lock_init(&adap->msix_bmap.lock);
5867        adap->msix_bmap.mapsize = num_vec;
5868
5869        adap->msix_info = msix_info;
5870        return 0;
5871}
5872
5873static void free_msix_info(struct adapter *adap)
5874{
5875        kfree(adap->msix_bmap.msix_bmap);
5876        kfree(adap->msix_info);
5877}
5878
5879int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5880{
5881        struct msix_bmap *bmap = &adap->msix_bmap;
5882        unsigned int msix_idx;
5883        unsigned long flags;
5884
5885        spin_lock_irqsave(&bmap->lock, flags);
5886        msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5887        if (msix_idx < bmap->mapsize) {
5888                __set_bit(msix_idx, bmap->msix_bmap);
5889        } else {
5890                spin_unlock_irqrestore(&bmap->lock, flags);
5891                return -ENOSPC;
5892        }
5893
5894        spin_unlock_irqrestore(&bmap->lock, flags);
5895        return msix_idx;
5896}
5897
5898void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5899                                 unsigned int msix_idx)
5900{
5901        struct msix_bmap *bmap = &adap->msix_bmap;
5902        unsigned long flags;
5903
5904        spin_lock_irqsave(&bmap->lock, flags);
5905        __clear_bit(msix_idx, bmap->msix_bmap);
5906        spin_unlock_irqrestore(&bmap->lock, flags);
5907}
5908
5909/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5910#define EXTRA_VECS 2
5911
5912static int enable_msix(struct adapter *adap)
5913{
5914        u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5915        u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5916        u8 num_uld = 0, nchan = adap->params.nports;
5917        u32 i, want, need, num_vec;
5918        struct sge *s = &adap->sge;
5919        struct msix_entry *entries;
5920        struct port_info *pi;
5921        int allocated, ret;
5922
5923        want = s->max_ethqsets;
5924#ifdef CONFIG_CHELSIO_T4_DCB
5925        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5926         * each port.
5927         */
5928        need = 8 * nchan;
5929#else
5930        need = nchan;
5931#endif
5932        eth_need = need;
5933        if (is_uld(adap)) {
5934                num_uld = adap->num_ofld_uld + adap->num_uld;
5935                want += num_uld * s->ofldqsets;
5936                uld_need = num_uld * nchan;
5937                need += uld_need;
5938        }
5939
5940        if (is_ethofld(adap)) {
5941                want += s->eoqsets;
5942                ethofld_need = eth_need;
5943                need += ethofld_need;
5944        }
5945
5946        if (s->mirrorqsets) {
5947                want += s->mirrorqsets;
5948                mirror_need = nchan;
5949                need += mirror_need;
5950        }
5951
5952        want += EXTRA_VECS;
5953        need += EXTRA_VECS;
5954
5955        entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5956        if (!entries)
5957                return -ENOMEM;
5958
5959        for (i = 0; i < want; i++)
5960                entries[i].entry = i;
5961
5962        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5963        if (allocated < 0) {
5964                /* Disable offload and attempt to get vectors for NIC
5965                 * only mode.
5966                 */
5967                want = s->max_ethqsets + EXTRA_VECS;
5968                need = eth_need + EXTRA_VECS;
5969                allocated = pci_enable_msix_range(adap->pdev, entries,
5970                                                  need, want);
5971                if (allocated < 0) {
5972                        dev_info(adap->pdev_dev,
5973                                 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5974                        ret = allocated;
5975                        goto out_free;
5976                }
5977
5978                dev_info(adap->pdev_dev,
5979                         "Disabling offload due to insufficient MSI-X vectors\n");
5980                adap->params.offload = 0;
5981                adap->params.crypto = 0;
5982                adap->params.ethofld = 0;
5983                s->ofldqsets = 0;
5984                s->eoqsets = 0;
5985                s->mirrorqsets = 0;
5986                uld_need = 0;
5987                ethofld_need = 0;
5988                mirror_need = 0;
5989        }
5990
5991        num_vec = allocated;
5992        if (num_vec < want) {
5993                /* Distribute available vectors to the various queue groups.
5994                 * Every group gets its minimum requirement and NIC gets top
5995                 * priority for leftovers.
5996                 */
5997                ethqsets = eth_need;
5998                if (is_uld(adap))
5999                        ofldqsets = nchan;
6000                if (is_ethofld(adap))
6001                        eoqsets = ethofld_need;
6002                if (s->mirrorqsets)
6003                        mirrorqsets = mirror_need;
6004
6005                num_vec -= need;
6006                while (num_vec) {
6007                        if (num_vec < eth_need + ethofld_need ||
6008                            ethqsets > s->max_ethqsets)
6009                                break;
6010
6011                        for_each_port(adap, i) {
6012                                pi = adap2pinfo(adap, i);
6013                                if (pi->nqsets < 2)
6014                                        continue;
6015
6016                                ethqsets++;
6017                                num_vec--;
6018                                if (ethofld_need) {
6019                                        eoqsets++;
6020                                        num_vec--;
6021                                }
6022                        }
6023                }
6024
6025                if (is_uld(adap)) {
6026                        while (num_vec) {
6027                                if (num_vec < uld_need ||
6028                                    ofldqsets > s->ofldqsets)
6029                                        break;
6030
6031                                ofldqsets++;
6032                                num_vec -= uld_need;
6033                        }
6034                }
6035
6036                if (s->mirrorqsets) {
6037                        while (num_vec) {
6038                                if (num_vec < mirror_need ||
6039                                    mirrorqsets > s->mirrorqsets)
6040                                        break;
6041
6042                                mirrorqsets++;
6043                                num_vec -= mirror_need;
6044                        }
6045                }
6046        } else {
6047                ethqsets = s->max_ethqsets;
6048                if (is_uld(adap))
6049                        ofldqsets = s->ofldqsets;
6050                if (is_ethofld(adap))
6051                        eoqsets = s->eoqsets;
6052                if (s->mirrorqsets)
6053                        mirrorqsets = s->mirrorqsets;
6054        }
6055
6056        if (ethqsets < s->max_ethqsets) {
6057                s->max_ethqsets = ethqsets;
6058                reduce_ethqs(adap, ethqsets);
6059        }
6060
6061        if (is_uld(adap)) {
6062                s->ofldqsets = ofldqsets;
6063                s->nqs_per_uld = s->ofldqsets;
6064        }
6065
6066        if (is_ethofld(adap))
6067                s->eoqsets = eoqsets;
6068
6069        if (s->mirrorqsets) {
6070                s->mirrorqsets = mirrorqsets;
6071                for_each_port(adap, i) {
6072                        pi = adap2pinfo(adap, i);
6073                        pi->nmirrorqsets = s->mirrorqsets / nchan;
6074                        mutex_init(&pi->vi_mirror_mutex);
6075                }
6076        }
6077
6078        /* map for msix */
6079        ret = alloc_msix_info(adap, allocated);
6080        if (ret)
6081                goto out_disable_msix;
6082
6083        for (i = 0; i < allocated; i++) {
6084                adap->msix_info[i].vec = entries[i].vector;
6085                adap->msix_info[i].idx = i;
6086        }
6087
6088        dev_info(adap->pdev_dev,
6089                 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6090                 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6091                 s->mirrorqsets);
6092
6093        kfree(entries);
6094        return 0;
6095
6096out_disable_msix:
6097        pci_disable_msix(adap->pdev);
6098
6099out_free:
6100        kfree(entries);
6101        return ret;
6102}
6103
6104#undef EXTRA_VECS
6105
6106static int init_rss(struct adapter *adap)
6107{
6108        unsigned int i;
6109        int err;
6110
6111        err = t4_init_rss_mode(adap, adap->mbox);
6112        if (err)
6113                return err;
6114
6115        for_each_port(adap, i) {
6116                struct port_info *pi = adap2pinfo(adap, i);
6117
6118                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6119                if (!pi->rss)
6120                        return -ENOMEM;
6121        }
6122        return 0;
6123}
6124
6125/* Dump basic information about the adapter */
6126static void print_adapter_info(struct adapter *adapter)
6127{
6128        /* Hardware/Firmware/etc. Version/Revision IDs */
6129        t4_dump_version_info(adapter);
6130
6131        /* Software/Hardware configuration */
6132        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6133                 is_offload(adapter) ? "R" : "",
6134                 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6135                  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6136                 is_offload(adapter) ? "Offload" : "non-Offload");
6137}
6138
6139static void print_port_info(const struct net_device *dev)
6140{
6141        char buf[80];
6142        char *bufp = buf;
6143        const struct port_info *pi = netdev_priv(dev);
6144        const struct adapter *adap = pi->adapter;
6145
6146        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6147                bufp += sprintf(bufp, "100M/");
6148        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6149                bufp += sprintf(bufp, "1G/");
6150        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6151                bufp += sprintf(bufp, "10G/");
6152        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6153                bufp += sprintf(bufp, "25G/");
6154        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6155                bufp += sprintf(bufp, "40G/");
6156        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6157                bufp += sprintf(bufp, "50G/");
6158        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6159                bufp += sprintf(bufp, "100G/");
6160        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6161                bufp += sprintf(bufp, "200G/");
6162        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6163                bufp += sprintf(bufp, "400G/");
6164        if (bufp != buf)
6165                --bufp;
6166        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6167
6168        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6169                    dev->name, adap->params.vpd.id, adap->name, buf);
6170}
6171
6172/*
6173 * Free the following resources:
6174 * - memory used for tables
6175 * - MSI/MSI-X
6176 * - net devices
6177 * - resources FW is holding for us
6178 */
6179static void free_some_resources(struct adapter *adapter)
6180{
6181        unsigned int i;
6182
6183        kvfree(adapter->smt);
6184        kvfree(adapter->l2t);
6185        kvfree(adapter->srq);
6186        t4_cleanup_sched(adapter);
6187        kvfree(adapter->tids.tid_tab);
6188        cxgb4_cleanup_tc_matchall(adapter);
6189        cxgb4_cleanup_tc_mqprio(adapter);
6190        cxgb4_cleanup_tc_flower(adapter);
6191        cxgb4_cleanup_tc_u32(adapter);
6192        cxgb4_cleanup_ethtool_filters(adapter);
6193        kfree(adapter->sge.egr_map);
6194        kfree(adapter->sge.ingr_map);
6195        kfree(adapter->sge.starving_fl);
6196        kfree(adapter->sge.txq_maperr);
6197#ifdef CONFIG_DEBUG_FS
6198        kfree(adapter->sge.blocked_fl);
6199#endif
6200        disable_msi(adapter);
6201
6202        for_each_port(adapter, i)
6203                if (adapter->port[i]) {
6204                        struct port_info *pi = adap2pinfo(adapter, i);
6205
6206                        if (pi->viid != 0)
6207                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
6208                                           0, pi->viid);
6209                        kfree(adap2pinfo(adapter, i)->rss);
6210                        free_netdev(adapter->port[i]);
6211                }
6212        if (adapter->flags & CXGB4_FW_OK)
6213                t4_fw_bye(adapter, adapter->pf);
6214}
6215
6216#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6217                   NETIF_F_GSO_UDP_L4)
6218#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6219                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6220#define SEGMENT_SIZE 128
6221
6222static int t4_get_chip_type(struct adapter *adap, int ver)
6223{
6224        u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6225
6226        switch (ver) {
6227        case CHELSIO_T4:
6228                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6229        case CHELSIO_T5:
6230                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6231        case CHELSIO_T6:
6232                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6233        default:
6234                break;
6235        }
6236        return -EINVAL;
6237}
6238
6239#ifdef CONFIG_PCI_IOV
6240static void cxgb4_mgmt_setup(struct net_device *dev)
6241{
6242        dev->type = ARPHRD_NONE;
6243        dev->mtu = 0;
6244        dev->hard_header_len = 0;
6245        dev->addr_len = 0;
6246        dev->tx_queue_len = 0;
6247        dev->flags |= IFF_NOARP;
6248        dev->priv_flags |= IFF_NO_QUEUE;
6249
6250        /* Initialize the device structure. */
6251        dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6252        dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6253}
6254
6255static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6256{
6257        struct adapter *adap = pci_get_drvdata(pdev);
6258        int err = 0;
6259        int current_vfs = pci_num_vf(pdev);
6260        u32 pcie_fw;
6261
6262        pcie_fw = readl(adap->regs + PCIE_FW_A);
6263        /* Check if fw is initialized */
6264        if (!(pcie_fw & PCIE_FW_INIT_F)) {
6265                dev_warn(&pdev->dev, "Device not initialized\n");
6266                return -EOPNOTSUPP;
6267        }
6268
6269        /* If any of the VF's is already assigned to Guest OS, then
6270         * SRIOV for the same cannot be modified
6271         */
6272        if (current_vfs && pci_vfs_assigned(pdev)) {
6273                dev_err(&pdev->dev,
6274                        "Cannot modify SR-IOV while VFs are assigned\n");
6275                return current_vfs;
6276        }
6277        /* Note that the upper-level code ensures that we're never called with
6278         * a non-zero "num_vfs" when we already have VFs instantiated.  But
6279         * it never hurts to code defensively.
6280         */
6281        if (num_vfs != 0 && current_vfs != 0)
6282                return -EBUSY;
6283
6284        /* Nothing to do for no change. */
6285        if (num_vfs == current_vfs)
6286                return num_vfs;
6287
6288        /* Disable SRIOV when zero is passed. */
6289        if (!num_vfs) {
6290                pci_disable_sriov(pdev);
6291                /* free VF Management Interface */
6292                unregister_netdev(adap->port[0]);
6293                free_netdev(adap->port[0]);
6294                adap->port[0] = NULL;
6295
6296                /* free VF resources */
6297                adap->num_vfs = 0;
6298                kfree(adap->vfinfo);
6299                adap->vfinfo = NULL;
6300                return 0;
6301        }
6302
6303        if (!current_vfs) {
6304                struct fw_pfvf_cmd port_cmd, port_rpl;
6305                struct net_device *netdev;
6306                unsigned int pmask, port;
6307                struct pci_dev *pbridge;
6308                struct port_info *pi;
6309                char name[IFNAMSIZ];
6310                u32 devcap2;
6311                u16 flags;
6312
6313                /* If we want to instantiate Virtual Functions, then our
6314                 * parent bridge's PCI-E needs to support Alternative Routing
6315                 * ID (ARI) because our VFs will show up at function offset 8
6316                 * and above.
6317                 */
6318                pbridge = pdev->bus->self;
6319                pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6320                pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6321
6322                if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6323                    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6324                        /* Our parent bridge does not support ARI so issue a
6325                         * warning and skip instantiating the VFs.  They
6326                         * won't be reachable.
6327                         */
6328                        dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6329                                 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6330                                 PCI_FUNC(pbridge->devfn));
6331                        return -ENOTSUPP;
6332                }
6333                memset(&port_cmd, 0, sizeof(port_cmd));
6334                port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6335                                                 FW_CMD_REQUEST_F |
6336                                                 FW_CMD_READ_F |
6337                                                 FW_PFVF_CMD_PFN_V(adap->pf) |
6338                                                 FW_PFVF_CMD_VFN_V(0));
6339                port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6340                err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6341                                 &port_rpl);
6342                if (err)
6343                        return err;
6344                pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6345                port = ffs(pmask) - 1;
6346                /* Allocate VF Management Interface. */
6347                snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6348                         adap->pf);
6349                netdev = alloc_netdev(sizeof(struct port_info),
6350                                      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6351                if (!netdev)
6352                        return -ENOMEM;
6353
6354                pi = netdev_priv(netdev);
6355                pi->adapter = adap;
6356                pi->lport = port;
6357                pi->tx_chan = port;
6358                SET_NETDEV_DEV(netdev, &pdev->dev);
6359
6360                adap->port[0] = netdev;
6361                pi->port_id = 0;
6362
6363                err = register_netdev(adap->port[0]);
6364                if (err) {
6365                        pr_info("Unable to register VF mgmt netdev %s\n", name);
6366                        free_netdev(adap->port[0]);
6367                        adap->port[0] = NULL;
6368                        return err;
6369                }
6370                /* Allocate and set up VF Information. */
6371                adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6372                                       sizeof(struct vf_info), GFP_KERNEL);
6373                if (!adap->vfinfo) {
6374                        unregister_netdev(adap->port[0]);
6375                        free_netdev(adap->port[0]);
6376                        adap->port[0] = NULL;
6377                        return -ENOMEM;
6378                }
6379                cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6380        }
6381        /* Instantiate the requested number of VFs. */
6382        err = pci_enable_sriov(pdev, num_vfs);
6383        if (err) {
6384                pr_info("Unable to instantiate %d VFs\n", num_vfs);
6385                if (!current_vfs) {
6386                        unregister_netdev(adap->port[0]);
6387                        free_netdev(adap->port[0]);
6388                        adap->port[0] = NULL;
6389                        kfree(adap->vfinfo);
6390                        adap->vfinfo = NULL;
6391                }
6392                return err;
6393        }
6394
6395        adap->num_vfs = num_vfs;
6396        return num_vfs;
6397}
6398#endif /* CONFIG_PCI_IOV */
6399
6400#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6401
6402static int chcr_offload_state(struct adapter *adap,
6403                              enum cxgb4_netdev_tls_ops op_val)
6404{
6405        switch (op_val) {
6406#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6407        case CXGB4_TLSDEV_OPS:
6408                if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6409                        dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6410                        return -EOPNOTSUPP;
6411                }
6412                if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6413                        dev_dbg(adap->pdev_dev,
6414                                "ch_ktls driver has no registered tlsdev_ops\n");
6415                        return -EOPNOTSUPP;
6416                }
6417                break;
6418#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6419#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6420        case CXGB4_XFRMDEV_OPS:
6421                if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6422                        dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6423                        return -EOPNOTSUPP;
6424                }
6425                if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6426                        dev_dbg(adap->pdev_dev,
6427                                "chipsec driver has no registered xfrmdev_ops\n");
6428                        return -EOPNOTSUPP;
6429                }
6430                break;
6431#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6432        default:
6433                dev_dbg(adap->pdev_dev,
6434                        "driver has no support for offload %d\n", op_val);
6435                return -EOPNOTSUPP;
6436        }
6437
6438        return 0;
6439}
6440
6441#endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6442
6443#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6444
6445static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6446                              enum tls_offload_ctx_dir direction,
6447                              struct tls_crypto_info *crypto_info,
6448                              u32 tcp_sn)
6449{
6450        struct adapter *adap = netdev2adap(netdev);
6451        int ret;
6452
6453        mutex_lock(&uld_mutex);
6454        ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6455        if (ret)
6456                goto out_unlock;
6457
6458        ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6459        if (ret)
6460                goto out_unlock;
6461
6462        ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6463                                                                direction,
6464                                                                crypto_info,
6465                                                                tcp_sn);
6466        /* if there is a failure, clear the refcount */
6467        if (ret)
6468                cxgb4_set_ktls_feature(adap,
6469                                       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6470out_unlock:
6471        mutex_unlock(&uld_mutex);
6472        return ret;
6473}
6474
6475static void cxgb4_ktls_dev_del(struct net_device *netdev,
6476                               struct tls_context *tls_ctx,
6477                               enum tls_offload_ctx_dir direction)
6478{
6479        struct adapter *adap = netdev2adap(netdev);
6480
6481        mutex_lock(&uld_mutex);
6482        if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6483                goto out_unlock;
6484
6485        adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6486                                                          direction);
6487        cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6488
6489out_unlock:
6490        mutex_unlock(&uld_mutex);
6491}
6492
6493static const struct tlsdev_ops cxgb4_ktls_ops = {
6494        .tls_dev_add = cxgb4_ktls_dev_add,
6495        .tls_dev_del = cxgb4_ktls_dev_del,
6496};
6497#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6498
6499#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6500
6501static int cxgb4_xfrm_add_state(struct xfrm_state *x)
6502{
6503        struct adapter *adap = netdev2adap(x->xso.dev);
6504        int ret;
6505
6506        if (!mutex_trylock(&uld_mutex)) {
6507                dev_dbg(adap->pdev_dev,
6508                        "crypto uld critical resource is under use\n");
6509                return -EBUSY;
6510        }
6511        ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6512        if (ret)
6513                goto out_unlock;
6514
6515        ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
6516
6517out_unlock:
6518        mutex_unlock(&uld_mutex);
6519
6520        return ret;
6521}
6522
6523static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6524{
6525        struct adapter *adap = netdev2adap(x->xso.dev);
6526
6527        if (!mutex_trylock(&uld_mutex)) {
6528                dev_dbg(adap->pdev_dev,
6529                        "crypto uld critical resource is under use\n");
6530                return;
6531        }
6532        if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6533                goto out_unlock;
6534
6535        adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6536
6537out_unlock:
6538        mutex_unlock(&uld_mutex);
6539}
6540
6541static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6542{
6543        struct adapter *adap = netdev2adap(x->xso.dev);
6544
6545        if (!mutex_trylock(&uld_mutex)) {
6546                dev_dbg(adap->pdev_dev,
6547                        "crypto uld critical resource is under use\n");
6548                return;
6549        }
6550        if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6551                goto out_unlock;
6552
6553        adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6554
6555out_unlock:
6556        mutex_unlock(&uld_mutex);
6557}
6558
6559static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6560{
6561        struct adapter *adap = netdev2adap(x->xso.dev);
6562        bool ret = false;
6563
6564        if (!mutex_trylock(&uld_mutex)) {
6565                dev_dbg(adap->pdev_dev,
6566                        "crypto uld critical resource is under use\n");
6567                return ret;
6568        }
6569        if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6570                goto out_unlock;
6571
6572        ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6573
6574out_unlock:
6575        mutex_unlock(&uld_mutex);
6576        return ret;
6577}
6578
6579static void cxgb4_advance_esn_state(struct xfrm_state *x)
6580{
6581        struct adapter *adap = netdev2adap(x->xso.dev);
6582
6583        if (!mutex_trylock(&uld_mutex)) {
6584                dev_dbg(adap->pdev_dev,
6585                        "crypto uld critical resource is under use\n");
6586                return;
6587        }
6588        if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6589                goto out_unlock;
6590
6591        adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6592
6593out_unlock:
6594        mutex_unlock(&uld_mutex);
6595}
6596
6597static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6598        .xdo_dev_state_add      = cxgb4_xfrm_add_state,
6599        .xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6600        .xdo_dev_state_free     = cxgb4_xfrm_free_state,
6601        .xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6602        .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6603};
6604
6605#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6606
6607static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6608{
6609        struct net_device *netdev;
6610        struct adapter *adapter;
6611        static int adap_idx = 1;
6612        int s_qpp, qpp, num_seg;
6613        struct port_info *pi;
6614        bool highdma = false;
6615        enum chip_type chip;
6616        void __iomem *regs;
6617        int func, chip_ver;
6618        u16 device_id;
6619        int i, err;
6620        u32 whoami;
6621
6622        err = pci_request_regions(pdev, KBUILD_MODNAME);
6623        if (err) {
6624                /* Just info, some other driver may have claimed the device. */
6625                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6626                return err;
6627        }
6628
6629        err = pci_enable_device(pdev);
6630        if (err) {
6631                dev_err(&pdev->dev, "cannot enable PCI device\n");
6632                goto out_release_regions;
6633        }
6634
6635        regs = pci_ioremap_bar(pdev, 0);
6636        if (!regs) {
6637                dev_err(&pdev->dev, "cannot map device registers\n");
6638                err = -ENOMEM;
6639                goto out_disable_device;
6640        }
6641
6642        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6643        if (!adapter) {
6644                err = -ENOMEM;
6645                goto out_unmap_bar0;
6646        }
6647
6648        adapter->regs = regs;
6649        err = t4_wait_dev_ready(regs);
6650        if (err < 0)
6651                goto out_free_adapter;
6652
6653        /* We control everything through one PF */
6654        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6655        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6656        chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6657        if ((int)chip < 0) {
6658                dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6659                err = chip;
6660                goto out_free_adapter;
6661        }
6662        chip_ver = CHELSIO_CHIP_VERSION(chip);
6663        func = chip_ver <= CHELSIO_T5 ?
6664               SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6665
6666        adapter->pdev = pdev;
6667        adapter->pdev_dev = &pdev->dev;
6668        adapter->name = pci_name(pdev);
6669        adapter->mbox = func;
6670        adapter->pf = func;
6671        adapter->params.chip = chip;
6672        adapter->adap_idx = adap_idx;
6673        adapter->msg_enable = DFLT_MSG_ENABLE;
6674        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6675                                    (sizeof(struct mbox_cmd) *
6676                                     T4_OS_LOG_MBOX_CMDS),
6677                                    GFP_KERNEL);
6678        if (!adapter->mbox_log) {
6679                err = -ENOMEM;
6680                goto out_free_adapter;
6681        }
6682        spin_lock_init(&adapter->mbox_lock);
6683        INIT_LIST_HEAD(&adapter->mlist.list);
6684        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6685        pci_set_drvdata(pdev, adapter);
6686
6687        if (func != ent->driver_data) {
6688                pci_disable_device(pdev);
6689                pci_save_state(pdev);        /* to restore SR-IOV later */
6690                return 0;
6691        }
6692
6693        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6694                highdma = true;
6695                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6696                if (err) {
6697                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6698                                "coherent allocations\n");
6699                        goto out_free_adapter;
6700                }
6701        } else {
6702                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6703                if (err) {
6704                        dev_err(&pdev->dev, "no usable DMA configuration\n");
6705                        goto out_free_adapter;
6706                }
6707        }
6708
6709        pci_enable_pcie_error_reporting(pdev);
6710        pci_set_master(pdev);
6711        pci_save_state(pdev);
6712        adap_idx++;
6713        adapter->workq = create_singlethread_workqueue("cxgb4");
6714        if (!adapter->workq) {
6715                err = -ENOMEM;
6716                goto out_free_adapter;
6717        }
6718
6719        /* PCI device has been enabled */
6720        adapter->flags |= CXGB4_DEV_ENABLED;
6721        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6722
6723        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6724         * Ingress Packet Data to Free List Buffers in order to allow for
6725         * chipset performance optimizations between the Root Complex and
6726         * Memory Controllers.  (Messages to the associated Ingress Queue
6727         * notifying new Packet Placement in the Free Lists Buffers will be
6728         * send without the Relaxed Ordering Attribute thus guaranteeing that
6729         * all preceding PCIe Transaction Layer Packets will be processed
6730         * first.)  But some Root Complexes have various issues with Upstream
6731         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6732         * The PCIe devices which under the Root Complexes will be cleared the
6733         * Relaxed Ordering bit in the configuration space, So we check our
6734         * PCIe configuration space to see if it's flagged with advice against
6735         * using Relaxed Ordering.
6736         */
6737        if (!pcie_relaxed_ordering_enabled(pdev))
6738                adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6739
6740        spin_lock_init(&adapter->stats_lock);
6741        spin_lock_init(&adapter->tid_release_lock);
6742        spin_lock_init(&adapter->win0_lock);
6743
6744        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6745        INIT_WORK(&adapter->db_full_task, process_db_full);
6746        INIT_WORK(&adapter->db_drop_task, process_db_drop);
6747        INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6748
6749        err = t4_prep_adapter(adapter);
6750        if (err)
6751                goto out_free_adapter;
6752
6753        if (is_kdump_kernel()) {
6754                /* Collect hardware state and append to /proc/vmcore */
6755                err = cxgb4_cudbg_vmcore_add_dump(adapter);
6756                if (err) {
6757                        dev_warn(adapter->pdev_dev,
6758                                 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6759                                 err);
6760                        err = 0;
6761                }
6762        }
6763
6764        if (!is_t4(adapter->params.chip)) {
6765                s_qpp = (QUEUESPERPAGEPF0_S +
6766                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6767                        adapter->pf);
6768                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6769                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6770                num_seg = PAGE_SIZE / SEGMENT_SIZE;
6771
6772                /* Each segment size is 128B. Write coalescing is enabled only
6773                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6774                 * queue is less no of segments that can be accommodated in
6775                 * a page size.
6776                 */
6777                if (qpp > num_seg) {
6778                        dev_err(&pdev->dev,
6779                                "Incorrect number of egress queues per page\n");
6780                        err = -EINVAL;
6781                        goto out_free_adapter;
6782                }
6783                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6784                pci_resource_len(pdev, 2));
6785                if (!adapter->bar2) {
6786                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
6787                        err = -ENOMEM;
6788                        goto out_free_adapter;
6789                }
6790        }
6791
6792        setup_memwin(adapter);
6793        err = adap_init0(adapter, 0);
6794#ifdef CONFIG_DEBUG_FS
6795        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6796#endif
6797        setup_memwin_rdma(adapter);
6798        if (err)
6799                goto out_unmap_bar;
6800
6801        /* configure SGE_STAT_CFG_A to read WC stats */
6802        if (!is_t4(adapter->params.chip))
6803                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6804                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6805                              T6_STATMODE_V(0)));
6806
6807        /* Initialize hash mac addr list */
6808        INIT_LIST_HEAD(&adapter->mac_hlist);
6809
6810        for_each_port(adapter, i) {
6811                /* For supporting MQPRIO Offload, need some extra
6812                 * queues for each ETHOFLD TIDs. Keep it equal to
6813                 * MAX_ATIDs for now. Once we connect to firmware
6814                 * later and query the EOTID params, we'll come to
6815                 * know the actual # of EOTIDs supported.
6816                 */
6817                netdev = alloc_etherdev_mq(sizeof(struct port_info),
6818                                           MAX_ETH_QSETS + MAX_ATIDS);
6819                if (!netdev) {
6820                        err = -ENOMEM;
6821                        goto out_free_dev;
6822                }
6823
6824                SET_NETDEV_DEV(netdev, &pdev->dev);
6825
6826                adapter->port[i] = netdev;
6827                pi = netdev_priv(netdev);
6828                pi->adapter = adapter;
6829                pi->xact_addr_filt = -1;
6830                pi->port_id = i;
6831                netdev->irq = pdev->irq;
6832
6833                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6834                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6835                        NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6836                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6837                        NETIF_F_HW_TC | NETIF_F_NTUPLE;
6838
6839                if (chip_ver > CHELSIO_T5) {
6840                        netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6841                                                   NETIF_F_IPV6_CSUM |
6842                                                   NETIF_F_RXCSUM |
6843                                                   NETIF_F_GSO_UDP_TUNNEL |
6844                                                   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6845                                                   NETIF_F_TSO | NETIF_F_TSO6;
6846
6847                        netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6848                                               NETIF_F_GSO_UDP_TUNNEL_CSUM |
6849                                               NETIF_F_HW_TLS_RECORD;
6850
6851                        if (adapter->rawf_cnt)
6852                                netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6853                }
6854
6855                if (highdma)
6856                        netdev->hw_features |= NETIF_F_HIGHDMA;
6857                netdev->features |= netdev->hw_features;
6858                netdev->vlan_features = netdev->features & VLAN_FEAT;
6859#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6860                if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6861                        netdev->hw_features |= NETIF_F_HW_TLS_TX;
6862                        netdev->tlsdev_ops = &cxgb4_ktls_ops;
6863                        /* initialize the refcount */
6864                        refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6865                }
6866#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6867#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6868                if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6869                        netdev->hw_enc_features |= NETIF_F_HW_ESP;
6870                        netdev->features |= NETIF_F_HW_ESP;
6871                        netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6872                }
6873#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6874
6875                netdev->priv_flags |= IFF_UNICAST_FLT;
6876
6877                /* MTU range: 81 - 9600 */
6878                netdev->min_mtu = 81;              /* accommodate SACK */
6879                netdev->max_mtu = MAX_MTU;
6880
6881                netdev->netdev_ops = &cxgb4_netdev_ops;
6882#ifdef CONFIG_CHELSIO_T4_DCB
6883                netdev->dcbnl_ops = &cxgb4_dcb_ops;
6884                cxgb4_dcb_state_init(netdev);
6885                cxgb4_dcb_version_init(netdev);
6886#endif
6887                cxgb4_set_ethtool_ops(netdev);
6888        }
6889
6890        cxgb4_init_ethtool_dump(adapter);
6891
6892        pci_set_drvdata(pdev, adapter);
6893
6894        if (adapter->flags & CXGB4_FW_OK) {
6895                err = t4_port_init(adapter, func, func, 0);
6896                if (err)
6897                        goto out_free_dev;
6898        } else if (adapter->params.nports == 1) {
6899                /* If we don't have a connection to the firmware -- possibly
6900                 * because of an error -- grab the raw VPD parameters so we
6901                 * can set the proper MAC Address on the debug network
6902                 * interface that we've created.
6903                 */
6904                u8 hw_addr[ETH_ALEN];
6905                u8 *na = adapter->params.vpd.na;
6906
6907                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6908                if (!err) {
6909                        for (i = 0; i < ETH_ALEN; i++)
6910                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6911                                              hex2val(na[2 * i + 1]));
6912                        t4_set_hw_addr(adapter, 0, hw_addr);
6913                }
6914        }
6915
6916        if (!(adapter->flags & CXGB4_FW_OK))
6917                goto fw_attach_fail;
6918
6919        /* Configure queues and allocate tables now, they can be needed as
6920         * soon as the first register_netdev completes.
6921         */
6922        err = cfg_queues(adapter);
6923        if (err)
6924                goto out_free_dev;
6925
6926        adapter->smt = t4_init_smt();
6927        if (!adapter->smt) {
6928                /* We tolerate a lack of SMT, giving up some functionality */
6929                dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6930        }
6931
6932        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6933        if (!adapter->l2t) {
6934                /* We tolerate a lack of L2T, giving up some functionality */
6935                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6936                adapter->params.offload = 0;
6937        }
6938
6939#if IS_ENABLED(CONFIG_IPV6)
6940        if (chip_ver <= CHELSIO_T5 &&
6941            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6942                /* CLIP functionality is not present in hardware,
6943                 * hence disable all offload features
6944                 */
6945                dev_warn(&pdev->dev,
6946                         "CLIP not enabled in hardware, continuing\n");
6947                adapter->params.offload = 0;
6948        } else {
6949                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6950                                                  adapter->clipt_end);
6951                if (!adapter->clipt) {
6952                        /* We tolerate a lack of clip_table, giving up
6953                         * some functionality
6954                         */
6955                        dev_warn(&pdev->dev,
6956                                 "could not allocate Clip table, continuing\n");
6957                        adapter->params.offload = 0;
6958                }
6959        }
6960#endif
6961
6962        for_each_port(adapter, i) {
6963                pi = adap2pinfo(adapter, i);
6964                pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6965                if (!pi->sched_tbl)
6966                        dev_warn(&pdev->dev,
6967                                 "could not activate scheduling on port %d\n",
6968                                 i);
6969        }
6970
6971        if (is_offload(adapter) || is_hashfilter(adapter)) {
6972                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6973                        u32 v;
6974
6975                        v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6976                        if (chip_ver <= CHELSIO_T5) {
6977                                adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6978                                v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6979                                adapter->tids.hash_base = v / 4;
6980                        } else {
6981                                adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6982                                v = t4_read_reg(adapter,
6983                                                T6_LE_DB_HASH_TID_BASE_A);
6984                                adapter->tids.hash_base = v;
6985                        }
6986                }
6987        }
6988
6989        if (tid_init(&adapter->tids) < 0) {
6990                dev_warn(&pdev->dev, "could not allocate TID table, "
6991                         "continuing\n");
6992                adapter->params.offload = 0;
6993        } else {
6994                adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6995                if (!adapter->tc_u32)
6996                        dev_warn(&pdev->dev,
6997                                 "could not offload tc u32, continuing\n");
6998
6999                if (cxgb4_init_tc_flower(adapter))
7000                        dev_warn(&pdev->dev,
7001                                 "could not offload tc flower, continuing\n");
7002
7003                if (cxgb4_init_tc_mqprio(adapter))
7004                        dev_warn(&pdev->dev,
7005                                 "could not offload tc mqprio, continuing\n");
7006
7007                if (cxgb4_init_tc_matchall(adapter))
7008                        dev_warn(&pdev->dev,
7009                                 "could not offload tc matchall, continuing\n");
7010                if (cxgb4_init_ethtool_filters(adapter))
7011                        dev_warn(&pdev->dev,
7012                                 "could not initialize ethtool filters, continuing\n");
7013        }
7014
7015        /* See what interrupts we'll be using */
7016        if (msi > 1 && enable_msix(adapter) == 0)
7017                adapter->flags |= CXGB4_USING_MSIX;
7018        else if (msi > 0 && pci_enable_msi(pdev) == 0) {
7019                adapter->flags |= CXGB4_USING_MSI;
7020                if (msi > 1)
7021                        free_msix_info(adapter);
7022        }
7023
7024        /* check for PCI Express bandwidth capabiltites */
7025        pcie_print_link_status(pdev);
7026
7027        cxgb4_init_mps_ref_entries(adapter);
7028
7029        err = init_rss(adapter);
7030        if (err)
7031                goto out_free_dev;
7032
7033        err = setup_non_data_intr(adapter);
7034        if (err) {
7035                dev_err(adapter->pdev_dev,
7036                        "Non Data interrupt allocation failed, err: %d\n", err);
7037                goto out_free_dev;
7038        }
7039
7040        err = setup_fw_sge_queues(adapter);
7041        if (err) {
7042                dev_err(adapter->pdev_dev,
7043                        "FW sge queue allocation failed, err %d", err);
7044                goto out_free_dev;
7045        }
7046
7047fw_attach_fail:
7048        /*
7049         * The card is now ready to go.  If any errors occur during device
7050         * registration we do not fail the whole card but rather proceed only
7051         * with the ports we manage to register successfully.  However we must
7052         * register at least one net device.
7053         */
7054        for_each_port(adapter, i) {
7055                pi = adap2pinfo(adapter, i);
7056                adapter->port[i]->dev_port = pi->lport;
7057                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7058                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7059
7060                netif_carrier_off(adapter->port[i]);
7061
7062                err = register_netdev(adapter->port[i]);
7063                if (err)
7064                        break;
7065                adapter->chan_map[pi->tx_chan] = i;
7066                print_port_info(adapter->port[i]);
7067        }
7068        if (i == 0) {
7069                dev_err(&pdev->dev, "could not register any net devices\n");
7070                goto out_free_dev;
7071        }
7072        if (err) {
7073                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7074                err = 0;
7075        }
7076
7077        if (cxgb4_debugfs_root) {
7078                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7079                                                           cxgb4_debugfs_root);
7080                setup_debugfs(adapter);
7081        }
7082
7083        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7084        pdev->needs_freset = 1;
7085
7086        if (is_uld(adapter))
7087                cxgb4_uld_enable(adapter);
7088
7089        if (!is_t4(adapter->params.chip))
7090                cxgb4_ptp_init(adapter);
7091
7092        if (IS_REACHABLE(CONFIG_THERMAL) &&
7093            !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7094                cxgb4_thermal_init(adapter);
7095
7096        print_adapter_info(adapter);
7097        return 0;
7098
7099 out_free_dev:
7100        t4_free_sge_resources(adapter);
7101        free_some_resources(adapter);
7102        if (adapter->flags & CXGB4_USING_MSIX)
7103                free_msix_info(adapter);
7104        if (adapter->num_uld || adapter->num_ofld_uld)
7105                t4_uld_mem_free(adapter);
7106 out_unmap_bar:
7107        if (!is_t4(adapter->params.chip))
7108                iounmap(adapter->bar2);
7109 out_free_adapter:
7110        if (adapter->workq)
7111                destroy_workqueue(adapter->workq);
7112
7113        kfree(adapter->mbox_log);
7114        kfree(adapter);
7115 out_unmap_bar0:
7116        iounmap(regs);
7117 out_disable_device:
7118        pci_disable_pcie_error_reporting(pdev);
7119        pci_disable_device(pdev);
7120 out_release_regions:
7121        pci_release_regions(pdev);
7122        return err;
7123}
7124
7125static void remove_one(struct pci_dev *pdev)
7126{
7127        struct adapter *adapter = pci_get_drvdata(pdev);
7128        struct hash_mac_addr *entry, *tmp;
7129
7130        if (!adapter) {
7131                pci_release_regions(pdev);
7132                return;
7133        }
7134
7135        /* If we allocated filters, free up state associated with any
7136         * valid filters ...
7137         */
7138        clear_all_filters(adapter);
7139
7140        adapter->flags |= CXGB4_SHUTTING_DOWN;
7141
7142        if (adapter->pf == 4) {
7143                int i;
7144
7145                /* Tear down per-adapter Work Queue first since it can contain
7146                 * references to our adapter data structure.
7147                 */
7148                destroy_workqueue(adapter->workq);
7149
7150                if (is_uld(adapter)) {
7151                        detach_ulds(adapter);
7152                        t4_uld_clean_up(adapter);
7153                }
7154
7155                adap_free_hma_mem(adapter);
7156
7157                disable_interrupts(adapter);
7158
7159                cxgb4_free_mps_ref_entries(adapter);
7160
7161                for_each_port(adapter, i)
7162                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7163                                unregister_netdev(adapter->port[i]);
7164
7165                debugfs_remove_recursive(adapter->debugfs_root);
7166
7167                if (!is_t4(adapter->params.chip))
7168                        cxgb4_ptp_stop(adapter);
7169                if (IS_REACHABLE(CONFIG_THERMAL))
7170                        cxgb4_thermal_remove(adapter);
7171
7172                if (adapter->flags & CXGB4_FULL_INIT_DONE)
7173                        cxgb_down(adapter);
7174
7175                if (adapter->flags & CXGB4_USING_MSIX)
7176                        free_msix_info(adapter);
7177                if (adapter->num_uld || adapter->num_ofld_uld)
7178                        t4_uld_mem_free(adapter);
7179                free_some_resources(adapter);
7180                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7181                                         list) {
7182                        list_del(&entry->list);
7183                        kfree(entry);
7184                }
7185
7186#if IS_ENABLED(CONFIG_IPV6)
7187                t4_cleanup_clip_tbl(adapter);
7188#endif
7189                if (!is_t4(adapter->params.chip))
7190                        iounmap(adapter->bar2);
7191        }
7192#ifdef CONFIG_PCI_IOV
7193        else {
7194                cxgb4_iov_configure(adapter->pdev, 0);
7195        }
7196#endif
7197        iounmap(adapter->regs);
7198        pci_disable_pcie_error_reporting(pdev);
7199        if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7200                pci_disable_device(pdev);
7201                adapter->flags &= ~CXGB4_DEV_ENABLED;
7202        }
7203        pci_release_regions(pdev);
7204        kfree(adapter->mbox_log);
7205        synchronize_rcu();
7206        kfree(adapter);
7207}
7208
7209/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7210 * delivery.  This is essentially a stripped down version of the PCI remove()
7211 * function where we do the minimal amount of work necessary to shutdown any
7212 * further activity.
7213 */
7214static void shutdown_one(struct pci_dev *pdev)
7215{
7216        struct adapter *adapter = pci_get_drvdata(pdev);
7217
7218        /* As with remove_one() above (see extended comment), we only want do
7219         * do cleanup on PCI Devices which went all the way through init_one()
7220         * ...
7221         */
7222        if (!adapter) {
7223                pci_release_regions(pdev);
7224                return;
7225        }
7226
7227        adapter->flags |= CXGB4_SHUTTING_DOWN;
7228
7229        if (adapter->pf == 4) {
7230                int i;
7231
7232                for_each_port(adapter, i)
7233                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7234                                cxgb_close(adapter->port[i]);
7235
7236                rtnl_lock();
7237                cxgb4_mqprio_stop_offload(adapter);
7238                rtnl_unlock();
7239
7240                if (is_uld(adapter)) {
7241                        detach_ulds(adapter);
7242                        t4_uld_clean_up(adapter);
7243                }
7244
7245                disable_interrupts(adapter);
7246                disable_msi(adapter);
7247
7248                t4_sge_stop(adapter);
7249                if (adapter->flags & CXGB4_FW_OK)
7250                        t4_fw_bye(adapter, adapter->mbox);
7251        }
7252}
7253
7254static struct pci_driver cxgb4_driver = {
7255        .name     = KBUILD_MODNAME,
7256        .id_table = cxgb4_pci_tbl,
7257        .probe    = init_one,
7258        .remove   = remove_one,
7259        .shutdown = shutdown_one,
7260#ifdef CONFIG_PCI_IOV
7261        .sriov_configure = cxgb4_iov_configure,
7262#endif
7263        .err_handler = &cxgb4_eeh,
7264};
7265
7266static int __init cxgb4_init_module(void)
7267{
7268        int ret;
7269
7270        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7271
7272        ret = pci_register_driver(&cxgb4_driver);
7273        if (ret < 0)
7274                goto err_pci;
7275
7276#if IS_ENABLED(CONFIG_IPV6)
7277        if (!inet6addr_registered) {
7278                ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7279                if (ret)
7280                        pci_unregister_driver(&cxgb4_driver);
7281                else
7282                        inet6addr_registered = true;
7283        }
7284#endif
7285
7286        if (ret == 0)
7287                return ret;
7288
7289err_pci:
7290        debugfs_remove(cxgb4_debugfs_root);
7291
7292        return ret;
7293}
7294
7295static void __exit cxgb4_cleanup_module(void)
7296{
7297#if IS_ENABLED(CONFIG_IPV6)
7298        if (inet6addr_registered) {
7299                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7300                inet6addr_registered = false;
7301        }
7302#endif
7303        pci_unregister_driver(&cxgb4_driver);
7304        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7305}
7306
7307module_init(cxgb4_init_module);
7308module_exit(cxgb4_cleanup_module);
7309