linux/drivers/net/wimax/i2400m/netdev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel Wireless WiMAX Connection 2400m
   4 * Glue with the networking stack
   5 *
   6 * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
   7 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
   8 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   9 *
  10 * This implements an ethernet device for the i2400m.
  11 *
  12 * We fake being an ethernet device to simplify the support from user
  13 * space and from the other side. The world is (sadly) configured to
  14 * take in only Ethernet devices...
  15 *
  16 * Because of this, when using firmwares <= v1.3, there is an
  17 * copy-each-rxed-packet overhead on the RX path. Each IP packet has
  18 * to be reallocated to add an ethernet header (as there is no space
  19 * in what we get from the device). This is a known drawback and
  20 * firmwares >= 1.4 add header space that can be used to insert the
  21 * ethernet header without having to reallocate and copy.
  22 *
  23 * TX error handling is tricky; because we have to FIFO/queue the
  24 * buffers for transmission (as the hardware likes it aggregated), we
  25 * just give the skb to the TX subsystem and by the time it is
  26 * transmitted, we have long forgotten about it. So we just don't care
  27 * too much about it.
  28 *
  29 * Note that when the device is in idle mode with the basestation, we
  30 * need to negotiate coming back up online. That involves negotiation
  31 * and possible user space interaction. Thus, we defer to a workqueue
  32 * to do all that. By default, we only queue a single packet and drop
  33 * the rest, as potentially the time to go back from idle to normal is
  34 * long.
  35 *
  36 * ROADMAP
  37 *
  38 * i2400m_open         Called on ifconfig up
  39 * i2400m_stop         Called on ifconfig down
  40 *
  41 * i2400m_hard_start_xmit Called by the network stack to send a packet
  42 *   i2400m_net_wake_tx   Wake up device from basestation-IDLE & TX
  43 *     i2400m_wake_tx_work
  44 *       i2400m_cmd_exit_idle
  45 *       i2400m_tx
  46 *   i2400m_net_tx        TX a data frame
  47 *     i2400m_tx
  48 *
  49 * i2400m_change_mtu      Called on ifconfig mtu XXX
  50 *
  51 * i2400m_tx_timeout      Called when the device times out
  52 *
  53 * i2400m_net_rx          Called by the RX code when a data frame is
  54 *                        available (firmware <= 1.3)
  55 * i2400m_net_erx         Called by the RX code when a data frame is
  56 *                        available (firmware >= 1.4).
  57 * i2400m_netdev_setup    Called to setup all the netdev stuff from
  58 *                        alloc_netdev.
  59 */
  60#include <linux/if_arp.h>
  61#include <linux/slab.h>
  62#include <linux/netdevice.h>
  63#include <linux/ethtool.h>
  64#include <linux/export.h>
  65#include "i2400m.h"
  66
  67
  68#define D_SUBMODULE netdev
  69#include "debug-levels.h"
  70
  71enum {
  72/* netdev interface */
  73        /* 20 secs? yep, this is the maximum timeout that the device
  74         * might take to get out of IDLE / negotiate it with the base
  75         * station. We add 1sec for good measure. */
  76        I2400M_TX_TIMEOUT = 21 * HZ,
  77        /*
  78         * Experimentation has determined that, 20 to be a good value
  79         * for minimizing the jitter in the throughput.
  80         */
  81        I2400M_TX_QLEN = 20,
  82};
  83
  84
  85static
  86int i2400m_open(struct net_device *net_dev)
  87{
  88        int result;
  89        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
  90        struct device *dev = i2400m_dev(i2400m);
  91
  92        d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
  93        /* Make sure we wait until init is complete... */
  94        mutex_lock(&i2400m->init_mutex);
  95        if (i2400m->updown)
  96                result = 0;
  97        else
  98                result = -EBUSY;
  99        mutex_unlock(&i2400m->init_mutex);
 100        d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
 101                net_dev, i2400m, result);
 102        return result;
 103}
 104
 105
 106static
 107int i2400m_stop(struct net_device *net_dev)
 108{
 109        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 110        struct device *dev = i2400m_dev(i2400m);
 111
 112        d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
 113        i2400m_net_wake_stop(i2400m);
 114        d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
 115        return 0;
 116}
 117
 118
 119/*
 120 * Wake up the device and transmit a held SKB, then restart the net queue
 121 *
 122 * When the device goes into basestation-idle mode, we need to tell it
 123 * to exit that mode; it will negotiate with the base station, user
 124 * space may have to intervene to rehandshake crypto and then tell us
 125 * when it is ready to transmit the packet we have "queued". Still we
 126 * need to give it sometime after it reports being ok.
 127 *
 128 * On error, there is not much we can do. If the error was on TX, we
 129 * still wake the queue up to see if the next packet will be luckier.
 130 *
 131 * If _cmd_exit_idle() fails...well, it could be many things; most
 132 * commonly it is that something else took the device out of IDLE mode
 133 * (for example, the base station). In that case we get an -EILSEQ and
 134 * we are just going to ignore that one. If the device is back to
 135 * connected, then fine -- if it is someother state, the packet will
 136 * be dropped anyway.
 137 */
 138void i2400m_wake_tx_work(struct work_struct *ws)
 139{
 140        int result;
 141        struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
 142        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 143        struct device *dev = i2400m_dev(i2400m);
 144        struct sk_buff *skb;
 145        unsigned long flags;
 146
 147        spin_lock_irqsave(&i2400m->tx_lock, flags);
 148        skb = i2400m->wake_tx_skb;
 149        i2400m->wake_tx_skb = NULL;
 150        spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 151
 152        d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
 153        result = -EINVAL;
 154        if (skb == NULL) {
 155                dev_err(dev, "WAKE&TX: skb disappeared!\n");
 156                goto out_put;
 157        }
 158        /* If we have, somehow, lost the connection after this was
 159         * queued, don't do anything; this might be the device got
 160         * reset or just disconnected. */
 161        if (unlikely(!netif_carrier_ok(net_dev)))
 162                goto out_kfree;
 163        result = i2400m_cmd_exit_idle(i2400m);
 164        if (result == -EILSEQ)
 165                result = 0;
 166        if (result < 0) {
 167                dev_err(dev, "WAKE&TX: device didn't get out of idle: "
 168                        "%d - resetting\n", result);
 169                i2400m_reset(i2400m, I2400M_RT_BUS);
 170                goto error;
 171        }
 172        result = wait_event_timeout(i2400m->state_wq,
 173                                    i2400m->state != I2400M_SS_IDLE,
 174                                    net_dev->watchdog_timeo - HZ/2);
 175        if (result == 0)
 176                result = -ETIMEDOUT;
 177        if (result < 0) {
 178                dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
 179                        "%d - resetting\n", result);
 180                i2400m_reset(i2400m, I2400M_RT_BUS);
 181                goto error;
 182        }
 183        msleep(20);     /* device still needs some time or it drops it */
 184        result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
 185error:
 186        netif_wake_queue(net_dev);
 187out_kfree:
 188        kfree_skb(skb); /* refcount transferred by _hard_start_xmit() */
 189out_put:
 190        i2400m_put(i2400m);
 191        d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
 192                ws, i2400m, skb, result);
 193}
 194
 195
 196/*
 197 * Prepare the data payload TX header
 198 *
 199 * The i2400m expects a 4 byte header in front of a data packet.
 200 *
 201 * Because we pretend to be an ethernet device, this packet comes with
 202 * an ethernet header. Pull it and push our header.
 203 */
 204static
 205void i2400m_tx_prep_header(struct sk_buff *skb)
 206{
 207        struct i2400m_pl_data_hdr *pl_hdr;
 208        skb_pull(skb, ETH_HLEN);
 209        pl_hdr = skb_push(skb, sizeof(*pl_hdr));
 210        pl_hdr->reserved = 0;
 211}
 212
 213
 214
 215/*
 216 * Cleanup resources acquired during i2400m_net_wake_tx()
 217 *
 218 * This is called by __i2400m_dev_stop and means we have to make sure
 219 * the workqueue is flushed from any pending work.
 220 */
 221void i2400m_net_wake_stop(struct i2400m *i2400m)
 222{
 223        struct device *dev = i2400m_dev(i2400m);
 224        struct sk_buff *wake_tx_skb;
 225        unsigned long flags;
 226
 227        d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
 228        /*
 229         * See i2400m_hard_start_xmit(), references are taken there and
 230         * here we release them if the packet was still pending.
 231         */
 232        cancel_work_sync(&i2400m->wake_tx_ws);
 233
 234        spin_lock_irqsave(&i2400m->tx_lock, flags);
 235        wake_tx_skb = i2400m->wake_tx_skb;
 236        i2400m->wake_tx_skb = NULL;
 237        spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 238
 239        if (wake_tx_skb) {
 240                i2400m_put(i2400m);
 241                kfree_skb(wake_tx_skb);
 242        }
 243
 244        d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
 245}
 246
 247
 248/*
 249 * TX an skb to an idle device
 250 *
 251 * When the device is in basestation-idle mode, we need to wake it up
 252 * and then TX. So we queue a work_struct for doing so.
 253 *
 254 * We need to get an extra ref for the skb (so it is not dropped), as
 255 * well as be careful not to queue more than one request (won't help
 256 * at all). If more than one request comes or there are errors, we
 257 * just drop the packets (see i2400m_hard_start_xmit()).
 258 */
 259static
 260int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
 261                       struct sk_buff *skb)
 262{
 263        int result;
 264        struct device *dev = i2400m_dev(i2400m);
 265        unsigned long flags;
 266
 267        d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
 268        if (net_ratelimit()) {
 269                d_printf(3, dev, "WAKE&NETTX: "
 270                         "skb %p sending %d bytes to radio\n",
 271                         skb, skb->len);
 272                d_dump(4, dev, skb->data, skb->len);
 273        }
 274        /* We hold a ref count for i2400m and skb, so when
 275         * stopping() the device, we need to cancel that work
 276         * and if pending, release those resources. */
 277        result = 0;
 278        spin_lock_irqsave(&i2400m->tx_lock, flags);
 279        if (!i2400m->wake_tx_skb) {
 280                netif_stop_queue(net_dev);
 281                i2400m_get(i2400m);
 282                i2400m->wake_tx_skb = skb_get(skb);     /* transfer ref count */
 283                i2400m_tx_prep_header(skb);
 284                result = schedule_work(&i2400m->wake_tx_ws);
 285                WARN_ON(result == 0);
 286        }
 287        spin_unlock_irqrestore(&i2400m->tx_lock, flags);
 288        if (result == 0) {
 289                /* Yes, this happens even if we stopped the
 290                 * queue -- blame the queue disciplines that
 291                 * queue without looking -- I guess there is a reason
 292                 * for that. */
 293                if (net_ratelimit())
 294                        d_printf(1, dev, "NETTX: device exiting idle, "
 295                                 "dropping skb %p, queue running %d\n",
 296                                 skb, netif_queue_stopped(net_dev));
 297                result = -EBUSY;
 298        }
 299        d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
 300        return result;
 301}
 302
 303
 304/*
 305 * Transmit a packet to the base station on behalf of the network stack.
 306 *
 307 * Returns: 0 if ok, < 0 errno code on error.
 308 *
 309 * We need to pull the ethernet header and add the hardware header,
 310 * which is currently set to all zeroes and reserved.
 311 */
 312static
 313int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
 314                  struct sk_buff *skb)
 315{
 316        int result;
 317        struct device *dev = i2400m_dev(i2400m);
 318
 319        d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
 320                  i2400m, net_dev, skb);
 321        /* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
 322        netif_trans_update(net_dev);
 323        i2400m_tx_prep_header(skb);
 324        d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
 325                 skb, skb->len);
 326        d_dump(4, dev, skb->data, skb->len);
 327        result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
 328        d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
 329                i2400m, net_dev, skb, result);
 330        return result;
 331}
 332
 333
 334/*
 335 * Transmit a packet to the base station on behalf of the network stack
 336 *
 337 *
 338 * Returns: NETDEV_TX_OK (always, even in case of error)
 339 *
 340 * In case of error, we just drop it. Reasons:
 341 *
 342 *  - we add a hw header to each skb, and if the network stack
 343 *    retries, we have no way to know if that skb has it or not.
 344 *
 345 *  - network protocols have their own drop-recovery mechanisms
 346 *
 347 *  - there is not much else we can do
 348 *
 349 * If the device is idle, we need to wake it up; that is an operation
 350 * that will sleep. See i2400m_net_wake_tx() for details.
 351 */
 352static
 353netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
 354                                         struct net_device *net_dev)
 355{
 356        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 357        struct device *dev = i2400m_dev(i2400m);
 358        int result = -1;
 359
 360        d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
 361
 362        if (skb_cow_head(skb, 0))
 363                goto drop;
 364
 365        if (i2400m->state == I2400M_SS_IDLE)
 366                result = i2400m_net_wake_tx(i2400m, net_dev, skb);
 367        else
 368                result = i2400m_net_tx(i2400m, net_dev, skb);
 369        if (result <  0) {
 370drop:
 371                net_dev->stats.tx_dropped++;
 372        } else {
 373                net_dev->stats.tx_packets++;
 374                net_dev->stats.tx_bytes += skb->len;
 375        }
 376        dev_kfree_skb(skb);
 377        d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
 378        return NETDEV_TX_OK;
 379}
 380
 381
 382static
 383void i2400m_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
 384{
 385        /*
 386         * We might want to kick the device
 387         *
 388         * There is not much we can do though, as the device requires
 389         * that we send the data aggregated. By the time we receive
 390         * this, there might be data pending to be sent or not...
 391         */
 392        net_dev->stats.tx_errors++;
 393}
 394
 395
 396/*
 397 * Create a fake ethernet header
 398 *
 399 * For emulating an ethernet device, every received IP header has to
 400 * be prefixed with an ethernet header. Fake it with the given
 401 * protocol.
 402 */
 403static
 404void i2400m_rx_fake_eth_header(struct net_device *net_dev,
 405                               void *_eth_hdr, __be16 protocol)
 406{
 407        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 408        struct ethhdr *eth_hdr = _eth_hdr;
 409
 410        memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
 411        memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
 412               sizeof(eth_hdr->h_source));
 413        eth_hdr->h_proto = protocol;
 414}
 415
 416
 417/*
 418 * i2400m_net_rx - pass a network packet to the stack
 419 *
 420 * @i2400m: device instance
 421 * @skb_rx: the skb where the buffer pointed to by @buf is
 422 * @i: 1 if payload is the only one
 423 * @buf: pointer to the buffer containing the data
 424 * @len: buffer's length
 425 *
 426 * This is only used now for the v1.3 firmware. It will be deprecated
 427 * in >= 2.6.31.
 428 *
 429 * Note that due to firmware limitations, we don't have space to add
 430 * an ethernet header, so we need to copy each packet. Firmware
 431 * versions >= v1.4 fix this [see i2400m_net_erx()].
 432 *
 433 * We just clone the skb and set it up so that it's skb->data pointer
 434 * points to "buf" and it's length.
 435 *
 436 * Note that if the payload is the last (or the only one) in a
 437 * multi-payload message, we don't clone the SKB but just reuse it.
 438 *
 439 * This function is normally run from a thread context. However, we
 440 * still use netif_rx() instead of netif_receive_skb() as was
 441 * recommended in the mailing list. Reason is in some stress tests
 442 * when sending/receiving a lot of data we seem to hit a softlock in
 443 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
 444 * netif_rx() took care of the issue.
 445 *
 446 * This is, of course, still open to do more research on why running
 447 * with netif_receive_skb() hits this softlock. FIXME.
 448 *
 449 * FIXME: currently we don't do any efforts at distinguishing if what
 450 * we got was an IPv4 or IPv6 header, to setup the protocol field
 451 * correctly.
 452 */
 453void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
 454                   unsigned i, const void *buf, int buf_len)
 455{
 456        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 457        struct device *dev = i2400m_dev(i2400m);
 458        struct sk_buff *skb;
 459
 460        d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
 461                  i2400m, buf, buf_len);
 462        if (i) {
 463                skb = skb_get(skb_rx);
 464                d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
 465                skb_pull(skb, buf - (void *) skb->data);
 466                skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
 467        } else {
 468                /* Yes, this is bad -- a lot of overhead -- see
 469                 * comments at the top of the file */
 470                skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
 471                if (skb == NULL) {
 472                        dev_err(dev, "NETRX: no memory to realloc skb\n");
 473                        net_dev->stats.rx_dropped++;
 474                        goto error_skb_realloc;
 475                }
 476                skb_put_data(skb, buf, buf_len);
 477        }
 478        i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
 479                                  skb->data - ETH_HLEN,
 480                                  cpu_to_be16(ETH_P_IP));
 481        skb_set_mac_header(skb, -ETH_HLEN);
 482        skb->dev = i2400m->wimax_dev.net_dev;
 483        skb->protocol = htons(ETH_P_IP);
 484        net_dev->stats.rx_packets++;
 485        net_dev->stats.rx_bytes += buf_len;
 486        d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
 487                buf_len);
 488        d_dump(4, dev, buf, buf_len);
 489        netif_rx_ni(skb);       /* see notes in function header */
 490error_skb_realloc:
 491        d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
 492                i2400m, buf, buf_len);
 493}
 494
 495
 496/*
 497 * i2400m_net_erx - pass a network packet to the stack (extended version)
 498 *
 499 * @i2400m: device descriptor
 500 * @skb: the skb where the packet is - the skb should be set to point
 501 *     at the IP packet; this function will add ethernet headers if
 502 *     needed.
 503 * @cs: packet type
 504 *
 505 * This is only used now for firmware >= v1.4. Note it is quite
 506 * similar to i2400m_net_rx() (used only for v1.3 firmware).
 507 *
 508 * This function is normally run from a thread context. However, we
 509 * still use netif_rx() instead of netif_receive_skb() as was
 510 * recommended in the mailing list. Reason is in some stress tests
 511 * when sending/receiving a lot of data we seem to hit a softlock in
 512 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
 513 * netif_rx() took care of the issue.
 514 *
 515 * This is, of course, still open to do more research on why running
 516 * with netif_receive_skb() hits this softlock. FIXME.
 517 */
 518void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
 519                    enum i2400m_cs cs)
 520{
 521        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 522        struct device *dev = i2400m_dev(i2400m);
 523
 524        d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
 525                  i2400m, skb, skb->len, cs);
 526        switch(cs) {
 527        case I2400M_CS_IPV4_0:
 528        case I2400M_CS_IPV4:
 529                i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
 530                                          skb->data - ETH_HLEN,
 531                                          cpu_to_be16(ETH_P_IP));
 532                skb_set_mac_header(skb, -ETH_HLEN);
 533                skb->dev = i2400m->wimax_dev.net_dev;
 534                skb->protocol = htons(ETH_P_IP);
 535                net_dev->stats.rx_packets++;
 536                net_dev->stats.rx_bytes += skb->len;
 537                break;
 538        default:
 539                dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
 540                goto error;
 541
 542        }
 543        d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
 544                 skb->len);
 545        d_dump(4, dev, skb->data, skb->len);
 546        netif_rx_ni(skb);       /* see notes in function header */
 547error:
 548        d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
 549                i2400m, skb, skb->len, cs);
 550}
 551
 552static const struct net_device_ops i2400m_netdev_ops = {
 553        .ndo_open = i2400m_open,
 554        .ndo_stop = i2400m_stop,
 555        .ndo_start_xmit = i2400m_hard_start_xmit,
 556        .ndo_tx_timeout = i2400m_tx_timeout,
 557};
 558
 559static void i2400m_get_drvinfo(struct net_device *net_dev,
 560                               struct ethtool_drvinfo *info)
 561{
 562        struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
 563
 564        strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 565        strlcpy(info->fw_version, i2400m->fw_name ? : "",
 566                sizeof(info->fw_version));
 567        if (net_dev->dev.parent)
 568                strlcpy(info->bus_info, dev_name(net_dev->dev.parent),
 569                        sizeof(info->bus_info));
 570}
 571
 572static const struct ethtool_ops i2400m_ethtool_ops = {
 573        .get_drvinfo = i2400m_get_drvinfo,
 574        .get_link = ethtool_op_get_link,
 575};
 576
 577/**
 578 * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
 579 *
 580 * Called by alloc_netdev()
 581 */
 582void i2400m_netdev_setup(struct net_device *net_dev)
 583{
 584        d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
 585        ether_setup(net_dev);
 586        net_dev->mtu = I2400M_MAX_MTU;
 587        net_dev->min_mtu = 0;
 588        net_dev->max_mtu = I2400M_MAX_MTU;
 589        net_dev->tx_queue_len = I2400M_TX_QLEN;
 590        net_dev->features =
 591                  NETIF_F_VLAN_CHALLENGED
 592                | NETIF_F_HIGHDMA;
 593        net_dev->flags =
 594                IFF_NOARP               /* i2400m is apure IP device */
 595                & (~IFF_BROADCAST       /* i2400m is P2P */
 596                   & ~IFF_MULTICAST);
 597        net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
 598        net_dev->netdev_ops = &i2400m_netdev_ops;
 599        net_dev->ethtool_ops = &i2400m_ethtool_ops;
 600        d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
 601}
 602EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
 603
 604