linux/drivers/remoteproc/ti_k3_dsp_remoteproc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TI K3 DSP Remote Processor(s) driver
   4 *
   5 * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/
   6 *      Suman Anna <s-anna@ti.com>
   7 */
   8
   9#include <linux/io.h>
  10#include <linux/mailbox_client.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/of_reserved_mem.h>
  14#include <linux/omap-mailbox.h>
  15#include <linux/platform_device.h>
  16#include <linux/remoteproc.h>
  17#include <linux/reset.h>
  18#include <linux/slab.h>
  19
  20#include "omap_remoteproc.h"
  21#include "remoteproc_internal.h"
  22#include "ti_sci_proc.h"
  23
  24#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK       (SZ_16M - 1)
  25
  26/**
  27 * struct k3_dsp_mem - internal memory structure
  28 * @cpu_addr: MPU virtual address of the memory region
  29 * @bus_addr: Bus address used to access the memory region
  30 * @dev_addr: Device address of the memory region from DSP view
  31 * @size: Size of the memory region
  32 */
  33struct k3_dsp_mem {
  34        void __iomem *cpu_addr;
  35        phys_addr_t bus_addr;
  36        u32 dev_addr;
  37        size_t size;
  38};
  39
  40/**
  41 * struct k3_dsp_mem_data - memory definitions for a DSP
  42 * @name: name for this memory entry
  43 * @dev_addr: device address for the memory entry
  44 */
  45struct k3_dsp_mem_data {
  46        const char *name;
  47        const u32 dev_addr;
  48};
  49
  50/**
  51 * struct k3_dsp_dev_data - device data structure for a DSP
  52 * @mems: pointer to memory definitions for a DSP
  53 * @num_mems: number of memory regions in @mems
  54 * @boot_align_addr: boot vector address alignment granularity
  55 * @uses_lreset: flag to denote the need for local reset management
  56 */
  57struct k3_dsp_dev_data {
  58        const struct k3_dsp_mem_data *mems;
  59        u32 num_mems;
  60        u32 boot_align_addr;
  61        bool uses_lreset;
  62};
  63
  64/**
  65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
  66 * @dev: cached device pointer
  67 * @rproc: remoteproc device handle
  68 * @mem: internal memory regions data
  69 * @num_mems: number of internal memory regions
  70 * @rmem: reserved memory regions data
  71 * @num_rmems: number of reserved memory regions
  72 * @reset: reset control handle
  73 * @data: pointer to DSP-specific device data
  74 * @tsp: TI-SCI processor control handle
  75 * @ti_sci: TI-SCI handle
  76 * @ti_sci_id: TI-SCI device identifier
  77 * @mbox: mailbox channel handle
  78 * @client: mailbox client to request the mailbox channel
  79 */
  80struct k3_dsp_rproc {
  81        struct device *dev;
  82        struct rproc *rproc;
  83        struct k3_dsp_mem *mem;
  84        int num_mems;
  85        struct k3_dsp_mem *rmem;
  86        int num_rmems;
  87        struct reset_control *reset;
  88        const struct k3_dsp_dev_data *data;
  89        struct ti_sci_proc *tsp;
  90        const struct ti_sci_handle *ti_sci;
  91        u32 ti_sci_id;
  92        struct mbox_chan *mbox;
  93        struct mbox_client client;
  94};
  95
  96/**
  97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
  98 * @client: mailbox client pointer used for requesting the mailbox channel
  99 * @data: mailbox payload
 100 *
 101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
 102 * message is received. Usually, the mailbox payload simply contains
 103 * the index of the virtqueue that is kicked by the remote processor,
 104 * and we let remoteproc core handle it.
 105 *
 106 * In addition to virtqueue indices, we also have some out-of-band values
 107 * that indicate different events. Those values are deliberately very
 108 * large so they don't coincide with virtqueue indices.
 109 */
 110static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
 111{
 112        struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
 113                                                  client);
 114        struct device *dev = kproc->rproc->dev.parent;
 115        const char *name = kproc->rproc->name;
 116        u32 msg = omap_mbox_message(data);
 117
 118        dev_dbg(dev, "mbox msg: 0x%x\n", msg);
 119
 120        switch (msg) {
 121        case RP_MBOX_CRASH:
 122                /*
 123                 * remoteproc detected an exception, but error recovery is not
 124                 * supported. So, just log this for now
 125                 */
 126                dev_err(dev, "K3 DSP rproc %s crashed\n", name);
 127                break;
 128        case RP_MBOX_ECHO_REPLY:
 129                dev_info(dev, "received echo reply from %s\n", name);
 130                break;
 131        default:
 132                /* silently handle all other valid messages */
 133                if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
 134                        return;
 135                if (msg > kproc->rproc->max_notifyid) {
 136                        dev_dbg(dev, "dropping unknown message 0x%x", msg);
 137                        return;
 138                }
 139                /* msg contains the index of the triggered vring */
 140                if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
 141                        dev_dbg(dev, "no message was found in vqid %d\n", msg);
 142        }
 143}
 144
 145/*
 146 * Kick the remote processor to notify about pending unprocessed messages.
 147 * The vqid usage is not used and is inconsequential, as the kick is performed
 148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
 149 * the remote processor is expected to process both its Tx and Rx virtqueues.
 150 */
 151static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
 152{
 153        struct k3_dsp_rproc *kproc = rproc->priv;
 154        struct device *dev = rproc->dev.parent;
 155        mbox_msg_t msg = (mbox_msg_t)vqid;
 156        int ret;
 157
 158        /* send the index of the triggered virtqueue in the mailbox payload */
 159        ret = mbox_send_message(kproc->mbox, (void *)msg);
 160        if (ret < 0)
 161                dev_err(dev, "failed to send mailbox message, status = %d\n",
 162                        ret);
 163}
 164
 165/* Put the DSP processor into reset */
 166static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
 167{
 168        struct device *dev = kproc->dev;
 169        int ret;
 170
 171        ret = reset_control_assert(kproc->reset);
 172        if (ret) {
 173                dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
 174                return ret;
 175        }
 176
 177        if (kproc->data->uses_lreset)
 178                return ret;
 179
 180        ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
 181                                                    kproc->ti_sci_id);
 182        if (ret) {
 183                dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
 184                if (reset_control_deassert(kproc->reset))
 185                        dev_warn(dev, "local-reset deassert back failed\n");
 186        }
 187
 188        return ret;
 189}
 190
 191/* Release the DSP processor from reset */
 192static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
 193{
 194        struct device *dev = kproc->dev;
 195        int ret;
 196
 197        if (kproc->data->uses_lreset)
 198                goto lreset;
 199
 200        ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
 201                                                    kproc->ti_sci_id);
 202        if (ret) {
 203                dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
 204                return ret;
 205        }
 206
 207lreset:
 208        ret = reset_control_deassert(kproc->reset);
 209        if (ret) {
 210                dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
 211                if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
 212                                                          kproc->ti_sci_id))
 213                        dev_warn(dev, "module-reset assert back failed\n");
 214        }
 215
 216        return ret;
 217}
 218
 219/*
 220 * The C66x DSP cores have a local reset that affects only the CPU, and a
 221 * generic module reset that powers on the device and allows the DSP internal
 222 * memories to be accessed while the local reset is asserted. This function is
 223 * used to release the global reset on C66x DSPs to allow loading into the DSP
 224 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
 225 * firmware loading, and is followed by the .start() ops after loading to
 226 * actually let the C66x DSP cores run.
 227 */
 228static int k3_dsp_rproc_prepare(struct rproc *rproc)
 229{
 230        struct k3_dsp_rproc *kproc = rproc->priv;
 231        struct device *dev = kproc->dev;
 232        int ret;
 233
 234        ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
 235                                                    kproc->ti_sci_id);
 236        if (ret)
 237                dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
 238                        ret);
 239
 240        return ret;
 241}
 242
 243/*
 244 * This function implements the .unprepare() ops and performs the complimentary
 245 * operations to that of the .prepare() ops. The function is used to assert the
 246 * global reset on applicable C66x cores. This completes the second portion of
 247 * powering down the C66x DSP cores. The cores themselves are only halted in the
 248 * .stop() callback through the local reset, and the .unprepare() ops is invoked
 249 * by the remoteproc core after the remoteproc is stopped to balance the global
 250 * reset.
 251 */
 252static int k3_dsp_rproc_unprepare(struct rproc *rproc)
 253{
 254        struct k3_dsp_rproc *kproc = rproc->priv;
 255        struct device *dev = kproc->dev;
 256        int ret;
 257
 258        ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
 259                                                    kproc->ti_sci_id);
 260        if (ret)
 261                dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
 262
 263        return ret;
 264}
 265
 266/*
 267 * Power up the DSP remote processor.
 268 *
 269 * This function will be invoked only after the firmware for this rproc
 270 * was loaded, parsed successfully, and all of its resource requirements
 271 * were met.
 272 */
 273static int k3_dsp_rproc_start(struct rproc *rproc)
 274{
 275        struct k3_dsp_rproc *kproc = rproc->priv;
 276        struct mbox_client *client = &kproc->client;
 277        struct device *dev = kproc->dev;
 278        u32 boot_addr;
 279        int ret;
 280
 281        client->dev = dev;
 282        client->tx_done = NULL;
 283        client->rx_callback = k3_dsp_rproc_mbox_callback;
 284        client->tx_block = false;
 285        client->knows_txdone = false;
 286
 287        kproc->mbox = mbox_request_channel(client, 0);
 288        if (IS_ERR(kproc->mbox)) {
 289                ret = -EBUSY;
 290                dev_err(dev, "mbox_request_channel failed: %ld\n",
 291                        PTR_ERR(kproc->mbox));
 292                return ret;
 293        }
 294
 295        /*
 296         * Ping the remote processor, this is only for sanity-sake for now;
 297         * there is no functional effect whatsoever.
 298         *
 299         * Note that the reply will _not_ arrive immediately: this message
 300         * will wait in the mailbox fifo until the remote processor is booted.
 301         */
 302        ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
 303        if (ret < 0) {
 304                dev_err(dev, "mbox_send_message failed: %d\n", ret);
 305                goto put_mbox;
 306        }
 307
 308        boot_addr = rproc->bootaddr;
 309        if (boot_addr & (kproc->data->boot_align_addr - 1)) {
 310                dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
 311                        boot_addr, kproc->data->boot_align_addr);
 312                ret = -EINVAL;
 313                goto put_mbox;
 314        }
 315
 316        dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
 317        ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
 318        if (ret)
 319                goto put_mbox;
 320
 321        ret = k3_dsp_rproc_release(kproc);
 322        if (ret)
 323                goto put_mbox;
 324
 325        return 0;
 326
 327put_mbox:
 328        mbox_free_channel(kproc->mbox);
 329        return ret;
 330}
 331
 332/*
 333 * Stop the DSP remote processor.
 334 *
 335 * This function puts the DSP processor into reset, and finishes processing
 336 * of any pending messages.
 337 */
 338static int k3_dsp_rproc_stop(struct rproc *rproc)
 339{
 340        struct k3_dsp_rproc *kproc = rproc->priv;
 341
 342        mbox_free_channel(kproc->mbox);
 343
 344        k3_dsp_rproc_reset(kproc);
 345
 346        return 0;
 347}
 348
 349/*
 350 * Custom function to translate a DSP device address (internal RAMs only) to a
 351 * kernel virtual address.  The DSPs can access their RAMs at either an internal
 352 * address visible only from a DSP, or at the SoC-level bus address. Both these
 353 * addresses need to be looked through for translation. The translated addresses
 354 * can be used either by the remoteproc core for loading (when using kernel
 355 * remoteproc loader), or by any rpmsg bus drivers.
 356 */
 357static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
 358{
 359        struct k3_dsp_rproc *kproc = rproc->priv;
 360        void __iomem *va = NULL;
 361        phys_addr_t bus_addr;
 362        u32 dev_addr, offset;
 363        size_t size;
 364        int i;
 365
 366        if (len == 0)
 367                return NULL;
 368
 369        for (i = 0; i < kproc->num_mems; i++) {
 370                bus_addr = kproc->mem[i].bus_addr;
 371                dev_addr = kproc->mem[i].dev_addr;
 372                size = kproc->mem[i].size;
 373
 374                if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
 375                        /* handle DSP-view addresses */
 376                        if (da >= dev_addr &&
 377                            ((da + len) <= (dev_addr + size))) {
 378                                offset = da - dev_addr;
 379                                va = kproc->mem[i].cpu_addr + offset;
 380                                return (__force void *)va;
 381                        }
 382                } else {
 383                        /* handle SoC-view addresses */
 384                        if (da >= bus_addr &&
 385                            (da + len) <= (bus_addr + size)) {
 386                                offset = da - bus_addr;
 387                                va = kproc->mem[i].cpu_addr + offset;
 388                                return (__force void *)va;
 389                        }
 390                }
 391        }
 392
 393        /* handle static DDR reserved memory regions */
 394        for (i = 0; i < kproc->num_rmems; i++) {
 395                dev_addr = kproc->rmem[i].dev_addr;
 396                size = kproc->rmem[i].size;
 397
 398                if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
 399                        offset = da - dev_addr;
 400                        va = kproc->rmem[i].cpu_addr + offset;
 401                        return (__force void *)va;
 402                }
 403        }
 404
 405        return NULL;
 406}
 407
 408static const struct rproc_ops k3_dsp_rproc_ops = {
 409        .start          = k3_dsp_rproc_start,
 410        .stop           = k3_dsp_rproc_stop,
 411        .kick           = k3_dsp_rproc_kick,
 412        .da_to_va       = k3_dsp_rproc_da_to_va,
 413};
 414
 415static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
 416                                        struct k3_dsp_rproc *kproc)
 417{
 418        const struct k3_dsp_dev_data *data = kproc->data;
 419        struct device *dev = &pdev->dev;
 420        struct resource *res;
 421        int num_mems = 0;
 422        int i;
 423
 424        num_mems = kproc->data->num_mems;
 425        kproc->mem = devm_kcalloc(kproc->dev, num_mems,
 426                                  sizeof(*kproc->mem), GFP_KERNEL);
 427        if (!kproc->mem)
 428                return -ENOMEM;
 429
 430        for (i = 0; i < num_mems; i++) {
 431                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 432                                                   data->mems[i].name);
 433                if (!res) {
 434                        dev_err(dev, "found no memory resource for %s\n",
 435                                data->mems[i].name);
 436                        return -EINVAL;
 437                }
 438                if (!devm_request_mem_region(dev, res->start,
 439                                             resource_size(res),
 440                                             dev_name(dev))) {
 441                        dev_err(dev, "could not request %s region for resource\n",
 442                                data->mems[i].name);
 443                        return -EBUSY;
 444                }
 445
 446                kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
 447                                                         resource_size(res));
 448                if (IS_ERR(kproc->mem[i].cpu_addr)) {
 449                        dev_err(dev, "failed to map %s memory\n",
 450                                data->mems[i].name);
 451                        return PTR_ERR(kproc->mem[i].cpu_addr);
 452                }
 453                kproc->mem[i].bus_addr = res->start;
 454                kproc->mem[i].dev_addr = data->mems[i].dev_addr;
 455                kproc->mem[i].size = resource_size(res);
 456
 457                dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
 458                        data->mems[i].name, &kproc->mem[i].bus_addr,
 459                        kproc->mem[i].size, kproc->mem[i].cpu_addr,
 460                        kproc->mem[i].dev_addr);
 461        }
 462        kproc->num_mems = num_mems;
 463
 464        return 0;
 465}
 466
 467static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
 468{
 469        struct device *dev = kproc->dev;
 470        struct device_node *np = dev->of_node;
 471        struct device_node *rmem_np;
 472        struct reserved_mem *rmem;
 473        int num_rmems;
 474        int ret, i;
 475
 476        num_rmems = of_property_count_elems_of_size(np, "memory-region",
 477                                                    sizeof(phandle));
 478        if (num_rmems <= 0) {
 479                dev_err(dev, "device does not reserved memory regions, ret = %d\n",
 480                        num_rmems);
 481                return -EINVAL;
 482        }
 483        if (num_rmems < 2) {
 484                dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
 485                        num_rmems);
 486                return -EINVAL;
 487        }
 488
 489        /* use reserved memory region 0 for vring DMA allocations */
 490        ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
 491        if (ret) {
 492                dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
 493                        ret);
 494                return ret;
 495        }
 496
 497        num_rmems--;
 498        kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
 499        if (!kproc->rmem) {
 500                ret = -ENOMEM;
 501                goto release_rmem;
 502        }
 503
 504        /* use remaining reserved memory regions for static carveouts */
 505        for (i = 0; i < num_rmems; i++) {
 506                rmem_np = of_parse_phandle(np, "memory-region", i + 1);
 507                if (!rmem_np) {
 508                        ret = -EINVAL;
 509                        goto unmap_rmem;
 510                }
 511
 512                rmem = of_reserved_mem_lookup(rmem_np);
 513                if (!rmem) {
 514                        of_node_put(rmem_np);
 515                        ret = -EINVAL;
 516                        goto unmap_rmem;
 517                }
 518                of_node_put(rmem_np);
 519
 520                kproc->rmem[i].bus_addr = rmem->base;
 521                /* 64-bit address regions currently not supported */
 522                kproc->rmem[i].dev_addr = (u32)rmem->base;
 523                kproc->rmem[i].size = rmem->size;
 524                kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
 525                if (!kproc->rmem[i].cpu_addr) {
 526                        dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
 527                                i + 1, &rmem->base, &rmem->size);
 528                        ret = -ENOMEM;
 529                        goto unmap_rmem;
 530                }
 531
 532                dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
 533                        i + 1, &kproc->rmem[i].bus_addr,
 534                        kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
 535                        kproc->rmem[i].dev_addr);
 536        }
 537        kproc->num_rmems = num_rmems;
 538
 539        return 0;
 540
 541unmap_rmem:
 542        for (i--; i >= 0; i--)
 543                iounmap(kproc->rmem[i].cpu_addr);
 544        kfree(kproc->rmem);
 545release_rmem:
 546        of_reserved_mem_device_release(kproc->dev);
 547        return ret;
 548}
 549
 550static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
 551{
 552        int i;
 553
 554        for (i = 0; i < kproc->num_rmems; i++)
 555                iounmap(kproc->rmem[i].cpu_addr);
 556        kfree(kproc->rmem);
 557
 558        of_reserved_mem_device_release(kproc->dev);
 559}
 560
 561static
 562struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
 563                                            const struct ti_sci_handle *sci)
 564{
 565        struct ti_sci_proc *tsp;
 566        u32 temp[2];
 567        int ret;
 568
 569        ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
 570                                         temp, 2);
 571        if (ret < 0)
 572                return ERR_PTR(ret);
 573
 574        tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
 575        if (!tsp)
 576                return ERR_PTR(-ENOMEM);
 577
 578        tsp->dev = dev;
 579        tsp->sci = sci;
 580        tsp->ops = &sci->ops.proc_ops;
 581        tsp->proc_id = temp[0];
 582        tsp->host_id = temp[1];
 583
 584        return tsp;
 585}
 586
 587static int k3_dsp_rproc_probe(struct platform_device *pdev)
 588{
 589        struct device *dev = &pdev->dev;
 590        struct device_node *np = dev->of_node;
 591        const struct k3_dsp_dev_data *data;
 592        struct k3_dsp_rproc *kproc;
 593        struct rproc *rproc;
 594        const char *fw_name;
 595        int ret = 0;
 596        int ret1;
 597
 598        data = of_device_get_match_data(dev);
 599        if (!data)
 600                return -ENODEV;
 601
 602        ret = rproc_of_parse_firmware(dev, 0, &fw_name);
 603        if (ret) {
 604                dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
 605                        ret);
 606                return ret;
 607        }
 608
 609        rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
 610                            sizeof(*kproc));
 611        if (!rproc)
 612                return -ENOMEM;
 613
 614        rproc->has_iommu = false;
 615        rproc->recovery_disabled = true;
 616        if (data->uses_lreset) {
 617                rproc->ops->prepare = k3_dsp_rproc_prepare;
 618                rproc->ops->unprepare = k3_dsp_rproc_unprepare;
 619        }
 620        kproc = rproc->priv;
 621        kproc->rproc = rproc;
 622        kproc->dev = dev;
 623        kproc->data = data;
 624
 625        kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
 626        if (IS_ERR(kproc->ti_sci)) {
 627                ret = PTR_ERR(kproc->ti_sci);
 628                if (ret != -EPROBE_DEFER) {
 629                        dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
 630                                ret);
 631                }
 632                kproc->ti_sci = NULL;
 633                goto free_rproc;
 634        }
 635
 636        ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
 637        if (ret) {
 638                dev_err(dev, "missing 'ti,sci-dev-id' property\n");
 639                goto put_sci;
 640        }
 641
 642        kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
 643        if (IS_ERR(kproc->reset)) {
 644                ret = PTR_ERR(kproc->reset);
 645                dev_err(dev, "failed to get reset, status = %d\n", ret);
 646                goto put_sci;
 647        }
 648
 649        kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
 650        if (IS_ERR(kproc->tsp)) {
 651                dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
 652                        ret);
 653                ret = PTR_ERR(kproc->tsp);
 654                goto put_sci;
 655        }
 656
 657        ret = ti_sci_proc_request(kproc->tsp);
 658        if (ret < 0) {
 659                dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
 660                goto free_tsp;
 661        }
 662
 663        ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
 664        if (ret)
 665                goto release_tsp;
 666
 667        ret = k3_dsp_reserved_mem_init(kproc);
 668        if (ret) {
 669                dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
 670                goto release_tsp;
 671        }
 672
 673        /*
 674         * ensure the DSP local reset is asserted to ensure the DSP doesn't
 675         * execute bogus code in .prepare() when the module reset is released.
 676         */
 677        if (data->uses_lreset) {
 678                ret = reset_control_status(kproc->reset);
 679                if (ret < 0) {
 680                        dev_err(dev, "failed to get reset status, status = %d\n",
 681                                ret);
 682                        goto release_mem;
 683                } else if (ret == 0) {
 684                        dev_warn(dev, "local reset is deasserted for device\n");
 685                        k3_dsp_rproc_reset(kproc);
 686                }
 687        }
 688
 689        ret = rproc_add(rproc);
 690        if (ret) {
 691                dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
 692                        ret);
 693                goto release_mem;
 694        }
 695
 696        platform_set_drvdata(pdev, kproc);
 697
 698        return 0;
 699
 700release_mem:
 701        k3_dsp_reserved_mem_exit(kproc);
 702release_tsp:
 703        ret1 = ti_sci_proc_release(kproc->tsp);
 704        if (ret1)
 705                dev_err(dev, "failed to release proc, ret = %d\n", ret1);
 706free_tsp:
 707        kfree(kproc->tsp);
 708put_sci:
 709        ret1 = ti_sci_put_handle(kproc->ti_sci);
 710        if (ret1)
 711                dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
 712free_rproc:
 713        rproc_free(rproc);
 714        return ret;
 715}
 716
 717static int k3_dsp_rproc_remove(struct platform_device *pdev)
 718{
 719        struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
 720        struct device *dev = &pdev->dev;
 721        int ret;
 722
 723        rproc_del(kproc->rproc);
 724
 725        ret = ti_sci_proc_release(kproc->tsp);
 726        if (ret)
 727                dev_err(dev, "failed to release proc, ret = %d\n", ret);
 728
 729        kfree(kproc->tsp);
 730
 731        ret = ti_sci_put_handle(kproc->ti_sci);
 732        if (ret)
 733                dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
 734
 735        k3_dsp_reserved_mem_exit(kproc);
 736        rproc_free(kproc->rproc);
 737
 738        return 0;
 739}
 740
 741static const struct k3_dsp_mem_data c66_mems[] = {
 742        { .name = "l2sram", .dev_addr = 0x800000 },
 743        { .name = "l1pram", .dev_addr = 0xe00000 },
 744        { .name = "l1dram", .dev_addr = 0xf00000 },
 745};
 746
 747/* C71x cores only have a L1P Cache, there are no L1P SRAMs */
 748static const struct k3_dsp_mem_data c71_mems[] = {
 749        { .name = "l2sram", .dev_addr = 0x800000 },
 750        { .name = "l1dram", .dev_addr = 0xe00000 },
 751};
 752
 753static const struct k3_dsp_dev_data c66_data = {
 754        .mems = c66_mems,
 755        .num_mems = ARRAY_SIZE(c66_mems),
 756        .boot_align_addr = SZ_1K,
 757        .uses_lreset = true,
 758};
 759
 760static const struct k3_dsp_dev_data c71_data = {
 761        .mems = c71_mems,
 762        .num_mems = ARRAY_SIZE(c71_mems),
 763        .boot_align_addr = SZ_2M,
 764        .uses_lreset = false,
 765};
 766
 767static const struct of_device_id k3_dsp_of_match[] = {
 768        { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
 769        { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
 770        { /* sentinel */ },
 771};
 772MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
 773
 774static struct platform_driver k3_dsp_rproc_driver = {
 775        .probe  = k3_dsp_rproc_probe,
 776        .remove = k3_dsp_rproc_remove,
 777        .driver = {
 778                .name = "k3-dsp-rproc",
 779                .of_match_table = k3_dsp_of_match,
 780        },
 781};
 782
 783module_platform_driver(k3_dsp_rproc_driver);
 784
 785MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
 786MODULE_LICENSE("GPL v2");
 787MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
 788