linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
   4 *    Copyright 2016 Microsemi Corporation
   5 *    Copyright 2014-2015 PMC-Sierra, Inc.
   6 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   7 *
   8 *    This program is free software; you can redistribute it and/or modify
   9 *    it under the terms of the GNU General Public License as published by
  10 *    the Free Software Foundation; version 2 of the License.
  11 *
  12 *    This program is distributed in the hope that it will be useful,
  13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  15 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  16 *
  17 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  18 *
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/interrupt.h>
  23#include <linux/types.h>
  24#include <linux/pci.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-200"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76/* How long to wait before giving up on a command */
  77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
  78
  79/* Embedded module documentation macros - see modules.h */
  80MODULE_AUTHOR("Hewlett-Packard Company");
  81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  82        HPSA_DRIVER_VERSION);
  83MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  84MODULE_VERSION(HPSA_DRIVER_VERSION);
  85MODULE_LICENSE("GPL");
  86MODULE_ALIAS("cciss");
  87
  88static int hpsa_simple_mode;
  89module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  90MODULE_PARM_DESC(hpsa_simple_mode,
  91        "Use 'simple mode' rather than 'performant mode'");
  92
  93/* define the PCI info for the cards we can control */
  94static const struct pci_device_id hpsa_pci_device_id[] = {
  95        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 135        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 136        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 141        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 142        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 145        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 146        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 147        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 148        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 149                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150        {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 151                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 152        {0,}
 153};
 154
 155MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 156
 157/*  board_id = Subsystem Device ID & Vendor ID
 158 *  product = Marketing Name for the board
 159 *  access = Address of the struct of function pointers
 160 */
 161static struct board_type products[] = {
 162        {0x40700E11, "Smart Array 5300", &SA5A_access},
 163        {0x40800E11, "Smart Array 5i", &SA5B_access},
 164        {0x40820E11, "Smart Array 532", &SA5B_access},
 165        {0x40830E11, "Smart Array 5312", &SA5B_access},
 166        {0x409A0E11, "Smart Array 641", &SA5A_access},
 167        {0x409B0E11, "Smart Array 642", &SA5A_access},
 168        {0x409C0E11, "Smart Array 6400", &SA5A_access},
 169        {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 170        {0x40910E11, "Smart Array 6i", &SA5A_access},
 171        {0x3225103C, "Smart Array P600", &SA5A_access},
 172        {0x3223103C, "Smart Array P800", &SA5A_access},
 173        {0x3234103C, "Smart Array P400", &SA5A_access},
 174        {0x3235103C, "Smart Array P400i", &SA5A_access},
 175        {0x3211103C, "Smart Array E200i", &SA5A_access},
 176        {0x3212103C, "Smart Array E200", &SA5A_access},
 177        {0x3213103C, "Smart Array E200i", &SA5A_access},
 178        {0x3214103C, "Smart Array E200i", &SA5A_access},
 179        {0x3215103C, "Smart Array E200i", &SA5A_access},
 180        {0x3237103C, "Smart Array E500", &SA5A_access},
 181        {0x323D103C, "Smart Array P700m", &SA5A_access},
 182        {0x3241103C, "Smart Array P212", &SA5_access},
 183        {0x3243103C, "Smart Array P410", &SA5_access},
 184        {0x3245103C, "Smart Array P410i", &SA5_access},
 185        {0x3247103C, "Smart Array P411", &SA5_access},
 186        {0x3249103C, "Smart Array P812", &SA5_access},
 187        {0x324A103C, "Smart Array P712m", &SA5_access},
 188        {0x324B103C, "Smart Array P711m", &SA5_access},
 189        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 190        {0x3350103C, "Smart Array P222", &SA5_access},
 191        {0x3351103C, "Smart Array P420", &SA5_access},
 192        {0x3352103C, "Smart Array P421", &SA5_access},
 193        {0x3353103C, "Smart Array P822", &SA5_access},
 194        {0x3354103C, "Smart Array P420i", &SA5_access},
 195        {0x3355103C, "Smart Array P220i", &SA5_access},
 196        {0x3356103C, "Smart Array P721m", &SA5_access},
 197        {0x1920103C, "Smart Array P430i", &SA5_access},
 198        {0x1921103C, "Smart Array P830i", &SA5_access},
 199        {0x1922103C, "Smart Array P430", &SA5_access},
 200        {0x1923103C, "Smart Array P431", &SA5_access},
 201        {0x1924103C, "Smart Array P830", &SA5_access},
 202        {0x1925103C, "Smart Array P831", &SA5_access},
 203        {0x1926103C, "Smart Array P731m", &SA5_access},
 204        {0x1928103C, "Smart Array P230i", &SA5_access},
 205        {0x1929103C, "Smart Array P530", &SA5_access},
 206        {0x21BD103C, "Smart Array P244br", &SA5_access},
 207        {0x21BE103C, "Smart Array P741m", &SA5_access},
 208        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 209        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 210        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 211        {0x21C2103C, "Smart Array P440", &SA5_access},
 212        {0x21C3103C, "Smart Array P441", &SA5_access},
 213        {0x21C4103C, "Smart Array", &SA5_access},
 214        {0x21C5103C, "Smart Array P841", &SA5_access},
 215        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 216        {0x21C7103C, "Smart HBA H240", &SA5_access},
 217        {0x21C8103C, "Smart HBA H241", &SA5_access},
 218        {0x21C9103C, "Smart Array", &SA5_access},
 219        {0x21CA103C, "Smart Array P246br", &SA5_access},
 220        {0x21CB103C, "Smart Array P840", &SA5_access},
 221        {0x21CC103C, "Smart Array", &SA5_access},
 222        {0x21CD103C, "Smart Array", &SA5_access},
 223        {0x21CE103C, "Smart HBA", &SA5_access},
 224        {0x05809005, "SmartHBA-SA", &SA5_access},
 225        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 226        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 227        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 228        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 229        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 230        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 231        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 232        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 233        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 234        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 235        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 236};
 237
 238static struct scsi_transport_template *hpsa_sas_transport_template;
 239static int hpsa_add_sas_host(struct ctlr_info *h);
 240static void hpsa_delete_sas_host(struct ctlr_info *h);
 241static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 242                        struct hpsa_scsi_dev_t *device);
 243static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 244static struct hpsa_scsi_dev_t
 245        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 246                struct sas_rphy *rphy);
 247
 248#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 249static const struct scsi_cmnd hpsa_cmd_busy;
 250#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 251static const struct scsi_cmnd hpsa_cmd_idle;
 252static int number_of_controllers;
 253
 254static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 255static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 256static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 257                      void __user *arg);
 258static int hpsa_passthru_ioctl(struct ctlr_info *h,
 259                               IOCTL_Command_struct *iocommand);
 260static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
 261                                   BIG_IOCTL_Command_struct *ioc);
 262
 263#ifdef CONFIG_COMPAT
 264static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 265        void __user *arg);
 266#endif
 267
 268static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 269static struct CommandList *cmd_alloc(struct ctlr_info *h);
 270static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 271static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 272                                            struct scsi_cmnd *scmd);
 273static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 274        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 275        int cmd_type);
 276static void hpsa_free_cmd_pool(struct ctlr_info *h);
 277#define VPD_PAGE (1 << 8)
 278#define HPSA_SIMPLE_ERROR_BITS 0x03
 279
 280static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 281static void hpsa_scan_start(struct Scsi_Host *);
 282static int hpsa_scan_finished(struct Scsi_Host *sh,
 283        unsigned long elapsed_time);
 284static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 285
 286static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 287static int hpsa_slave_alloc(struct scsi_device *sdev);
 288static int hpsa_slave_configure(struct scsi_device *sdev);
 289static void hpsa_slave_destroy(struct scsi_device *sdev);
 290
 291static void hpsa_update_scsi_devices(struct ctlr_info *h);
 292static int check_for_unit_attention(struct ctlr_info *h,
 293        struct CommandList *c);
 294static void check_ioctl_unit_attention(struct ctlr_info *h,
 295        struct CommandList *c);
 296/* performant mode helper functions */
 297static void calc_bucket_map(int *bucket, int num_buckets,
 298        int nsgs, int min_blocks, u32 *bucket_map);
 299static void hpsa_free_performant_mode(struct ctlr_info *h);
 300static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 301static inline u32 next_command(struct ctlr_info *h, u8 q);
 302static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 303                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 304                               u64 *cfg_offset);
 305static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 306                                    unsigned long *memory_bar);
 307static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 308                                bool *legacy_board);
 309static int wait_for_device_to_become_ready(struct ctlr_info *h,
 310                                           unsigned char lunaddr[],
 311                                           int reply_queue);
 312static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 313                                     int wait_for_ready);
 314static inline void finish_cmd(struct CommandList *c);
 315static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 316#define BOARD_NOT_READY 0
 317#define BOARD_READY 1
 318static void hpsa_drain_accel_commands(struct ctlr_info *h);
 319static void hpsa_flush_cache(struct ctlr_info *h);
 320static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 321        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 322        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 323static void hpsa_command_resubmit_worker(struct work_struct *work);
 324static u32 lockup_detected(struct ctlr_info *h);
 325static int detect_controller_lockup(struct ctlr_info *h);
 326static void hpsa_disable_rld_caching(struct ctlr_info *h);
 327static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 328        struct ReportExtendedLUNdata *buf, int bufsize);
 329static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 330        unsigned char scsi3addr[], u8 page);
 331static int hpsa_luns_changed(struct ctlr_info *h);
 332static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 333                               struct hpsa_scsi_dev_t *dev,
 334                               unsigned char *scsi3addr);
 335
 336static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 337{
 338        unsigned long *priv = shost_priv(sdev->host);
 339        return (struct ctlr_info *) *priv;
 340}
 341
 342static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 343{
 344        unsigned long *priv = shost_priv(sh);
 345        return (struct ctlr_info *) *priv;
 346}
 347
 348static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 349{
 350        return c->scsi_cmd == SCSI_CMD_IDLE;
 351}
 352
 353/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 354static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 355                        u8 *sense_key, u8 *asc, u8 *ascq)
 356{
 357        struct scsi_sense_hdr sshdr;
 358        bool rc;
 359
 360        *sense_key = -1;
 361        *asc = -1;
 362        *ascq = -1;
 363
 364        if (sense_data_len < 1)
 365                return;
 366
 367        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 368        if (rc) {
 369                *sense_key = sshdr.sense_key;
 370                *asc = sshdr.asc;
 371                *ascq = sshdr.ascq;
 372        }
 373}
 374
 375static int check_for_unit_attention(struct ctlr_info *h,
 376        struct CommandList *c)
 377{
 378        u8 sense_key, asc, ascq;
 379        int sense_len;
 380
 381        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 382                sense_len = sizeof(c->err_info->SenseInfo);
 383        else
 384                sense_len = c->err_info->SenseLen;
 385
 386        decode_sense_data(c->err_info->SenseInfo, sense_len,
 387                                &sense_key, &asc, &ascq);
 388        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 389                return 0;
 390
 391        switch (asc) {
 392        case STATE_CHANGED:
 393                dev_warn(&h->pdev->dev,
 394                        "%s: a state change detected, command retried\n",
 395                        h->devname);
 396                break;
 397        case LUN_FAILED:
 398                dev_warn(&h->pdev->dev,
 399                        "%s: LUN failure detected\n", h->devname);
 400                break;
 401        case REPORT_LUNS_CHANGED:
 402                dev_warn(&h->pdev->dev,
 403                        "%s: report LUN data changed\n", h->devname);
 404        /*
 405         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 406         * target (array) devices.
 407         */
 408                break;
 409        case POWER_OR_RESET:
 410                dev_warn(&h->pdev->dev,
 411                        "%s: a power on or device reset detected\n",
 412                        h->devname);
 413                break;
 414        case UNIT_ATTENTION_CLEARED:
 415                dev_warn(&h->pdev->dev,
 416                        "%s: unit attention cleared by another initiator\n",
 417                        h->devname);
 418                break;
 419        default:
 420                dev_warn(&h->pdev->dev,
 421                        "%s: unknown unit attention detected\n",
 422                        h->devname);
 423                break;
 424        }
 425        return 1;
 426}
 427
 428static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 429{
 430        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 431                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 432                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 433                return 0;
 434        dev_warn(&h->pdev->dev, HPSA "device busy");
 435        return 1;
 436}
 437
 438static u32 lockup_detected(struct ctlr_info *h);
 439static ssize_t host_show_lockup_detected(struct device *dev,
 440                struct device_attribute *attr, char *buf)
 441{
 442        int ld;
 443        struct ctlr_info *h;
 444        struct Scsi_Host *shost = class_to_shost(dev);
 445
 446        h = shost_to_hba(shost);
 447        ld = lockup_detected(h);
 448
 449        return sprintf(buf, "ld=%d\n", ld);
 450}
 451
 452static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 453                                         struct device_attribute *attr,
 454                                         const char *buf, size_t count)
 455{
 456        int status, len;
 457        struct ctlr_info *h;
 458        struct Scsi_Host *shost = class_to_shost(dev);
 459        char tmpbuf[10];
 460
 461        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 462                return -EACCES;
 463        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 464        strncpy(tmpbuf, buf, len);
 465        tmpbuf[len] = '\0';
 466        if (sscanf(tmpbuf, "%d", &status) != 1)
 467                return -EINVAL;
 468        h = shost_to_hba(shost);
 469        h->acciopath_status = !!status;
 470        dev_warn(&h->pdev->dev,
 471                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 472                h->acciopath_status ? "enabled" : "disabled");
 473        return count;
 474}
 475
 476static ssize_t host_store_raid_offload_debug(struct device *dev,
 477                                         struct device_attribute *attr,
 478                                         const char *buf, size_t count)
 479{
 480        int debug_level, len;
 481        struct ctlr_info *h;
 482        struct Scsi_Host *shost = class_to_shost(dev);
 483        char tmpbuf[10];
 484
 485        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 486                return -EACCES;
 487        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 488        strncpy(tmpbuf, buf, len);
 489        tmpbuf[len] = '\0';
 490        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 491                return -EINVAL;
 492        if (debug_level < 0)
 493                debug_level = 0;
 494        h = shost_to_hba(shost);
 495        h->raid_offload_debug = debug_level;
 496        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 497                h->raid_offload_debug);
 498        return count;
 499}
 500
 501static ssize_t host_store_rescan(struct device *dev,
 502                                 struct device_attribute *attr,
 503                                 const char *buf, size_t count)
 504{
 505        struct ctlr_info *h;
 506        struct Scsi_Host *shost = class_to_shost(dev);
 507        h = shost_to_hba(shost);
 508        hpsa_scan_start(h->scsi_host);
 509        return count;
 510}
 511
 512static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
 513{
 514        device->offload_enabled = 0;
 515        device->offload_to_be_enabled = 0;
 516}
 517
 518static ssize_t host_show_firmware_revision(struct device *dev,
 519             struct device_attribute *attr, char *buf)
 520{
 521        struct ctlr_info *h;
 522        struct Scsi_Host *shost = class_to_shost(dev);
 523        unsigned char *fwrev;
 524
 525        h = shost_to_hba(shost);
 526        if (!h->hba_inquiry_data)
 527                return 0;
 528        fwrev = &h->hba_inquiry_data[32];
 529        return snprintf(buf, 20, "%c%c%c%c\n",
 530                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 531}
 532
 533static ssize_t host_show_commands_outstanding(struct device *dev,
 534             struct device_attribute *attr, char *buf)
 535{
 536        struct Scsi_Host *shost = class_to_shost(dev);
 537        struct ctlr_info *h = shost_to_hba(shost);
 538
 539        return snprintf(buf, 20, "%d\n",
 540                        atomic_read(&h->commands_outstanding));
 541}
 542
 543static ssize_t host_show_transport_mode(struct device *dev,
 544        struct device_attribute *attr, char *buf)
 545{
 546        struct ctlr_info *h;
 547        struct Scsi_Host *shost = class_to_shost(dev);
 548
 549        h = shost_to_hba(shost);
 550        return snprintf(buf, 20, "%s\n",
 551                h->transMethod & CFGTBL_Trans_Performant ?
 552                        "performant" : "simple");
 553}
 554
 555static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 556        struct device_attribute *attr, char *buf)
 557{
 558        struct ctlr_info *h;
 559        struct Scsi_Host *shost = class_to_shost(dev);
 560
 561        h = shost_to_hba(shost);
 562        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 563                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 564}
 565
 566/* List of controllers which cannot be hard reset on kexec with reset_devices */
 567static u32 unresettable_controller[] = {
 568        0x324a103C, /* Smart Array P712m */
 569        0x324b103C, /* Smart Array P711m */
 570        0x3223103C, /* Smart Array P800 */
 571        0x3234103C, /* Smart Array P400 */
 572        0x3235103C, /* Smart Array P400i */
 573        0x3211103C, /* Smart Array E200i */
 574        0x3212103C, /* Smart Array E200 */
 575        0x3213103C, /* Smart Array E200i */
 576        0x3214103C, /* Smart Array E200i */
 577        0x3215103C, /* Smart Array E200i */
 578        0x3237103C, /* Smart Array E500 */
 579        0x323D103C, /* Smart Array P700m */
 580        0x40800E11, /* Smart Array 5i */
 581        0x409C0E11, /* Smart Array 6400 */
 582        0x409D0E11, /* Smart Array 6400 EM */
 583        0x40700E11, /* Smart Array 5300 */
 584        0x40820E11, /* Smart Array 532 */
 585        0x40830E11, /* Smart Array 5312 */
 586        0x409A0E11, /* Smart Array 641 */
 587        0x409B0E11, /* Smart Array 642 */
 588        0x40910E11, /* Smart Array 6i */
 589};
 590
 591/* List of controllers which cannot even be soft reset */
 592static u32 soft_unresettable_controller[] = {
 593        0x40800E11, /* Smart Array 5i */
 594        0x40700E11, /* Smart Array 5300 */
 595        0x40820E11, /* Smart Array 532 */
 596        0x40830E11, /* Smart Array 5312 */
 597        0x409A0E11, /* Smart Array 641 */
 598        0x409B0E11, /* Smart Array 642 */
 599        0x40910E11, /* Smart Array 6i */
 600        /* Exclude 640x boards.  These are two pci devices in one slot
 601         * which share a battery backed cache module.  One controls the
 602         * cache, the other accesses the cache through the one that controls
 603         * it.  If we reset the one controlling the cache, the other will
 604         * likely not be happy.  Just forbid resetting this conjoined mess.
 605         * The 640x isn't really supported by hpsa anyway.
 606         */
 607        0x409C0E11, /* Smart Array 6400 */
 608        0x409D0E11, /* Smart Array 6400 EM */
 609};
 610
 611static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 612{
 613        int i;
 614
 615        for (i = 0; i < nelems; i++)
 616                if (a[i] == board_id)
 617                        return 1;
 618        return 0;
 619}
 620
 621static int ctlr_is_hard_resettable(u32 board_id)
 622{
 623        return !board_id_in_array(unresettable_controller,
 624                        ARRAY_SIZE(unresettable_controller), board_id);
 625}
 626
 627static int ctlr_is_soft_resettable(u32 board_id)
 628{
 629        return !board_id_in_array(soft_unresettable_controller,
 630                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 631}
 632
 633static int ctlr_is_resettable(u32 board_id)
 634{
 635        return ctlr_is_hard_resettable(board_id) ||
 636                ctlr_is_soft_resettable(board_id);
 637}
 638
 639static ssize_t host_show_resettable(struct device *dev,
 640        struct device_attribute *attr, char *buf)
 641{
 642        struct ctlr_info *h;
 643        struct Scsi_Host *shost = class_to_shost(dev);
 644
 645        h = shost_to_hba(shost);
 646        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 647}
 648
 649static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 650{
 651        return (scsi3addr[3] & 0xC0) == 0x40;
 652}
 653
 654static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 655        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 656};
 657#define HPSA_RAID_0     0
 658#define HPSA_RAID_4     1
 659#define HPSA_RAID_1     2       /* also used for RAID 10 */
 660#define HPSA_RAID_5     3       /* also used for RAID 50 */
 661#define HPSA_RAID_51    4
 662#define HPSA_RAID_6     5       /* also used for RAID 60 */
 663#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 664#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 665#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 666
 667static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 668{
 669        return !device->physical_device;
 670}
 671
 672static ssize_t raid_level_show(struct device *dev,
 673             struct device_attribute *attr, char *buf)
 674{
 675        ssize_t l = 0;
 676        unsigned char rlevel;
 677        struct ctlr_info *h;
 678        struct scsi_device *sdev;
 679        struct hpsa_scsi_dev_t *hdev;
 680        unsigned long flags;
 681
 682        sdev = to_scsi_device(dev);
 683        h = sdev_to_hba(sdev);
 684        spin_lock_irqsave(&h->lock, flags);
 685        hdev = sdev->hostdata;
 686        if (!hdev) {
 687                spin_unlock_irqrestore(&h->lock, flags);
 688                return -ENODEV;
 689        }
 690
 691        /* Is this even a logical drive? */
 692        if (!is_logical_device(hdev)) {
 693                spin_unlock_irqrestore(&h->lock, flags);
 694                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 695                return l;
 696        }
 697
 698        rlevel = hdev->raid_level;
 699        spin_unlock_irqrestore(&h->lock, flags);
 700        if (rlevel > RAID_UNKNOWN)
 701                rlevel = RAID_UNKNOWN;
 702        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 703        return l;
 704}
 705
 706static ssize_t lunid_show(struct device *dev,
 707             struct device_attribute *attr, char *buf)
 708{
 709        struct ctlr_info *h;
 710        struct scsi_device *sdev;
 711        struct hpsa_scsi_dev_t *hdev;
 712        unsigned long flags;
 713        unsigned char lunid[8];
 714
 715        sdev = to_scsi_device(dev);
 716        h = sdev_to_hba(sdev);
 717        spin_lock_irqsave(&h->lock, flags);
 718        hdev = sdev->hostdata;
 719        if (!hdev) {
 720                spin_unlock_irqrestore(&h->lock, flags);
 721                return -ENODEV;
 722        }
 723        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 724        spin_unlock_irqrestore(&h->lock, flags);
 725        return snprintf(buf, 20, "0x%8phN\n", lunid);
 726}
 727
 728static ssize_t unique_id_show(struct device *dev,
 729             struct device_attribute *attr, char *buf)
 730{
 731        struct ctlr_info *h;
 732        struct scsi_device *sdev;
 733        struct hpsa_scsi_dev_t *hdev;
 734        unsigned long flags;
 735        unsigned char sn[16];
 736
 737        sdev = to_scsi_device(dev);
 738        h = sdev_to_hba(sdev);
 739        spin_lock_irqsave(&h->lock, flags);
 740        hdev = sdev->hostdata;
 741        if (!hdev) {
 742                spin_unlock_irqrestore(&h->lock, flags);
 743                return -ENODEV;
 744        }
 745        memcpy(sn, hdev->device_id, sizeof(sn));
 746        spin_unlock_irqrestore(&h->lock, flags);
 747        return snprintf(buf, 16 * 2 + 2,
 748                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 749                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 750                        sn[0], sn[1], sn[2], sn[3],
 751                        sn[4], sn[5], sn[6], sn[7],
 752                        sn[8], sn[9], sn[10], sn[11],
 753                        sn[12], sn[13], sn[14], sn[15]);
 754}
 755
 756static ssize_t sas_address_show(struct device *dev,
 757              struct device_attribute *attr, char *buf)
 758{
 759        struct ctlr_info *h;
 760        struct scsi_device *sdev;
 761        struct hpsa_scsi_dev_t *hdev;
 762        unsigned long flags;
 763        u64 sas_address;
 764
 765        sdev = to_scsi_device(dev);
 766        h = sdev_to_hba(sdev);
 767        spin_lock_irqsave(&h->lock, flags);
 768        hdev = sdev->hostdata;
 769        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 770                spin_unlock_irqrestore(&h->lock, flags);
 771                return -ENODEV;
 772        }
 773        sas_address = hdev->sas_address;
 774        spin_unlock_irqrestore(&h->lock, flags);
 775
 776        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 777}
 778
 779static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 780             struct device_attribute *attr, char *buf)
 781{
 782        struct ctlr_info *h;
 783        struct scsi_device *sdev;
 784        struct hpsa_scsi_dev_t *hdev;
 785        unsigned long flags;
 786        int offload_enabled;
 787
 788        sdev = to_scsi_device(dev);
 789        h = sdev_to_hba(sdev);
 790        spin_lock_irqsave(&h->lock, flags);
 791        hdev = sdev->hostdata;
 792        if (!hdev) {
 793                spin_unlock_irqrestore(&h->lock, flags);
 794                return -ENODEV;
 795        }
 796        offload_enabled = hdev->offload_enabled;
 797        spin_unlock_irqrestore(&h->lock, flags);
 798
 799        if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 800                return snprintf(buf, 20, "%d\n", offload_enabled);
 801        else
 802                return snprintf(buf, 40, "%s\n",
 803                                "Not applicable for a controller");
 804}
 805
 806#define MAX_PATHS 8
 807static ssize_t path_info_show(struct device *dev,
 808             struct device_attribute *attr, char *buf)
 809{
 810        struct ctlr_info *h;
 811        struct scsi_device *sdev;
 812        struct hpsa_scsi_dev_t *hdev;
 813        unsigned long flags;
 814        int i;
 815        int output_len = 0;
 816        u8 box;
 817        u8 bay;
 818        u8 path_map_index = 0;
 819        char *active;
 820        unsigned char phys_connector[2];
 821
 822        sdev = to_scsi_device(dev);
 823        h = sdev_to_hba(sdev);
 824        spin_lock_irqsave(&h->devlock, flags);
 825        hdev = sdev->hostdata;
 826        if (!hdev) {
 827                spin_unlock_irqrestore(&h->devlock, flags);
 828                return -ENODEV;
 829        }
 830
 831        bay = hdev->bay;
 832        for (i = 0; i < MAX_PATHS; i++) {
 833                path_map_index = 1<<i;
 834                if (i == hdev->active_path_index)
 835                        active = "Active";
 836                else if (hdev->path_map & path_map_index)
 837                        active = "Inactive";
 838                else
 839                        continue;
 840
 841                output_len += scnprintf(buf + output_len,
 842                                PAGE_SIZE - output_len,
 843                                "[%d:%d:%d:%d] %20.20s ",
 844                                h->scsi_host->host_no,
 845                                hdev->bus, hdev->target, hdev->lun,
 846                                scsi_device_type(hdev->devtype));
 847
 848                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 849                        output_len += scnprintf(buf + output_len,
 850                                                PAGE_SIZE - output_len,
 851                                                "%s\n", active);
 852                        continue;
 853                }
 854
 855                box = hdev->box[i];
 856                memcpy(&phys_connector, &hdev->phys_connector[i],
 857                        sizeof(phys_connector));
 858                if (phys_connector[0] < '0')
 859                        phys_connector[0] = '0';
 860                if (phys_connector[1] < '0')
 861                        phys_connector[1] = '0';
 862                output_len += scnprintf(buf + output_len,
 863                                PAGE_SIZE - output_len,
 864                                "PORT: %.2s ",
 865                                phys_connector);
 866                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 867                        hdev->expose_device) {
 868                        if (box == 0 || box == 0xFF) {
 869                                output_len += scnprintf(buf + output_len,
 870                                        PAGE_SIZE - output_len,
 871                                        "BAY: %hhu %s\n",
 872                                        bay, active);
 873                        } else {
 874                                output_len += scnprintf(buf + output_len,
 875                                        PAGE_SIZE - output_len,
 876                                        "BOX: %hhu BAY: %hhu %s\n",
 877                                        box, bay, active);
 878                        }
 879                } else if (box != 0 && box != 0xFF) {
 880                        output_len += scnprintf(buf + output_len,
 881                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 882                                box, active);
 883                } else
 884                        output_len += scnprintf(buf + output_len,
 885                                PAGE_SIZE - output_len, "%s\n", active);
 886        }
 887
 888        spin_unlock_irqrestore(&h->devlock, flags);
 889        return output_len;
 890}
 891
 892static ssize_t host_show_ctlr_num(struct device *dev,
 893        struct device_attribute *attr, char *buf)
 894{
 895        struct ctlr_info *h;
 896        struct Scsi_Host *shost = class_to_shost(dev);
 897
 898        h = shost_to_hba(shost);
 899        return snprintf(buf, 20, "%d\n", h->ctlr);
 900}
 901
 902static ssize_t host_show_legacy_board(struct device *dev,
 903        struct device_attribute *attr, char *buf)
 904{
 905        struct ctlr_info *h;
 906        struct Scsi_Host *shost = class_to_shost(dev);
 907
 908        h = shost_to_hba(shost);
 909        return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 910}
 911
 912static DEVICE_ATTR_RO(raid_level);
 913static DEVICE_ATTR_RO(lunid);
 914static DEVICE_ATTR_RO(unique_id);
 915static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 916static DEVICE_ATTR_RO(sas_address);
 917static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 918                        host_show_hp_ssd_smart_path_enabled, NULL);
 919static DEVICE_ATTR_RO(path_info);
 920static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 921                host_show_hp_ssd_smart_path_status,
 922                host_store_hp_ssd_smart_path_status);
 923static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 924                        host_store_raid_offload_debug);
 925static DEVICE_ATTR(firmware_revision, S_IRUGO,
 926        host_show_firmware_revision, NULL);
 927static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 928        host_show_commands_outstanding, NULL);
 929static DEVICE_ATTR(transport_mode, S_IRUGO,
 930        host_show_transport_mode, NULL);
 931static DEVICE_ATTR(resettable, S_IRUGO,
 932        host_show_resettable, NULL);
 933static DEVICE_ATTR(lockup_detected, S_IRUGO,
 934        host_show_lockup_detected, NULL);
 935static DEVICE_ATTR(ctlr_num, S_IRUGO,
 936        host_show_ctlr_num, NULL);
 937static DEVICE_ATTR(legacy_board, S_IRUGO,
 938        host_show_legacy_board, NULL);
 939
 940static struct device_attribute *hpsa_sdev_attrs[] = {
 941        &dev_attr_raid_level,
 942        &dev_attr_lunid,
 943        &dev_attr_unique_id,
 944        &dev_attr_hp_ssd_smart_path_enabled,
 945        &dev_attr_path_info,
 946        &dev_attr_sas_address,
 947        NULL,
 948};
 949
 950static struct device_attribute *hpsa_shost_attrs[] = {
 951        &dev_attr_rescan,
 952        &dev_attr_firmware_revision,
 953        &dev_attr_commands_outstanding,
 954        &dev_attr_transport_mode,
 955        &dev_attr_resettable,
 956        &dev_attr_hp_ssd_smart_path_status,
 957        &dev_attr_raid_offload_debug,
 958        &dev_attr_lockup_detected,
 959        &dev_attr_ctlr_num,
 960        &dev_attr_legacy_board,
 961        NULL,
 962};
 963
 964#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 965                                 HPSA_MAX_CONCURRENT_PASSTHRUS)
 966
 967static struct scsi_host_template hpsa_driver_template = {
 968        .module                 = THIS_MODULE,
 969        .name                   = HPSA,
 970        .proc_name              = HPSA,
 971        .queuecommand           = hpsa_scsi_queue_command,
 972        .scan_start             = hpsa_scan_start,
 973        .scan_finished          = hpsa_scan_finished,
 974        .change_queue_depth     = hpsa_change_queue_depth,
 975        .this_id                = -1,
 976        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 977        .ioctl                  = hpsa_ioctl,
 978        .slave_alloc            = hpsa_slave_alloc,
 979        .slave_configure        = hpsa_slave_configure,
 980        .slave_destroy          = hpsa_slave_destroy,
 981#ifdef CONFIG_COMPAT
 982        .compat_ioctl           = hpsa_compat_ioctl,
 983#endif
 984        .sdev_attrs = hpsa_sdev_attrs,
 985        .shost_attrs = hpsa_shost_attrs,
 986        .max_sectors = 2048,
 987        .no_write_same = 1,
 988};
 989
 990static inline u32 next_command(struct ctlr_info *h, u8 q)
 991{
 992        u32 a;
 993        struct reply_queue_buffer *rq = &h->reply_queue[q];
 994
 995        if (h->transMethod & CFGTBL_Trans_io_accel1)
 996                return h->access.command_completed(h, q);
 997
 998        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 999                return h->access.command_completed(h, q);
1000
1001        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002                a = rq->head[rq->current_entry];
1003                rq->current_entry++;
1004                atomic_dec(&h->commands_outstanding);
1005        } else {
1006                a = FIFO_EMPTY;
1007        }
1008        /* Check for wraparound */
1009        if (rq->current_entry == h->max_commands) {
1010                rq->current_entry = 0;
1011                rq->wraparound ^= 1;
1012        }
1013        return a;
1014}
1015
1016/*
1017 * There are some special bits in the bus address of the
1018 * command that we have to set for the controller to know
1019 * how to process the command:
1020 *
1021 * Normal performant mode:
1022 * bit 0: 1 means performant mode, 0 means simple mode.
1023 * bits 1-3 = block fetch table entry
1024 * bits 4-6 = command type (== 0)
1025 *
1026 * ioaccel1 mode:
1027 * bit 0 = "performant mode" bit.
1028 * bits 1-3 = block fetch table entry
1029 * bits 4-6 = command type (== 110)
1030 * (command type is needed because ioaccel1 mode
1031 * commands are submitted through the same register as normal
1032 * mode commands, so this is how the controller knows whether
1033 * the command is normal mode or ioaccel1 mode.)
1034 *
1035 * ioaccel2 mode:
1036 * bit 0 = "performant mode" bit.
1037 * bits 1-4 = block fetch table entry (note extra bit)
1038 * bits 4-6 = not needed, because ioaccel2 mode has
1039 * a separate special register for submitting commands.
1040 */
1041
1042/*
1043 * set_performant_mode: Modify the tag for cciss performant
1044 * set bit 0 for pull model, bits 3-1 for block fetch
1045 * register number
1046 */
1047#define DEFAULT_REPLY_QUEUE (-1)
1048static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049                                        int reply_queue)
1050{
1051        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053                if (unlikely(!h->msix_vectors))
1054                        return;
1055                c->Header.ReplyQueue = reply_queue;
1056        }
1057}
1058
1059static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060                                                struct CommandList *c,
1061                                                int reply_queue)
1062{
1063        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064
1065        /*
1066         * Tell the controller to post the reply to the queue for this
1067         * processor.  This seems to give the best I/O throughput.
1068         */
1069        cp->ReplyQueue = reply_queue;
1070        /*
1071         * Set the bits in the address sent down to include:
1072         *  - performant mode bit (bit 0)
1073         *  - pull count (bits 1-3)
1074         *  - command type (bits 4-6)
1075         */
1076        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077                                        IOACCEL1_BUSADDR_CMDTYPE;
1078}
1079
1080static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081                                                struct CommandList *c,
1082                                                int reply_queue)
1083{
1084        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085                &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087        /* Tell the controller to post the reply to the queue for this
1088         * processor.  This seems to give the best I/O throughput.
1089         */
1090        cp->reply_queue = reply_queue;
1091        /* Set the bits in the address sent down to include:
1092         *  - performant mode bit not used in ioaccel mode 2
1093         *  - pull count (bits 0-3)
1094         *  - command type isn't needed for ioaccel2
1095         */
1096        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097}
1098
1099static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100                                                struct CommandList *c,
1101                                                int reply_queue)
1102{
1103        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104
1105        /*
1106         * Tell the controller to post the reply to the queue for this
1107         * processor.  This seems to give the best I/O throughput.
1108         */
1109        cp->reply_queue = reply_queue;
1110        /*
1111         * Set the bits in the address sent down to include:
1112         *  - performant mode bit not used in ioaccel mode 2
1113         *  - pull count (bits 0-3)
1114         *  - command type isn't needed for ioaccel2
1115         */
1116        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117}
1118
1119static int is_firmware_flash_cmd(u8 *cdb)
1120{
1121        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122}
1123
1124/*
1125 * During firmware flash, the heartbeat register may not update as frequently
1126 * as it should.  So we dial down lockup detection during firmware flash. and
1127 * dial it back up when firmware flash completes.
1128 */
1129#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133                struct CommandList *c)
1134{
1135        if (!is_firmware_flash_cmd(c->Request.CDB))
1136                return;
1137        atomic_inc(&h->firmware_flash_in_progress);
1138        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139}
1140
1141static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142                struct CommandList *c)
1143{
1144        if (is_firmware_flash_cmd(c->Request.CDB) &&
1145                atomic_dec_and_test(&h->firmware_flash_in_progress))
1146                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147}
1148
1149static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150        struct CommandList *c, int reply_queue)
1151{
1152        dial_down_lockup_detection_during_fw_flash(h, c);
1153        atomic_inc(&h->commands_outstanding);
1154        if (c->device)
1155                atomic_inc(&c->device->commands_outstanding);
1156
1157        reply_queue = h->reply_map[raw_smp_processor_id()];
1158        switch (c->cmd_type) {
1159        case CMD_IOACCEL1:
1160                set_ioaccel1_performant_mode(h, c, reply_queue);
1161                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162                break;
1163        case CMD_IOACCEL2:
1164                set_ioaccel2_performant_mode(h, c, reply_queue);
1165                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166                break;
1167        case IOACCEL2_TMF:
1168                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170                break;
1171        default:
1172                set_performant_mode(h, c, reply_queue);
1173                h->access.submit_command(h, c);
1174        }
1175}
1176
1177static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178{
1179        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180}
1181
1182static inline int is_hba_lunid(unsigned char scsi3addr[])
1183{
1184        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185}
1186
1187static inline int is_scsi_rev_5(struct ctlr_info *h)
1188{
1189        if (!h->hba_inquiry_data)
1190                return 0;
1191        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192                return 1;
1193        return 0;
1194}
1195
1196static int hpsa_find_target_lun(struct ctlr_info *h,
1197        unsigned char scsi3addr[], int bus, int *target, int *lun)
1198{
1199        /* finds an unused bus, target, lun for a new physical device
1200         * assumes h->devlock is held
1201         */
1202        int i, found = 0;
1203        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207        for (i = 0; i < h->ndevices; i++) {
1208                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209                        __set_bit(h->dev[i]->target, lun_taken);
1210        }
1211
1212        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213        if (i < HPSA_MAX_DEVICES) {
1214                /* *bus = 1; */
1215                *target = i;
1216                *lun = 0;
1217                found = 1;
1218        }
1219        return !found;
1220}
1221
1222static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223        struct hpsa_scsi_dev_t *dev, char *description)
1224{
1225#define LABEL_SIZE 25
1226        char label[LABEL_SIZE];
1227
1228        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229                return;
1230
1231        switch (dev->devtype) {
1232        case TYPE_RAID:
1233                snprintf(label, LABEL_SIZE, "controller");
1234                break;
1235        case TYPE_ENCLOSURE:
1236                snprintf(label, LABEL_SIZE, "enclosure");
1237                break;
1238        case TYPE_DISK:
1239        case TYPE_ZBC:
1240                if (dev->external)
1241                        snprintf(label, LABEL_SIZE, "external");
1242                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243                        snprintf(label, LABEL_SIZE, "%s",
1244                                raid_label[PHYSICAL_DRIVE]);
1245                else
1246                        snprintf(label, LABEL_SIZE, "RAID-%s",
1247                                dev->raid_level > RAID_UNKNOWN ? "?" :
1248                                raid_label[dev->raid_level]);
1249                break;
1250        case TYPE_ROM:
1251                snprintf(label, LABEL_SIZE, "rom");
1252                break;
1253        case TYPE_TAPE:
1254                snprintf(label, LABEL_SIZE, "tape");
1255                break;
1256        case TYPE_MEDIUM_CHANGER:
1257                snprintf(label, LABEL_SIZE, "changer");
1258                break;
1259        default:
1260                snprintf(label, LABEL_SIZE, "UNKNOWN");
1261                break;
1262        }
1263
1264        dev_printk(level, &h->pdev->dev,
1265                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267                        description,
1268                        scsi_device_type(dev->devtype),
1269                        dev->vendor,
1270                        dev->model,
1271                        label,
1272                        dev->offload_config ? '+' : '-',
1273                        dev->offload_to_be_enabled ? '+' : '-',
1274                        dev->expose_device);
1275}
1276
1277/* Add an entry into h->dev[] array. */
1278static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279                struct hpsa_scsi_dev_t *device,
1280                struct hpsa_scsi_dev_t *added[], int *nadded)
1281{
1282        /* assumes h->devlock is held */
1283        int n = h->ndevices;
1284        int i;
1285        unsigned char addr1[8], addr2[8];
1286        struct hpsa_scsi_dev_t *sd;
1287
1288        if (n >= HPSA_MAX_DEVICES) {
1289                dev_err(&h->pdev->dev, "too many devices, some will be "
1290                        "inaccessible.\n");
1291                return -1;
1292        }
1293
1294        /* physical devices do not have lun or target assigned until now. */
1295        if (device->lun != -1)
1296                /* Logical device, lun is already assigned. */
1297                goto lun_assigned;
1298
1299        /* If this device a non-zero lun of a multi-lun device
1300         * byte 4 of the 8-byte LUN addr will contain the logical
1301         * unit no, zero otherwise.
1302         */
1303        if (device->scsi3addr[4] == 0) {
1304                /* This is not a non-zero lun of a multi-lun device */
1305                if (hpsa_find_target_lun(h, device->scsi3addr,
1306                        device->bus, &device->target, &device->lun) != 0)
1307                        return -1;
1308                goto lun_assigned;
1309        }
1310
1311        /* This is a non-zero lun of a multi-lun device.
1312         * Search through our list and find the device which
1313         * has the same 8 byte LUN address, excepting byte 4 and 5.
1314         * Assign the same bus and target for this new LUN.
1315         * Use the logical unit number from the firmware.
1316         */
1317        memcpy(addr1, device->scsi3addr, 8);
1318        addr1[4] = 0;
1319        addr1[5] = 0;
1320        for (i = 0; i < n; i++) {
1321                sd = h->dev[i];
1322                memcpy(addr2, sd->scsi3addr, 8);
1323                addr2[4] = 0;
1324                addr2[5] = 0;
1325                /* differ only in byte 4 and 5? */
1326                if (memcmp(addr1, addr2, 8) == 0) {
1327                        device->bus = sd->bus;
1328                        device->target = sd->target;
1329                        device->lun = device->scsi3addr[4];
1330                        break;
1331                }
1332        }
1333        if (device->lun == -1) {
1334                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335                        " suspect firmware bug or unsupported hardware "
1336                        "configuration.\n");
1337                return -1;
1338        }
1339
1340lun_assigned:
1341
1342        h->dev[n] = device;
1343        h->ndevices++;
1344        added[*nadded] = device;
1345        (*nadded)++;
1346        hpsa_show_dev_msg(KERN_INFO, h, device,
1347                device->expose_device ? "added" : "masked");
1348        return 0;
1349}
1350
1351/*
1352 * Called during a scan operation.
1353 *
1354 * Update an entry in h->dev[] array.
1355 */
1356static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357        int entry, struct hpsa_scsi_dev_t *new_entry)
1358{
1359        /* assumes h->devlock is held */
1360        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361
1362        /* Raid level changed. */
1363        h->dev[entry]->raid_level = new_entry->raid_level;
1364
1365        /*
1366         * ioacccel_handle may have changed for a dual domain disk
1367         */
1368        h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369
1370        /* Raid offload parameters changed.  Careful about the ordering. */
1371        if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372                /*
1373                 * if drive is newly offload_enabled, we want to copy the
1374                 * raid map data first.  If previously offload_enabled and
1375                 * offload_config were set, raid map data had better be
1376                 * the same as it was before. If raid map data has changed
1377                 * then it had better be the case that
1378                 * h->dev[entry]->offload_enabled is currently 0.
1379                 */
1380                h->dev[entry]->raid_map = new_entry->raid_map;
1381                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382        }
1383        if (new_entry->offload_to_be_enabled) {
1384                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386        }
1387        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388        h->dev[entry]->offload_config = new_entry->offload_config;
1389        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390        h->dev[entry]->queue_depth = new_entry->queue_depth;
1391
1392        /*
1393         * We can turn off ioaccel offload now, but need to delay turning
1394         * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395         * can't do that until all the devices are updated.
1396         */
1397        h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398
1399        /*
1400         * turn ioaccel off immediately if told to do so.
1401         */
1402        if (!new_entry->offload_to_be_enabled)
1403                h->dev[entry]->offload_enabled = 0;
1404
1405        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406}
1407
1408/* Replace an entry from h->dev[] array. */
1409static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410        int entry, struct hpsa_scsi_dev_t *new_entry,
1411        struct hpsa_scsi_dev_t *added[], int *nadded,
1412        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413{
1414        /* assumes h->devlock is held */
1415        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416        removed[*nremoved] = h->dev[entry];
1417        (*nremoved)++;
1418
1419        /*
1420         * New physical devices won't have target/lun assigned yet
1421         * so we need to preserve the values in the slot we are replacing.
1422         */
1423        if (new_entry->target == -1) {
1424                new_entry->target = h->dev[entry]->target;
1425                new_entry->lun = h->dev[entry]->lun;
1426        }
1427
1428        h->dev[entry] = new_entry;
1429        added[*nadded] = new_entry;
1430        (*nadded)++;
1431
1432        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433}
1434
1435/* Remove an entry from h->dev[] array. */
1436static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438{
1439        /* assumes h->devlock is held */
1440        int i;
1441        struct hpsa_scsi_dev_t *sd;
1442
1443        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444
1445        sd = h->dev[entry];
1446        removed[*nremoved] = h->dev[entry];
1447        (*nremoved)++;
1448
1449        for (i = entry; i < h->ndevices-1; i++)
1450                h->dev[i] = h->dev[i+1];
1451        h->ndevices--;
1452        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453}
1454
1455#define SCSI3ADDR_EQ(a, b) ( \
1456        (a)[7] == (b)[7] && \
1457        (a)[6] == (b)[6] && \
1458        (a)[5] == (b)[5] && \
1459        (a)[4] == (b)[4] && \
1460        (a)[3] == (b)[3] && \
1461        (a)[2] == (b)[2] && \
1462        (a)[1] == (b)[1] && \
1463        (a)[0] == (b)[0])
1464
1465static void fixup_botched_add(struct ctlr_info *h,
1466        struct hpsa_scsi_dev_t *added)
1467{
1468        /* called when scsi_add_device fails in order to re-adjust
1469         * h->dev[] to match the mid layer's view.
1470         */
1471        unsigned long flags;
1472        int i, j;
1473
1474        spin_lock_irqsave(&h->lock, flags);
1475        for (i = 0; i < h->ndevices; i++) {
1476                if (h->dev[i] == added) {
1477                        for (j = i; j < h->ndevices-1; j++)
1478                                h->dev[j] = h->dev[j+1];
1479                        h->ndevices--;
1480                        break;
1481                }
1482        }
1483        spin_unlock_irqrestore(&h->lock, flags);
1484        kfree(added);
1485}
1486
1487static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488        struct hpsa_scsi_dev_t *dev2)
1489{
1490        /* we compare everything except lun and target as these
1491         * are not yet assigned.  Compare parts likely
1492         * to differ first
1493         */
1494        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495                sizeof(dev1->scsi3addr)) != 0)
1496                return 0;
1497        if (memcmp(dev1->device_id, dev2->device_id,
1498                sizeof(dev1->device_id)) != 0)
1499                return 0;
1500        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501                return 0;
1502        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503                return 0;
1504        if (dev1->devtype != dev2->devtype)
1505                return 0;
1506        if (dev1->bus != dev2->bus)
1507                return 0;
1508        return 1;
1509}
1510
1511static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512        struct hpsa_scsi_dev_t *dev2)
1513{
1514        /* Device attributes that can change, but don't mean
1515         * that the device is a different device, nor that the OS
1516         * needs to be told anything about the change.
1517         */
1518        if (dev1->raid_level != dev2->raid_level)
1519                return 1;
1520        if (dev1->offload_config != dev2->offload_config)
1521                return 1;
1522        if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523                return 1;
1524        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525                if (dev1->queue_depth != dev2->queue_depth)
1526                        return 1;
1527        /*
1528         * This can happen for dual domain devices. An active
1529         * path change causes the ioaccel handle to change
1530         *
1531         * for example note the handle differences between p0 and p1
1532         * Device                    WWN               ,WWN hash,Handle
1533         * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534         *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535         */
1536        if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537                return 1;
1538        return 0;
1539}
1540
1541/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542 * and return needle location in *index.  If scsi3addr matches, but not
1543 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544 * location in *index.
1545 * In the case of a minor device attribute change, such as RAID level, just
1546 * return DEVICE_UPDATED, along with the updated device's location in index.
1547 * If needle not found, return DEVICE_NOT_FOUND.
1548 */
1549static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551        int *index)
1552{
1553        int i;
1554#define DEVICE_NOT_FOUND 0
1555#define DEVICE_CHANGED 1
1556#define DEVICE_SAME 2
1557#define DEVICE_UPDATED 3
1558        if (needle == NULL)
1559                return DEVICE_NOT_FOUND;
1560
1561        for (i = 0; i < haystack_size; i++) {
1562                if (haystack[i] == NULL) /* previously removed. */
1563                        continue;
1564                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565                        *index = i;
1566                        if (device_is_the_same(needle, haystack[i])) {
1567                                if (device_updated(needle, haystack[i]))
1568                                        return DEVICE_UPDATED;
1569                                return DEVICE_SAME;
1570                        } else {
1571                                /* Keep offline devices offline */
1572                                if (needle->volume_offline)
1573                                        return DEVICE_NOT_FOUND;
1574                                return DEVICE_CHANGED;
1575                        }
1576                }
1577        }
1578        *index = -1;
1579        return DEVICE_NOT_FOUND;
1580}
1581
1582static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583                                        unsigned char scsi3addr[])
1584{
1585        struct offline_device_entry *device;
1586        unsigned long flags;
1587
1588        /* Check to see if device is already on the list */
1589        spin_lock_irqsave(&h->offline_device_lock, flags);
1590        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591                if (memcmp(device->scsi3addr, scsi3addr,
1592                        sizeof(device->scsi3addr)) == 0) {
1593                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594                        return;
1595                }
1596        }
1597        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598
1599        /* Device is not on the list, add it. */
1600        device = kmalloc(sizeof(*device), GFP_KERNEL);
1601        if (!device)
1602                return;
1603
1604        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605        spin_lock_irqsave(&h->offline_device_lock, flags);
1606        list_add_tail(&device->offline_list, &h->offline_device_list);
1607        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608}
1609
1610/* Print a message explaining various offline volume states */
1611static void hpsa_show_volume_status(struct ctlr_info *h,
1612        struct hpsa_scsi_dev_t *sd)
1613{
1614        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615                dev_info(&h->pdev->dev,
1616                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617                        h->scsi_host->host_no,
1618                        sd->bus, sd->target, sd->lun);
1619        switch (sd->volume_offline) {
1620        case HPSA_LV_OK:
1621                break;
1622        case HPSA_LV_UNDERGOING_ERASE:
1623                dev_info(&h->pdev->dev,
1624                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625                        h->scsi_host->host_no,
1626                        sd->bus, sd->target, sd->lun);
1627                break;
1628        case HPSA_LV_NOT_AVAILABLE:
1629                dev_info(&h->pdev->dev,
1630                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631                        h->scsi_host->host_no,
1632                        sd->bus, sd->target, sd->lun);
1633                break;
1634        case HPSA_LV_UNDERGOING_RPI:
1635                dev_info(&h->pdev->dev,
1636                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637                        h->scsi_host->host_no,
1638                        sd->bus, sd->target, sd->lun);
1639                break;
1640        case HPSA_LV_PENDING_RPI:
1641                dev_info(&h->pdev->dev,
1642                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643                        h->scsi_host->host_no,
1644                        sd->bus, sd->target, sd->lun);
1645                break;
1646        case HPSA_LV_ENCRYPTED_NO_KEY:
1647                dev_info(&h->pdev->dev,
1648                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649                        h->scsi_host->host_no,
1650                        sd->bus, sd->target, sd->lun);
1651                break;
1652        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653                dev_info(&h->pdev->dev,
1654                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655                        h->scsi_host->host_no,
1656                        sd->bus, sd->target, sd->lun);
1657                break;
1658        case HPSA_LV_UNDERGOING_ENCRYPTION:
1659                dev_info(&h->pdev->dev,
1660                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661                        h->scsi_host->host_no,
1662                        sd->bus, sd->target, sd->lun);
1663                break;
1664        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665                dev_info(&h->pdev->dev,
1666                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667                        h->scsi_host->host_no,
1668                        sd->bus, sd->target, sd->lun);
1669                break;
1670        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671                dev_info(&h->pdev->dev,
1672                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673                        h->scsi_host->host_no,
1674                        sd->bus, sd->target, sd->lun);
1675                break;
1676        case HPSA_LV_PENDING_ENCRYPTION:
1677                dev_info(&h->pdev->dev,
1678                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679                        h->scsi_host->host_no,
1680                        sd->bus, sd->target, sd->lun);
1681                break;
1682        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683                dev_info(&h->pdev->dev,
1684                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685                        h->scsi_host->host_no,
1686                        sd->bus, sd->target, sd->lun);
1687                break;
1688        }
1689}
1690
1691/*
1692 * Figure the list of physical drive pointers for a logical drive with
1693 * raid offload configured.
1694 */
1695static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1697                                struct hpsa_scsi_dev_t *logical_drive)
1698{
1699        struct raid_map_data *map = &logical_drive->raid_map;
1700        struct raid_map_disk_data *dd = &map->data[0];
1701        int i, j;
1702        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703                                le16_to_cpu(map->metadata_disks_per_row);
1704        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705                                le16_to_cpu(map->layout_map_count) *
1706                                total_disks_per_row;
1707        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708                                total_disks_per_row;
1709        int qdepth;
1710
1711        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713
1714        logical_drive->nphysical_disks = nraid_map_entries;
1715
1716        qdepth = 0;
1717        for (i = 0; i < nraid_map_entries; i++) {
1718                logical_drive->phys_disk[i] = NULL;
1719                if (!logical_drive->offload_config)
1720                        continue;
1721                for (j = 0; j < ndevices; j++) {
1722                        if (dev[j] == NULL)
1723                                continue;
1724                        if (dev[j]->devtype != TYPE_DISK &&
1725                            dev[j]->devtype != TYPE_ZBC)
1726                                continue;
1727                        if (is_logical_device(dev[j]))
1728                                continue;
1729                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730                                continue;
1731
1732                        logical_drive->phys_disk[i] = dev[j];
1733                        if (i < nphys_disk)
1734                                qdepth = min(h->nr_cmds, qdepth +
1735                                    logical_drive->phys_disk[i]->queue_depth);
1736                        break;
1737                }
1738
1739                /*
1740                 * This can happen if a physical drive is removed and
1741                 * the logical drive is degraded.  In that case, the RAID
1742                 * map data will refer to a physical disk which isn't actually
1743                 * present.  And in that case offload_enabled should already
1744                 * be 0, but we'll turn it off here just in case
1745                 */
1746                if (!logical_drive->phys_disk[i]) {
1747                        dev_warn(&h->pdev->dev,
1748                                "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749                                __func__,
1750                                h->scsi_host->host_no, logical_drive->bus,
1751                                logical_drive->target, logical_drive->lun);
1752                        hpsa_turn_off_ioaccel_for_device(logical_drive);
1753                        logical_drive->queue_depth = 8;
1754                }
1755        }
1756        if (nraid_map_entries)
1757                /*
1758                 * This is correct for reads, too high for full stripe writes,
1759                 * way too high for partial stripe writes
1760                 */
1761                logical_drive->queue_depth = qdepth;
1762        else {
1763                if (logical_drive->external)
1764                        logical_drive->queue_depth = EXTERNAL_QD;
1765                else
1766                        logical_drive->queue_depth = h->nr_cmds;
1767        }
1768}
1769
1770static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1772{
1773        int i;
1774
1775        for (i = 0; i < ndevices; i++) {
1776                if (dev[i] == NULL)
1777                        continue;
1778                if (dev[i]->devtype != TYPE_DISK &&
1779                    dev[i]->devtype != TYPE_ZBC)
1780                        continue;
1781                if (!is_logical_device(dev[i]))
1782                        continue;
1783
1784                /*
1785                 * If offload is currently enabled, the RAID map and
1786                 * phys_disk[] assignment *better* not be changing
1787                 * because we would be changing ioaccel phsy_disk[] pointers
1788                 * on a ioaccel volume processing I/O requests.
1789                 *
1790                 * If an ioaccel volume status changed, initially because it was
1791                 * re-configured and thus underwent a transformation, or
1792                 * a drive failed, we would have received a state change
1793                 * request and ioaccel should have been turned off. When the
1794                 * transformation completes, we get another state change
1795                 * request to turn ioaccel back on. In this case, we need
1796                 * to update the ioaccel information.
1797                 *
1798                 * Thus: If it is not currently enabled, but will be after
1799                 * the scan completes, make sure the ioaccel pointers
1800                 * are up to date.
1801                 */
1802
1803                if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804                        hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805        }
1806}
1807
1808static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809{
1810        int rc = 0;
1811
1812        if (!h->scsi_host)
1813                return 1;
1814
1815        if (is_logical_device(device)) /* RAID */
1816                rc = scsi_add_device(h->scsi_host, device->bus,
1817                                        device->target, device->lun);
1818        else /* HBA */
1819                rc = hpsa_add_sas_device(h->sas_host, device);
1820
1821        return rc;
1822}
1823
1824static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825                                                struct hpsa_scsi_dev_t *dev)
1826{
1827        int i;
1828        int count = 0;
1829
1830        for (i = 0; i < h->nr_cmds; i++) {
1831                struct CommandList *c = h->cmd_pool + i;
1832                int refcount = atomic_inc_return(&c->refcount);
1833
1834                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835                                dev->scsi3addr)) {
1836                        unsigned long flags;
1837
1838                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1839                        if (!hpsa_is_cmd_idle(c))
1840                                ++count;
1841                        spin_unlock_irqrestore(&h->lock, flags);
1842                }
1843
1844                cmd_free(h, c);
1845        }
1846
1847        return count;
1848}
1849
1850#define NUM_WAIT 20
1851static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852                                                struct hpsa_scsi_dev_t *device)
1853{
1854        int cmds = 0;
1855        int waits = 0;
1856        int num_wait = NUM_WAIT;
1857
1858        if (device->external)
1859                num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860
1861        while (1) {
1862                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863                if (cmds == 0)
1864                        break;
1865                if (++waits > num_wait)
1866                        break;
1867                msleep(1000);
1868        }
1869
1870        if (waits > num_wait) {
1871                dev_warn(&h->pdev->dev,
1872                        "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873                        __func__,
1874                        h->scsi_host->host_no,
1875                        device->bus, device->target, device->lun, cmds);
1876        }
1877}
1878
1879static void hpsa_remove_device(struct ctlr_info *h,
1880                        struct hpsa_scsi_dev_t *device)
1881{
1882        struct scsi_device *sdev = NULL;
1883
1884        if (!h->scsi_host)
1885                return;
1886
1887        /*
1888         * Allow for commands to drain
1889         */
1890        device->removed = 1;
1891        hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892
1893        if (is_logical_device(device)) { /* RAID */
1894                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895                                                device->target, device->lun);
1896                if (sdev) {
1897                        scsi_remove_device(sdev);
1898                        scsi_device_put(sdev);
1899                } else {
1900                        /*
1901                         * We don't expect to get here.  Future commands
1902                         * to this device will get a selection timeout as
1903                         * if the device were gone.
1904                         */
1905                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1906                                        "didn't find device for removal.");
1907                }
1908        } else { /* HBA */
1909
1910                hpsa_remove_sas_device(device);
1911        }
1912}
1913
1914static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915        struct hpsa_scsi_dev_t *sd[], int nsds)
1916{
1917        /* sd contains scsi3 addresses and devtypes, and inquiry
1918         * data.  This function takes what's in sd to be the current
1919         * reality and updates h->dev[] to reflect that reality.
1920         */
1921        int i, entry, device_change, changes = 0;
1922        struct hpsa_scsi_dev_t *csd;
1923        unsigned long flags;
1924        struct hpsa_scsi_dev_t **added, **removed;
1925        int nadded, nremoved;
1926
1927        /*
1928         * A reset can cause a device status to change
1929         * re-schedule the scan to see what happened.
1930         */
1931        spin_lock_irqsave(&h->reset_lock, flags);
1932        if (h->reset_in_progress) {
1933                h->drv_req_rescan = 1;
1934                spin_unlock_irqrestore(&h->reset_lock, flags);
1935                return;
1936        }
1937        spin_unlock_irqrestore(&h->reset_lock, flags);
1938
1939        added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940        removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941
1942        if (!added || !removed) {
1943                dev_warn(&h->pdev->dev, "out of memory in "
1944                        "adjust_hpsa_scsi_table\n");
1945                goto free_and_out;
1946        }
1947
1948        spin_lock_irqsave(&h->devlock, flags);
1949
1950        /* find any devices in h->dev[] that are not in
1951         * sd[] and remove them from h->dev[], and for any
1952         * devices which have changed, remove the old device
1953         * info and add the new device info.
1954         * If minor device attributes change, just update
1955         * the existing device structure.
1956         */
1957        i = 0;
1958        nremoved = 0;
1959        nadded = 0;
1960        while (i < h->ndevices) {
1961                csd = h->dev[i];
1962                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963                if (device_change == DEVICE_NOT_FOUND) {
1964                        changes++;
1965                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966                        continue; /* remove ^^^, hence i not incremented */
1967                } else if (device_change == DEVICE_CHANGED) {
1968                        changes++;
1969                        hpsa_scsi_replace_entry(h, i, sd[entry],
1970                                added, &nadded, removed, &nremoved);
1971                        /* Set it to NULL to prevent it from being freed
1972                         * at the bottom of hpsa_update_scsi_devices()
1973                         */
1974                        sd[entry] = NULL;
1975                } else if (device_change == DEVICE_UPDATED) {
1976                        hpsa_scsi_update_entry(h, i, sd[entry]);
1977                }
1978                i++;
1979        }
1980
1981        /* Now, make sure every device listed in sd[] is also
1982         * listed in h->dev[], adding them if they aren't found
1983         */
1984
1985        for (i = 0; i < nsds; i++) {
1986                if (!sd[i]) /* if already added above. */
1987                        continue;
1988
1989                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990                 * as the SCSI mid-layer does not handle such devices well.
1991                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992                 * at 160Hz, and prevents the system from coming up.
1993                 */
1994                if (sd[i]->volume_offline) {
1995                        hpsa_show_volume_status(h, sd[i]);
1996                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997                        continue;
1998                }
1999
2000                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001                                        h->ndevices, &entry);
2002                if (device_change == DEVICE_NOT_FOUND) {
2003                        changes++;
2004                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005                                break;
2006                        sd[i] = NULL; /* prevent from being freed later. */
2007                } else if (device_change == DEVICE_CHANGED) {
2008                        /* should never happen... */
2009                        changes++;
2010                        dev_warn(&h->pdev->dev,
2011                                "device unexpectedly changed.\n");
2012                        /* but if it does happen, we just ignore that device */
2013                }
2014        }
2015        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016
2017        /*
2018         * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019         * any logical drives that need it enabled.
2020         *
2021         * The raid map should be current by now.
2022         *
2023         * We are updating the device list used for I/O requests.
2024         */
2025        for (i = 0; i < h->ndevices; i++) {
2026                if (h->dev[i] == NULL)
2027                        continue;
2028                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029        }
2030
2031        spin_unlock_irqrestore(&h->devlock, flags);
2032
2033        /* Monitor devices which are in one of several NOT READY states to be
2034         * brought online later. This must be done without holding h->devlock,
2035         * so don't touch h->dev[]
2036         */
2037        for (i = 0; i < nsds; i++) {
2038                if (!sd[i]) /* if already added above. */
2039                        continue;
2040                if (sd[i]->volume_offline)
2041                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042        }
2043
2044        /* Don't notify scsi mid layer of any changes the first time through
2045         * (or if there are no changes) scsi_scan_host will do it later the
2046         * first time through.
2047         */
2048        if (!changes)
2049                goto free_and_out;
2050
2051        /* Notify scsi mid layer of any removed devices */
2052        for (i = 0; i < nremoved; i++) {
2053                if (removed[i] == NULL)
2054                        continue;
2055                if (removed[i]->expose_device)
2056                        hpsa_remove_device(h, removed[i]);
2057                kfree(removed[i]);
2058                removed[i] = NULL;
2059        }
2060
2061        /* Notify scsi mid layer of any added devices */
2062        for (i = 0; i < nadded; i++) {
2063                int rc = 0;
2064
2065                if (added[i] == NULL)
2066                        continue;
2067                if (!(added[i]->expose_device))
2068                        continue;
2069                rc = hpsa_add_device(h, added[i]);
2070                if (!rc)
2071                        continue;
2072                dev_warn(&h->pdev->dev,
2073                        "addition failed %d, device not added.", rc);
2074                /* now we have to remove it from h->dev,
2075                 * since it didn't get added to scsi mid layer
2076                 */
2077                fixup_botched_add(h, added[i]);
2078                h->drv_req_rescan = 1;
2079        }
2080
2081free_and_out:
2082        kfree(added);
2083        kfree(removed);
2084}
2085
2086/*
2087 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088 * Assume's h->devlock is held.
2089 */
2090static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091        int bus, int target, int lun)
2092{
2093        int i;
2094        struct hpsa_scsi_dev_t *sd;
2095
2096        for (i = 0; i < h->ndevices; i++) {
2097                sd = h->dev[i];
2098                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099                        return sd;
2100        }
2101        return NULL;
2102}
2103
2104static int hpsa_slave_alloc(struct scsi_device *sdev)
2105{
2106        struct hpsa_scsi_dev_t *sd = NULL;
2107        unsigned long flags;
2108        struct ctlr_info *h;
2109
2110        h = sdev_to_hba(sdev);
2111        spin_lock_irqsave(&h->devlock, flags);
2112        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113                struct scsi_target *starget;
2114                struct sas_rphy *rphy;
2115
2116                starget = scsi_target(sdev);
2117                rphy = target_to_rphy(starget);
2118                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119                if (sd) {
2120                        sd->target = sdev_id(sdev);
2121                        sd->lun = sdev->lun;
2122                }
2123        }
2124        if (!sd)
2125                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126                                        sdev_id(sdev), sdev->lun);
2127
2128        if (sd && sd->expose_device) {
2129                atomic_set(&sd->ioaccel_cmds_out, 0);
2130                sdev->hostdata = sd;
2131        } else
2132                sdev->hostdata = NULL;
2133        spin_unlock_irqrestore(&h->devlock, flags);
2134        return 0;
2135}
2136
2137/* configure scsi device based on internal per-device structure */
2138#define CTLR_TIMEOUT (120 * HZ)
2139static int hpsa_slave_configure(struct scsi_device *sdev)
2140{
2141        struct hpsa_scsi_dev_t *sd;
2142        int queue_depth;
2143
2144        sd = sdev->hostdata;
2145        sdev->no_uld_attach = !sd || !sd->expose_device;
2146
2147        if (sd) {
2148                sd->was_removed = 0;
2149                queue_depth = sd->queue_depth != 0 ?
2150                                sd->queue_depth : sdev->host->can_queue;
2151                if (sd->external) {
2152                        queue_depth = EXTERNAL_QD;
2153                        sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154                        blk_queue_rq_timeout(sdev->request_queue,
2155                                                HPSA_EH_PTRAID_TIMEOUT);
2156                }
2157                if (is_hba_lunid(sd->scsi3addr)) {
2158                        sdev->eh_timeout = CTLR_TIMEOUT;
2159                        blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160                }
2161        } else {
2162                queue_depth = sdev->host->can_queue;
2163        }
2164
2165        scsi_change_queue_depth(sdev, queue_depth);
2166
2167        return 0;
2168}
2169
2170static void hpsa_slave_destroy(struct scsi_device *sdev)
2171{
2172        struct hpsa_scsi_dev_t *hdev = NULL;
2173
2174        hdev = sdev->hostdata;
2175
2176        if (hdev)
2177                hdev->was_removed = 1;
2178}
2179
2180static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181{
2182        int i;
2183
2184        if (!h->ioaccel2_cmd_sg_list)
2185                return;
2186        for (i = 0; i < h->nr_cmds; i++) {
2187                kfree(h->ioaccel2_cmd_sg_list[i]);
2188                h->ioaccel2_cmd_sg_list[i] = NULL;
2189        }
2190        kfree(h->ioaccel2_cmd_sg_list);
2191        h->ioaccel2_cmd_sg_list = NULL;
2192}
2193
2194static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195{
2196        int i;
2197
2198        if (h->chainsize <= 0)
2199                return 0;
2200
2201        h->ioaccel2_cmd_sg_list =
2202                kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203                                        GFP_KERNEL);
2204        if (!h->ioaccel2_cmd_sg_list)
2205                return -ENOMEM;
2206        for (i = 0; i < h->nr_cmds; i++) {
2207                h->ioaccel2_cmd_sg_list[i] =
2208                        kmalloc_array(h->maxsgentries,
2209                                      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210                                      GFP_KERNEL);
2211                if (!h->ioaccel2_cmd_sg_list[i])
2212                        goto clean;
2213        }
2214        return 0;
2215
2216clean:
2217        hpsa_free_ioaccel2_sg_chain_blocks(h);
2218        return -ENOMEM;
2219}
2220
2221static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222{
2223        int i;
2224
2225        if (!h->cmd_sg_list)
2226                return;
2227        for (i = 0; i < h->nr_cmds; i++) {
2228                kfree(h->cmd_sg_list[i]);
2229                h->cmd_sg_list[i] = NULL;
2230        }
2231        kfree(h->cmd_sg_list);
2232        h->cmd_sg_list = NULL;
2233}
2234
2235static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236{
2237        int i;
2238
2239        if (h->chainsize <= 0)
2240                return 0;
2241
2242        h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243                                 GFP_KERNEL);
2244        if (!h->cmd_sg_list)
2245                return -ENOMEM;
2246
2247        for (i = 0; i < h->nr_cmds; i++) {
2248                h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249                                                  sizeof(*h->cmd_sg_list[i]),
2250                                                  GFP_KERNEL);
2251                if (!h->cmd_sg_list[i])
2252                        goto clean;
2253
2254        }
2255        return 0;
2256
2257clean:
2258        hpsa_free_sg_chain_blocks(h);
2259        return -ENOMEM;
2260}
2261
2262static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263        struct io_accel2_cmd *cp, struct CommandList *c)
2264{
2265        struct ioaccel2_sg_element *chain_block;
2266        u64 temp64;
2267        u32 chain_size;
2268
2269        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270        chain_size = le32_to_cpu(cp->sg[0].length);
2271        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272                                DMA_TO_DEVICE);
2273        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274                /* prevent subsequent unmapping */
2275                cp->sg->address = 0;
2276                return -1;
2277        }
2278        cp->sg->address = cpu_to_le64(temp64);
2279        return 0;
2280}
2281
2282static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283        struct io_accel2_cmd *cp)
2284{
2285        struct ioaccel2_sg_element *chain_sg;
2286        u64 temp64;
2287        u32 chain_size;
2288
2289        chain_sg = cp->sg;
2290        temp64 = le64_to_cpu(chain_sg->address);
2291        chain_size = le32_to_cpu(cp->sg[0].length);
2292        dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293}
2294
2295static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296        struct CommandList *c)
2297{
2298        struct SGDescriptor *chain_sg, *chain_block;
2299        u64 temp64;
2300        u32 chain_len;
2301
2302        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303        chain_block = h->cmd_sg_list[c->cmdindex];
2304        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305        chain_len = sizeof(*chain_sg) *
2306                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307        chain_sg->Len = cpu_to_le32(chain_len);
2308        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309                                DMA_TO_DEVICE);
2310        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311                /* prevent subsequent unmapping */
2312                chain_sg->Addr = cpu_to_le64(0);
2313                return -1;
2314        }
2315        chain_sg->Addr = cpu_to_le64(temp64);
2316        return 0;
2317}
2318
2319static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320        struct CommandList *c)
2321{
2322        struct SGDescriptor *chain_sg;
2323
2324        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325                return;
2326
2327        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328        dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329                        le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330}
2331
2332
2333/* Decode the various types of errors on ioaccel2 path.
2334 * Return 1 for any error that should generate a RAID path retry.
2335 * Return 0 for errors that don't require a RAID path retry.
2336 */
2337static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338                                        struct CommandList *c,
2339                                        struct scsi_cmnd *cmd,
2340                                        struct io_accel2_cmd *c2,
2341                                        struct hpsa_scsi_dev_t *dev)
2342{
2343        int data_len;
2344        int retry = 0;
2345        u32 ioaccel2_resid = 0;
2346
2347        switch (c2->error_data.serv_response) {
2348        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349                switch (c2->error_data.status) {
2350                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351                        if (cmd)
2352                                cmd->result = 0;
2353                        break;
2354                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2356                        if (c2->error_data.data_present !=
2357                                        IOACCEL2_SENSE_DATA_PRESENT) {
2358                                memset(cmd->sense_buffer, 0,
2359                                        SCSI_SENSE_BUFFERSIZE);
2360                                break;
2361                        }
2362                        /* copy the sense data */
2363                        data_len = c2->error_data.sense_data_len;
2364                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2365                                data_len = SCSI_SENSE_BUFFERSIZE;
2366                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2367                                data_len =
2368                                        sizeof(c2->error_data.sense_data_buff);
2369                        memcpy(cmd->sense_buffer,
2370                                c2->error_data.sense_data_buff, data_len);
2371                        retry = 1;
2372                        break;
2373                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374                        retry = 1;
2375                        break;
2376                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377                        retry = 1;
2378                        break;
2379                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380                        retry = 1;
2381                        break;
2382                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383                        retry = 1;
2384                        break;
2385                default:
2386                        retry = 1;
2387                        break;
2388                }
2389                break;
2390        case IOACCEL2_SERV_RESPONSE_FAILURE:
2391                switch (c2->error_data.status) {
2392                case IOACCEL2_STATUS_SR_IO_ERROR:
2393                case IOACCEL2_STATUS_SR_IO_ABORTED:
2394                case IOACCEL2_STATUS_SR_OVERRUN:
2395                        retry = 1;
2396                        break;
2397                case IOACCEL2_STATUS_SR_UNDERRUN:
2398                        cmd->result = (DID_OK << 16);           /* host byte */
2399                        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2400                        ioaccel2_resid = get_unaligned_le32(
2401                                                &c2->error_data.resid_cnt[0]);
2402                        scsi_set_resid(cmd, ioaccel2_resid);
2403                        break;
2404                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2405                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2406                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2407                        /*
2408                         * Did an HBA disk disappear? We will eventually
2409                         * get a state change event from the controller but
2410                         * in the meantime, we need to tell the OS that the
2411                         * HBA disk is no longer there and stop I/O
2412                         * from going down. This allows the potential re-insert
2413                         * of the disk to get the same device node.
2414                         */
2415                        if (dev->physical_device && dev->expose_device) {
2416                                cmd->result = DID_NO_CONNECT << 16;
2417                                dev->removed = 1;
2418                                h->drv_req_rescan = 1;
2419                                dev_warn(&h->pdev->dev,
2420                                        "%s: device is gone!\n", __func__);
2421                        } else
2422                                /*
2423                                 * Retry by sending down the RAID path.
2424                                 * We will get an event from ctlr to
2425                                 * trigger rescan regardless.
2426                                 */
2427                                retry = 1;
2428                        break;
2429                default:
2430                        retry = 1;
2431                }
2432                break;
2433        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2434                break;
2435        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2436                break;
2437        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2438                retry = 1;
2439                break;
2440        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2441                break;
2442        default:
2443                retry = 1;
2444                break;
2445        }
2446
2447        if (dev->in_reset)
2448                retry = 0;
2449
2450        return retry;   /* retry on raid path? */
2451}
2452
2453static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2454                struct CommandList *c)
2455{
2456        struct hpsa_scsi_dev_t *dev = c->device;
2457
2458        /*
2459         * Reset c->scsi_cmd here so that the reset handler will know
2460         * this command has completed.  Then, check to see if the handler is
2461         * waiting for this command, and, if so, wake it.
2462         */
2463        c->scsi_cmd = SCSI_CMD_IDLE;
2464        mb();   /* Declare command idle before checking for pending events. */
2465        if (dev) {
2466                atomic_dec(&dev->commands_outstanding);
2467                if (dev->in_reset &&
2468                        atomic_read(&dev->commands_outstanding) <= 0)
2469                        wake_up_all(&h->event_sync_wait_queue);
2470        }
2471}
2472
2473static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2474                                      struct CommandList *c)
2475{
2476        hpsa_cmd_resolve_events(h, c);
2477        cmd_tagged_free(h, c);
2478}
2479
2480static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2481                struct CommandList *c, struct scsi_cmnd *cmd)
2482{
2483        hpsa_cmd_resolve_and_free(h, c);
2484        if (cmd && cmd->scsi_done)
2485                cmd->scsi_done(cmd);
2486}
2487
2488static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2489{
2490        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2491        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2492}
2493
2494static void process_ioaccel2_completion(struct ctlr_info *h,
2495                struct CommandList *c, struct scsi_cmnd *cmd,
2496                struct hpsa_scsi_dev_t *dev)
2497{
2498        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2499
2500        /* check for good status */
2501        if (likely(c2->error_data.serv_response == 0 &&
2502                        c2->error_data.status == 0)) {
2503                cmd->result = 0;
2504                return hpsa_cmd_free_and_done(h, c, cmd);
2505        }
2506
2507        /*
2508         * Any RAID offload error results in retry which will use
2509         * the normal I/O path so the controller can handle whatever is
2510         * wrong.
2511         */
2512        if (is_logical_device(dev) &&
2513                c2->error_data.serv_response ==
2514                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2515                if (c2->error_data.status ==
2516                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2517                        hpsa_turn_off_ioaccel_for_device(dev);
2518                }
2519
2520                if (dev->in_reset) {
2521                        cmd->result = DID_RESET << 16;
2522                        return hpsa_cmd_free_and_done(h, c, cmd);
2523                }
2524
2525                return hpsa_retry_cmd(h, c);
2526        }
2527
2528        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2529                return hpsa_retry_cmd(h, c);
2530
2531        return hpsa_cmd_free_and_done(h, c, cmd);
2532}
2533
2534/* Returns 0 on success, < 0 otherwise. */
2535static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2536                                        struct CommandList *cp)
2537{
2538        u8 tmf_status = cp->err_info->ScsiStatus;
2539
2540        switch (tmf_status) {
2541        case CISS_TMF_COMPLETE:
2542                /*
2543                 * CISS_TMF_COMPLETE never happens, instead,
2544                 * ei->CommandStatus == 0 for this case.
2545                 */
2546        case CISS_TMF_SUCCESS:
2547                return 0;
2548        case CISS_TMF_INVALID_FRAME:
2549        case CISS_TMF_NOT_SUPPORTED:
2550        case CISS_TMF_FAILED:
2551        case CISS_TMF_WRONG_LUN:
2552        case CISS_TMF_OVERLAPPED_TAG:
2553                break;
2554        default:
2555                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2556                                tmf_status);
2557                break;
2558        }
2559        return -tmf_status;
2560}
2561
2562static void complete_scsi_command(struct CommandList *cp)
2563{
2564        struct scsi_cmnd *cmd;
2565        struct ctlr_info *h;
2566        struct ErrorInfo *ei;
2567        struct hpsa_scsi_dev_t *dev;
2568        struct io_accel2_cmd *c2;
2569
2570        u8 sense_key;
2571        u8 asc;      /* additional sense code */
2572        u8 ascq;     /* additional sense code qualifier */
2573        unsigned long sense_data_size;
2574
2575        ei = cp->err_info;
2576        cmd = cp->scsi_cmd;
2577        h = cp->h;
2578
2579        if (!cmd->device) {
2580                cmd->result = DID_NO_CONNECT << 16;
2581                return hpsa_cmd_free_and_done(h, cp, cmd);
2582        }
2583
2584        dev = cmd->device->hostdata;
2585        if (!dev) {
2586                cmd->result = DID_NO_CONNECT << 16;
2587                return hpsa_cmd_free_and_done(h, cp, cmd);
2588        }
2589        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2590
2591        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2592        if ((cp->cmd_type == CMD_SCSI) &&
2593                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2594                hpsa_unmap_sg_chain_block(h, cp);
2595
2596        if ((cp->cmd_type == CMD_IOACCEL2) &&
2597                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2598                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2599
2600        cmd->result = (DID_OK << 16);           /* host byte */
2601        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2602
2603        /* SCSI command has already been cleaned up in SML */
2604        if (dev->was_removed) {
2605                hpsa_cmd_resolve_and_free(h, cp);
2606                return;
2607        }
2608
2609        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610                if (dev->physical_device && dev->expose_device &&
2611                        dev->removed) {
2612                        cmd->result = DID_NO_CONNECT << 16;
2613                        return hpsa_cmd_free_and_done(h, cp, cmd);
2614                }
2615                if (likely(cp->phys_disk != NULL))
2616                        atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617        }
2618
2619        /*
2620         * We check for lockup status here as it may be set for
2621         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622         * fail_all_oustanding_cmds()
2623         */
2624        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625                /* DID_NO_CONNECT will prevent a retry */
2626                cmd->result = DID_NO_CONNECT << 16;
2627                return hpsa_cmd_free_and_done(h, cp, cmd);
2628        }
2629
2630        if (cp->cmd_type == CMD_IOACCEL2)
2631                return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633        scsi_set_resid(cmd, ei->ResidualCnt);
2634        if (ei->CommandStatus == 0)
2635                return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637        /* For I/O accelerator commands, copy over some fields to the normal
2638         * CISS header used below for error handling.
2639         */
2640        if (cp->cmd_type == CMD_IOACCEL1) {
2641                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642                cp->Header.SGList = scsi_sg_count(cmd);
2643                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646                cp->Header.tag = c->tag;
2647                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650                /* Any RAID offload error results in retry which will use
2651                 * the normal I/O path so the controller can handle whatever's
2652                 * wrong.
2653                 */
2654                if (is_logical_device(dev)) {
2655                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656                                dev->offload_enabled = 0;
2657                        return hpsa_retry_cmd(h, cp);
2658                }
2659        }
2660
2661        /* an error has occurred */
2662        switch (ei->CommandStatus) {
2663
2664        case CMD_TARGET_STATUS:
2665                cmd->result |= ei->ScsiStatus;
2666                /* copy the sense data */
2667                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669                else
2670                        sense_data_size = sizeof(ei->SenseInfo);
2671                if (ei->SenseLen < sense_data_size)
2672                        sense_data_size = ei->SenseLen;
2673                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674                if (ei->ScsiStatus)
2675                        decode_sense_data(ei->SenseInfo, sense_data_size,
2676                                &sense_key, &asc, &ascq);
2677                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678                        switch (sense_key) {
2679                        case ABORTED_COMMAND:
2680                                cmd->result |= DID_SOFT_ERROR << 16;
2681                                break;
2682                        case UNIT_ATTENTION:
2683                                if (asc == 0x3F && ascq == 0x0E)
2684                                        h->drv_req_rescan = 1;
2685                                break;
2686                        case ILLEGAL_REQUEST:
2687                                if (asc == 0x25 && ascq == 0x00) {
2688                                        dev->removed = 1;
2689                                        cmd->result = DID_NO_CONNECT << 16;
2690                                }
2691                                break;
2692                        }
2693                        break;
2694                }
2695                /* Problem was not a check condition
2696                 * Pass it up to the upper layers...
2697                 */
2698                if (ei->ScsiStatus) {
2699                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701                                "Returning result: 0x%x\n",
2702                                cp, ei->ScsiStatus,
2703                                sense_key, asc, ascq,
2704                                cmd->result);
2705                } else {  /* scsi status is zero??? How??? */
2706                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707                                "Returning no connection.\n", cp),
2708
2709                        /* Ordinarily, this case should never happen,
2710                         * but there is a bug in some released firmware
2711                         * revisions that allows it to happen if, for
2712                         * example, a 4100 backplane loses power and
2713                         * the tape drive is in it.  We assume that
2714                         * it's a fatal error of some kind because we
2715                         * can't show that it wasn't. We will make it
2716                         * look like selection timeout since that is
2717                         * the most common reason for this to occur,
2718                         * and it's severe enough.
2719                         */
2720
2721                        cmd->result = DID_NO_CONNECT << 16;
2722                }
2723                break;
2724
2725        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726                break;
2727        case CMD_DATA_OVERRUN:
2728                dev_warn(&h->pdev->dev,
2729                        "CDB %16phN data overrun\n", cp->Request.CDB);
2730                break;
2731        case CMD_INVALID: {
2732                /* print_bytes(cp, sizeof(*cp), 1, 0);
2733                print_cmd(cp); */
2734                /* We get CMD_INVALID if you address a non-existent device
2735                 * instead of a selection timeout (no response).  You will
2736                 * see this if you yank out a drive, then try to access it.
2737                 * This is kind of a shame because it means that any other
2738                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739                 * missing target. */
2740                cmd->result = DID_NO_CONNECT << 16;
2741        }
2742                break;
2743        case CMD_PROTOCOL_ERR:
2744                cmd->result = DID_ERROR << 16;
2745                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746                                cp->Request.CDB);
2747                break;
2748        case CMD_HARDWARE_ERR:
2749                cmd->result = DID_ERROR << 16;
2750                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751                        cp->Request.CDB);
2752                break;
2753        case CMD_CONNECTION_LOST:
2754                cmd->result = DID_ERROR << 16;
2755                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756                        cp->Request.CDB);
2757                break;
2758        case CMD_ABORTED:
2759                cmd->result = DID_ABORT << 16;
2760                break;
2761        case CMD_ABORT_FAILED:
2762                cmd->result = DID_ERROR << 16;
2763                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764                        cp->Request.CDB);
2765                break;
2766        case CMD_UNSOLICITED_ABORT:
2767                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769                        cp->Request.CDB);
2770                break;
2771        case CMD_TIMEOUT:
2772                cmd->result = DID_TIME_OUT << 16;
2773                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774                        cp->Request.CDB);
2775                break;
2776        case CMD_UNABORTABLE:
2777                cmd->result = DID_ERROR << 16;
2778                dev_warn(&h->pdev->dev, "Command unabortable\n");
2779                break;
2780        case CMD_TMF_STATUS:
2781                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782                        cmd->result = DID_ERROR << 16;
2783                break;
2784        case CMD_IOACCEL_DISABLED:
2785                /* This only handles the direct pass-through case since RAID
2786                 * offload is handled above.  Just attempt a retry.
2787                 */
2788                cmd->result = DID_SOFT_ERROR << 16;
2789                dev_warn(&h->pdev->dev,
2790                                "cp %p had HP SSD Smart Path error\n", cp);
2791                break;
2792        default:
2793                cmd->result = DID_ERROR << 16;
2794                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795                                cp, ei->CommandStatus);
2796        }
2797
2798        return hpsa_cmd_free_and_done(h, cp, cmd);
2799}
2800
2801static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802                int sg_used, enum dma_data_direction data_direction)
2803{
2804        int i;
2805
2806        for (i = 0; i < sg_used; i++)
2807                dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808                                le32_to_cpu(c->SG[i].Len),
2809                                data_direction);
2810}
2811
2812static int hpsa_map_one(struct pci_dev *pdev,
2813                struct CommandList *cp,
2814                unsigned char *buf,
2815                size_t buflen,
2816                enum dma_data_direction data_direction)
2817{
2818        u64 addr64;
2819
2820        if (buflen == 0 || data_direction == DMA_NONE) {
2821                cp->Header.SGList = 0;
2822                cp->Header.SGTotal = cpu_to_le16(0);
2823                return 0;
2824        }
2825
2826        addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827        if (dma_mapping_error(&pdev->dev, addr64)) {
2828                /* Prevent subsequent unmap of something never mapped */
2829                cp->Header.SGList = 0;
2830                cp->Header.SGTotal = cpu_to_le16(0);
2831                return -1;
2832        }
2833        cp->SG[0].Addr = cpu_to_le64(addr64);
2834        cp->SG[0].Len = cpu_to_le32(buflen);
2835        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838        return 0;
2839}
2840
2841#define NO_TIMEOUT ((unsigned long) -1)
2842#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845{
2846        DECLARE_COMPLETION_ONSTACK(wait);
2847
2848        c->waiting = &wait;
2849        __enqueue_cmd_and_start_io(h, c, reply_queue);
2850        if (timeout_msecs == NO_TIMEOUT) {
2851                /* TODO: get rid of this no-timeout thing */
2852                wait_for_completion_io(&wait);
2853                return IO_OK;
2854        }
2855        if (!wait_for_completion_io_timeout(&wait,
2856                                        msecs_to_jiffies(timeout_msecs))) {
2857                dev_warn(&h->pdev->dev, "Command timed out.\n");
2858                return -ETIMEDOUT;
2859        }
2860        return IO_OK;
2861}
2862
2863static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864                                   int reply_queue, unsigned long timeout_msecs)
2865{
2866        if (unlikely(lockup_detected(h))) {
2867                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868                return IO_OK;
2869        }
2870        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871}
2872
2873static u32 lockup_detected(struct ctlr_info *h)
2874{
2875        int cpu;
2876        u32 rc, *lockup_detected;
2877
2878        cpu = get_cpu();
2879        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880        rc = *lockup_detected;
2881        put_cpu();
2882        return rc;
2883}
2884
2885#define MAX_DRIVER_CMD_RETRIES 25
2886static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887                struct CommandList *c, enum dma_data_direction data_direction,
2888                unsigned long timeout_msecs)
2889{
2890        int backoff_time = 10, retry_count = 0;
2891        int rc;
2892
2893        do {
2894                memset(c->err_info, 0, sizeof(*c->err_info));
2895                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896                                                  timeout_msecs);
2897                if (rc)
2898                        break;
2899                retry_count++;
2900                if (retry_count > 3) {
2901                        msleep(backoff_time);
2902                        if (backoff_time < 1000)
2903                                backoff_time *= 2;
2904                }
2905        } while ((check_for_unit_attention(h, c) ||
2906                        check_for_busy(h, c)) &&
2907                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2908        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910                rc = -EIO;
2911        return rc;
2912}
2913
2914static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915                                struct CommandList *c)
2916{
2917        const u8 *cdb = c->Request.CDB;
2918        const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920        dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921                 txt, lun, cdb);
2922}
2923
2924static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925                        struct CommandList *cp)
2926{
2927        const struct ErrorInfo *ei = cp->err_info;
2928        struct device *d = &cp->h->pdev->dev;
2929        u8 sense_key, asc, ascq;
2930        int sense_len;
2931
2932        switch (ei->CommandStatus) {
2933        case CMD_TARGET_STATUS:
2934                if (ei->SenseLen > sizeof(ei->SenseInfo))
2935                        sense_len = sizeof(ei->SenseInfo);
2936                else
2937                        sense_len = ei->SenseLen;
2938                decode_sense_data(ei->SenseInfo, sense_len,
2939                                        &sense_key, &asc, &ascq);
2940                hpsa_print_cmd(h, "SCSI status", cp);
2941                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943                                sense_key, asc, ascq);
2944                else
2945                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946                if (ei->ScsiStatus == 0)
2947                        dev_warn(d, "SCSI status is abnormally zero.  "
2948                        "(probably indicates selection timeout "
2949                        "reported incorrectly due to a known "
2950                        "firmware bug, circa July, 2001.)\n");
2951                break;
2952        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953                break;
2954        case CMD_DATA_OVERRUN:
2955                hpsa_print_cmd(h, "overrun condition", cp);
2956                break;
2957        case CMD_INVALID: {
2958                /* controller unfortunately reports SCSI passthru's
2959                 * to non-existent targets as invalid commands.
2960                 */
2961                hpsa_print_cmd(h, "invalid command", cp);
2962                dev_warn(d, "probably means device no longer present\n");
2963                }
2964                break;
2965        case CMD_PROTOCOL_ERR:
2966                hpsa_print_cmd(h, "protocol error", cp);
2967                break;
2968        case CMD_HARDWARE_ERR:
2969                hpsa_print_cmd(h, "hardware error", cp);
2970                break;
2971        case CMD_CONNECTION_LOST:
2972                hpsa_print_cmd(h, "connection lost", cp);
2973                break;
2974        case CMD_ABORTED:
2975                hpsa_print_cmd(h, "aborted", cp);
2976                break;
2977        case CMD_ABORT_FAILED:
2978                hpsa_print_cmd(h, "abort failed", cp);
2979                break;
2980        case CMD_UNSOLICITED_ABORT:
2981                hpsa_print_cmd(h, "unsolicited abort", cp);
2982                break;
2983        case CMD_TIMEOUT:
2984                hpsa_print_cmd(h, "timed out", cp);
2985                break;
2986        case CMD_UNABORTABLE:
2987                hpsa_print_cmd(h, "unabortable", cp);
2988                break;
2989        case CMD_CTLR_LOCKUP:
2990                hpsa_print_cmd(h, "controller lockup detected", cp);
2991                break;
2992        default:
2993                hpsa_print_cmd(h, "unknown status", cp);
2994                dev_warn(d, "Unknown command status %x\n",
2995                                ei->CommandStatus);
2996        }
2997}
2998
2999static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000                                        u8 page, u8 *buf, size_t bufsize)
3001{
3002        int rc = IO_OK;
3003        struct CommandList *c;
3004        struct ErrorInfo *ei;
3005
3006        c = cmd_alloc(h);
3007        if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008                        page, scsi3addr, TYPE_CMD)) {
3009                rc = -1;
3010                goto out;
3011        }
3012        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013                        NO_TIMEOUT);
3014        if (rc)
3015                goto out;
3016        ei = c->err_info;
3017        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                hpsa_scsi_interpret_error(h, c);
3019                rc = -1;
3020        }
3021out:
3022        cmd_free(h, c);
3023        return rc;
3024}
3025
3026static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027                                                u8 *scsi3addr)
3028{
3029        u8 *buf;
3030        u64 sa = 0;
3031        int rc = 0;
3032
3033        buf = kzalloc(1024, GFP_KERNEL);
3034        if (!buf)
3035                return 0;
3036
3037        rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038                                        buf, 1024);
3039
3040        if (rc)
3041                goto out;
3042
3043        sa = get_unaligned_be64(buf+12);
3044
3045out:
3046        kfree(buf);
3047        return sa;
3048}
3049
3050static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051                        u16 page, unsigned char *buf,
3052                        unsigned char bufsize)
3053{
3054        int rc = IO_OK;
3055        struct CommandList *c;
3056        struct ErrorInfo *ei;
3057
3058        c = cmd_alloc(h);
3059
3060        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061                        page, scsi3addr, TYPE_CMD)) {
3062                rc = -1;
3063                goto out;
3064        }
3065        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066                        NO_TIMEOUT);
3067        if (rc)
3068                goto out;
3069        ei = c->err_info;
3070        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071                hpsa_scsi_interpret_error(h, c);
3072                rc = -1;
3073        }
3074out:
3075        cmd_free(h, c);
3076        return rc;
3077}
3078
3079static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080        u8 reset_type, int reply_queue)
3081{
3082        int rc = IO_OK;
3083        struct CommandList *c;
3084        struct ErrorInfo *ei;
3085
3086        c = cmd_alloc(h);
3087        c->device = dev;
3088
3089        /* fill_cmd can't fail here, no data buffer to map. */
3090        (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092        if (rc) {
3093                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094                goto out;
3095        }
3096        /* no unmap needed here because no data xfer. */
3097
3098        ei = c->err_info;
3099        if (ei->CommandStatus != 0) {
3100                hpsa_scsi_interpret_error(h, c);
3101                rc = -1;
3102        }
3103out:
3104        cmd_free(h, c);
3105        return rc;
3106}
3107
3108static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109                               struct hpsa_scsi_dev_t *dev,
3110                               unsigned char *scsi3addr)
3111{
3112        int i;
3113        bool match = false;
3114        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117        if (hpsa_is_cmd_idle(c))
3118                return false;
3119
3120        switch (c->cmd_type) {
3121        case CMD_SCSI:
3122        case CMD_IOCTL_PEND:
3123                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124                                sizeof(c->Header.LUN.LunAddrBytes));
3125                break;
3126
3127        case CMD_IOACCEL1:
3128        case CMD_IOACCEL2:
3129                if (c->phys_disk == dev) {
3130                        /* HBA mode match */
3131                        match = true;
3132                } else {
3133                        /* Possible RAID mode -- check each phys dev. */
3134                        /* FIXME:  Do we need to take out a lock here?  If
3135                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136                         * instead. */
3137                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138                                /* FIXME: an alternate test might be
3139                                 *
3140                                 * match = dev->phys_disk[i]->ioaccel_handle
3141                                 *              == c2->scsi_nexus;      */
3142                                match = dev->phys_disk[i] == c->phys_disk;
3143                        }
3144                }
3145                break;
3146
3147        case IOACCEL2_TMF:
3148                for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149                        match = dev->phys_disk[i]->ioaccel_handle ==
3150                                        le32_to_cpu(ac->it_nexus);
3151                }
3152                break;
3153
3154        case 0:         /* The command is in the middle of being initialized. */
3155                match = false;
3156                break;
3157
3158        default:
3159                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160                        c->cmd_type);
3161                BUG();
3162        }
3163
3164        return match;
3165}
3166
3167static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168        u8 reset_type, int reply_queue)
3169{
3170        int rc = 0;
3171
3172        /* We can really only handle one reset at a time */
3173        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175                return -EINTR;
3176        }
3177
3178        rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179        if (!rc) {
3180                /* incremented by sending the reset request */
3181                atomic_dec(&dev->commands_outstanding);
3182                wait_event(h->event_sync_wait_queue,
3183                        atomic_read(&dev->commands_outstanding) <= 0 ||
3184                        lockup_detected(h));
3185        }
3186
3187        if (unlikely(lockup_detected(h))) {
3188                dev_warn(&h->pdev->dev,
3189                         "Controller lockup detected during reset wait\n");
3190                rc = -ENODEV;
3191        }
3192
3193        if (!rc)
3194                rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196        mutex_unlock(&h->reset_mutex);
3197        return rc;
3198}
3199
3200static void hpsa_get_raid_level(struct ctlr_info *h,
3201        unsigned char *scsi3addr, unsigned char *raid_level)
3202{
3203        int rc;
3204        unsigned char *buf;
3205
3206        *raid_level = RAID_UNKNOWN;
3207        buf = kzalloc(64, GFP_KERNEL);
3208        if (!buf)
3209                return;
3210
3211        if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                goto exit;
3214
3215        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218        if (rc == 0)
3219                *raid_level = buf[8];
3220        if (*raid_level > RAID_UNKNOWN)
3221                *raid_level = RAID_UNKNOWN;
3222exit:
3223        kfree(buf);
3224        return;
3225}
3226
3227#define HPSA_MAP_DEBUG
3228#ifdef HPSA_MAP_DEBUG
3229static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                struct raid_map_data *map_buff)
3231{
3232        struct raid_map_disk_data *dd = &map_buff->data[0];
3233        int map, row, col;
3234        u16 map_cnt, row_cnt, disks_per_row;
3235
3236        if (rc != 0)
3237                return;
3238
3239        /* Show details only if debugging has been activated. */
3240        if (h->raid_offload_debug < 2)
3241                return;
3242
3243        dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                le32_to_cpu(map_buff->structure_size));
3245        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                        le32_to_cpu(map_buff->volume_blk_size));
3247        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                        le64_to_cpu(map_buff->volume_blk_cnt));
3249        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                        map_buff->phys_blk_shift);
3251        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                        map_buff->parity_rotation_shift);
3253        dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                        le16_to_cpu(map_buff->strip_size));
3255        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                        le64_to_cpu(map_buff->disk_starting_blk));
3257        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                        le64_to_cpu(map_buff->disk_blk_cnt));
3259        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                        le16_to_cpu(map_buff->data_disks_per_row));
3261        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                        le16_to_cpu(map_buff->metadata_disks_per_row));
3263        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                        le16_to_cpu(map_buff->row_cnt));
3265        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                        le16_to_cpu(map_buff->layout_map_count));
3267        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                        le16_to_cpu(map_buff->flags));
3269        dev_info(&h->pdev->dev, "encryption = %s\n",
3270                        le16_to_cpu(map_buff->flags) &
3271                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272        dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                        le16_to_cpu(map_buff->dekindex));
3274        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275        for (map = 0; map < map_cnt; map++) {
3276                dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                for (row = 0; row < row_cnt; row++) {
3279                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                        disks_per_row =
3281                                le16_to_cpu(map_buff->data_disks_per_row);
3282                        for (col = 0; col < disks_per_row; col++, dd++)
3283                                dev_info(&h->pdev->dev,
3284                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                        col, dd->ioaccel_handle,
3286                                        dd->xor_mult[0], dd->xor_mult[1]);
3287                        disks_per_row =
3288                                le16_to_cpu(map_buff->metadata_disks_per_row);
3289                        for (col = 0; col < disks_per_row; col++, dd++)
3290                                dev_info(&h->pdev->dev,
3291                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                        col, dd->ioaccel_handle,
3293                                        dd->xor_mult[0], dd->xor_mult[1]);
3294                }
3295        }
3296}
3297#else
3298static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                        __attribute__((unused)) int rc,
3300                        __attribute__((unused)) struct raid_map_data *map_buff)
3301{
3302}
3303#endif
3304
3305static int hpsa_get_raid_map(struct ctlr_info *h,
3306        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307{
3308        int rc = 0;
3309        struct CommandList *c;
3310        struct ErrorInfo *ei;
3311
3312        c = cmd_alloc(h);
3313
3314        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                        sizeof(this_device->raid_map), 0,
3316                        scsi3addr, TYPE_CMD)) {
3317                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                cmd_free(h, c);
3319                return -1;
3320        }
3321        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                        NO_TIMEOUT);
3323        if (rc)
3324                goto out;
3325        ei = c->err_info;
3326        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                hpsa_scsi_interpret_error(h, c);
3328                rc = -1;
3329                goto out;
3330        }
3331        cmd_free(h, c);
3332
3333        /* @todo in the future, dynamically allocate RAID map memory */
3334        if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                sizeof(this_device->raid_map)) {
3336                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                rc = -1;
3338        }
3339        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340        return rc;
3341out:
3342        cmd_free(h, c);
3343        return rc;
3344}
3345
3346static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                unsigned char scsi3addr[], u16 bmic_device_index,
3348                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349{
3350        int rc = IO_OK;
3351        struct CommandList *c;
3352        struct ErrorInfo *ei;
3353
3354        c = cmd_alloc(h);
3355
3356        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                0, RAID_CTLR_LUNID, TYPE_CMD);
3358        if (rc)
3359                goto out;
3360
3361        c->Request.CDB[2] = bmic_device_index & 0xff;
3362        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                        NO_TIMEOUT);
3366        if (rc)
3367                goto out;
3368        ei = c->err_info;
3369        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                hpsa_scsi_interpret_error(h, c);
3371                rc = -1;
3372        }
3373out:
3374        cmd_free(h, c);
3375        return rc;
3376}
3377
3378static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379        struct bmic_identify_controller *buf, size_t bufsize)
3380{
3381        int rc = IO_OK;
3382        struct CommandList *c;
3383        struct ErrorInfo *ei;
3384
3385        c = cmd_alloc(h);
3386
3387        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                0, RAID_CTLR_LUNID, TYPE_CMD);
3389        if (rc)
3390                goto out;
3391
3392        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                        NO_TIMEOUT);
3394        if (rc)
3395                goto out;
3396        ei = c->err_info;
3397        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                hpsa_scsi_interpret_error(h, c);
3399                rc = -1;
3400        }
3401out:
3402        cmd_free(h, c);
3403        return rc;
3404}
3405
3406static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                unsigned char scsi3addr[], u16 bmic_device_index,
3408                struct bmic_identify_physical_device *buf, size_t bufsize)
3409{
3410        int rc = IO_OK;
3411        struct CommandList *c;
3412        struct ErrorInfo *ei;
3413
3414        c = cmd_alloc(h);
3415        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                0, RAID_CTLR_LUNID, TYPE_CMD);
3417        if (rc)
3418                goto out;
3419
3420        c->Request.CDB[2] = bmic_device_index & 0xff;
3421        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423        hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                NO_TIMEOUT);
3425        ei = c->err_info;
3426        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                hpsa_scsi_interpret_error(h, c);
3428                rc = -1;
3429        }
3430out:
3431        cmd_free(h, c);
3432
3433        return rc;
3434}
3435
3436/*
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3441 */
3442static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                        unsigned char *scsi3addr,
3444                        struct ReportExtendedLUNdata *rlep, int rle_index,
3445                        struct hpsa_scsi_dev_t *encl_dev)
3446{
3447        int rc = -1;
3448        struct CommandList *c = NULL;
3449        struct ErrorInfo *ei = NULL;
3450        struct bmic_sense_storage_box_params *bssbp = NULL;
3451        struct bmic_identify_physical_device *id_phys = NULL;
3452        struct ext_report_lun_entry *rle;
3453        u16 bmic_device_index = 0;
3454
3455        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456                return;
3457
3458        rle = &rlep->LUN[rle_index];
3459
3460        encl_dev->eli =
3461                hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465        if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466                rc = IO_OK;
3467                goto out;
3468        }
3469
3470        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471                rc = IO_OK;
3472                goto out;
3473        }
3474
3475        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476        if (!bssbp)
3477                goto out;
3478
3479        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480        if (!id_phys)
3481                goto out;
3482
3483        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484                                                id_phys, sizeof(*id_phys));
3485        if (rc) {
3486                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487                        __func__, encl_dev->external, bmic_device_index);
3488                goto out;
3489        }
3490
3491        c = cmd_alloc(h);
3492
3493        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496        if (rc)
3497                goto out;
3498
3499        if (id_phys->phys_connector[1] == 'E')
3500                c->Request.CDB[5] = id_phys->box_index;
3501        else
3502                c->Request.CDB[5] = 0;
3503
3504        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505                                                NO_TIMEOUT);
3506        if (rc)
3507                goto out;
3508
3509        ei = c->err_info;
3510        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511                rc = -1;
3512                goto out;
3513        }
3514
3515        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519        rc = IO_OK;
3520out:
3521        kfree(bssbp);
3522        kfree(id_phys);
3523
3524        if (c)
3525                cmd_free(h, c);
3526
3527        if (rc != IO_OK)
3528                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529                        "Error, could not get enclosure information");
3530}
3531
3532static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533                                                unsigned char *scsi3addr)
3534{
3535        struct ReportExtendedLUNdata *physdev;
3536        u32 nphysicals;
3537        u64 sa = 0;
3538        int i;
3539
3540        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541        if (!physdev)
3542                return 0;
3543
3544        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546                kfree(physdev);
3547                return 0;
3548        }
3549        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551        for (i = 0; i < nphysicals; i++)
3552                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554                        break;
3555                }
3556
3557        kfree(physdev);
3558
3559        return sa;
3560}
3561
3562static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563                                        struct hpsa_scsi_dev_t *dev)
3564{
3565        int rc;
3566        u64 sa = 0;
3567
3568        if (is_hba_lunid(scsi3addr)) {
3569                struct bmic_sense_subsystem_info *ssi;
3570
3571                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572                if (!ssi)
3573                        return;
3574
3575                rc = hpsa_bmic_sense_subsystem_information(h,
3576                                        scsi3addr, 0, ssi, sizeof(*ssi));
3577                if (rc == 0) {
3578                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579                        h->sas_address = sa;
3580                }
3581
3582                kfree(ssi);
3583        } else
3584                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586        dev->sas_address = sa;
3587}
3588
3589static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590        struct ReportExtendedLUNdata *physdev)
3591{
3592        u32 nphysicals;
3593        int i;
3594
3595        if (h->discovery_polling)
3596                return;
3597
3598        nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600        for (i = 0; i < nphysicals; i++) {
3601                if (physdev->LUN[i].device_type ==
3602                        BMIC_DEVICE_TYPE_CONTROLLER
3603                        && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604                        dev_info(&h->pdev->dev,
3605                                "External controller present, activate discovery polling and disable rld caching\n");
3606                        hpsa_disable_rld_caching(h);
3607                        h->discovery_polling = 1;
3608                        break;
3609                }
3610        }
3611}
3612
3613/* Get a device id from inquiry page 0x83 */
3614static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615        unsigned char scsi3addr[], u8 page)
3616{
3617        int rc;
3618        int i;
3619        int pages;
3620        unsigned char *buf, bufsize;
3621
3622        buf = kzalloc(256, GFP_KERNEL);
3623        if (!buf)
3624                return false;
3625
3626        /* Get the size of the page list first */
3627        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629                                buf, HPSA_VPD_HEADER_SZ);
3630        if (rc != 0)
3631                goto exit_unsupported;
3632        pages = buf[3];
3633        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634                bufsize = pages + HPSA_VPD_HEADER_SZ;
3635        else
3636                bufsize = 255;
3637
3638        /* Get the whole VPD page list */
3639        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641                                buf, bufsize);
3642        if (rc != 0)
3643                goto exit_unsupported;
3644
3645        pages = buf[3];
3646        for (i = 1; i <= pages; i++)
3647                if (buf[3 + i] == page)
3648                        goto exit_supported;
3649exit_unsupported:
3650        kfree(buf);
3651        return false;
3652exit_supported:
3653        kfree(buf);
3654        return true;
3655}
3656
3657/*
3658 * Called during a scan operation.
3659 * Sets ioaccel status on the new device list, not the existing device list
3660 *
3661 * The device list used during I/O will be updated later in
3662 * adjust_hpsa_scsi_table.
3663 */
3664static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666{
3667        int rc;
3668        unsigned char *buf;
3669        u8 ioaccel_status;
3670
3671        this_device->offload_config = 0;
3672        this_device->offload_enabled = 0;
3673        this_device->offload_to_be_enabled = 0;
3674
3675        buf = kzalloc(64, GFP_KERNEL);
3676        if (!buf)
3677                return;
3678        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679                goto out;
3680        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682        if (rc != 0)
3683                goto out;
3684
3685#define IOACCEL_STATUS_BYTE 4
3686#define OFFLOAD_CONFIGURED_BIT 0x01
3687#define OFFLOAD_ENABLED_BIT 0x02
3688        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689        this_device->offload_config =
3690                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691        if (this_device->offload_config) {
3692                bool offload_enabled =
3693                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694                /*
3695                 * Check to see if offload can be enabled.
3696                 */
3697                if (offload_enabled) {
3698                        rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699                        if (rc) /* could not load raid_map */
3700                                goto out;
3701                        this_device->offload_to_be_enabled = 1;
3702                }
3703        }
3704
3705out:
3706        kfree(buf);
3707        return;
3708}
3709
3710/* Get the device id from inquiry page 0x83 */
3711static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712        unsigned char *device_id, int index, int buflen)
3713{
3714        int rc;
3715        unsigned char *buf;
3716
3717        /* Does controller have VPD for device id? */
3718        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719                return 1; /* not supported */
3720
3721        buf = kzalloc(64, GFP_KERNEL);
3722        if (!buf)
3723                return -ENOMEM;
3724
3725        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726                                        HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727        if (rc == 0) {
3728                if (buflen > 16)
3729                        buflen = 16;
3730                memcpy(device_id, &buf[8], buflen);
3731        }
3732
3733        kfree(buf);
3734
3735        return rc; /*0 - got id,  otherwise, didn't */
3736}
3737
3738static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739                void *buf, int bufsize,
3740                int extended_response)
3741{
3742        int rc = IO_OK;
3743        struct CommandList *c;
3744        unsigned char scsi3addr[8];
3745        struct ErrorInfo *ei;
3746
3747        c = cmd_alloc(h);
3748
3749        /* address the controller */
3750        memset(scsi3addr, 0, sizeof(scsi3addr));
3751        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753                rc = -EAGAIN;
3754                goto out;
3755        }
3756        if (extended_response)
3757                c->Request.CDB[1] = extended_response;
3758        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759                        NO_TIMEOUT);
3760        if (rc)
3761                goto out;
3762        ei = c->err_info;
3763        if (ei->CommandStatus != 0 &&
3764            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765                hpsa_scsi_interpret_error(h, c);
3766                rc = -EIO;
3767        } else {
3768                struct ReportLUNdata *rld = buf;
3769
3770                if (rld->extended_response_flag != extended_response) {
3771                        if (!h->legacy_board) {
3772                                dev_err(&h->pdev->dev,
3773                                        "report luns requested format %u, got %u\n",
3774                                        extended_response,
3775                                        rld->extended_response_flag);
3776                                rc = -EINVAL;
3777                        } else
3778                                rc = -EOPNOTSUPP;
3779                }
3780        }
3781out:
3782        cmd_free(h, c);
3783        return rc;
3784}
3785
3786static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787                struct ReportExtendedLUNdata *buf, int bufsize)
3788{
3789        int rc;
3790        struct ReportLUNdata *lbuf;
3791
3792        rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793                                      HPSA_REPORT_PHYS_EXTENDED);
3794        if (!rc || rc != -EOPNOTSUPP)
3795                return rc;
3796
3797        /* REPORT PHYS EXTENDED is not supported */
3798        lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799        if (!lbuf)
3800                return -ENOMEM;
3801
3802        rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803        if (!rc) {
3804                int i;
3805                u32 nphys;
3806
3807                /* Copy ReportLUNdata header */
3808                memcpy(buf, lbuf, 8);
3809                nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810                for (i = 0; i < nphys; i++)
3811                        memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812        }
3813        kfree(lbuf);
3814        return rc;
3815}
3816
3817static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818                struct ReportLUNdata *buf, int bufsize)
3819{
3820        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821}
3822
3823static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824        int bus, int target, int lun)
3825{
3826        device->bus = bus;
3827        device->target = target;
3828        device->lun = lun;
3829}
3830
3831/* Use VPD inquiry to get details of volume status */
3832static int hpsa_get_volume_status(struct ctlr_info *h,
3833                                        unsigned char scsi3addr[])
3834{
3835        int rc;
3836        int status;
3837        int size;
3838        unsigned char *buf;
3839
3840        buf = kzalloc(64, GFP_KERNEL);
3841        if (!buf)
3842                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844        /* Does controller have VPD for logical volume status? */
3845        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846                goto exit_failed;
3847
3848        /* Get the size of the VPD return buffer */
3849        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850                                        buf, HPSA_VPD_HEADER_SZ);
3851        if (rc != 0)
3852                goto exit_failed;
3853        size = buf[3];
3854
3855        /* Now get the whole VPD buffer */
3856        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857                                        buf, size + HPSA_VPD_HEADER_SZ);
3858        if (rc != 0)
3859                goto exit_failed;
3860        status = buf[4]; /* status byte */
3861
3862        kfree(buf);
3863        return status;
3864exit_failed:
3865        kfree(buf);
3866        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867}
3868
3869/* Determine offline status of a volume.
3870 * Return either:
3871 *  0 (not offline)
3872 *  0xff (offline for unknown reasons)
3873 *  # (integer code indicating one of several NOT READY states
3874 *     describing why a volume is to be kept offline)
3875 */
3876static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877                                        unsigned char scsi3addr[])
3878{
3879        struct CommandList *c;
3880        unsigned char *sense;
3881        u8 sense_key, asc, ascq;
3882        int sense_len;
3883        int rc, ldstat = 0;
3884        u16 cmd_status;
3885        u8 scsi_status;
3886#define ASC_LUN_NOT_READY 0x04
3887#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3888#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3889
3890        c = cmd_alloc(h);
3891
3892        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3893        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3894                                        NO_TIMEOUT);
3895        if (rc) {
3896                cmd_free(h, c);
3897                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3898        }
3899        sense = c->err_info->SenseInfo;
3900        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3901                sense_len = sizeof(c->err_info->SenseInfo);
3902        else
3903                sense_len = c->err_info->SenseLen;
3904        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3905        cmd_status = c->err_info->CommandStatus;
3906        scsi_status = c->err_info->ScsiStatus;
3907        cmd_free(h, c);
3908
3909        /* Determine the reason for not ready state */
3910        ldstat = hpsa_get_volume_status(h, scsi3addr);
3911
3912        /* Keep volume offline in certain cases: */
3913        switch (ldstat) {
3914        case HPSA_LV_FAILED:
3915        case HPSA_LV_UNDERGOING_ERASE:
3916        case HPSA_LV_NOT_AVAILABLE:
3917        case HPSA_LV_UNDERGOING_RPI:
3918        case HPSA_LV_PENDING_RPI:
3919        case HPSA_LV_ENCRYPTED_NO_KEY:
3920        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921        case HPSA_LV_UNDERGOING_ENCRYPTION:
3922        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924                return ldstat;
3925        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926                /* If VPD status page isn't available,
3927                 * use ASC/ASCQ to determine state
3928                 */
3929                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931                        return ldstat;
3932                break;
3933        default:
3934                break;
3935        }
3936        return HPSA_LV_OK;
3937}
3938
3939static int hpsa_update_device_info(struct ctlr_info *h,
3940        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941        unsigned char *is_OBDR_device)
3942{
3943
3944#define OBDR_SIG_OFFSET 43
3945#define OBDR_TAPE_SIG "$DR-10"
3946#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948
3949        unsigned char *inq_buff;
3950        unsigned char *obdr_sig;
3951        int rc = 0;
3952
3953        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954        if (!inq_buff) {
3955                rc = -ENOMEM;
3956                goto bail_out;
3957        }
3958
3959        /* Do an inquiry to the device to see what it is. */
3960        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962                dev_err(&h->pdev->dev,
3963                        "%s: inquiry failed, device will be skipped.\n",
3964                        __func__);
3965                rc = HPSA_INQUIRY_FAILED;
3966                goto bail_out;
3967        }
3968
3969        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971
3972        this_device->devtype = (inq_buff[0] & 0x1f);
3973        memcpy(this_device->scsi3addr, scsi3addr, 8);
3974        memcpy(this_device->vendor, &inq_buff[8],
3975                sizeof(this_device->vendor));
3976        memcpy(this_device->model, &inq_buff[16],
3977                sizeof(this_device->model));
3978        this_device->rev = inq_buff[2];
3979        memset(this_device->device_id, 0,
3980                sizeof(this_device->device_id));
3981        if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982                sizeof(this_device->device_id)) < 0) {
3983                dev_err(&h->pdev->dev,
3984                        "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985                        h->ctlr, __func__,
3986                        h->scsi_host->host_no,
3987                        this_device->bus, this_device->target,
3988                        this_device->lun,
3989                        scsi_device_type(this_device->devtype),
3990                        this_device->model);
3991                rc = HPSA_LV_FAILED;
3992                goto bail_out;
3993        }
3994
3995        if ((this_device->devtype == TYPE_DISK ||
3996                this_device->devtype == TYPE_ZBC) &&
3997                is_logical_dev_addr_mode(scsi3addr)) {
3998                unsigned char volume_offline;
3999
4000                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003                volume_offline = hpsa_volume_offline(h, scsi3addr);
4004                if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005                    h->legacy_board) {
4006                        /*
4007                         * Legacy boards might not support volume status
4008                         */
4009                        dev_info(&h->pdev->dev,
4010                                 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011                                 this_device->target, this_device->lun);
4012                        volume_offline = 0;
4013                }
4014                this_device->volume_offline = volume_offline;
4015                if (volume_offline == HPSA_LV_FAILED) {
4016                        rc = HPSA_LV_FAILED;
4017                        dev_err(&h->pdev->dev,
4018                                "%s: LV failed, device will be skipped.\n",
4019                                __func__);
4020                        goto bail_out;
4021                }
4022        } else {
4023                this_device->raid_level = RAID_UNKNOWN;
4024                this_device->offload_config = 0;
4025                hpsa_turn_off_ioaccel_for_device(this_device);
4026                this_device->hba_ioaccel_enabled = 0;
4027                this_device->volume_offline = 0;
4028                this_device->queue_depth = h->nr_cmds;
4029        }
4030
4031        if (this_device->external)
4032                this_device->queue_depth = EXTERNAL_QD;
4033
4034        if (is_OBDR_device) {
4035                /* See if this is a One-Button-Disaster-Recovery device
4036                 * by looking for "$DR-10" at offset 43 in inquiry data.
4037                 */
4038                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
4041                                                OBDR_SIG_LEN) == 0);
4042        }
4043        kfree(inq_buff);
4044        return 0;
4045
4046bail_out:
4047        kfree(inq_buff);
4048        return rc;
4049}
4050
4051/*
4052 * Helper function to assign bus, target, lun mapping of devices.
4053 * Logical drive target and lun are assigned at this time, but
4054 * physical device lun and target assignment are deferred (assigned
4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056*/
4057static void figure_bus_target_lun(struct ctlr_info *h,
4058        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059{
4060        u32 lunid = get_unaligned_le32(lunaddrbytes);
4061
4062        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063                /* physical device, target and lun filled in later */
4064                if (is_hba_lunid(lunaddrbytes)) {
4065                        int bus = HPSA_HBA_BUS;
4066
4067                        if (!device->rev)
4068                                bus = HPSA_LEGACY_HBA_BUS;
4069                        hpsa_set_bus_target_lun(device,
4070                                        bus, 0, lunid & 0x3fff);
4071                } else
4072                        /* defer target, lun assignment for physical devices */
4073                        hpsa_set_bus_target_lun(device,
4074                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075                return;
4076        }
4077        /* It's a logical device */
4078        if (device->external) {
4079                hpsa_set_bus_target_lun(device,
4080                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081                        lunid & 0x00ff);
4082                return;
4083        }
4084        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085                                0, lunid & 0x3fff);
4086}
4087
4088static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089        int i, int nphysicals, int nlocal_logicals)
4090{
4091        /* In report logicals, local logicals are listed first,
4092        * then any externals.
4093        */
4094        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095
4096        if (i == raid_ctlr_position)
4097                return 0;
4098
4099        if (i < logicals_start)
4100                return 0;
4101
4102        /* i is in logicals range, but still within local logicals */
4103        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104                return 0;
4105
4106        return 1; /* it's an external lun */
4107}
4108
4109/*
4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111 * logdev.  The number of luns in physdev and logdev are returned in
4112 * *nphysicals and *nlogicals, respectively.
4113 * Returns 0 on success, -1 otherwise.
4114 */
4115static int hpsa_gather_lun_info(struct ctlr_info *h,
4116        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117        struct ReportLUNdata *logdev, u32 *nlogicals)
4118{
4119        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121                return -1;
4122        }
4123        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127                *nphysicals = HPSA_MAX_PHYS_LUN;
4128        }
4129        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131                return -1;
4132        }
4133        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134        /* Reject Logicals in excess of our max capability. */
4135        if (*nlogicals > HPSA_MAX_LUN) {
4136                dev_warn(&h->pdev->dev,
4137                        "maximum logical LUNs (%d) exceeded.  "
4138                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139                        *nlogicals - HPSA_MAX_LUN);
4140                *nlogicals = HPSA_MAX_LUN;
4141        }
4142        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143                dev_warn(&h->pdev->dev,
4144                        "maximum logical + physical LUNs (%d) exceeded. "
4145                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148        }
4149        return 0;
4150}
4151
4152static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153        int i, int nphysicals, int nlogicals,
4154        struct ReportExtendedLUNdata *physdev_list,
4155        struct ReportLUNdata *logdev_list)
4156{
4157        /* Helper function, figure out where the LUN ID info is coming from
4158         * given index i, lists of physical and logical devices, where in
4159         * the list the raid controller is supposed to appear (first or last)
4160         */
4161
4162        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164
4165        if (i == raid_ctlr_position)
4166                return RAID_CTLR_LUNID;
4167
4168        if (i < logicals_start)
4169                return &physdev_list->LUN[i -
4170                                (raid_ctlr_position == 0)].lunid[0];
4171
4172        if (i < last_device)
4173                return &logdev_list->LUN[i - nphysicals -
4174                        (raid_ctlr_position == 0)][0];
4175        BUG();
4176        return NULL;
4177}
4178
4179/* get physical drive ioaccel handle and queue depth */
4180static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181                struct hpsa_scsi_dev_t *dev,
4182                struct ReportExtendedLUNdata *rlep, int rle_index,
4183                struct bmic_identify_physical_device *id_phys)
4184{
4185        int rc;
4186        struct ext_report_lun_entry *rle;
4187
4188        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189                return;
4190
4191        rle = &rlep->LUN[rle_index];
4192
4193        dev->ioaccel_handle = rle->ioaccel_handle;
4194        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195                dev->hba_ioaccel_enabled = 1;
4196        memset(id_phys, 0, sizeof(*id_phys));
4197        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199                        sizeof(*id_phys));
4200        if (!rc)
4201                /* Reserve space for FW operations */
4202#define DRIVE_CMDS_RESERVED_FOR_FW 2
4203#define DRIVE_QUEUE_DEPTH 7
4204                dev->queue_depth =
4205                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4206                                DRIVE_CMDS_RESERVED_FOR_FW;
4207        else
4208                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209}
4210
4211static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212        struct ReportExtendedLUNdata *rlep, int rle_index,
4213        struct bmic_identify_physical_device *id_phys)
4214{
4215        struct ext_report_lun_entry *rle;
4216
4217        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218                return;
4219
4220        rle = &rlep->LUN[rle_index];
4221
4222        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223                this_device->hba_ioaccel_enabled = 1;
4224
4225        memcpy(&this_device->active_path_index,
4226                &id_phys->active_path_number,
4227                sizeof(this_device->active_path_index));
4228        memcpy(&this_device->path_map,
4229                &id_phys->redundant_path_present_map,
4230                sizeof(this_device->path_map));
4231        memcpy(&this_device->box,
4232                &id_phys->alternate_paths_phys_box_on_port,
4233                sizeof(this_device->box));
4234        memcpy(&this_device->phys_connector,
4235                &id_phys->alternate_paths_phys_connector,
4236                sizeof(this_device->phys_connector));
4237        memcpy(&this_device->bay,
4238                &id_phys->phys_bay_in_box,
4239                sizeof(this_device->bay));
4240}
4241
4242/* get number of local logical disks. */
4243static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244        struct bmic_identify_controller *id_ctlr,
4245        u32 *nlocals)
4246{
4247        int rc;
4248
4249        if (!id_ctlr) {
4250                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251                        __func__);
4252                return -ENOMEM;
4253        }
4254        memset(id_ctlr, 0, sizeof(*id_ctlr));
4255        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256        if (!rc)
4257                if (id_ctlr->configured_logical_drive_count < 255)
4258                        *nlocals = id_ctlr->configured_logical_drive_count;
4259                else
4260                        *nlocals = le16_to_cpu(
4261                                        id_ctlr->extended_logical_unit_count);
4262        else
4263                *nlocals = -1;
4264        return rc;
4265}
4266
4267static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268{
4269        struct bmic_identify_physical_device *id_phys;
4270        bool is_spare = false;
4271        int rc;
4272
4273        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274        if (!id_phys)
4275                return false;
4276
4277        rc = hpsa_bmic_id_physical_device(h,
4278                                        lunaddrbytes,
4279                                        GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280                                        id_phys, sizeof(*id_phys));
4281        if (rc == 0)
4282                is_spare = (id_phys->more_flags >> 6) & 0x01;
4283
4284        kfree(id_phys);
4285        return is_spare;
4286}
4287
4288#define RPL_DEV_FLAG_NON_DISK                           0x1
4289#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291
4292#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293
4294static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295                                struct ext_report_lun_entry *rle)
4296{
4297        u8 device_flags;
4298        u8 device_type;
4299
4300        if (!MASKED_DEVICE(lunaddrbytes))
4301                return false;
4302
4303        device_flags = rle->device_flags;
4304        device_type = rle->device_type;
4305
4306        if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307                if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308                        return false;
4309                return true;
4310        }
4311
4312        if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313                return false;
4314
4315        if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316                return false;
4317
4318        /*
4319         * Spares may be spun down, we do not want to
4320         * do an Inquiry to a RAID set spare drive as
4321         * that would have them spun up, that is a
4322         * performance hit because I/O to the RAID device
4323         * stops while the spin up occurs which can take
4324         * over 50 seconds.
4325         */
4326        if (hpsa_is_disk_spare(h, lunaddrbytes))
4327                return true;
4328
4329        return false;
4330}
4331
4332static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333{
4334        /* the idea here is we could get notified
4335         * that some devices have changed, so we do a report
4336         * physical luns and report logical luns cmd, and adjust
4337         * our list of devices accordingly.
4338         *
4339         * The scsi3addr's of devices won't change so long as the
4340         * adapter is not reset.  That means we can rescan and
4341         * tell which devices we already know about, vs. new
4342         * devices, vs.  disappearing devices.
4343         */
4344        struct ReportExtendedLUNdata *physdev_list = NULL;
4345        struct ReportLUNdata *logdev_list = NULL;
4346        struct bmic_identify_physical_device *id_phys = NULL;
4347        struct bmic_identify_controller *id_ctlr = NULL;
4348        u32 nphysicals = 0;
4349        u32 nlogicals = 0;
4350        u32 nlocal_logicals = 0;
4351        u32 ndev_allocated = 0;
4352        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353        int ncurrent = 0;
4354        int i, n_ext_target_devs, ndevs_to_allocate;
4355        int raid_ctlr_position;
4356        bool physical_device;
4357        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4358
4359        currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4360        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4361        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4362        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4363        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4364        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4365
4366        if (!currentsd || !physdev_list || !logdev_list ||
4367                !tmpdevice || !id_phys || !id_ctlr) {
4368                dev_err(&h->pdev->dev, "out of memory\n");
4369                goto out;
4370        }
4371        memset(lunzerobits, 0, sizeof(lunzerobits));
4372
4373        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4374
4375        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4376                        logdev_list, &nlogicals)) {
4377                h->drv_req_rescan = 1;
4378                goto out;
4379        }
4380
4381        /* Set number of local logicals (non PTRAID) */
4382        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4383                dev_warn(&h->pdev->dev,
4384                        "%s: Can't determine number of local logical devices.\n",
4385                        __func__);
4386        }
4387
4388        /* We might see up to the maximum number of logical and physical disks
4389         * plus external target devices, and a device for the local RAID
4390         * controller.
4391         */
4392        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4393
4394        hpsa_ext_ctrl_present(h, physdev_list);
4395
4396        /* Allocate the per device structures */
4397        for (i = 0; i < ndevs_to_allocate; i++) {
4398                if (i >= HPSA_MAX_DEVICES) {
4399                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4400                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4401                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4402                        break;
4403                }
4404
4405                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4406                if (!currentsd[i]) {
4407                        h->drv_req_rescan = 1;
4408                        goto out;
4409                }
4410                ndev_allocated++;
4411        }
4412
4413        if (is_scsi_rev_5(h))
4414                raid_ctlr_position = 0;
4415        else
4416                raid_ctlr_position = nphysicals + nlogicals;
4417
4418        /* adjust our table of devices */
4419        n_ext_target_devs = 0;
4420        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4421                u8 *lunaddrbytes, is_OBDR = 0;
4422                int rc = 0;
4423                int phys_dev_index = i - (raid_ctlr_position == 0);
4424                bool skip_device = false;
4425
4426                memset(tmpdevice, 0, sizeof(*tmpdevice));
4427
4428                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4429
4430                /* Figure out where the LUN ID info is coming from */
4431                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4432                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4433
4434                /* Determine if this is a lun from an external target array */
4435                tmpdevice->external =
4436                        figure_external_status(h, raid_ctlr_position, i,
4437                                                nphysicals, nlocal_logicals);
4438
4439                /*
4440                 * Skip over some devices such as a spare.
4441                 */
4442                if (phys_dev_index >= 0 && !tmpdevice->external &&
4443                        physical_device) {
4444                        skip_device = hpsa_skip_device(h, lunaddrbytes,
4445                                        &physdev_list->LUN[phys_dev_index]);
4446                        if (skip_device)
4447                                continue;
4448                }
4449
4450                /* Get device type, vendor, model, device id, raid_map */
4451                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4452                                                        &is_OBDR);
4453                if (rc == -ENOMEM) {
4454                        dev_warn(&h->pdev->dev,
4455                                "Out of memory, rescan deferred.\n");
4456                        h->drv_req_rescan = 1;
4457                        goto out;
4458                }
4459                if (rc) {
4460                        h->drv_req_rescan = 1;
4461                        continue;
4462                }
4463
4464                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4465                this_device = currentsd[ncurrent];
4466
4467                *this_device = *tmpdevice;
4468                this_device->physical_device = physical_device;
4469
4470                /*
4471                 * Expose all devices except for physical devices that
4472                 * are masked.
4473                 */
4474                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4475                        this_device->expose_device = 0;
4476                else
4477                        this_device->expose_device = 1;
4478
4479
4480                /*
4481                 * Get the SAS address for physical devices that are exposed.
4482                 */
4483                if (this_device->physical_device && this_device->expose_device)
4484                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4485
4486                switch (this_device->devtype) {
4487                case TYPE_ROM:
4488                        /* We don't *really* support actual CD-ROM devices,
4489                         * just "One Button Disaster Recovery" tape drive
4490                         * which temporarily pretends to be a CD-ROM drive.
4491                         * So we check that the device is really an OBDR tape
4492                         * device by checking for "$DR-10" in bytes 43-48 of
4493                         * the inquiry data.
4494                         */
4495                        if (is_OBDR)
4496                                ncurrent++;
4497                        break;
4498                case TYPE_DISK:
4499                case TYPE_ZBC:
4500                        if (this_device->physical_device) {
4501                                /* The disk is in HBA mode. */
4502                                /* Never use RAID mapper in HBA mode. */
4503                                this_device->offload_enabled = 0;
4504                                hpsa_get_ioaccel_drive_info(h, this_device,
4505                                        physdev_list, phys_dev_index, id_phys);
4506                                hpsa_get_path_info(this_device,
4507                                        physdev_list, phys_dev_index, id_phys);
4508                        }
4509                        ncurrent++;
4510                        break;
4511                case TYPE_TAPE:
4512                case TYPE_MEDIUM_CHANGER:
4513                        ncurrent++;
4514                        break;
4515                case TYPE_ENCLOSURE:
4516                        if (!this_device->external)
4517                                hpsa_get_enclosure_info(h, lunaddrbytes,
4518                                                physdev_list, phys_dev_index,
4519                                                this_device);
4520                        ncurrent++;
4521                        break;
4522                case TYPE_RAID:
4523                        /* Only present the Smartarray HBA as a RAID controller.
4524                         * If it's a RAID controller other than the HBA itself
4525                         * (an external RAID controller, MSA500 or similar)
4526                         * don't present it.
4527                         */
4528                        if (!is_hba_lunid(lunaddrbytes))
4529                                break;
4530                        ncurrent++;
4531                        break;
4532                default:
4533                        break;
4534                }
4535                if (ncurrent >= HPSA_MAX_DEVICES)
4536                        break;
4537        }
4538
4539        if (h->sas_host == NULL) {
4540                int rc = 0;
4541
4542                rc = hpsa_add_sas_host(h);
4543                if (rc) {
4544                        dev_warn(&h->pdev->dev,
4545                                "Could not add sas host %d\n", rc);
4546                        goto out;
4547                }
4548        }
4549
4550        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4551out:
4552        kfree(tmpdevice);
4553        for (i = 0; i < ndev_allocated; i++)
4554                kfree(currentsd[i]);
4555        kfree(currentsd);
4556        kfree(physdev_list);
4557        kfree(logdev_list);
4558        kfree(id_ctlr);
4559        kfree(id_phys);
4560}
4561
4562static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4563                                   struct scatterlist *sg)
4564{
4565        u64 addr64 = (u64) sg_dma_address(sg);
4566        unsigned int len = sg_dma_len(sg);
4567
4568        desc->Addr = cpu_to_le64(addr64);
4569        desc->Len = cpu_to_le32(len);
4570        desc->Ext = 0;
4571}
4572
4573/*
4574 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4575 * dma mapping  and fills in the scatter gather entries of the
4576 * hpsa command, cp.
4577 */
4578static int hpsa_scatter_gather(struct ctlr_info *h,
4579                struct CommandList *cp,
4580                struct scsi_cmnd *cmd)
4581{
4582        struct scatterlist *sg;
4583        int use_sg, i, sg_limit, chained, last_sg;
4584        struct SGDescriptor *curr_sg;
4585
4586        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4587
4588        use_sg = scsi_dma_map(cmd);
4589        if (use_sg < 0)
4590                return use_sg;
4591
4592        if (!use_sg)
4593                goto sglist_finished;
4594
4595        /*
4596         * If the number of entries is greater than the max for a single list,
4597         * then we have a chained list; we will set up all but one entry in the
4598         * first list (the last entry is saved for link information);
4599         * otherwise, we don't have a chained list and we'll set up at each of
4600         * the entries in the one list.
4601         */
4602        curr_sg = cp->SG;
4603        chained = use_sg > h->max_cmd_sg_entries;
4604        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4605        last_sg = scsi_sg_count(cmd) - 1;
4606        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4607                hpsa_set_sg_descriptor(curr_sg, sg);
4608                curr_sg++;
4609        }
4610
4611        if (chained) {
4612                /*
4613                 * Continue with the chained list.  Set curr_sg to the chained
4614                 * list.  Modify the limit to the total count less the entries
4615                 * we've already set up.  Resume the scan at the list entry
4616                 * where the previous loop left off.
4617                 */
4618                curr_sg = h->cmd_sg_list[cp->cmdindex];
4619                sg_limit = use_sg - sg_limit;
4620                for_each_sg(sg, sg, sg_limit, i) {
4621                        hpsa_set_sg_descriptor(curr_sg, sg);
4622                        curr_sg++;
4623                }
4624        }
4625
4626        /* Back the pointer up to the last entry and mark it as "last". */
4627        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4628
4629        if (use_sg + chained > h->maxSG)
4630                h->maxSG = use_sg + chained;
4631
4632        if (chained) {
4633                cp->Header.SGList = h->max_cmd_sg_entries;
4634                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4635                if (hpsa_map_sg_chain_block(h, cp)) {
4636                        scsi_dma_unmap(cmd);
4637                        return -1;
4638                }
4639                return 0;
4640        }
4641
4642sglist_finished:
4643
4644        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4645        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4646        return 0;
4647}
4648
4649static inline void warn_zero_length_transfer(struct ctlr_info *h,
4650                                                u8 *cdb, int cdb_len,
4651                                                const char *func)
4652{
4653        dev_warn(&h->pdev->dev,
4654                 "%s: Blocking zero-length request: CDB:%*phN\n",
4655                 func, cdb_len, cdb);
4656}
4657
4658#define IO_ACCEL_INELIGIBLE 1
4659/* zero-length transfers trigger hardware errors. */
4660static bool is_zero_length_transfer(u8 *cdb)
4661{
4662        u32 block_cnt;
4663
4664        /* Block zero-length transfer sizes on certain commands. */
4665        switch (cdb[0]) {
4666        case READ_10:
4667        case WRITE_10:
4668        case VERIFY:            /* 0x2F */
4669        case WRITE_VERIFY:      /* 0x2E */
4670                block_cnt = get_unaligned_be16(&cdb[7]);
4671                break;
4672        case READ_12:
4673        case WRITE_12:
4674        case VERIFY_12: /* 0xAF */
4675        case WRITE_VERIFY_12:   /* 0xAE */
4676                block_cnt = get_unaligned_be32(&cdb[6]);
4677                break;
4678        case READ_16:
4679        case WRITE_16:
4680        case VERIFY_16:         /* 0x8F */
4681                block_cnt = get_unaligned_be32(&cdb[10]);
4682                break;
4683        default:
4684                return false;
4685        }
4686
4687        return block_cnt == 0;
4688}
4689
4690static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4691{
4692        int is_write = 0;
4693        u32 block;
4694        u32 block_cnt;
4695
4696        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4697        switch (cdb[0]) {
4698        case WRITE_6:
4699        case WRITE_12:
4700                is_write = 1;
4701                fallthrough;
4702        case READ_6:
4703        case READ_12:
4704                if (*cdb_len == 6) {
4705                        block = (((cdb[1] & 0x1F) << 16) |
4706                                (cdb[2] << 8) |
4707                                cdb[3]);
4708                        block_cnt = cdb[4];
4709                        if (block_cnt == 0)
4710                                block_cnt = 256;
4711                } else {
4712                        BUG_ON(*cdb_len != 12);
4713                        block = get_unaligned_be32(&cdb[2]);
4714                        block_cnt = get_unaligned_be32(&cdb[6]);
4715                }
4716                if (block_cnt > 0xffff)
4717                        return IO_ACCEL_INELIGIBLE;
4718
4719                cdb[0] = is_write ? WRITE_10 : READ_10;
4720                cdb[1] = 0;
4721                cdb[2] = (u8) (block >> 24);
4722                cdb[3] = (u8) (block >> 16);
4723                cdb[4] = (u8) (block >> 8);
4724                cdb[5] = (u8) (block);
4725                cdb[6] = 0;
4726                cdb[7] = (u8) (block_cnt >> 8);
4727                cdb[8] = (u8) (block_cnt);
4728                cdb[9] = 0;
4729                *cdb_len = 10;
4730                break;
4731        }
4732        return 0;
4733}
4734
4735static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4736        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4737        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4738{
4739        struct scsi_cmnd *cmd = c->scsi_cmd;
4740        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4741        unsigned int len;
4742        unsigned int total_len = 0;
4743        struct scatterlist *sg;
4744        u64 addr64;
4745        int use_sg, i;
4746        struct SGDescriptor *curr_sg;
4747        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4748
4749        /* TODO: implement chaining support */
4750        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4751                atomic_dec(&phys_disk->ioaccel_cmds_out);
4752                return IO_ACCEL_INELIGIBLE;
4753        }
4754
4755        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4756
4757        if (is_zero_length_transfer(cdb)) {
4758                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4759                atomic_dec(&phys_disk->ioaccel_cmds_out);
4760                return IO_ACCEL_INELIGIBLE;
4761        }
4762
4763        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4764                atomic_dec(&phys_disk->ioaccel_cmds_out);
4765                return IO_ACCEL_INELIGIBLE;
4766        }
4767
4768        c->cmd_type = CMD_IOACCEL1;
4769
4770        /* Adjust the DMA address to point to the accelerated command buffer */
4771        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4772                                (c->cmdindex * sizeof(*cp));
4773        BUG_ON(c->busaddr & 0x0000007F);
4774
4775        use_sg = scsi_dma_map(cmd);
4776        if (use_sg < 0) {
4777                atomic_dec(&phys_disk->ioaccel_cmds_out);
4778                return use_sg;
4779        }
4780
4781        if (use_sg) {
4782                curr_sg = cp->SG;
4783                scsi_for_each_sg(cmd, sg, use_sg, i) {
4784                        addr64 = (u64) sg_dma_address(sg);
4785                        len  = sg_dma_len(sg);
4786                        total_len += len;
4787                        curr_sg->Addr = cpu_to_le64(addr64);
4788                        curr_sg->Len = cpu_to_le32(len);
4789                        curr_sg->Ext = cpu_to_le32(0);
4790                        curr_sg++;
4791                }
4792                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4793
4794                switch (cmd->sc_data_direction) {
4795                case DMA_TO_DEVICE:
4796                        control |= IOACCEL1_CONTROL_DATA_OUT;
4797                        break;
4798                case DMA_FROM_DEVICE:
4799                        control |= IOACCEL1_CONTROL_DATA_IN;
4800                        break;
4801                case DMA_NONE:
4802                        control |= IOACCEL1_CONTROL_NODATAXFER;
4803                        break;
4804                default:
4805                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4806                        cmd->sc_data_direction);
4807                        BUG();
4808                        break;
4809                }
4810        } else {
4811                control |= IOACCEL1_CONTROL_NODATAXFER;
4812        }
4813
4814        c->Header.SGList = use_sg;
4815        /* Fill out the command structure to submit */
4816        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4817        cp->transfer_len = cpu_to_le32(total_len);
4818        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4819                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4820        cp->control = cpu_to_le32(control);
4821        memcpy(cp->CDB, cdb, cdb_len);
4822        memcpy(cp->CISS_LUN, scsi3addr, 8);
4823        /* Tag was already set at init time. */
4824        enqueue_cmd_and_start_io(h, c);
4825        return 0;
4826}
4827
4828/*
4829 * Queue a command directly to a device behind the controller using the
4830 * I/O accelerator path.
4831 */
4832static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4833        struct CommandList *c)
4834{
4835        struct scsi_cmnd *cmd = c->scsi_cmd;
4836        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4837
4838        if (!dev)
4839                return -1;
4840
4841        c->phys_disk = dev;
4842
4843        if (dev->in_reset)
4844                return -1;
4845
4846        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4847                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4848}
4849
4850/*
4851 * Set encryption parameters for the ioaccel2 request
4852 */
4853static void set_encrypt_ioaccel2(struct ctlr_info *h,
4854        struct CommandList *c, struct io_accel2_cmd *cp)
4855{
4856        struct scsi_cmnd *cmd = c->scsi_cmd;
4857        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4858        struct raid_map_data *map = &dev->raid_map;
4859        u64 first_block;
4860
4861        /* Are we doing encryption on this device */
4862        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4863                return;
4864        /* Set the data encryption key index. */
4865        cp->dekindex = map->dekindex;
4866
4867        /* Set the encryption enable flag, encoded into direction field. */
4868        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4869
4870        /* Set encryption tweak values based on logical block address
4871         * If block size is 512, tweak value is LBA.
4872         * For other block sizes, tweak is (LBA * block size)/ 512)
4873         */
4874        switch (cmd->cmnd[0]) {
4875        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4876        case READ_6:
4877        case WRITE_6:
4878                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4879                                (cmd->cmnd[2] << 8) |
4880                                cmd->cmnd[3]);
4881                break;
4882        case WRITE_10:
4883        case READ_10:
4884        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4885        case WRITE_12:
4886        case READ_12:
4887                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4888                break;
4889        case WRITE_16:
4890        case READ_16:
4891                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4892                break;
4893        default:
4894                dev_err(&h->pdev->dev,
4895                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4896                        __func__, cmd->cmnd[0]);
4897                BUG();
4898                break;
4899        }
4900
4901        if (le32_to_cpu(map->volume_blk_size) != 512)
4902                first_block = first_block *
4903                                le32_to_cpu(map->volume_blk_size)/512;
4904
4905        cp->tweak_lower = cpu_to_le32(first_block);
4906        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4907}
4908
4909static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4910        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4911        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4912{
4913        struct scsi_cmnd *cmd = c->scsi_cmd;
4914        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4915        struct ioaccel2_sg_element *curr_sg;
4916        int use_sg, i;
4917        struct scatterlist *sg;
4918        u64 addr64;
4919        u32 len;
4920        u32 total_len = 0;
4921
4922        if (!cmd->device)
4923                return -1;
4924
4925        if (!cmd->device->hostdata)
4926                return -1;
4927
4928        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4929
4930        if (is_zero_length_transfer(cdb)) {
4931                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4932                atomic_dec(&phys_disk->ioaccel_cmds_out);
4933                return IO_ACCEL_INELIGIBLE;
4934        }
4935
4936        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4937                atomic_dec(&phys_disk->ioaccel_cmds_out);
4938                return IO_ACCEL_INELIGIBLE;
4939        }
4940
4941        c->cmd_type = CMD_IOACCEL2;
4942        /* Adjust the DMA address to point to the accelerated command buffer */
4943        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4944                                (c->cmdindex * sizeof(*cp));
4945        BUG_ON(c->busaddr & 0x0000007F);
4946
4947        memset(cp, 0, sizeof(*cp));
4948        cp->IU_type = IOACCEL2_IU_TYPE;
4949
4950        use_sg = scsi_dma_map(cmd);
4951        if (use_sg < 0) {
4952                atomic_dec(&phys_disk->ioaccel_cmds_out);
4953                return use_sg;
4954        }
4955
4956        if (use_sg) {
4957                curr_sg = cp->sg;
4958                if (use_sg > h->ioaccel_maxsg) {
4959                        addr64 = le64_to_cpu(
4960                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4961                        curr_sg->address = cpu_to_le64(addr64);
4962                        curr_sg->length = 0;
4963                        curr_sg->reserved[0] = 0;
4964                        curr_sg->reserved[1] = 0;
4965                        curr_sg->reserved[2] = 0;
4966                        curr_sg->chain_indicator = IOACCEL2_CHAIN;
4967
4968                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4969                }
4970                scsi_for_each_sg(cmd, sg, use_sg, i) {
4971                        addr64 = (u64) sg_dma_address(sg);
4972                        len  = sg_dma_len(sg);
4973                        total_len += len;
4974                        curr_sg->address = cpu_to_le64(addr64);
4975                        curr_sg->length = cpu_to_le32(len);
4976                        curr_sg->reserved[0] = 0;
4977                        curr_sg->reserved[1] = 0;
4978                        curr_sg->reserved[2] = 0;
4979                        curr_sg->chain_indicator = 0;
4980                        curr_sg++;
4981                }
4982
4983                /*
4984                 * Set the last s/g element bit
4985                 */
4986                (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4987
4988                switch (cmd->sc_data_direction) {
4989                case DMA_TO_DEVICE:
4990                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4992                        break;
4993                case DMA_FROM_DEVICE:
4994                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4996                        break;
4997                case DMA_NONE:
4998                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4999                        cp->direction |= IOACCEL2_DIR_NO_DATA;
5000                        break;
5001                default:
5002                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5003                                cmd->sc_data_direction);
5004                        BUG();
5005                        break;
5006                }
5007        } else {
5008                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5009                cp->direction |= IOACCEL2_DIR_NO_DATA;
5010        }
5011
5012        /* Set encryption parameters, if necessary */
5013        set_encrypt_ioaccel2(h, c, cp);
5014
5015        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5016        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5017        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5018
5019        cp->data_len = cpu_to_le32(total_len);
5020        cp->err_ptr = cpu_to_le64(c->busaddr +
5021                        offsetof(struct io_accel2_cmd, error_data));
5022        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5023
5024        /* fill in sg elements */
5025        if (use_sg > h->ioaccel_maxsg) {
5026                cp->sg_count = 1;
5027                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5028                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5029                        atomic_dec(&phys_disk->ioaccel_cmds_out);
5030                        scsi_dma_unmap(cmd);
5031                        return -1;
5032                }
5033        } else
5034                cp->sg_count = (u8) use_sg;
5035
5036        if (phys_disk->in_reset) {
5037                cmd->result = DID_RESET << 16;
5038                return -1;
5039        }
5040
5041        enqueue_cmd_and_start_io(h, c);
5042        return 0;
5043}
5044
5045/*
5046 * Queue a command to the correct I/O accelerator path.
5047 */
5048static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5049        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5050        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5051{
5052        if (!c->scsi_cmd->device)
5053                return -1;
5054
5055        if (!c->scsi_cmd->device->hostdata)
5056                return -1;
5057
5058        if (phys_disk->in_reset)
5059                return -1;
5060
5061        /* Try to honor the device's queue depth */
5062        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5063                                        phys_disk->queue_depth) {
5064                atomic_dec(&phys_disk->ioaccel_cmds_out);
5065                return IO_ACCEL_INELIGIBLE;
5066        }
5067        if (h->transMethod & CFGTBL_Trans_io_accel1)
5068                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5069                                                cdb, cdb_len, scsi3addr,
5070                                                phys_disk);
5071        else
5072                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5073                                                cdb, cdb_len, scsi3addr,
5074                                                phys_disk);
5075}
5076
5077static void raid_map_helper(struct raid_map_data *map,
5078                int offload_to_mirror, u32 *map_index, u32 *current_group)
5079{
5080        if (offload_to_mirror == 0)  {
5081                /* use physical disk in the first mirrored group. */
5082                *map_index %= le16_to_cpu(map->data_disks_per_row);
5083                return;
5084        }
5085        do {
5086                /* determine mirror group that *map_index indicates */
5087                *current_group = *map_index /
5088                        le16_to_cpu(map->data_disks_per_row);
5089                if (offload_to_mirror == *current_group)
5090                        continue;
5091                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5092                        /* select map index from next group */
5093                        *map_index += le16_to_cpu(map->data_disks_per_row);
5094                        (*current_group)++;
5095                } else {
5096                        /* select map index from first group */
5097                        *map_index %= le16_to_cpu(map->data_disks_per_row);
5098                        *current_group = 0;
5099                }
5100        } while (offload_to_mirror != *current_group);
5101}
5102
5103/*
5104 * Attempt to perform offload RAID mapping for a logical volume I/O.
5105 */
5106static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5107        struct CommandList *c)
5108{
5109        struct scsi_cmnd *cmd = c->scsi_cmd;
5110        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5111        struct raid_map_data *map = &dev->raid_map;
5112        struct raid_map_disk_data *dd = &map->data[0];
5113        int is_write = 0;
5114        u32 map_index;
5115        u64 first_block, last_block;
5116        u32 block_cnt;
5117        u32 blocks_per_row;
5118        u64 first_row, last_row;
5119        u32 first_row_offset, last_row_offset;
5120        u32 first_column, last_column;
5121        u64 r0_first_row, r0_last_row;
5122        u32 r5or6_blocks_per_row;
5123        u64 r5or6_first_row, r5or6_last_row;
5124        u32 r5or6_first_row_offset, r5or6_last_row_offset;
5125        u32 r5or6_first_column, r5or6_last_column;
5126        u32 total_disks_per_row;
5127        u32 stripesize;
5128        u32 first_group, last_group, current_group;
5129        u32 map_row;
5130        u32 disk_handle;
5131        u64 disk_block;
5132        u32 disk_block_cnt;
5133        u8 cdb[16];
5134        u8 cdb_len;
5135        u16 strip_size;
5136#if BITS_PER_LONG == 32
5137        u64 tmpdiv;
5138#endif
5139        int offload_to_mirror;
5140
5141        if (!dev)
5142                return -1;
5143
5144        if (dev->in_reset)
5145                return -1;
5146
5147        /* check for valid opcode, get LBA and block count */
5148        switch (cmd->cmnd[0]) {
5149        case WRITE_6:
5150                is_write = 1;
5151                fallthrough;
5152        case READ_6:
5153                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5154                                (cmd->cmnd[2] << 8) |
5155                                cmd->cmnd[3]);
5156                block_cnt = cmd->cmnd[4];
5157                if (block_cnt == 0)
5158                        block_cnt = 256;
5159                break;
5160        case WRITE_10:
5161                is_write = 1;
5162                fallthrough;
5163        case READ_10:
5164                first_block =
5165                        (((u64) cmd->cmnd[2]) << 24) |
5166                        (((u64) cmd->cmnd[3]) << 16) |
5167                        (((u64) cmd->cmnd[4]) << 8) |
5168                        cmd->cmnd[5];
5169                block_cnt =
5170                        (((u32) cmd->cmnd[7]) << 8) |
5171                        cmd->cmnd[8];
5172                break;
5173        case WRITE_12:
5174                is_write = 1;
5175                fallthrough;
5176        case READ_12:
5177                first_block =
5178                        (((u64) cmd->cmnd[2]) << 24) |
5179                        (((u64) cmd->cmnd[3]) << 16) |
5180                        (((u64) cmd->cmnd[4]) << 8) |
5181                        cmd->cmnd[5];
5182                block_cnt =
5183                        (((u32) cmd->cmnd[6]) << 24) |
5184                        (((u32) cmd->cmnd[7]) << 16) |
5185                        (((u32) cmd->cmnd[8]) << 8) |
5186                cmd->cmnd[9];
5187                break;
5188        case WRITE_16:
5189                is_write = 1;
5190                fallthrough;
5191        case READ_16:
5192                first_block =
5193                        (((u64) cmd->cmnd[2]) << 56) |
5194                        (((u64) cmd->cmnd[3]) << 48) |
5195                        (((u64) cmd->cmnd[4]) << 40) |
5196                        (((u64) cmd->cmnd[5]) << 32) |
5197                        (((u64) cmd->cmnd[6]) << 24) |
5198                        (((u64) cmd->cmnd[7]) << 16) |
5199                        (((u64) cmd->cmnd[8]) << 8) |
5200                        cmd->cmnd[9];
5201                block_cnt =
5202                        (((u32) cmd->cmnd[10]) << 24) |
5203                        (((u32) cmd->cmnd[11]) << 16) |
5204                        (((u32) cmd->cmnd[12]) << 8) |
5205                        cmd->cmnd[13];
5206                break;
5207        default:
5208                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5209        }
5210        last_block = first_block + block_cnt - 1;
5211
5212        /* check for write to non-RAID-0 */
5213        if (is_write && dev->raid_level != 0)
5214                return IO_ACCEL_INELIGIBLE;
5215
5216        /* check for invalid block or wraparound */
5217        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5218                last_block < first_block)
5219                return IO_ACCEL_INELIGIBLE;
5220
5221        /* calculate stripe information for the request */
5222        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5223                                le16_to_cpu(map->strip_size);
5224        strip_size = le16_to_cpu(map->strip_size);
5225#if BITS_PER_LONG == 32
5226        tmpdiv = first_block;
5227        (void) do_div(tmpdiv, blocks_per_row);
5228        first_row = tmpdiv;
5229        tmpdiv = last_block;
5230        (void) do_div(tmpdiv, blocks_per_row);
5231        last_row = tmpdiv;
5232        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5233        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5234        tmpdiv = first_row_offset;
5235        (void) do_div(tmpdiv, strip_size);
5236        first_column = tmpdiv;
5237        tmpdiv = last_row_offset;
5238        (void) do_div(tmpdiv, strip_size);
5239        last_column = tmpdiv;
5240#else
5241        first_row = first_block / blocks_per_row;
5242        last_row = last_block / blocks_per_row;
5243        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5244        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5245        first_column = first_row_offset / strip_size;
5246        last_column = last_row_offset / strip_size;
5247#endif
5248
5249        /* if this isn't a single row/column then give to the controller */
5250        if ((first_row != last_row) || (first_column != last_column))
5251                return IO_ACCEL_INELIGIBLE;
5252
5253        /* proceeding with driver mapping */
5254        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5255                                le16_to_cpu(map->metadata_disks_per_row);
5256        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5257                                le16_to_cpu(map->row_cnt);
5258        map_index = (map_row * total_disks_per_row) + first_column;
5259
5260        switch (dev->raid_level) {
5261        case HPSA_RAID_0:
5262                break; /* nothing special to do */
5263        case HPSA_RAID_1:
5264                /* Handles load balance across RAID 1 members.
5265                 * (2-drive R1 and R10 with even # of drives.)
5266                 * Appropriate for SSDs, not optimal for HDDs
5267                 * Ensure we have the correct raid_map.
5268                 */
5269                if (le16_to_cpu(map->layout_map_count) != 2) {
5270                        hpsa_turn_off_ioaccel_for_device(dev);
5271                        return IO_ACCEL_INELIGIBLE;
5272                }
5273                if (dev->offload_to_mirror)
5274                        map_index += le16_to_cpu(map->data_disks_per_row);
5275                dev->offload_to_mirror = !dev->offload_to_mirror;
5276                break;
5277        case HPSA_RAID_ADM:
5278                /* Handles N-way mirrors  (R1-ADM)
5279                 * and R10 with # of drives divisible by 3.)
5280                 * Ensure we have the correct raid_map.
5281                 */
5282                if (le16_to_cpu(map->layout_map_count) != 3) {
5283                        hpsa_turn_off_ioaccel_for_device(dev);
5284                        return IO_ACCEL_INELIGIBLE;
5285                }
5286
5287                offload_to_mirror = dev->offload_to_mirror;
5288                raid_map_helper(map, offload_to_mirror,
5289                                &map_index, &current_group);
5290                /* set mirror group to use next time */
5291                offload_to_mirror =
5292                        (offload_to_mirror >=
5293                        le16_to_cpu(map->layout_map_count) - 1)
5294                        ? 0 : offload_to_mirror + 1;
5295                dev->offload_to_mirror = offload_to_mirror;
5296                /* Avoid direct use of dev->offload_to_mirror within this
5297                 * function since multiple threads might simultaneously
5298                 * increment it beyond the range of dev->layout_map_count -1.
5299                 */
5300                break;
5301        case HPSA_RAID_5:
5302        case HPSA_RAID_6:
5303                if (le16_to_cpu(map->layout_map_count) <= 1)
5304                        break;
5305
5306                /* Verify first and last block are in same RAID group */
5307                r5or6_blocks_per_row =
5308                        le16_to_cpu(map->strip_size) *
5309                        le16_to_cpu(map->data_disks_per_row);
5310                if (r5or6_blocks_per_row == 0) {
5311                        hpsa_turn_off_ioaccel_for_device(dev);
5312                        return IO_ACCEL_INELIGIBLE;
5313                }
5314                stripesize = r5or6_blocks_per_row *
5315                        le16_to_cpu(map->layout_map_count);
5316#if BITS_PER_LONG == 32
5317                tmpdiv = first_block;
5318                first_group = do_div(tmpdiv, stripesize);
5319                tmpdiv = first_group;
5320                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5321                first_group = tmpdiv;
5322                tmpdiv = last_block;
5323                last_group = do_div(tmpdiv, stripesize);
5324                tmpdiv = last_group;
5325                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5326                last_group = tmpdiv;
5327#else
5328                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5329                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5330#endif
5331                if (first_group != last_group)
5332                        return IO_ACCEL_INELIGIBLE;
5333
5334                /* Verify request is in a single row of RAID 5/6 */
5335#if BITS_PER_LONG == 32
5336                tmpdiv = first_block;
5337                (void) do_div(tmpdiv, stripesize);
5338                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5339                tmpdiv = last_block;
5340                (void) do_div(tmpdiv, stripesize);
5341                r5or6_last_row = r0_last_row = tmpdiv;
5342#else
5343                first_row = r5or6_first_row = r0_first_row =
5344                                                first_block / stripesize;
5345                r5or6_last_row = r0_last_row = last_block / stripesize;
5346#endif
5347                if (r5or6_first_row != r5or6_last_row)
5348                        return IO_ACCEL_INELIGIBLE;
5349
5350
5351                /* Verify request is in a single column */
5352#if BITS_PER_LONG == 32
5353                tmpdiv = first_block;
5354                first_row_offset = do_div(tmpdiv, stripesize);
5355                tmpdiv = first_row_offset;
5356                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5357                r5or6_first_row_offset = first_row_offset;
5358                tmpdiv = last_block;
5359                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5360                tmpdiv = r5or6_last_row_offset;
5361                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5362                tmpdiv = r5or6_first_row_offset;
5363                (void) do_div(tmpdiv, map->strip_size);
5364                first_column = r5or6_first_column = tmpdiv;
5365                tmpdiv = r5or6_last_row_offset;
5366                (void) do_div(tmpdiv, map->strip_size);
5367                r5or6_last_column = tmpdiv;
5368#else
5369                first_row_offset = r5or6_first_row_offset =
5370                        (u32)((first_block % stripesize) %
5371                                                r5or6_blocks_per_row);
5372
5373                r5or6_last_row_offset =
5374                        (u32)((last_block % stripesize) %
5375                                                r5or6_blocks_per_row);
5376
5377                first_column = r5or6_first_column =
5378                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5379                r5or6_last_column =
5380                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5381#endif
5382                if (r5or6_first_column != r5or6_last_column)
5383                        return IO_ACCEL_INELIGIBLE;
5384
5385                /* Request is eligible */
5386                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5387                        le16_to_cpu(map->row_cnt);
5388
5389                map_index = (first_group *
5390                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5391                        (map_row * total_disks_per_row) + first_column;
5392                break;
5393        default:
5394                return IO_ACCEL_INELIGIBLE;
5395        }
5396
5397        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5398                return IO_ACCEL_INELIGIBLE;
5399
5400        c->phys_disk = dev->phys_disk[map_index];
5401        if (!c->phys_disk)
5402                return IO_ACCEL_INELIGIBLE;
5403
5404        disk_handle = dd[map_index].ioaccel_handle;
5405        disk_block = le64_to_cpu(map->disk_starting_blk) +
5406                        first_row * le16_to_cpu(map->strip_size) +
5407                        (first_row_offset - first_column *
5408                        le16_to_cpu(map->strip_size));
5409        disk_block_cnt = block_cnt;
5410
5411        /* handle differing logical/physical block sizes */
5412        if (map->phys_blk_shift) {
5413                disk_block <<= map->phys_blk_shift;
5414                disk_block_cnt <<= map->phys_blk_shift;
5415        }
5416        BUG_ON(disk_block_cnt > 0xffff);
5417
5418        /* build the new CDB for the physical disk I/O */
5419        if (disk_block > 0xffffffff) {
5420                cdb[0] = is_write ? WRITE_16 : READ_16;
5421                cdb[1] = 0;
5422                cdb[2] = (u8) (disk_block >> 56);
5423                cdb[3] = (u8) (disk_block >> 48);
5424                cdb[4] = (u8) (disk_block >> 40);
5425                cdb[5] = (u8) (disk_block >> 32);
5426                cdb[6] = (u8) (disk_block >> 24);
5427                cdb[7] = (u8) (disk_block >> 16);
5428                cdb[8] = (u8) (disk_block >> 8);
5429                cdb[9] = (u8) (disk_block);
5430                cdb[10] = (u8) (disk_block_cnt >> 24);
5431                cdb[11] = (u8) (disk_block_cnt >> 16);
5432                cdb[12] = (u8) (disk_block_cnt >> 8);
5433                cdb[13] = (u8) (disk_block_cnt);
5434                cdb[14] = 0;
5435                cdb[15] = 0;
5436                cdb_len = 16;
5437        } else {
5438                cdb[0] = is_write ? WRITE_10 : READ_10;
5439                cdb[1] = 0;
5440                cdb[2] = (u8) (disk_block >> 24);
5441                cdb[3] = (u8) (disk_block >> 16);
5442                cdb[4] = (u8) (disk_block >> 8);
5443                cdb[5] = (u8) (disk_block);
5444                cdb[6] = 0;
5445                cdb[7] = (u8) (disk_block_cnt >> 8);
5446                cdb[8] = (u8) (disk_block_cnt);
5447                cdb[9] = 0;
5448                cdb_len = 10;
5449        }
5450        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5451                                                dev->scsi3addr,
5452                                                dev->phys_disk[map_index]);
5453}
5454
5455/*
5456 * Submit commands down the "normal" RAID stack path
5457 * All callers to hpsa_ciss_submit must check lockup_detected
5458 * beforehand, before (opt.) and after calling cmd_alloc
5459 */
5460static int hpsa_ciss_submit(struct ctlr_info *h,
5461        struct CommandList *c, struct scsi_cmnd *cmd,
5462        struct hpsa_scsi_dev_t *dev)
5463{
5464        cmd->host_scribble = (unsigned char *) c;
5465        c->cmd_type = CMD_SCSI;
5466        c->scsi_cmd = cmd;
5467        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5468        memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5469        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5470
5471        /* Fill in the request block... */
5472
5473        c->Request.Timeout = 0;
5474        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5475        c->Request.CDBLen = cmd->cmd_len;
5476        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5477        switch (cmd->sc_data_direction) {
5478        case DMA_TO_DEVICE:
5479                c->Request.type_attr_dir =
5480                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5481                break;
5482        case DMA_FROM_DEVICE:
5483                c->Request.type_attr_dir =
5484                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5485                break;
5486        case DMA_NONE:
5487                c->Request.type_attr_dir =
5488                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5489                break;
5490        case DMA_BIDIRECTIONAL:
5491                /* This can happen if a buggy application does a scsi passthru
5492                 * and sets both inlen and outlen to non-zero. ( see
5493                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5494                 */
5495
5496                c->Request.type_attr_dir =
5497                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5498                /* This is technically wrong, and hpsa controllers should
5499                 * reject it with CMD_INVALID, which is the most correct
5500                 * response, but non-fibre backends appear to let it
5501                 * slide by, and give the same results as if this field
5502                 * were set correctly.  Either way is acceptable for
5503                 * our purposes here.
5504                 */
5505
5506                break;
5507
5508        default:
5509                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5510                        cmd->sc_data_direction);
5511                BUG();
5512                break;
5513        }
5514
5515        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5516                hpsa_cmd_resolve_and_free(h, c);
5517                return SCSI_MLQUEUE_HOST_BUSY;
5518        }
5519
5520        if (dev->in_reset) {
5521                hpsa_cmd_resolve_and_free(h, c);
5522                return SCSI_MLQUEUE_HOST_BUSY;
5523        }
5524
5525        c->device = dev;
5526
5527        enqueue_cmd_and_start_io(h, c);
5528        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5529        return 0;
5530}
5531
5532static void hpsa_cmd_init(struct ctlr_info *h, int index,
5533                                struct CommandList *c)
5534{
5535        dma_addr_t cmd_dma_handle, err_dma_handle;
5536
5537        /* Zero out all of commandlist except the last field, refcount */
5538        memset(c, 0, offsetof(struct CommandList, refcount));
5539        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5540        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5541        c->err_info = h->errinfo_pool + index;
5542        memset(c->err_info, 0, sizeof(*c->err_info));
5543        err_dma_handle = h->errinfo_pool_dhandle
5544            + index * sizeof(*c->err_info);
5545        c->cmdindex = index;
5546        c->busaddr = (u32) cmd_dma_handle;
5547        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5548        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5549        c->h = h;
5550        c->scsi_cmd = SCSI_CMD_IDLE;
5551}
5552
5553static void hpsa_preinitialize_commands(struct ctlr_info *h)
5554{
5555        int i;
5556
5557        for (i = 0; i < h->nr_cmds; i++) {
5558                struct CommandList *c = h->cmd_pool + i;
5559
5560                hpsa_cmd_init(h, i, c);
5561                atomic_set(&c->refcount, 0);
5562        }
5563}
5564
5565static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5566                                struct CommandList *c)
5567{
5568        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5569
5570        BUG_ON(c->cmdindex != index);
5571
5572        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5573        memset(c->err_info, 0, sizeof(*c->err_info));
5574        c->busaddr = (u32) cmd_dma_handle;
5575}
5576
5577static int hpsa_ioaccel_submit(struct ctlr_info *h,
5578                struct CommandList *c, struct scsi_cmnd *cmd)
5579{
5580        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5581        int rc = IO_ACCEL_INELIGIBLE;
5582
5583        if (!dev)
5584                return SCSI_MLQUEUE_HOST_BUSY;
5585
5586        if (dev->in_reset)
5587                return SCSI_MLQUEUE_HOST_BUSY;
5588
5589        if (hpsa_simple_mode)
5590                return IO_ACCEL_INELIGIBLE;
5591
5592        cmd->host_scribble = (unsigned char *) c;
5593
5594        if (dev->offload_enabled) {
5595                hpsa_cmd_init(h, c->cmdindex, c);
5596                c->cmd_type = CMD_SCSI;
5597                c->scsi_cmd = cmd;
5598                c->device = dev;
5599                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5600                if (rc < 0)     /* scsi_dma_map failed. */
5601                        rc = SCSI_MLQUEUE_HOST_BUSY;
5602        } else if (dev->hba_ioaccel_enabled) {
5603                hpsa_cmd_init(h, c->cmdindex, c);
5604                c->cmd_type = CMD_SCSI;
5605                c->scsi_cmd = cmd;
5606                c->device = dev;
5607                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5608                if (rc < 0)     /* scsi_dma_map failed. */
5609                        rc = SCSI_MLQUEUE_HOST_BUSY;
5610        }
5611        return rc;
5612}
5613
5614static void hpsa_command_resubmit_worker(struct work_struct *work)
5615{
5616        struct scsi_cmnd *cmd;
5617        struct hpsa_scsi_dev_t *dev;
5618        struct CommandList *c = container_of(work, struct CommandList, work);
5619
5620        cmd = c->scsi_cmd;
5621        dev = cmd->device->hostdata;
5622        if (!dev) {
5623                cmd->result = DID_NO_CONNECT << 16;
5624                return hpsa_cmd_free_and_done(c->h, c, cmd);
5625        }
5626
5627        if (dev->in_reset) {
5628                cmd->result = DID_RESET << 16;
5629                return hpsa_cmd_free_and_done(c->h, c, cmd);
5630        }
5631
5632        if (c->cmd_type == CMD_IOACCEL2) {
5633                struct ctlr_info *h = c->h;
5634                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5635                int rc;
5636
5637                if (c2->error_data.serv_response ==
5638                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5639                        rc = hpsa_ioaccel_submit(h, c, cmd);
5640                        if (rc == 0)
5641                                return;
5642                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643                                /*
5644                                 * If we get here, it means dma mapping failed.
5645                                 * Try again via scsi mid layer, which will
5646                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5647                                 */
5648                                cmd->result = DID_IMM_RETRY << 16;
5649                                return hpsa_cmd_free_and_done(h, c, cmd);
5650                        }
5651                        /* else, fall thru and resubmit down CISS path */
5652                }
5653        }
5654        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655        if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5656                /*
5657                 * If we get here, it means dma mapping failed. Try
5658                 * again via scsi mid layer, which will then get
5659                 * SCSI_MLQUEUE_HOST_BUSY.
5660                 *
5661                 * hpsa_ciss_submit will have already freed c
5662                 * if it encountered a dma mapping failure.
5663                 */
5664                cmd->result = DID_IMM_RETRY << 16;
5665                cmd->scsi_done(cmd);
5666        }
5667}
5668
5669/* Running in struct Scsi_Host->host_lock less mode */
5670static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5671{
5672        struct ctlr_info *h;
5673        struct hpsa_scsi_dev_t *dev;
5674        struct CommandList *c;
5675        int rc = 0;
5676
5677        /* Get the ptr to our adapter structure out of cmd->host. */
5678        h = sdev_to_hba(cmd->device);
5679
5680        BUG_ON(cmd->request->tag < 0);
5681
5682        dev = cmd->device->hostdata;
5683        if (!dev) {
5684                cmd->result = DID_NO_CONNECT << 16;
5685                cmd->scsi_done(cmd);
5686                return 0;
5687        }
5688
5689        if (dev->removed) {
5690                cmd->result = DID_NO_CONNECT << 16;
5691                cmd->scsi_done(cmd);
5692                return 0;
5693        }
5694
5695        if (unlikely(lockup_detected(h))) {
5696                cmd->result = DID_NO_CONNECT << 16;
5697                cmd->scsi_done(cmd);
5698                return 0;
5699        }
5700
5701        if (dev->in_reset)
5702                return SCSI_MLQUEUE_DEVICE_BUSY;
5703
5704        c = cmd_tagged_alloc(h, cmd);
5705        if (c == NULL)
5706                return SCSI_MLQUEUE_DEVICE_BUSY;
5707
5708        /*
5709         * This is necessary because the SML doesn't zero out this field during
5710         * error recovery.
5711         */
5712        cmd->result = 0;
5713
5714        /*
5715         * Call alternate submit routine for I/O accelerated commands.
5716         * Retries always go down the normal I/O path.
5717         */
5718        if (likely(cmd->retries == 0 &&
5719                        !blk_rq_is_passthrough(cmd->request) &&
5720                        h->acciopath_status)) {
5721                rc = hpsa_ioaccel_submit(h, c, cmd);
5722                if (rc == 0)
5723                        return 0;
5724                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5725                        hpsa_cmd_resolve_and_free(h, c);
5726                        return SCSI_MLQUEUE_HOST_BUSY;
5727                }
5728        }
5729        return hpsa_ciss_submit(h, c, cmd, dev);
5730}
5731
5732static void hpsa_scan_complete(struct ctlr_info *h)
5733{
5734        unsigned long flags;
5735
5736        spin_lock_irqsave(&h->scan_lock, flags);
5737        h->scan_finished = 1;
5738        wake_up(&h->scan_wait_queue);
5739        spin_unlock_irqrestore(&h->scan_lock, flags);
5740}
5741
5742static void hpsa_scan_start(struct Scsi_Host *sh)
5743{
5744        struct ctlr_info *h = shost_to_hba(sh);
5745        unsigned long flags;
5746
5747        /*
5748         * Don't let rescans be initiated on a controller known to be locked
5749         * up.  If the controller locks up *during* a rescan, that thread is
5750         * probably hosed, but at least we can prevent new rescan threads from
5751         * piling up on a locked up controller.
5752         */
5753        if (unlikely(lockup_detected(h)))
5754                return hpsa_scan_complete(h);
5755
5756        /*
5757         * If a scan is already waiting to run, no need to add another
5758         */
5759        spin_lock_irqsave(&h->scan_lock, flags);
5760        if (h->scan_waiting) {
5761                spin_unlock_irqrestore(&h->scan_lock, flags);
5762                return;
5763        }
5764
5765        spin_unlock_irqrestore(&h->scan_lock, flags);
5766
5767        /* wait until any scan already in progress is finished. */
5768        while (1) {
5769                spin_lock_irqsave(&h->scan_lock, flags);
5770                if (h->scan_finished)
5771                        break;
5772                h->scan_waiting = 1;
5773                spin_unlock_irqrestore(&h->scan_lock, flags);
5774                wait_event(h->scan_wait_queue, h->scan_finished);
5775                /* Note: We don't need to worry about a race between this
5776                 * thread and driver unload because the midlayer will
5777                 * have incremented the reference count, so unload won't
5778                 * happen if we're in here.
5779                 */
5780        }
5781        h->scan_finished = 0; /* mark scan as in progress */
5782        h->scan_waiting = 0;
5783        spin_unlock_irqrestore(&h->scan_lock, flags);
5784
5785        if (unlikely(lockup_detected(h)))
5786                return hpsa_scan_complete(h);
5787
5788        /*
5789         * Do the scan after a reset completion
5790         */
5791        spin_lock_irqsave(&h->reset_lock, flags);
5792        if (h->reset_in_progress) {
5793                h->drv_req_rescan = 1;
5794                spin_unlock_irqrestore(&h->reset_lock, flags);
5795                hpsa_scan_complete(h);
5796                return;
5797        }
5798        spin_unlock_irqrestore(&h->reset_lock, flags);
5799
5800        hpsa_update_scsi_devices(h);
5801
5802        hpsa_scan_complete(h);
5803}
5804
5805static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5806{
5807        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5808
5809        if (!logical_drive)
5810                return -ENODEV;
5811
5812        if (qdepth < 1)
5813                qdepth = 1;
5814        else if (qdepth > logical_drive->queue_depth)
5815                qdepth = logical_drive->queue_depth;
5816
5817        return scsi_change_queue_depth(sdev, qdepth);
5818}
5819
5820static int hpsa_scan_finished(struct Scsi_Host *sh,
5821        unsigned long elapsed_time)
5822{
5823        struct ctlr_info *h = shost_to_hba(sh);
5824        unsigned long flags;
5825        int finished;
5826
5827        spin_lock_irqsave(&h->scan_lock, flags);
5828        finished = h->scan_finished;
5829        spin_unlock_irqrestore(&h->scan_lock, flags);
5830        return finished;
5831}
5832
5833static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5834{
5835        struct Scsi_Host *sh;
5836
5837        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5838        if (sh == NULL) {
5839                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5840                return -ENOMEM;
5841        }
5842
5843        sh->io_port = 0;
5844        sh->n_io_port = 0;
5845        sh->this_id = -1;
5846        sh->max_channel = 3;
5847        sh->max_cmd_len = MAX_COMMAND_SIZE;
5848        sh->max_lun = HPSA_MAX_LUN;
5849        sh->max_id = HPSA_MAX_LUN;
5850        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5851        sh->cmd_per_lun = sh->can_queue;
5852        sh->sg_tablesize = h->maxsgentries;
5853        sh->transportt = hpsa_sas_transport_template;
5854        sh->hostdata[0] = (unsigned long) h;
5855        sh->irq = pci_irq_vector(h->pdev, 0);
5856        sh->unique_id = sh->irq;
5857
5858        h->scsi_host = sh;
5859        return 0;
5860}
5861
5862static int hpsa_scsi_add_host(struct ctlr_info *h)
5863{
5864        int rv;
5865
5866        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5867        if (rv) {
5868                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5869                return rv;
5870        }
5871        scsi_scan_host(h->scsi_host);
5872        return 0;
5873}
5874
5875/*
5876 * The block layer has already gone to the trouble of picking out a unique,
5877 * small-integer tag for this request.  We use an offset from that value as
5878 * an index to select our command block.  (The offset allows us to reserve the
5879 * low-numbered entries for our own uses.)
5880 */
5881static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5882{
5883        int idx = scmd->request->tag;
5884
5885        if (idx < 0)
5886                return idx;
5887
5888        /* Offset to leave space for internal cmds. */
5889        return idx += HPSA_NRESERVED_CMDS;
5890}
5891
5892/*
5893 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5894 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5895 */
5896static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5897                                struct CommandList *c, unsigned char lunaddr[],
5898                                int reply_queue)
5899{
5900        int rc;
5901
5902        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5903        (void) fill_cmd(c, TEST_UNIT_READY, h,
5904                        NULL, 0, 0, lunaddr, TYPE_CMD);
5905        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5906        if (rc)
5907                return rc;
5908        /* no unmap needed here because no data xfer. */
5909
5910        /* Check if the unit is already ready. */
5911        if (c->err_info->CommandStatus == CMD_SUCCESS)
5912                return 0;
5913
5914        /*
5915         * The first command sent after reset will receive "unit attention" to
5916         * indicate that the LUN has been reset...this is actually what we're
5917         * looking for (but, success is good too).
5918         */
5919        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5920                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5921                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5922                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5923                return 0;
5924
5925        return 1;
5926}
5927
5928/*
5929 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5930 * returns zero when the unit is ready, and non-zero when giving up.
5931 */
5932static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5933                                struct CommandList *c,
5934                                unsigned char lunaddr[], int reply_queue)
5935{
5936        int rc;
5937        int count = 0;
5938        int waittime = 1; /* seconds */
5939
5940        /* Send test unit ready until device ready, or give up. */
5941        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5942
5943                /*
5944                 * Wait for a bit.  do this first, because if we send
5945                 * the TUR right away, the reset will just abort it.
5946                 */
5947                msleep(1000 * waittime);
5948
5949                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5950                if (!rc)
5951                        break;
5952
5953                /* Increase wait time with each try, up to a point. */
5954                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5955                        waittime *= 2;
5956
5957                dev_warn(&h->pdev->dev,
5958                         "waiting %d secs for device to become ready.\n",
5959                         waittime);
5960        }
5961
5962        return rc;
5963}
5964
5965static int wait_for_device_to_become_ready(struct ctlr_info *h,
5966                                           unsigned char lunaddr[],
5967                                           int reply_queue)
5968{
5969        int first_queue;
5970        int last_queue;
5971        int rq;
5972        int rc = 0;
5973        struct CommandList *c;
5974
5975        c = cmd_alloc(h);
5976
5977        /*
5978         * If no specific reply queue was requested, then send the TUR
5979         * repeatedly, requesting a reply on each reply queue; otherwise execute
5980         * the loop exactly once using only the specified queue.
5981         */
5982        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5983                first_queue = 0;
5984                last_queue = h->nreply_queues - 1;
5985        } else {
5986                first_queue = reply_queue;
5987                last_queue = reply_queue;
5988        }
5989
5990        for (rq = first_queue; rq <= last_queue; rq++) {
5991                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5992                if (rc)
5993                        break;
5994        }
5995
5996        if (rc)
5997                dev_warn(&h->pdev->dev, "giving up on device.\n");
5998        else
5999                dev_warn(&h->pdev->dev, "device is ready.\n");
6000
6001        cmd_free(h, c);
6002        return rc;
6003}
6004
6005/* Need at least one of these error handlers to keep ../scsi/hosts.c from
6006 * complaining.  Doing a host- or bus-reset can't do anything good here.
6007 */
6008static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6009{
6010        int rc = SUCCESS;
6011        int i;
6012        struct ctlr_info *h;
6013        struct hpsa_scsi_dev_t *dev = NULL;
6014        u8 reset_type;
6015        char msg[48];
6016        unsigned long flags;
6017
6018        /* find the controller to which the command to be aborted was sent */
6019        h = sdev_to_hba(scsicmd->device);
6020        if (h == NULL) /* paranoia */
6021                return FAILED;
6022
6023        spin_lock_irqsave(&h->reset_lock, flags);
6024        h->reset_in_progress = 1;
6025        spin_unlock_irqrestore(&h->reset_lock, flags);
6026
6027        if (lockup_detected(h)) {
6028                rc = FAILED;
6029                goto return_reset_status;
6030        }
6031
6032        dev = scsicmd->device->hostdata;
6033        if (!dev) {
6034                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6035                rc = FAILED;
6036                goto return_reset_status;
6037        }
6038
6039        if (dev->devtype == TYPE_ENCLOSURE) {
6040                rc = SUCCESS;
6041                goto return_reset_status;
6042        }
6043
6044        /* if controller locked up, we can guarantee command won't complete */
6045        if (lockup_detected(h)) {
6046                snprintf(msg, sizeof(msg),
6047                         "cmd %d RESET FAILED, lockup detected",
6048                         hpsa_get_cmd_index(scsicmd));
6049                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6050                rc = FAILED;
6051                goto return_reset_status;
6052        }
6053
6054        /* this reset request might be the result of a lockup; check */
6055        if (detect_controller_lockup(h)) {
6056                snprintf(msg, sizeof(msg),
6057                         "cmd %d RESET FAILED, new lockup detected",
6058                         hpsa_get_cmd_index(scsicmd));
6059                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6060                rc = FAILED;
6061                goto return_reset_status;
6062        }
6063
6064        /* Do not attempt on controller */
6065        if (is_hba_lunid(dev->scsi3addr)) {
6066                rc = SUCCESS;
6067                goto return_reset_status;
6068        }
6069
6070        if (is_logical_dev_addr_mode(dev->scsi3addr))
6071                reset_type = HPSA_DEVICE_RESET_MSG;
6072        else
6073                reset_type = HPSA_PHYS_TARGET_RESET;
6074
6075        sprintf(msg, "resetting %s",
6076                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6077        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6078
6079        /*
6080         * wait to see if any commands will complete before sending reset
6081         */
6082        dev->in_reset = true; /* block any new cmds from OS for this device */
6083        for (i = 0; i < 10; i++) {
6084                if (atomic_read(&dev->commands_outstanding) > 0)
6085                        msleep(1000);
6086                else
6087                        break;
6088        }
6089
6090        /* send a reset to the SCSI LUN which the command was sent to */
6091        rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6092        if (rc == 0)
6093                rc = SUCCESS;
6094        else
6095                rc = FAILED;
6096
6097        sprintf(msg, "reset %s %s",
6098                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6099                rc == SUCCESS ? "completed successfully" : "failed");
6100        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6101
6102return_reset_status:
6103        spin_lock_irqsave(&h->reset_lock, flags);
6104        h->reset_in_progress = 0;
6105        if (dev)
6106                dev->in_reset = false;
6107        spin_unlock_irqrestore(&h->reset_lock, flags);
6108        return rc;
6109}
6110
6111/*
6112 * For operations with an associated SCSI command, a command block is allocated
6113 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6114 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6115 * the complement, although cmd_free() may be called instead.
6116 */
6117static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6118                                            struct scsi_cmnd *scmd)
6119{
6120        int idx = hpsa_get_cmd_index(scmd);
6121        struct CommandList *c = h->cmd_pool + idx;
6122
6123        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6124                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6125                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6126                /* The index value comes from the block layer, so if it's out of
6127                 * bounds, it's probably not our bug.
6128                 */
6129                BUG();
6130        }
6131
6132        if (unlikely(!hpsa_is_cmd_idle(c))) {
6133                /*
6134                 * We expect that the SCSI layer will hand us a unique tag
6135                 * value.  Thus, there should never be a collision here between
6136                 * two requests...because if the selected command isn't idle
6137                 * then someone is going to be very disappointed.
6138                 */
6139                if (idx != h->last_collision_tag) { /* Print once per tag */
6140                        dev_warn(&h->pdev->dev,
6141                                "%s: tag collision (tag=%d)\n", __func__, idx);
6142                        if (scmd)
6143                                scsi_print_command(scmd);
6144                        h->last_collision_tag = idx;
6145                }
6146                return NULL;
6147        }
6148
6149        atomic_inc(&c->refcount);
6150
6151        hpsa_cmd_partial_init(h, idx, c);
6152        return c;
6153}
6154
6155static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6156{
6157        /*
6158         * Release our reference to the block.  We don't need to do anything
6159         * else to free it, because it is accessed by index.
6160         */
6161        (void)atomic_dec(&c->refcount);
6162}
6163
6164/*
6165 * For operations that cannot sleep, a command block is allocated at init,
6166 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6167 * which ones are free or in use.  Lock must be held when calling this.
6168 * cmd_free() is the complement.
6169 * This function never gives up and returns NULL.  If it hangs,
6170 * another thread must call cmd_free() to free some tags.
6171 */
6172
6173static struct CommandList *cmd_alloc(struct ctlr_info *h)
6174{
6175        struct CommandList *c;
6176        int refcount, i;
6177        int offset = 0;
6178
6179        /*
6180         * There is some *extremely* small but non-zero chance that that
6181         * multiple threads could get in here, and one thread could
6182         * be scanning through the list of bits looking for a free
6183         * one, but the free ones are always behind him, and other
6184         * threads sneak in behind him and eat them before he can
6185         * get to them, so that while there is always a free one, a
6186         * very unlucky thread might be starved anyway, never able to
6187         * beat the other threads.  In reality, this happens so
6188         * infrequently as to be indistinguishable from never.
6189         *
6190         * Note that we start allocating commands before the SCSI host structure
6191         * is initialized.  Since the search starts at bit zero, this
6192         * all works, since we have at least one command structure available;
6193         * however, it means that the structures with the low indexes have to be
6194         * reserved for driver-initiated requests, while requests from the block
6195         * layer will use the higher indexes.
6196         */
6197
6198        for (;;) {
6199                i = find_next_zero_bit(h->cmd_pool_bits,
6200                                        HPSA_NRESERVED_CMDS,
6201                                        offset);
6202                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6203                        offset = 0;
6204                        continue;
6205                }
6206                c = h->cmd_pool + i;
6207                refcount = atomic_inc_return(&c->refcount);
6208                if (unlikely(refcount > 1)) {
6209                        cmd_free(h, c); /* already in use */
6210                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6211                        continue;
6212                }
6213                set_bit(i & (BITS_PER_LONG - 1),
6214                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6215                break; /* it's ours now. */
6216        }
6217        hpsa_cmd_partial_init(h, i, c);
6218        c->device = NULL;
6219        return c;
6220}
6221
6222/*
6223 * This is the complementary operation to cmd_alloc().  Note, however, in some
6224 * corner cases it may also be used to free blocks allocated by
6225 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6226 * the clear-bit is harmless.
6227 */
6228static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6229{
6230        if (atomic_dec_and_test(&c->refcount)) {
6231                int i;
6232
6233                i = c - h->cmd_pool;
6234                clear_bit(i & (BITS_PER_LONG - 1),
6235                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6236        }
6237}
6238
6239#ifdef CONFIG_COMPAT
6240
6241static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6242        void __user *arg)
6243{
6244        struct ctlr_info *h = sdev_to_hba(dev);
6245        IOCTL32_Command_struct __user *arg32 = arg;
6246        IOCTL_Command_struct arg64;
6247        int err;
6248        u32 cp;
6249
6250        if (!arg)
6251                return -EINVAL;
6252
6253        memset(&arg64, 0, sizeof(arg64));
6254        if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6255                return -EFAULT;
6256        if (get_user(cp, &arg32->buf))
6257                return -EFAULT;
6258        arg64.buf = compat_ptr(cp);
6259
6260        if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6261                return -EAGAIN;
6262        err = hpsa_passthru_ioctl(h, &arg64);
6263        atomic_inc(&h->passthru_cmds_avail);
6264        if (err)
6265                return err;
6266        if (copy_to_user(&arg32->error_info, &arg64.error_info,
6267                         sizeof(arg32->error_info)))
6268                return -EFAULT;
6269        return 0;
6270}
6271
6272static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6273        unsigned int cmd, void __user *arg)
6274{
6275        struct ctlr_info *h = sdev_to_hba(dev);
6276        BIG_IOCTL32_Command_struct __user *arg32 = arg;
6277        BIG_IOCTL_Command_struct arg64;
6278        int err;
6279        u32 cp;
6280
6281        if (!arg)
6282                return -EINVAL;
6283        memset(&arg64, 0, sizeof(arg64));
6284        if (copy_from_user(&arg64, arg32,
6285                           offsetof(BIG_IOCTL32_Command_struct, buf)))
6286                return -EFAULT;
6287        if (get_user(cp, &arg32->buf))
6288                return -EFAULT;
6289        arg64.buf = compat_ptr(cp);
6290
6291        if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6292                return -EAGAIN;
6293        err = hpsa_big_passthru_ioctl(h, &arg64);
6294        atomic_inc(&h->passthru_cmds_avail);
6295        if (err)
6296                return err;
6297        if (copy_to_user(&arg32->error_info, &arg64.error_info,
6298                         sizeof(arg32->error_info)))
6299                return -EFAULT;
6300        return 0;
6301}
6302
6303static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6304                             void __user *arg)
6305{
6306        switch (cmd) {
6307        case CCISS_GETPCIINFO:
6308        case CCISS_GETINTINFO:
6309        case CCISS_SETINTINFO:
6310        case CCISS_GETNODENAME:
6311        case CCISS_SETNODENAME:
6312        case CCISS_GETHEARTBEAT:
6313        case CCISS_GETBUSTYPES:
6314        case CCISS_GETFIRMVER:
6315        case CCISS_GETDRIVVER:
6316        case CCISS_REVALIDVOLS:
6317        case CCISS_DEREGDISK:
6318        case CCISS_REGNEWDISK:
6319        case CCISS_REGNEWD:
6320        case CCISS_RESCANDISK:
6321        case CCISS_GETLUNINFO:
6322                return hpsa_ioctl(dev, cmd, arg);
6323
6324        case CCISS_PASSTHRU32:
6325                return hpsa_ioctl32_passthru(dev, cmd, arg);
6326        case CCISS_BIG_PASSTHRU32:
6327                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6328
6329        default:
6330                return -ENOIOCTLCMD;
6331        }
6332}
6333#endif
6334
6335static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6336{
6337        struct hpsa_pci_info pciinfo;
6338
6339        if (!argp)
6340                return -EINVAL;
6341        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6342        pciinfo.bus = h->pdev->bus->number;
6343        pciinfo.dev_fn = h->pdev->devfn;
6344        pciinfo.board_id = h->board_id;
6345        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6346                return -EFAULT;
6347        return 0;
6348}
6349
6350static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6351{
6352        DriverVer_type DriverVer;
6353        unsigned char vmaj, vmin, vsubmin;
6354        int rc;
6355
6356        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6357                &vmaj, &vmin, &vsubmin);
6358        if (rc != 3) {
6359                dev_info(&h->pdev->dev, "driver version string '%s' "
6360                        "unrecognized.", HPSA_DRIVER_VERSION);
6361                vmaj = 0;
6362                vmin = 0;
6363                vsubmin = 0;
6364        }
6365        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6366        if (!argp)
6367                return -EINVAL;
6368        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6369                return -EFAULT;
6370        return 0;
6371}
6372
6373static int hpsa_passthru_ioctl(struct ctlr_info *h,
6374                               IOCTL_Command_struct *iocommand)
6375{
6376        struct CommandList *c;
6377        char *buff = NULL;
6378        u64 temp64;
6379        int rc = 0;
6380
6381        if (!capable(CAP_SYS_RAWIO))
6382                return -EPERM;
6383        if ((iocommand->buf_size < 1) &&
6384            (iocommand->Request.Type.Direction != XFER_NONE)) {
6385                return -EINVAL;
6386        }
6387        if (iocommand->buf_size > 0) {
6388                buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6389                if (buff == NULL)
6390                        return -ENOMEM;
6391                if (iocommand->Request.Type.Direction & XFER_WRITE) {
6392                        /* Copy the data into the buffer we created */
6393                        if (copy_from_user(buff, iocommand->buf,
6394                                iocommand->buf_size)) {
6395                                rc = -EFAULT;
6396                                goto out_kfree;
6397                        }
6398                } else {
6399                        memset(buff, 0, iocommand->buf_size);
6400                }
6401        }
6402        c = cmd_alloc(h);
6403
6404        /* Fill in the command type */
6405        c->cmd_type = CMD_IOCTL_PEND;
6406        c->scsi_cmd = SCSI_CMD_BUSY;
6407        /* Fill in Command Header */
6408        c->Header.ReplyQueue = 0; /* unused in simple mode */
6409        if (iocommand->buf_size > 0) {  /* buffer to fill */
6410                c->Header.SGList = 1;
6411                c->Header.SGTotal = cpu_to_le16(1);
6412        } else  { /* no buffers to fill */
6413                c->Header.SGList = 0;
6414                c->Header.SGTotal = cpu_to_le16(0);
6415        }
6416        memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6417
6418        /* Fill in Request block */
6419        memcpy(&c->Request, &iocommand->Request,
6420                sizeof(c->Request));
6421
6422        /* Fill in the scatter gather information */
6423        if (iocommand->buf_size > 0) {
6424                temp64 = dma_map_single(&h->pdev->dev, buff,
6425                        iocommand->buf_size, DMA_BIDIRECTIONAL);
6426                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6427                        c->SG[0].Addr = cpu_to_le64(0);
6428                        c->SG[0].Len = cpu_to_le32(0);
6429                        rc = -ENOMEM;
6430                        goto out;
6431                }
6432                c->SG[0].Addr = cpu_to_le64(temp64);
6433                c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6434                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6435        }
6436        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6437                                        NO_TIMEOUT);
6438        if (iocommand->buf_size > 0)
6439                hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6440        check_ioctl_unit_attention(h, c);
6441        if (rc) {
6442                rc = -EIO;
6443                goto out;
6444        }
6445
6446        /* Copy the error information out */
6447        memcpy(&iocommand->error_info, c->err_info,
6448                sizeof(iocommand->error_info));
6449        if ((iocommand->Request.Type.Direction & XFER_READ) &&
6450                iocommand->buf_size > 0) {
6451                /* Copy the data out of the buffer we created */
6452                if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6453                        rc = -EFAULT;
6454                        goto out;
6455                }
6456        }
6457out:
6458        cmd_free(h, c);
6459out_kfree:
6460        kfree(buff);
6461        return rc;
6462}
6463
6464static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6465                                   BIG_IOCTL_Command_struct *ioc)
6466{
6467        struct CommandList *c;
6468        unsigned char **buff = NULL;
6469        int *buff_size = NULL;
6470        u64 temp64;
6471        BYTE sg_used = 0;
6472        int status = 0;
6473        u32 left;
6474        u32 sz;
6475        BYTE __user *data_ptr;
6476
6477        if (!capable(CAP_SYS_RAWIO))
6478                return -EPERM;
6479
6480        if ((ioc->buf_size < 1) &&
6481            (ioc->Request.Type.Direction != XFER_NONE))
6482                return -EINVAL;
6483        /* Check kmalloc limits  using all SGs */
6484        if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6485                return -EINVAL;
6486        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6487                return -EINVAL;
6488        buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6489        if (!buff) {
6490                status = -ENOMEM;
6491                goto cleanup1;
6492        }
6493        buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6494        if (!buff_size) {
6495                status = -ENOMEM;
6496                goto cleanup1;
6497        }
6498        left = ioc->buf_size;
6499        data_ptr = ioc->buf;
6500        while (left) {
6501                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6502                buff_size[sg_used] = sz;
6503                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6504                if (buff[sg_used] == NULL) {
6505                        status = -ENOMEM;
6506                        goto cleanup1;
6507                }
6508                if (ioc->Request.Type.Direction & XFER_WRITE) {
6509                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6510                                status = -EFAULT;
6511                                goto cleanup1;
6512                        }
6513                } else
6514                        memset(buff[sg_used], 0, sz);
6515                left -= sz;
6516                data_ptr += sz;
6517                sg_used++;
6518        }
6519        c = cmd_alloc(h);
6520
6521        c->cmd_type = CMD_IOCTL_PEND;
6522        c->scsi_cmd = SCSI_CMD_BUSY;
6523        c->Header.ReplyQueue = 0;
6524        c->Header.SGList = (u8) sg_used;
6525        c->Header.SGTotal = cpu_to_le16(sg_used);
6526        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6527        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6528        if (ioc->buf_size > 0) {
6529                int i;
6530                for (i = 0; i < sg_used; i++) {
6531                        temp64 = dma_map_single(&h->pdev->dev, buff[i],
6532                                    buff_size[i], DMA_BIDIRECTIONAL);
6533                        if (dma_mapping_error(&h->pdev->dev,
6534                                                        (dma_addr_t) temp64)) {
6535                                c->SG[i].Addr = cpu_to_le64(0);
6536                                c->SG[i].Len = cpu_to_le32(0);
6537                                hpsa_pci_unmap(h->pdev, c, i,
6538                                        DMA_BIDIRECTIONAL);
6539                                status = -ENOMEM;
6540                                goto cleanup0;
6541                        }
6542                        c->SG[i].Addr = cpu_to_le64(temp64);
6543                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6544                        c->SG[i].Ext = cpu_to_le32(0);
6545                }
6546                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6547        }
6548        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6549                                                NO_TIMEOUT);
6550        if (sg_used)
6551                hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6552        check_ioctl_unit_attention(h, c);
6553        if (status) {
6554                status = -EIO;
6555                goto cleanup0;
6556        }
6557
6558        /* Copy the error information out */
6559        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6560        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6561                int i;
6562
6563                /* Copy the data out of the buffer we created */
6564                BYTE __user *ptr = ioc->buf;
6565                for (i = 0; i < sg_used; i++) {
6566                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6567                                status = -EFAULT;
6568                                goto cleanup0;
6569                        }
6570                        ptr += buff_size[i];
6571                }
6572        }
6573        status = 0;
6574cleanup0:
6575        cmd_free(h, c);
6576cleanup1:
6577        if (buff) {
6578                int i;
6579
6580                for (i = 0; i < sg_used; i++)
6581                        kfree(buff[i]);
6582                kfree(buff);
6583        }
6584        kfree(buff_size);
6585        return status;
6586}
6587
6588static void check_ioctl_unit_attention(struct ctlr_info *h,
6589        struct CommandList *c)
6590{
6591        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6592                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6593                (void) check_for_unit_attention(h, c);
6594}
6595
6596/*
6597 * ioctl
6598 */
6599static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6600                      void __user *argp)
6601{
6602        struct ctlr_info *h = sdev_to_hba(dev);
6603        int rc;
6604
6605        switch (cmd) {
6606        case CCISS_DEREGDISK:
6607        case CCISS_REGNEWDISK:
6608        case CCISS_REGNEWD:
6609                hpsa_scan_start(h->scsi_host);
6610                return 0;
6611        case CCISS_GETPCIINFO:
6612                return hpsa_getpciinfo_ioctl(h, argp);
6613        case CCISS_GETDRIVVER:
6614                return hpsa_getdrivver_ioctl(h, argp);
6615        case CCISS_PASSTHRU: {
6616                IOCTL_Command_struct iocommand;
6617
6618                if (!argp)
6619                        return -EINVAL;
6620                if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6621                        return -EFAULT;
6622                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6623                        return -EAGAIN;
6624                rc = hpsa_passthru_ioctl(h, &iocommand);
6625                atomic_inc(&h->passthru_cmds_avail);
6626                if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6627                        rc = -EFAULT;
6628                return rc;
6629        }
6630        case CCISS_BIG_PASSTHRU: {
6631                BIG_IOCTL_Command_struct ioc;
6632                if (!argp)
6633                        return -EINVAL;
6634                if (copy_from_user(&ioc, argp, sizeof(ioc)))
6635                        return -EFAULT;
6636                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6637                        return -EAGAIN;
6638                rc = hpsa_big_passthru_ioctl(h, &ioc);
6639                atomic_inc(&h->passthru_cmds_avail);
6640                if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6641                        rc = -EFAULT;
6642                return rc;
6643        }
6644        default:
6645                return -ENOTTY;
6646        }
6647}
6648
6649static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6650{
6651        struct CommandList *c;
6652
6653        c = cmd_alloc(h);
6654
6655        /* fill_cmd can't fail here, no data buffer to map */
6656        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6657                RAID_CTLR_LUNID, TYPE_MSG);
6658        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6659        c->waiting = NULL;
6660        enqueue_cmd_and_start_io(h, c);
6661        /* Don't wait for completion, the reset won't complete.  Don't free
6662         * the command either.  This is the last command we will send before
6663         * re-initializing everything, so it doesn't matter and won't leak.
6664         */
6665        return;
6666}
6667
6668static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6669        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6670        int cmd_type)
6671{
6672        enum dma_data_direction dir = DMA_NONE;
6673
6674        c->cmd_type = CMD_IOCTL_PEND;
6675        c->scsi_cmd = SCSI_CMD_BUSY;
6676        c->Header.ReplyQueue = 0;
6677        if (buff != NULL && size > 0) {
6678                c->Header.SGList = 1;
6679                c->Header.SGTotal = cpu_to_le16(1);
6680        } else {
6681                c->Header.SGList = 0;
6682                c->Header.SGTotal = cpu_to_le16(0);
6683        }
6684        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6685
6686        if (cmd_type == TYPE_CMD) {
6687                switch (cmd) {
6688                case HPSA_INQUIRY:
6689                        /* are we trying to read a vital product page */
6690                        if (page_code & VPD_PAGE) {
6691                                c->Request.CDB[1] = 0x01;
6692                                c->Request.CDB[2] = (page_code & 0xff);
6693                        }
6694                        c->Request.CDBLen = 6;
6695                        c->Request.type_attr_dir =
6696                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697                        c->Request.Timeout = 0;
6698                        c->Request.CDB[0] = HPSA_INQUIRY;
6699                        c->Request.CDB[4] = size & 0xFF;
6700                        break;
6701                case RECEIVE_DIAGNOSTIC:
6702                        c->Request.CDBLen = 6;
6703                        c->Request.type_attr_dir =
6704                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705                        c->Request.Timeout = 0;
6706                        c->Request.CDB[0] = cmd;
6707                        c->Request.CDB[1] = 1;
6708                        c->Request.CDB[2] = 1;
6709                        c->Request.CDB[3] = (size >> 8) & 0xFF;
6710                        c->Request.CDB[4] = size & 0xFF;
6711                        break;
6712                case HPSA_REPORT_LOG:
6713                case HPSA_REPORT_PHYS:
6714                        /* Talking to controller so It's a physical command
6715                           mode = 00 target = 0.  Nothing to write.
6716                         */
6717                        c->Request.CDBLen = 12;
6718                        c->Request.type_attr_dir =
6719                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6720                        c->Request.Timeout = 0;
6721                        c->Request.CDB[0] = cmd;
6722                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6723                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6724                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6725                        c->Request.CDB[9] = size & 0xFF;
6726                        break;
6727                case BMIC_SENSE_DIAG_OPTIONS:
6728                        c->Request.CDBLen = 16;
6729                        c->Request.type_attr_dir =
6730                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731                        c->Request.Timeout = 0;
6732                        /* Spec says this should be BMIC_WRITE */
6733                        c->Request.CDB[0] = BMIC_READ;
6734                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6735                        break;
6736                case BMIC_SET_DIAG_OPTIONS:
6737                        c->Request.CDBLen = 16;
6738                        c->Request.type_attr_dir =
6739                                        TYPE_ATTR_DIR(cmd_type,
6740                                                ATTR_SIMPLE, XFER_WRITE);
6741                        c->Request.Timeout = 0;
6742                        c->Request.CDB[0] = BMIC_WRITE;
6743                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6744                        break;
6745                case HPSA_CACHE_FLUSH:
6746                        c->Request.CDBLen = 12;
6747                        c->Request.type_attr_dir =
6748                                        TYPE_ATTR_DIR(cmd_type,
6749                                                ATTR_SIMPLE, XFER_WRITE);
6750                        c->Request.Timeout = 0;
6751                        c->Request.CDB[0] = BMIC_WRITE;
6752                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6753                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6754                        c->Request.CDB[8] = size & 0xFF;
6755                        break;
6756                case TEST_UNIT_READY:
6757                        c->Request.CDBLen = 6;
6758                        c->Request.type_attr_dir =
6759                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760                        c->Request.Timeout = 0;
6761                        break;
6762                case HPSA_GET_RAID_MAP:
6763                        c->Request.CDBLen = 12;
6764                        c->Request.type_attr_dir =
6765                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766                        c->Request.Timeout = 0;
6767                        c->Request.CDB[0] = HPSA_CISS_READ;
6768                        c->Request.CDB[1] = cmd;
6769                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6770                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6771                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6772                        c->Request.CDB[9] = size & 0xFF;
6773                        break;
6774                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6775                        c->Request.CDBLen = 10;
6776                        c->Request.type_attr_dir =
6777                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6778                        c->Request.Timeout = 0;
6779                        c->Request.CDB[0] = BMIC_READ;
6780                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6781                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6782                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6783                        break;
6784                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6785                        c->Request.CDBLen = 10;
6786                        c->Request.type_attr_dir =
6787                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788                        c->Request.Timeout = 0;
6789                        c->Request.CDB[0] = BMIC_READ;
6790                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6791                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6792                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6793                        break;
6794                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6795                        c->Request.CDBLen = 10;
6796                        c->Request.type_attr_dir =
6797                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798                        c->Request.Timeout = 0;
6799                        c->Request.CDB[0] = BMIC_READ;
6800                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6801                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6802                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6803                        break;
6804                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6805                        c->Request.CDBLen = 10;
6806                        c->Request.type_attr_dir =
6807                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808                        c->Request.Timeout = 0;
6809                        c->Request.CDB[0] = BMIC_READ;
6810                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6811                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6812                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6813                        break;
6814                case BMIC_IDENTIFY_CONTROLLER:
6815                        c->Request.CDBLen = 10;
6816                        c->Request.type_attr_dir =
6817                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818                        c->Request.Timeout = 0;
6819                        c->Request.CDB[0] = BMIC_READ;
6820                        c->Request.CDB[1] = 0;
6821                        c->Request.CDB[2] = 0;
6822                        c->Request.CDB[3] = 0;
6823                        c->Request.CDB[4] = 0;
6824                        c->Request.CDB[5] = 0;
6825                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6826                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6827                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6828                        c->Request.CDB[9] = 0;
6829                        break;
6830                default:
6831                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6832                        BUG();
6833                }
6834        } else if (cmd_type == TYPE_MSG) {
6835                switch (cmd) {
6836
6837                case  HPSA_PHYS_TARGET_RESET:
6838                        c->Request.CDBLen = 16;
6839                        c->Request.type_attr_dir =
6840                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6841                        c->Request.Timeout = 0; /* Don't time out */
6842                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6843                        c->Request.CDB[0] = HPSA_RESET;
6844                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6845                        /* Physical target reset needs no control bytes 4-7*/
6846                        c->Request.CDB[4] = 0x00;
6847                        c->Request.CDB[5] = 0x00;
6848                        c->Request.CDB[6] = 0x00;
6849                        c->Request.CDB[7] = 0x00;
6850                        break;
6851                case  HPSA_DEVICE_RESET_MSG:
6852                        c->Request.CDBLen = 16;
6853                        c->Request.type_attr_dir =
6854                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6855                        c->Request.Timeout = 0; /* Don't time out */
6856                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6857                        c->Request.CDB[0] =  cmd;
6858                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6859                        /* If bytes 4-7 are zero, it means reset the */
6860                        /* LunID device */
6861                        c->Request.CDB[4] = 0x00;
6862                        c->Request.CDB[5] = 0x00;
6863                        c->Request.CDB[6] = 0x00;
6864                        c->Request.CDB[7] = 0x00;
6865                        break;
6866                default:
6867                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6868                                cmd);
6869                        BUG();
6870                }
6871        } else {
6872                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6873                BUG();
6874        }
6875
6876        switch (GET_DIR(c->Request.type_attr_dir)) {
6877        case XFER_READ:
6878                dir = DMA_FROM_DEVICE;
6879                break;
6880        case XFER_WRITE:
6881                dir = DMA_TO_DEVICE;
6882                break;
6883        case XFER_NONE:
6884                dir = DMA_NONE;
6885                break;
6886        default:
6887                dir = DMA_BIDIRECTIONAL;
6888        }
6889        if (hpsa_map_one(h->pdev, c, buff, size, dir))
6890                return -1;
6891        return 0;
6892}
6893
6894/*
6895 * Map (physical) PCI mem into (virtual) kernel space
6896 */
6897static void __iomem *remap_pci_mem(ulong base, ulong size)
6898{
6899        ulong page_base = ((ulong) base) & PAGE_MASK;
6900        ulong page_offs = ((ulong) base) - page_base;
6901        void __iomem *page_remapped = ioremap(page_base,
6902                page_offs + size);
6903
6904        return page_remapped ? (page_remapped + page_offs) : NULL;
6905}
6906
6907static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6908{
6909        return h->access.command_completed(h, q);
6910}
6911
6912static inline bool interrupt_pending(struct ctlr_info *h)
6913{
6914        return h->access.intr_pending(h);
6915}
6916
6917static inline long interrupt_not_for_us(struct ctlr_info *h)
6918{
6919        return (h->access.intr_pending(h) == 0) ||
6920                (h->interrupts_enabled == 0);
6921}
6922
6923static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6924        u32 raw_tag)
6925{
6926        if (unlikely(tag_index >= h->nr_cmds)) {
6927                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6928                return 1;
6929        }
6930        return 0;
6931}
6932
6933static inline void finish_cmd(struct CommandList *c)
6934{
6935        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6936        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6937                        || c->cmd_type == CMD_IOACCEL2))
6938                complete_scsi_command(c);
6939        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6940                complete(c->waiting);
6941}
6942
6943/* process completion of an indexed ("direct lookup") command */
6944static inline void process_indexed_cmd(struct ctlr_info *h,
6945        u32 raw_tag)
6946{
6947        u32 tag_index;
6948        struct CommandList *c;
6949
6950        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6951        if (!bad_tag(h, tag_index, raw_tag)) {
6952                c = h->cmd_pool + tag_index;
6953                finish_cmd(c);
6954        }
6955}
6956
6957/* Some controllers, like p400, will give us one interrupt
6958 * after a soft reset, even if we turned interrupts off.
6959 * Only need to check for this in the hpsa_xxx_discard_completions
6960 * functions.
6961 */
6962static int ignore_bogus_interrupt(struct ctlr_info *h)
6963{
6964        if (likely(!reset_devices))
6965                return 0;
6966
6967        if (likely(h->interrupts_enabled))
6968                return 0;
6969
6970        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6971                "(known firmware bug.)  Ignoring.\n");
6972
6973        return 1;
6974}
6975
6976/*
6977 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6978 * Relies on (h-q[x] == x) being true for x such that
6979 * 0 <= x < MAX_REPLY_QUEUES.
6980 */
6981static struct ctlr_info *queue_to_hba(u8 *queue)
6982{
6983        return container_of((queue - *queue), struct ctlr_info, q[0]);
6984}
6985
6986static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6987{
6988        struct ctlr_info *h = queue_to_hba(queue);
6989        u8 q = *(u8 *) queue;
6990        u32 raw_tag;
6991
6992        if (ignore_bogus_interrupt(h))
6993                return IRQ_NONE;
6994
6995        if (interrupt_not_for_us(h))
6996                return IRQ_NONE;
6997        h->last_intr_timestamp = get_jiffies_64();
6998        while (interrupt_pending(h)) {
6999                raw_tag = get_next_completion(h, q);
7000                while (raw_tag != FIFO_EMPTY)
7001                        raw_tag = next_command(h, q);
7002        }
7003        return IRQ_HANDLED;
7004}
7005
7006static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7007{
7008        struct ctlr_info *h = queue_to_hba(queue);
7009        u32 raw_tag;
7010        u8 q = *(u8 *) queue;
7011
7012        if (ignore_bogus_interrupt(h))
7013                return IRQ_NONE;
7014
7015        h->last_intr_timestamp = get_jiffies_64();
7016        raw_tag = get_next_completion(h, q);
7017        while (raw_tag != FIFO_EMPTY)
7018                raw_tag = next_command(h, q);
7019        return IRQ_HANDLED;
7020}
7021
7022static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7023{
7024        struct ctlr_info *h = queue_to_hba((u8 *) queue);
7025        u32 raw_tag;
7026        u8 q = *(u8 *) queue;
7027
7028        if (interrupt_not_for_us(h))
7029                return IRQ_NONE;
7030        h->last_intr_timestamp = get_jiffies_64();
7031        while (interrupt_pending(h)) {
7032                raw_tag = get_next_completion(h, q);
7033                while (raw_tag != FIFO_EMPTY) {
7034                        process_indexed_cmd(h, raw_tag);
7035                        raw_tag = next_command(h, q);
7036                }
7037        }
7038        return IRQ_HANDLED;
7039}
7040
7041static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7042{
7043        struct ctlr_info *h = queue_to_hba(queue);
7044        u32 raw_tag;
7045        u8 q = *(u8 *) queue;
7046
7047        h->last_intr_timestamp = get_jiffies_64();
7048        raw_tag = get_next_completion(h, q);
7049        while (raw_tag != FIFO_EMPTY) {
7050                process_indexed_cmd(h, raw_tag);
7051                raw_tag = next_command(h, q);
7052        }
7053        return IRQ_HANDLED;
7054}
7055
7056/* Send a message CDB to the firmware. Careful, this only works
7057 * in simple mode, not performant mode due to the tag lookup.
7058 * We only ever use this immediately after a controller reset.
7059 */
7060static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7061                        unsigned char type)
7062{
7063        struct Command {
7064                struct CommandListHeader CommandHeader;
7065                struct RequestBlock Request;
7066                struct ErrDescriptor ErrorDescriptor;
7067        };
7068        struct Command *cmd;
7069        static const size_t cmd_sz = sizeof(*cmd) +
7070                                        sizeof(cmd->ErrorDescriptor);
7071        dma_addr_t paddr64;
7072        __le32 paddr32;
7073        u32 tag;
7074        void __iomem *vaddr;
7075        int i, err;
7076
7077        vaddr = pci_ioremap_bar(pdev, 0);
7078        if (vaddr == NULL)
7079                return -ENOMEM;
7080
7081        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7082         * CCISS commands, so they must be allocated from the lower 4GiB of
7083         * memory.
7084         */
7085        err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7086        if (err) {
7087                iounmap(vaddr);
7088                return err;
7089        }
7090
7091        cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7092        if (cmd == NULL) {
7093                iounmap(vaddr);
7094                return -ENOMEM;
7095        }
7096
7097        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7098         * although there's no guarantee, we assume that the address is at
7099         * least 4-byte aligned (most likely, it's page-aligned).
7100         */
7101        paddr32 = cpu_to_le32(paddr64);
7102
7103        cmd->CommandHeader.ReplyQueue = 0;
7104        cmd->CommandHeader.SGList = 0;
7105        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7106        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7107        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7108
7109        cmd->Request.CDBLen = 16;
7110        cmd->Request.type_attr_dir =
7111                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7112        cmd->Request.Timeout = 0; /* Don't time out */
7113        cmd->Request.CDB[0] = opcode;
7114        cmd->Request.CDB[1] = type;
7115        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7116        cmd->ErrorDescriptor.Addr =
7117                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7118        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7119
7120        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7121
7122        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7123                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7124                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7125                        break;
7126                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7127        }
7128
7129        iounmap(vaddr);
7130
7131        /* we leak the DMA buffer here ... no choice since the controller could
7132         *  still complete the command.
7133         */
7134        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7135                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7136                        opcode, type);
7137                return -ETIMEDOUT;
7138        }
7139
7140        dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7141
7142        if (tag & HPSA_ERROR_BIT) {
7143                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7144                        opcode, type);
7145                return -EIO;
7146        }
7147
7148        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7149                opcode, type);
7150        return 0;
7151}
7152
7153#define hpsa_noop(p) hpsa_message(p, 3, 0)
7154
7155static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7156        void __iomem *vaddr, u32 use_doorbell)
7157{
7158
7159        if (use_doorbell) {
7160                /* For everything after the P600, the PCI power state method
7161                 * of resetting the controller doesn't work, so we have this
7162                 * other way using the doorbell register.
7163                 */
7164                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7165                writel(use_doorbell, vaddr + SA5_DOORBELL);
7166
7167                /* PMC hardware guys tell us we need a 10 second delay after
7168                 * doorbell reset and before any attempt to talk to the board
7169                 * at all to ensure that this actually works and doesn't fall
7170                 * over in some weird corner cases.
7171                 */
7172                msleep(10000);
7173        } else { /* Try to do it the PCI power state way */
7174
7175                /* Quoting from the Open CISS Specification: "The Power
7176                 * Management Control/Status Register (CSR) controls the power
7177                 * state of the device.  The normal operating state is D0,
7178                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7179                 * the controller, place the interface device in D3 then to D0,
7180                 * this causes a secondary PCI reset which will reset the
7181                 * controller." */
7182
7183                int rc = 0;
7184
7185                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7186
7187                /* enter the D3hot power management state */
7188                rc = pci_set_power_state(pdev, PCI_D3hot);
7189                if (rc)
7190                        return rc;
7191
7192                msleep(500);
7193
7194                /* enter the D0 power management state */
7195                rc = pci_set_power_state(pdev, PCI_D0);
7196                if (rc)
7197                        return rc;
7198
7199                /*
7200                 * The P600 requires a small delay when changing states.
7201                 * Otherwise we may think the board did not reset and we bail.
7202                 * This for kdump only and is particular to the P600.
7203                 */
7204                msleep(500);
7205        }
7206        return 0;
7207}
7208
7209static void init_driver_version(char *driver_version, int len)
7210{
7211        memset(driver_version, 0, len);
7212        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7213}
7214
7215static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7216{
7217        char *driver_version;
7218        int i, size = sizeof(cfgtable->driver_version);
7219
7220        driver_version = kmalloc(size, GFP_KERNEL);
7221        if (!driver_version)
7222                return -ENOMEM;
7223
7224        init_driver_version(driver_version, size);
7225        for (i = 0; i < size; i++)
7226                writeb(driver_version[i], &cfgtable->driver_version[i]);
7227        kfree(driver_version);
7228        return 0;
7229}
7230
7231static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7232                                          unsigned char *driver_ver)
7233{
7234        int i;
7235
7236        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7237                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7238}
7239
7240static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7241{
7242
7243        char *driver_ver, *old_driver_ver;
7244        int rc, size = sizeof(cfgtable->driver_version);
7245
7246        old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7247        if (!old_driver_ver)
7248                return -ENOMEM;
7249        driver_ver = old_driver_ver + size;
7250
7251        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7252         * should have been changed, otherwise we know the reset failed.
7253         */
7254        init_driver_version(old_driver_ver, size);
7255        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7256        rc = !memcmp(driver_ver, old_driver_ver, size);
7257        kfree(old_driver_ver);
7258        return rc;
7259}
7260/* This does a hard reset of the controller using PCI power management
7261 * states or the using the doorbell register.
7262 */
7263static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7264{
7265        u64 cfg_offset;
7266        u32 cfg_base_addr;
7267        u64 cfg_base_addr_index;
7268        void __iomem *vaddr;
7269        unsigned long paddr;
7270        u32 misc_fw_support;
7271        int rc;
7272        struct CfgTable __iomem *cfgtable;
7273        u32 use_doorbell;
7274        u16 command_register;
7275
7276        /* For controllers as old as the P600, this is very nearly
7277         * the same thing as
7278         *
7279         * pci_save_state(pci_dev);
7280         * pci_set_power_state(pci_dev, PCI_D3hot);
7281         * pci_set_power_state(pci_dev, PCI_D0);
7282         * pci_restore_state(pci_dev);
7283         *
7284         * For controllers newer than the P600, the pci power state
7285         * method of resetting doesn't work so we have another way
7286         * using the doorbell register.
7287         */
7288
7289        if (!ctlr_is_resettable(board_id)) {
7290                dev_warn(&pdev->dev, "Controller not resettable\n");
7291                return -ENODEV;
7292        }
7293
7294        /* if controller is soft- but not hard resettable... */
7295        if (!ctlr_is_hard_resettable(board_id))
7296                return -ENOTSUPP; /* try soft reset later. */
7297
7298        /* Save the PCI command register */
7299        pci_read_config_word(pdev, 4, &command_register);
7300        pci_save_state(pdev);
7301
7302        /* find the first memory BAR, so we can find the cfg table */
7303        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7304        if (rc)
7305                return rc;
7306        vaddr = remap_pci_mem(paddr, 0x250);
7307        if (!vaddr)
7308                return -ENOMEM;
7309
7310        /* find cfgtable in order to check if reset via doorbell is supported */
7311        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7312                                        &cfg_base_addr_index, &cfg_offset);
7313        if (rc)
7314                goto unmap_vaddr;
7315        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7316                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7317        if (!cfgtable) {
7318                rc = -ENOMEM;
7319                goto unmap_vaddr;
7320        }
7321        rc = write_driver_ver_to_cfgtable(cfgtable);
7322        if (rc)
7323                goto unmap_cfgtable;
7324
7325        /* If reset via doorbell register is supported, use that.
7326         * There are two such methods.  Favor the newest method.
7327         */
7328        misc_fw_support = readl(&cfgtable->misc_fw_support);
7329        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7330        if (use_doorbell) {
7331                use_doorbell = DOORBELL_CTLR_RESET2;
7332        } else {
7333                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7334                if (use_doorbell) {
7335                        dev_warn(&pdev->dev,
7336                                "Soft reset not supported. Firmware update is required.\n");
7337                        rc = -ENOTSUPP; /* try soft reset */
7338                        goto unmap_cfgtable;
7339                }
7340        }
7341
7342        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7343        if (rc)
7344                goto unmap_cfgtable;
7345
7346        pci_restore_state(pdev);
7347        pci_write_config_word(pdev, 4, command_register);
7348
7349        /* Some devices (notably the HP Smart Array 5i Controller)
7350           need a little pause here */
7351        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7352
7353        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7354        if (rc) {
7355                dev_warn(&pdev->dev,
7356                        "Failed waiting for board to become ready after hard reset\n");
7357                goto unmap_cfgtable;
7358        }
7359
7360        rc = controller_reset_failed(vaddr);
7361        if (rc < 0)
7362                goto unmap_cfgtable;
7363        if (rc) {
7364                dev_warn(&pdev->dev, "Unable to successfully reset "
7365                        "controller. Will try soft reset.\n");
7366                rc = -ENOTSUPP;
7367        } else {
7368                dev_info(&pdev->dev, "board ready after hard reset.\n");
7369        }
7370
7371unmap_cfgtable:
7372        iounmap(cfgtable);
7373
7374unmap_vaddr:
7375        iounmap(vaddr);
7376        return rc;
7377}
7378
7379/*
7380 *  We cannot read the structure directly, for portability we must use
7381 *   the io functions.
7382 *   This is for debug only.
7383 */
7384static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7385{
7386#ifdef HPSA_DEBUG
7387        int i;
7388        char temp_name[17];
7389
7390        dev_info(dev, "Controller Configuration information\n");
7391        dev_info(dev, "------------------------------------\n");
7392        for (i = 0; i < 4; i++)
7393                temp_name[i] = readb(&(tb->Signature[i]));
7394        temp_name[4] = '\0';
7395        dev_info(dev, "   Signature = %s\n", temp_name);
7396        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7397        dev_info(dev, "   Transport methods supported = 0x%x\n",
7398               readl(&(tb->TransportSupport)));
7399        dev_info(dev, "   Transport methods active = 0x%x\n",
7400               readl(&(tb->TransportActive)));
7401        dev_info(dev, "   Requested transport Method = 0x%x\n",
7402               readl(&(tb->HostWrite.TransportRequest)));
7403        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7404               readl(&(tb->HostWrite.CoalIntDelay)));
7405        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7406               readl(&(tb->HostWrite.CoalIntCount)));
7407        dev_info(dev, "   Max outstanding commands = %d\n",
7408               readl(&(tb->CmdsOutMax)));
7409        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7410        for (i = 0; i < 16; i++)
7411                temp_name[i] = readb(&(tb->ServerName[i]));
7412        temp_name[16] = '\0';
7413        dev_info(dev, "   Server Name = %s\n", temp_name);
7414        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7415                readl(&(tb->HeartBeat)));
7416#endif                          /* HPSA_DEBUG */
7417}
7418
7419static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7420{
7421        int i, offset, mem_type, bar_type;
7422
7423        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7424                return 0;
7425        offset = 0;
7426        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7427                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7428                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7429                        offset += 4;
7430                else {
7431                        mem_type = pci_resource_flags(pdev, i) &
7432                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7433                        switch (mem_type) {
7434                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7435                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7436                                offset += 4;    /* 32 bit */
7437                                break;
7438                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7439                                offset += 8;
7440                                break;
7441                        default:        /* reserved in PCI 2.2 */
7442                                dev_warn(&pdev->dev,
7443                                       "base address is invalid\n");
7444                                return -1;
7445                                break;
7446                        }
7447                }
7448                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7449                        return i + 1;
7450        }
7451        return -1;
7452}
7453
7454static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7455{
7456        pci_free_irq_vectors(h->pdev);
7457        h->msix_vectors = 0;
7458}
7459
7460static void hpsa_setup_reply_map(struct ctlr_info *h)
7461{
7462        const struct cpumask *mask;
7463        unsigned int queue, cpu;
7464
7465        for (queue = 0; queue < h->msix_vectors; queue++) {
7466                mask = pci_irq_get_affinity(h->pdev, queue);
7467                if (!mask)
7468                        goto fallback;
7469
7470                for_each_cpu(cpu, mask)
7471                        h->reply_map[cpu] = queue;
7472        }
7473        return;
7474
7475fallback:
7476        for_each_possible_cpu(cpu)
7477                h->reply_map[cpu] = 0;
7478}
7479
7480/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7481 * controllers that are capable. If not, we use legacy INTx mode.
7482 */
7483static int hpsa_interrupt_mode(struct ctlr_info *h)
7484{
7485        unsigned int flags = PCI_IRQ_LEGACY;
7486        int ret;
7487
7488        /* Some boards advertise MSI but don't really support it */
7489        switch (h->board_id) {
7490        case 0x40700E11:
7491        case 0x40800E11:
7492        case 0x40820E11:
7493        case 0x40830E11:
7494                break;
7495        default:
7496                ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7497                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7498                if (ret > 0) {
7499                        h->msix_vectors = ret;
7500                        return 0;
7501                }
7502
7503                flags |= PCI_IRQ_MSI;
7504                break;
7505        }
7506
7507        ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7508        if (ret < 0)
7509                return ret;
7510        return 0;
7511}
7512
7513static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7514                                bool *legacy_board)
7515{
7516        int i;
7517        u32 subsystem_vendor_id, subsystem_device_id;
7518
7519        subsystem_vendor_id = pdev->subsystem_vendor;
7520        subsystem_device_id = pdev->subsystem_device;
7521        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7522                    subsystem_vendor_id;
7523
7524        if (legacy_board)
7525                *legacy_board = false;
7526        for (i = 0; i < ARRAY_SIZE(products); i++)
7527                if (*board_id == products[i].board_id) {
7528                        if (products[i].access != &SA5A_access &&
7529                            products[i].access != &SA5B_access)
7530                                return i;
7531                        dev_warn(&pdev->dev,
7532                                 "legacy board ID: 0x%08x\n",
7533                                 *board_id);
7534                        if (legacy_board)
7535                            *legacy_board = true;
7536                        return i;
7537                }
7538
7539        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7540        if (legacy_board)
7541                *legacy_board = true;
7542        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7543}
7544
7545static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7546                                    unsigned long *memory_bar)
7547{
7548        int i;
7549
7550        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7551                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7552                        /* addressing mode bits already removed */
7553                        *memory_bar = pci_resource_start(pdev, i);
7554                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7555                                *memory_bar);
7556                        return 0;
7557                }
7558        dev_warn(&pdev->dev, "no memory BAR found\n");
7559        return -ENODEV;
7560}
7561
7562static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7563                                     int wait_for_ready)
7564{
7565        int i, iterations;
7566        u32 scratchpad;
7567        if (wait_for_ready)
7568                iterations = HPSA_BOARD_READY_ITERATIONS;
7569        else
7570                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7571
7572        for (i = 0; i < iterations; i++) {
7573                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7574                if (wait_for_ready) {
7575                        if (scratchpad == HPSA_FIRMWARE_READY)
7576                                return 0;
7577                } else {
7578                        if (scratchpad != HPSA_FIRMWARE_READY)
7579                                return 0;
7580                }
7581                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7582        }
7583        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7584        return -ENODEV;
7585}
7586
7587static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7588                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7589                               u64 *cfg_offset)
7590{
7591        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7592        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7593        *cfg_base_addr &= (u32) 0x0000ffff;
7594        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7595        if (*cfg_base_addr_index == -1) {
7596                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7597                return -ENODEV;
7598        }
7599        return 0;
7600}
7601
7602static void hpsa_free_cfgtables(struct ctlr_info *h)
7603{
7604        if (h->transtable) {
7605                iounmap(h->transtable);
7606                h->transtable = NULL;
7607        }
7608        if (h->cfgtable) {
7609                iounmap(h->cfgtable);
7610                h->cfgtable = NULL;
7611        }
7612}
7613
7614/* Find and map CISS config table and transfer table
7615+ * several items must be unmapped (freed) later
7616+ * */
7617static int hpsa_find_cfgtables(struct ctlr_info *h)
7618{
7619        u64 cfg_offset;
7620        u32 cfg_base_addr;
7621        u64 cfg_base_addr_index;
7622        u32 trans_offset;
7623        int rc;
7624
7625        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7626                &cfg_base_addr_index, &cfg_offset);
7627        if (rc)
7628                return rc;
7629        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7630                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7631        if (!h->cfgtable) {
7632                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7633                return -ENOMEM;
7634        }
7635        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7636        if (rc)
7637                return rc;
7638        /* Find performant mode table. */
7639        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7640        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7641                                cfg_base_addr_index)+cfg_offset+trans_offset,
7642                                sizeof(*h->transtable));
7643        if (!h->transtable) {
7644                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7645                hpsa_free_cfgtables(h);
7646                return -ENOMEM;
7647        }
7648        return 0;
7649}
7650
7651static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7652{
7653#define MIN_MAX_COMMANDS 16
7654        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7655
7656        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7657
7658        /* Limit commands in memory limited kdump scenario. */
7659        if (reset_devices && h->max_commands > 32)
7660                h->max_commands = 32;
7661
7662        if (h->max_commands < MIN_MAX_COMMANDS) {
7663                dev_warn(&h->pdev->dev,
7664                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7665                        h->max_commands,
7666                        MIN_MAX_COMMANDS);
7667                h->max_commands = MIN_MAX_COMMANDS;
7668        }
7669}
7670
7671/* If the controller reports that the total max sg entries is greater than 512,
7672 * then we know that chained SG blocks work.  (Original smart arrays did not
7673 * support chained SG blocks and would return zero for max sg entries.)
7674 */
7675static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7676{
7677        return h->maxsgentries > 512;
7678}
7679
7680/* Interrogate the hardware for some limits:
7681 * max commands, max SG elements without chaining, and with chaining,
7682 * SG chain block size, etc.
7683 */
7684static void hpsa_find_board_params(struct ctlr_info *h)
7685{
7686        hpsa_get_max_perf_mode_cmds(h);
7687        h->nr_cmds = h->max_commands;
7688        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7689        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7690        if (hpsa_supports_chained_sg_blocks(h)) {
7691                /* Limit in-command s/g elements to 32 save dma'able memory. */
7692                h->max_cmd_sg_entries = 32;
7693                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7694                h->maxsgentries--; /* save one for chain pointer */
7695        } else {
7696                /*
7697                 * Original smart arrays supported at most 31 s/g entries
7698                 * embedded inline in the command (trying to use more
7699                 * would lock up the controller)
7700                 */
7701                h->max_cmd_sg_entries = 31;
7702                h->maxsgentries = 31; /* default to traditional values */
7703                h->chainsize = 0;
7704        }
7705
7706        /* Find out what task management functions are supported and cache */
7707        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7708        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7709                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7710        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7711                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7712        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7713                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7714}
7715
7716static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7717{
7718        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7719                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7720                return false;
7721        }
7722        return true;
7723}
7724
7725static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7726{
7727        u32 driver_support;
7728
7729        driver_support = readl(&(h->cfgtable->driver_support));
7730        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7731#ifdef CONFIG_X86
7732        driver_support |= ENABLE_SCSI_PREFETCH;
7733#endif
7734        driver_support |= ENABLE_UNIT_ATTN;
7735        writel(driver_support, &(h->cfgtable->driver_support));
7736}
7737
7738/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7739 * in a prefetch beyond physical memory.
7740 */
7741static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7742{
7743        u32 dma_prefetch;
7744
7745        if (h->board_id != 0x3225103C)
7746                return;
7747        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7748        dma_prefetch |= 0x8000;
7749        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7750}
7751
7752static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7753{
7754        int i;
7755        u32 doorbell_value;
7756        unsigned long flags;
7757        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7758        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7759                spin_lock_irqsave(&h->lock, flags);
7760                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7761                spin_unlock_irqrestore(&h->lock, flags);
7762                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7763                        goto done;
7764                /* delay and try again */
7765                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7766        }
7767        return -ENODEV;
7768done:
7769        return 0;
7770}
7771
7772static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7773{
7774        int i;
7775        u32 doorbell_value;
7776        unsigned long flags;
7777
7778        /* under certain very rare conditions, this can take awhile.
7779         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7780         * as we enter this code.)
7781         */
7782        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7783                if (h->remove_in_progress)
7784                        goto done;
7785                spin_lock_irqsave(&h->lock, flags);
7786                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7787                spin_unlock_irqrestore(&h->lock, flags);
7788                if (!(doorbell_value & CFGTBL_ChangeReq))
7789                        goto done;
7790                /* delay and try again */
7791                msleep(MODE_CHANGE_WAIT_INTERVAL);
7792        }
7793        return -ENODEV;
7794done:
7795        return 0;
7796}
7797
7798/* return -ENODEV or other reason on error, 0 on success */
7799static int hpsa_enter_simple_mode(struct ctlr_info *h)
7800{
7801        u32 trans_support;
7802
7803        trans_support = readl(&(h->cfgtable->TransportSupport));
7804        if (!(trans_support & SIMPLE_MODE))
7805                return -ENOTSUPP;
7806
7807        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7808
7809        /* Update the field, and then ring the doorbell */
7810        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7811        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7812        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7813        if (hpsa_wait_for_mode_change_ack(h))
7814                goto error;
7815        print_cfg_table(&h->pdev->dev, h->cfgtable);
7816        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7817                goto error;
7818        h->transMethod = CFGTBL_Trans_Simple;
7819        return 0;
7820error:
7821        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7822        return -ENODEV;
7823}
7824
7825/* free items allocated or mapped by hpsa_pci_init */
7826static void hpsa_free_pci_init(struct ctlr_info *h)
7827{
7828        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7829        iounmap(h->vaddr);                      /* pci_init 3 */
7830        h->vaddr = NULL;
7831        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7832        /*
7833         * call pci_disable_device before pci_release_regions per
7834         * Documentation/driver-api/pci/pci.rst
7835         */
7836        pci_disable_device(h->pdev);            /* pci_init 1 */
7837        pci_release_regions(h->pdev);           /* pci_init 2 */
7838}
7839
7840/* several items must be freed later */
7841static int hpsa_pci_init(struct ctlr_info *h)
7842{
7843        int prod_index, err;
7844        bool legacy_board;
7845
7846        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7847        if (prod_index < 0)
7848                return prod_index;
7849        h->product_name = products[prod_index].product_name;
7850        h->access = *(products[prod_index].access);
7851        h->legacy_board = legacy_board;
7852        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7853                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7854
7855        err = pci_enable_device(h->pdev);
7856        if (err) {
7857                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7858                pci_disable_device(h->pdev);
7859                return err;
7860        }
7861
7862        err = pci_request_regions(h->pdev, HPSA);
7863        if (err) {
7864                dev_err(&h->pdev->dev,
7865                        "failed to obtain PCI resources\n");
7866                pci_disable_device(h->pdev);
7867                return err;
7868        }
7869
7870        pci_set_master(h->pdev);
7871
7872        err = hpsa_interrupt_mode(h);
7873        if (err)
7874                goto clean1;
7875
7876        /* setup mapping between CPU and reply queue */
7877        hpsa_setup_reply_map(h);
7878
7879        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7880        if (err)
7881                goto clean2;    /* intmode+region, pci */
7882        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7883        if (!h->vaddr) {
7884                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7885                err = -ENOMEM;
7886                goto clean2;    /* intmode+region, pci */
7887        }
7888        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7889        if (err)
7890                goto clean3;    /* vaddr, intmode+region, pci */
7891        err = hpsa_find_cfgtables(h);
7892        if (err)
7893                goto clean3;    /* vaddr, intmode+region, pci */
7894        hpsa_find_board_params(h);
7895
7896        if (!hpsa_CISS_signature_present(h)) {
7897                err = -ENODEV;
7898                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7899        }
7900        hpsa_set_driver_support_bits(h);
7901        hpsa_p600_dma_prefetch_quirk(h);
7902        err = hpsa_enter_simple_mode(h);
7903        if (err)
7904                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7905        return 0;
7906
7907clean4: /* cfgtables, vaddr, intmode+region, pci */
7908        hpsa_free_cfgtables(h);
7909clean3: /* vaddr, intmode+region, pci */
7910        iounmap(h->vaddr);
7911        h->vaddr = NULL;
7912clean2: /* intmode+region, pci */
7913        hpsa_disable_interrupt_mode(h);
7914clean1:
7915        /*
7916         * call pci_disable_device before pci_release_regions per
7917         * Documentation/driver-api/pci/pci.rst
7918         */
7919        pci_disable_device(h->pdev);
7920        pci_release_regions(h->pdev);
7921        return err;
7922}
7923
7924static void hpsa_hba_inquiry(struct ctlr_info *h)
7925{
7926        int rc;
7927
7928#define HBA_INQUIRY_BYTE_COUNT 64
7929        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7930        if (!h->hba_inquiry_data)
7931                return;
7932        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7933                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7934        if (rc != 0) {
7935                kfree(h->hba_inquiry_data);
7936                h->hba_inquiry_data = NULL;
7937        }
7938}
7939
7940static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7941{
7942        int rc, i;
7943        void __iomem *vaddr;
7944
7945        if (!reset_devices)
7946                return 0;
7947
7948        /* kdump kernel is loading, we don't know in which state is
7949         * the pci interface. The dev->enable_cnt is equal zero
7950         * so we call enable+disable, wait a while and switch it on.
7951         */
7952        rc = pci_enable_device(pdev);
7953        if (rc) {
7954                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7955                return -ENODEV;
7956        }
7957        pci_disable_device(pdev);
7958        msleep(260);                    /* a randomly chosen number */
7959        rc = pci_enable_device(pdev);
7960        if (rc) {
7961                dev_warn(&pdev->dev, "failed to enable device.\n");
7962                return -ENODEV;
7963        }
7964
7965        pci_set_master(pdev);
7966
7967        vaddr = pci_ioremap_bar(pdev, 0);
7968        if (vaddr == NULL) {
7969                rc = -ENOMEM;
7970                goto out_disable;
7971        }
7972        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7973        iounmap(vaddr);
7974
7975        /* Reset the controller with a PCI power-cycle or via doorbell */
7976        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7977
7978        /* -ENOTSUPP here means we cannot reset the controller
7979         * but it's already (and still) up and running in
7980         * "performant mode".  Or, it might be 640x, which can't reset
7981         * due to concerns about shared bbwc between 6402/6404 pair.
7982         */
7983        if (rc)
7984                goto out_disable;
7985
7986        /* Now try to get the controller to respond to a no-op */
7987        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7988        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7989                if (hpsa_noop(pdev) == 0)
7990                        break;
7991                else
7992                        dev_warn(&pdev->dev, "no-op failed%s\n",
7993                                        (i < 11 ? "; re-trying" : ""));
7994        }
7995
7996out_disable:
7997
7998        pci_disable_device(pdev);
7999        return rc;
8000}
8001
8002static void hpsa_free_cmd_pool(struct ctlr_info *h)
8003{
8004        kfree(h->cmd_pool_bits);
8005        h->cmd_pool_bits = NULL;
8006        if (h->cmd_pool) {
8007                dma_free_coherent(&h->pdev->dev,
8008                                h->nr_cmds * sizeof(struct CommandList),
8009                                h->cmd_pool,
8010                                h->cmd_pool_dhandle);
8011                h->cmd_pool = NULL;
8012                h->cmd_pool_dhandle = 0;
8013        }
8014        if (h->errinfo_pool) {
8015                dma_free_coherent(&h->pdev->dev,
8016                                h->nr_cmds * sizeof(struct ErrorInfo),
8017                                h->errinfo_pool,
8018                                h->errinfo_pool_dhandle);
8019                h->errinfo_pool = NULL;
8020                h->errinfo_pool_dhandle = 0;
8021        }
8022}
8023
8024static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8025{
8026        h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8027                                   sizeof(unsigned long),
8028                                   GFP_KERNEL);
8029        h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8030                    h->nr_cmds * sizeof(*h->cmd_pool),
8031                    &h->cmd_pool_dhandle, GFP_KERNEL);
8032        h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8033                    h->nr_cmds * sizeof(*h->errinfo_pool),
8034                    &h->errinfo_pool_dhandle, GFP_KERNEL);
8035        if ((h->cmd_pool_bits == NULL)
8036            || (h->cmd_pool == NULL)
8037            || (h->errinfo_pool == NULL)) {
8038                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8039                goto clean_up;
8040        }
8041        hpsa_preinitialize_commands(h);
8042        return 0;
8043clean_up:
8044        hpsa_free_cmd_pool(h);
8045        return -ENOMEM;
8046}
8047
8048/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8049static void hpsa_free_irqs(struct ctlr_info *h)
8050{
8051        int i;
8052        int irq_vector = 0;
8053
8054        if (hpsa_simple_mode)
8055                irq_vector = h->intr_mode;
8056
8057        if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8058                /* Single reply queue, only one irq to free */
8059                free_irq(pci_irq_vector(h->pdev, irq_vector),
8060                                &h->q[h->intr_mode]);
8061                h->q[h->intr_mode] = 0;
8062                return;
8063        }
8064
8065        for (i = 0; i < h->msix_vectors; i++) {
8066                free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8067                h->q[i] = 0;
8068        }
8069        for (; i < MAX_REPLY_QUEUES; i++)
8070                h->q[i] = 0;
8071}
8072
8073/* returns 0 on success; cleans up and returns -Enn on error */
8074static int hpsa_request_irqs(struct ctlr_info *h,
8075        irqreturn_t (*msixhandler)(int, void *),
8076        irqreturn_t (*intxhandler)(int, void *))
8077{
8078        int rc, i;
8079        int irq_vector = 0;
8080
8081        if (hpsa_simple_mode)
8082                irq_vector = h->intr_mode;
8083
8084        /*
8085         * initialize h->q[x] = x so that interrupt handlers know which
8086         * queue to process.
8087         */
8088        for (i = 0; i < MAX_REPLY_QUEUES; i++)
8089                h->q[i] = (u8) i;
8090
8091        if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8092                /* If performant mode and MSI-X, use multiple reply queues */
8093                for (i = 0; i < h->msix_vectors; i++) {
8094                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8095                        rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8096                                        0, h->intrname[i],
8097                                        &h->q[i]);
8098                        if (rc) {
8099                                int j;
8100
8101                                dev_err(&h->pdev->dev,
8102                                        "failed to get irq %d for %s\n",
8103                                       pci_irq_vector(h->pdev, i), h->devname);
8104                                for (j = 0; j < i; j++) {
8105                                        free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8106                                        h->q[j] = 0;
8107                                }
8108                                for (; j < MAX_REPLY_QUEUES; j++)
8109                                        h->q[j] = 0;
8110                                return rc;
8111                        }
8112                }
8113        } else {
8114                /* Use single reply pool */
8115                if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8116                        sprintf(h->intrname[0], "%s-msi%s", h->devname,
8117                                h->msix_vectors ? "x" : "");
8118                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8119                                msixhandler, 0,
8120                                h->intrname[0],
8121                                &h->q[h->intr_mode]);
8122                } else {
8123                        sprintf(h->intrname[h->intr_mode],
8124                                "%s-intx", h->devname);
8125                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8126                                intxhandler, IRQF_SHARED,
8127                                h->intrname[0],
8128                                &h->q[h->intr_mode]);
8129                }
8130        }
8131        if (rc) {
8132                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8133                       pci_irq_vector(h->pdev, irq_vector), h->devname);
8134                hpsa_free_irqs(h);
8135                return -ENODEV;
8136        }
8137        return 0;
8138}
8139
8140static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8141{
8142        int rc;
8143        hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8144
8145        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8146        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8147        if (rc) {
8148                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8149                return rc;
8150        }
8151
8152        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8153        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8154        if (rc) {
8155                dev_warn(&h->pdev->dev, "Board failed to become ready "
8156                        "after soft reset.\n");
8157                return rc;
8158        }
8159
8160        return 0;
8161}
8162
8163static void hpsa_free_reply_queues(struct ctlr_info *h)
8164{
8165        int i;
8166
8167        for (i = 0; i < h->nreply_queues; i++) {
8168                if (!h->reply_queue[i].head)
8169                        continue;
8170                dma_free_coherent(&h->pdev->dev,
8171                                        h->reply_queue_size,
8172                                        h->reply_queue[i].head,
8173                                        h->reply_queue[i].busaddr);
8174                h->reply_queue[i].head = NULL;
8175                h->reply_queue[i].busaddr = 0;
8176        }
8177        h->reply_queue_size = 0;
8178}
8179
8180static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8181{
8182        hpsa_free_performant_mode(h);           /* init_one 7 */
8183        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8184        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8185        hpsa_free_irqs(h);                      /* init_one 4 */
8186        scsi_host_put(h->scsi_host);            /* init_one 3 */
8187        h->scsi_host = NULL;                    /* init_one 3 */
8188        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8189        free_percpu(h->lockup_detected);        /* init_one 2 */
8190        h->lockup_detected = NULL;              /* init_one 2 */
8191        if (h->resubmit_wq) {
8192                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8193                h->resubmit_wq = NULL;
8194        }
8195        if (h->rescan_ctlr_wq) {
8196                destroy_workqueue(h->rescan_ctlr_wq);
8197                h->rescan_ctlr_wq = NULL;
8198        }
8199        if (h->monitor_ctlr_wq) {
8200                destroy_workqueue(h->monitor_ctlr_wq);
8201                h->monitor_ctlr_wq = NULL;
8202        }
8203
8204        kfree(h);                               /* init_one 1 */
8205}
8206
8207/* Called when controller lockup detected. */
8208static void fail_all_outstanding_cmds(struct ctlr_info *h)
8209{
8210        int i, refcount;
8211        struct CommandList *c;
8212        int failcount = 0;
8213
8214        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8215        for (i = 0; i < h->nr_cmds; i++) {
8216                c = h->cmd_pool + i;
8217                refcount = atomic_inc_return(&c->refcount);
8218                if (refcount > 1) {
8219                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8220                        finish_cmd(c);
8221                        atomic_dec(&h->commands_outstanding);
8222                        failcount++;
8223                }
8224                cmd_free(h, c);
8225        }
8226        dev_warn(&h->pdev->dev,
8227                "failed %d commands in fail_all\n", failcount);
8228}
8229
8230static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8231{
8232        int cpu;
8233
8234        for_each_online_cpu(cpu) {
8235                u32 *lockup_detected;
8236                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8237                *lockup_detected = value;
8238        }
8239        wmb(); /* be sure the per-cpu variables are out to memory */
8240}
8241
8242static void controller_lockup_detected(struct ctlr_info *h)
8243{
8244        unsigned long flags;
8245        u32 lockup_detected;
8246
8247        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8248        spin_lock_irqsave(&h->lock, flags);
8249        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8250        if (!lockup_detected) {
8251                /* no heartbeat, but controller gave us a zero. */
8252                dev_warn(&h->pdev->dev,
8253                        "lockup detected after %d but scratchpad register is zero\n",
8254                        h->heartbeat_sample_interval / HZ);
8255                lockup_detected = 0xffffffff;
8256        }
8257        set_lockup_detected_for_all_cpus(h, lockup_detected);
8258        spin_unlock_irqrestore(&h->lock, flags);
8259        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8260                        lockup_detected, h->heartbeat_sample_interval / HZ);
8261        if (lockup_detected == 0xffff0000) {
8262                dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8263                writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8264        }
8265        pci_disable_device(h->pdev);
8266        fail_all_outstanding_cmds(h);
8267}
8268
8269static int detect_controller_lockup(struct ctlr_info *h)
8270{
8271        u64 now;
8272        u32 heartbeat;
8273        unsigned long flags;
8274
8275        now = get_jiffies_64();
8276        /* If we've received an interrupt recently, we're ok. */
8277        if (time_after64(h->last_intr_timestamp +
8278                                (h->heartbeat_sample_interval), now))
8279                return false;
8280
8281        /*
8282         * If we've already checked the heartbeat recently, we're ok.
8283         * This could happen if someone sends us a signal. We
8284         * otherwise don't care about signals in this thread.
8285         */
8286        if (time_after64(h->last_heartbeat_timestamp +
8287                                (h->heartbeat_sample_interval), now))
8288                return false;
8289
8290        /* If heartbeat has not changed since we last looked, we're not ok. */
8291        spin_lock_irqsave(&h->lock, flags);
8292        heartbeat = readl(&h->cfgtable->HeartBeat);
8293        spin_unlock_irqrestore(&h->lock, flags);
8294        if (h->last_heartbeat == heartbeat) {
8295                controller_lockup_detected(h);
8296                return true;
8297        }
8298
8299        /* We're ok. */
8300        h->last_heartbeat = heartbeat;
8301        h->last_heartbeat_timestamp = now;
8302        return false;
8303}
8304
8305/*
8306 * Set ioaccel status for all ioaccel volumes.
8307 *
8308 * Called from monitor controller worker (hpsa_event_monitor_worker)
8309 *
8310 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8311 * transformation, so we will be turning off ioaccel for all volumes that
8312 * make up the Array.
8313 */
8314static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8315{
8316        int rc;
8317        int i;
8318        u8 ioaccel_status;
8319        unsigned char *buf;
8320        struct hpsa_scsi_dev_t *device;
8321
8322        if (!h)
8323                return;
8324
8325        buf = kmalloc(64, GFP_KERNEL);
8326        if (!buf)
8327                return;
8328
8329        /*
8330         * Run through current device list used during I/O requests.
8331         */
8332        for (i = 0; i < h->ndevices; i++) {
8333                int offload_to_be_enabled = 0;
8334                int offload_config = 0;
8335
8336                device = h->dev[i];
8337
8338                if (!device)
8339                        continue;
8340                if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8341                                                HPSA_VPD_LV_IOACCEL_STATUS))
8342                        continue;
8343
8344                memset(buf, 0, 64);
8345
8346                rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8347                                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8348                                        buf, 64);
8349                if (rc != 0)
8350                        continue;
8351
8352                ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8353
8354                /*
8355                 * Check if offload is still configured on
8356                 */
8357                offload_config =
8358                                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8359                /*
8360                 * If offload is configured on, check to see if ioaccel
8361                 * needs to be enabled.
8362                 */
8363                if (offload_config)
8364                        offload_to_be_enabled =
8365                                !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8366
8367                /*
8368                 * If ioaccel is to be re-enabled, re-enable later during the
8369                 * scan operation so the driver can get a fresh raidmap
8370                 * before turning ioaccel back on.
8371                 */
8372                if (offload_to_be_enabled)
8373                        continue;
8374
8375                /*
8376                 * Immediately turn off ioaccel for any volume the
8377                 * controller tells us to. Some of the reasons could be:
8378                 *    transformation - change to the LVs of an Array.
8379                 *    degraded volume - component failure
8380                 */
8381                hpsa_turn_off_ioaccel_for_device(device);
8382        }
8383
8384        kfree(buf);
8385}
8386
8387static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8388{
8389        char *event_type;
8390
8391        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8392                return;
8393
8394        /* Ask the controller to clear the events we're handling. */
8395        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8396                        | CFGTBL_Trans_io_accel2)) &&
8397                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8398                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8399
8400                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8401                        event_type = "state change";
8402                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8403                        event_type = "configuration change";
8404                /* Stop sending new RAID offload reqs via the IO accelerator */
8405                scsi_block_requests(h->scsi_host);
8406                hpsa_set_ioaccel_status(h);
8407                hpsa_drain_accel_commands(h);
8408                /* Set 'accelerator path config change' bit */
8409                dev_warn(&h->pdev->dev,
8410                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8411                        h->events, event_type);
8412                writel(h->events, &(h->cfgtable->clear_event_notify));
8413                /* Set the "clear event notify field update" bit 6 */
8414                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8415                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8416                hpsa_wait_for_clear_event_notify_ack(h);
8417                scsi_unblock_requests(h->scsi_host);
8418        } else {
8419                /* Acknowledge controller notification events. */
8420                writel(h->events, &(h->cfgtable->clear_event_notify));
8421                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8422                hpsa_wait_for_clear_event_notify_ack(h);
8423        }
8424        return;
8425}
8426
8427/* Check a register on the controller to see if there are configuration
8428 * changes (added/changed/removed logical drives, etc.) which mean that
8429 * we should rescan the controller for devices.
8430 * Also check flag for driver-initiated rescan.
8431 */
8432static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8433{
8434        if (h->drv_req_rescan) {
8435                h->drv_req_rescan = 0;
8436                return 1;
8437        }
8438
8439        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8440                return 0;
8441
8442        h->events = readl(&(h->cfgtable->event_notify));
8443        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8444}
8445
8446/*
8447 * Check if any of the offline devices have become ready
8448 */
8449static int hpsa_offline_devices_ready(struct ctlr_info *h)
8450{
8451        unsigned long flags;
8452        struct offline_device_entry *d;
8453        struct list_head *this, *tmp;
8454
8455        spin_lock_irqsave(&h->offline_device_lock, flags);
8456        list_for_each_safe(this, tmp, &h->offline_device_list) {
8457                d = list_entry(this, struct offline_device_entry,
8458                                offline_list);
8459                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8460                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8461                        spin_lock_irqsave(&h->offline_device_lock, flags);
8462                        list_del(&d->offline_list);
8463                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8464                        return 1;
8465                }
8466                spin_lock_irqsave(&h->offline_device_lock, flags);
8467        }
8468        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8469        return 0;
8470}
8471
8472static int hpsa_luns_changed(struct ctlr_info *h)
8473{
8474        int rc = 1; /* assume there are changes */
8475        struct ReportLUNdata *logdev = NULL;
8476
8477        /* if we can't find out if lun data has changed,
8478         * assume that it has.
8479         */
8480
8481        if (!h->lastlogicals)
8482                return rc;
8483
8484        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8485        if (!logdev)
8486                return rc;
8487
8488        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8489                dev_warn(&h->pdev->dev,
8490                        "report luns failed, can't track lun changes.\n");
8491                goto out;
8492        }
8493        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8494                dev_info(&h->pdev->dev,
8495                        "Lun changes detected.\n");
8496                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8497                goto out;
8498        } else
8499                rc = 0; /* no changes detected. */
8500out:
8501        kfree(logdev);
8502        return rc;
8503}
8504
8505static void hpsa_perform_rescan(struct ctlr_info *h)
8506{
8507        struct Scsi_Host *sh = NULL;
8508        unsigned long flags;
8509
8510        /*
8511         * Do the scan after the reset
8512         */
8513        spin_lock_irqsave(&h->reset_lock, flags);
8514        if (h->reset_in_progress) {
8515                h->drv_req_rescan = 1;
8516                spin_unlock_irqrestore(&h->reset_lock, flags);
8517                return;
8518        }
8519        spin_unlock_irqrestore(&h->reset_lock, flags);
8520
8521        sh = scsi_host_get(h->scsi_host);
8522        if (sh != NULL) {
8523                hpsa_scan_start(sh);
8524                scsi_host_put(sh);
8525                h->drv_req_rescan = 0;
8526        }
8527}
8528
8529/*
8530 * watch for controller events
8531 */
8532static void hpsa_event_monitor_worker(struct work_struct *work)
8533{
8534        struct ctlr_info *h = container_of(to_delayed_work(work),
8535                                        struct ctlr_info, event_monitor_work);
8536        unsigned long flags;
8537
8538        spin_lock_irqsave(&h->lock, flags);
8539        if (h->remove_in_progress) {
8540                spin_unlock_irqrestore(&h->lock, flags);
8541                return;
8542        }
8543        spin_unlock_irqrestore(&h->lock, flags);
8544
8545        if (hpsa_ctlr_needs_rescan(h)) {
8546                hpsa_ack_ctlr_events(h);
8547                hpsa_perform_rescan(h);
8548        }
8549
8550        spin_lock_irqsave(&h->lock, flags);
8551        if (!h->remove_in_progress)
8552                queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8553                                HPSA_EVENT_MONITOR_INTERVAL);
8554        spin_unlock_irqrestore(&h->lock, flags);
8555}
8556
8557static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8558{
8559        unsigned long flags;
8560        struct ctlr_info *h = container_of(to_delayed_work(work),
8561                                        struct ctlr_info, rescan_ctlr_work);
8562
8563        spin_lock_irqsave(&h->lock, flags);
8564        if (h->remove_in_progress) {
8565                spin_unlock_irqrestore(&h->lock, flags);
8566                return;
8567        }
8568        spin_unlock_irqrestore(&h->lock, flags);
8569
8570        if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8571                hpsa_perform_rescan(h);
8572        } else if (h->discovery_polling) {
8573                if (hpsa_luns_changed(h)) {
8574                        dev_info(&h->pdev->dev,
8575                                "driver discovery polling rescan.\n");
8576                        hpsa_perform_rescan(h);
8577                }
8578        }
8579        spin_lock_irqsave(&h->lock, flags);
8580        if (!h->remove_in_progress)
8581                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8582                                h->heartbeat_sample_interval);
8583        spin_unlock_irqrestore(&h->lock, flags);
8584}
8585
8586static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8587{
8588        unsigned long flags;
8589        struct ctlr_info *h = container_of(to_delayed_work(work),
8590                                        struct ctlr_info, monitor_ctlr_work);
8591
8592        detect_controller_lockup(h);
8593        if (lockup_detected(h))
8594                return;
8595
8596        spin_lock_irqsave(&h->lock, flags);
8597        if (!h->remove_in_progress)
8598                queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8599                                h->heartbeat_sample_interval);
8600        spin_unlock_irqrestore(&h->lock, flags);
8601}
8602
8603static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8604                                                char *name)
8605{
8606        struct workqueue_struct *wq = NULL;
8607
8608        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8609        if (!wq)
8610                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8611
8612        return wq;
8613}
8614
8615static void hpda_free_ctlr_info(struct ctlr_info *h)
8616{
8617        kfree(h->reply_map);
8618        kfree(h);
8619}
8620
8621static struct ctlr_info *hpda_alloc_ctlr_info(void)
8622{
8623        struct ctlr_info *h;
8624
8625        h = kzalloc(sizeof(*h), GFP_KERNEL);
8626        if (!h)
8627                return NULL;
8628
8629        h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8630        if (!h->reply_map) {
8631                kfree(h);
8632                return NULL;
8633        }
8634        return h;
8635}
8636
8637static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8638{
8639        int dac, rc;
8640        struct ctlr_info *h;
8641        int try_soft_reset = 0;
8642        unsigned long flags;
8643        u32 board_id;
8644
8645        if (number_of_controllers == 0)
8646                printk(KERN_INFO DRIVER_NAME "\n");
8647
8648        rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8649        if (rc < 0) {
8650                dev_warn(&pdev->dev, "Board ID not found\n");
8651                return rc;
8652        }
8653
8654        rc = hpsa_init_reset_devices(pdev, board_id);
8655        if (rc) {
8656                if (rc != -ENOTSUPP)
8657                        return rc;
8658                /* If the reset fails in a particular way (it has no way to do
8659                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8660                 * a soft reset once we get the controller configured up to the
8661                 * point that it can accept a command.
8662                 */
8663                try_soft_reset = 1;
8664                rc = 0;
8665        }
8666
8667reinit_after_soft_reset:
8668
8669        /* Command structures must be aligned on a 32-byte boundary because
8670         * the 5 lower bits of the address are used by the hardware. and by
8671         * the driver.  See comments in hpsa.h for more info.
8672         */
8673        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8674        h = hpda_alloc_ctlr_info();
8675        if (!h) {
8676                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8677                return -ENOMEM;
8678        }
8679
8680        h->pdev = pdev;
8681
8682        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8683        INIT_LIST_HEAD(&h->offline_device_list);
8684        spin_lock_init(&h->lock);
8685        spin_lock_init(&h->offline_device_lock);
8686        spin_lock_init(&h->scan_lock);
8687        spin_lock_init(&h->reset_lock);
8688        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8689
8690        /* Allocate and clear per-cpu variable lockup_detected */
8691        h->lockup_detected = alloc_percpu(u32);
8692        if (!h->lockup_detected) {
8693                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8694                rc = -ENOMEM;
8695                goto clean1;    /* aer/h */
8696        }
8697        set_lockup_detected_for_all_cpus(h, 0);
8698
8699        rc = hpsa_pci_init(h);
8700        if (rc)
8701                goto clean2;    /* lu, aer/h */
8702
8703        /* relies on h-> settings made by hpsa_pci_init, including
8704         * interrupt_mode h->intr */
8705        rc = hpsa_scsi_host_alloc(h);
8706        if (rc)
8707                goto clean2_5;  /* pci, lu, aer/h */
8708
8709        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8710        h->ctlr = number_of_controllers;
8711        number_of_controllers++;
8712
8713        /* configure PCI DMA stuff */
8714        rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8715        if (rc == 0) {
8716                dac = 1;
8717        } else {
8718                rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8719                if (rc == 0) {
8720                        dac = 0;
8721                } else {
8722                        dev_err(&pdev->dev, "no suitable DMA available\n");
8723                        goto clean3;    /* shost, pci, lu, aer/h */
8724                }
8725        }
8726
8727        /* make sure the board interrupts are off */
8728        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8729
8730        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8731        if (rc)
8732                goto clean3;    /* shost, pci, lu, aer/h */
8733        rc = hpsa_alloc_cmd_pool(h);
8734        if (rc)
8735                goto clean4;    /* irq, shost, pci, lu, aer/h */
8736        rc = hpsa_alloc_sg_chain_blocks(h);
8737        if (rc)
8738                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8739        init_waitqueue_head(&h->scan_wait_queue);
8740        init_waitqueue_head(&h->event_sync_wait_queue);
8741        mutex_init(&h->reset_mutex);
8742        h->scan_finished = 1; /* no scan currently in progress */
8743        h->scan_waiting = 0;
8744
8745        pci_set_drvdata(pdev, h);
8746        h->ndevices = 0;
8747
8748        spin_lock_init(&h->devlock);
8749        rc = hpsa_put_ctlr_into_performant_mode(h);
8750        if (rc)
8751                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8752
8753        /* create the resubmit workqueue */
8754        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8755        if (!h->rescan_ctlr_wq) {
8756                rc = -ENOMEM;
8757                goto clean7;
8758        }
8759
8760        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8761        if (!h->resubmit_wq) {
8762                rc = -ENOMEM;
8763                goto clean7;    /* aer/h */
8764        }
8765
8766        h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8767        if (!h->monitor_ctlr_wq) {
8768                rc = -ENOMEM;
8769                goto clean7;
8770        }
8771
8772        /*
8773         * At this point, the controller is ready to take commands.
8774         * Now, if reset_devices and the hard reset didn't work, try
8775         * the soft reset and see if that works.
8776         */
8777        if (try_soft_reset) {
8778
8779                /* This is kind of gross.  We may or may not get a completion
8780                 * from the soft reset command, and if we do, then the value
8781                 * from the fifo may or may not be valid.  So, we wait 10 secs
8782                 * after the reset throwing away any completions we get during
8783                 * that time.  Unregister the interrupt handler and register
8784                 * fake ones to scoop up any residual completions.
8785                 */
8786                spin_lock_irqsave(&h->lock, flags);
8787                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8788                spin_unlock_irqrestore(&h->lock, flags);
8789                hpsa_free_irqs(h);
8790                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8791                                        hpsa_intx_discard_completions);
8792                if (rc) {
8793                        dev_warn(&h->pdev->dev,
8794                                "Failed to request_irq after soft reset.\n");
8795                        /*
8796                         * cannot goto clean7 or free_irqs will be called
8797                         * again. Instead, do its work
8798                         */
8799                        hpsa_free_performant_mode(h);   /* clean7 */
8800                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8801                        hpsa_free_cmd_pool(h);          /* clean5 */
8802                        /*
8803                         * skip hpsa_free_irqs(h) clean4 since that
8804                         * was just called before request_irqs failed
8805                         */
8806                        goto clean3;
8807                }
8808
8809                rc = hpsa_kdump_soft_reset(h);
8810                if (rc)
8811                        /* Neither hard nor soft reset worked, we're hosed. */
8812                        goto clean7;
8813
8814                dev_info(&h->pdev->dev, "Board READY.\n");
8815                dev_info(&h->pdev->dev,
8816                        "Waiting for stale completions to drain.\n");
8817                h->access.set_intr_mask(h, HPSA_INTR_ON);
8818                msleep(10000);
8819                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8820
8821                rc = controller_reset_failed(h->cfgtable);
8822                if (rc)
8823                        dev_info(&h->pdev->dev,
8824                                "Soft reset appears to have failed.\n");
8825
8826                /* since the controller's reset, we have to go back and re-init
8827                 * everything.  Easiest to just forget what we've done and do it
8828                 * all over again.
8829                 */
8830                hpsa_undo_allocations_after_kdump_soft_reset(h);
8831                try_soft_reset = 0;
8832                if (rc)
8833                        /* don't goto clean, we already unallocated */
8834                        return -ENODEV;
8835
8836                goto reinit_after_soft_reset;
8837        }
8838
8839        /* Enable Accelerated IO path at driver layer */
8840        h->acciopath_status = 1;
8841        /* Disable discovery polling.*/
8842        h->discovery_polling = 0;
8843
8844
8845        /* Turn the interrupts on so we can service requests */
8846        h->access.set_intr_mask(h, HPSA_INTR_ON);
8847
8848        hpsa_hba_inquiry(h);
8849
8850        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8851        if (!h->lastlogicals)
8852                dev_info(&h->pdev->dev,
8853                        "Can't track change to report lun data\n");
8854
8855        /* hook into SCSI subsystem */
8856        rc = hpsa_scsi_add_host(h);
8857        if (rc)
8858                goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8859
8860        /* Monitor the controller for firmware lockups */
8861        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8862        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8863        schedule_delayed_work(&h->monitor_ctlr_work,
8864                                h->heartbeat_sample_interval);
8865        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8866        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8867                                h->heartbeat_sample_interval);
8868        INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8869        schedule_delayed_work(&h->event_monitor_work,
8870                                HPSA_EVENT_MONITOR_INTERVAL);
8871        return 0;
8872
8873clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8874        kfree(h->lastlogicals);
8875clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8876        hpsa_free_performant_mode(h);
8877        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8878clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8879        hpsa_free_sg_chain_blocks(h);
8880clean5: /* cmd, irq, shost, pci, lu, aer/h */
8881        hpsa_free_cmd_pool(h);
8882clean4: /* irq, shost, pci, lu, aer/h */
8883        hpsa_free_irqs(h);
8884clean3: /* shost, pci, lu, aer/h */
8885        scsi_host_put(h->scsi_host);
8886        h->scsi_host = NULL;
8887clean2_5: /* pci, lu, aer/h */
8888        hpsa_free_pci_init(h);
8889clean2: /* lu, aer/h */
8890        if (h->lockup_detected) {
8891                free_percpu(h->lockup_detected);
8892                h->lockup_detected = NULL;
8893        }
8894clean1: /* wq/aer/h */
8895        if (h->resubmit_wq) {
8896                destroy_workqueue(h->resubmit_wq);
8897                h->resubmit_wq = NULL;
8898        }
8899        if (h->rescan_ctlr_wq) {
8900                destroy_workqueue(h->rescan_ctlr_wq);
8901                h->rescan_ctlr_wq = NULL;
8902        }
8903        if (h->monitor_ctlr_wq) {
8904                destroy_workqueue(h->monitor_ctlr_wq);
8905                h->monitor_ctlr_wq = NULL;
8906        }
8907        kfree(h);
8908        return rc;
8909}
8910
8911static void hpsa_flush_cache(struct ctlr_info *h)
8912{
8913        char *flush_buf;
8914        struct CommandList *c;
8915        int rc;
8916
8917        if (unlikely(lockup_detected(h)))
8918                return;
8919        flush_buf = kzalloc(4, GFP_KERNEL);
8920        if (!flush_buf)
8921                return;
8922
8923        c = cmd_alloc(h);
8924
8925        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8926                RAID_CTLR_LUNID, TYPE_CMD)) {
8927                goto out;
8928        }
8929        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8930                        DEFAULT_TIMEOUT);
8931        if (rc)
8932                goto out;
8933        if (c->err_info->CommandStatus != 0)
8934out:
8935                dev_warn(&h->pdev->dev,
8936                        "error flushing cache on controller\n");
8937        cmd_free(h, c);
8938        kfree(flush_buf);
8939}
8940
8941/* Make controller gather fresh report lun data each time we
8942 * send down a report luns request
8943 */
8944static void hpsa_disable_rld_caching(struct ctlr_info *h)
8945{
8946        u32 *options;
8947        struct CommandList *c;
8948        int rc;
8949
8950        /* Don't bother trying to set diag options if locked up */
8951        if (unlikely(h->lockup_detected))
8952                return;
8953
8954        options = kzalloc(sizeof(*options), GFP_KERNEL);
8955        if (!options)
8956                return;
8957
8958        c = cmd_alloc(h);
8959
8960        /* first, get the current diag options settings */
8961        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8962                RAID_CTLR_LUNID, TYPE_CMD))
8963                goto errout;
8964
8965        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8966                        NO_TIMEOUT);
8967        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8968                goto errout;
8969
8970        /* Now, set the bit for disabling the RLD caching */
8971        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8972
8973        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8974                RAID_CTLR_LUNID, TYPE_CMD))
8975                goto errout;
8976
8977        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8978                        NO_TIMEOUT);
8979        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8980                goto errout;
8981
8982        /* Now verify that it got set: */
8983        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8984                RAID_CTLR_LUNID, TYPE_CMD))
8985                goto errout;
8986
8987        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8988                        NO_TIMEOUT);
8989        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8990                goto errout;
8991
8992        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8993                goto out;
8994
8995errout:
8996        dev_err(&h->pdev->dev,
8997                        "Error: failed to disable report lun data caching.\n");
8998out:
8999        cmd_free(h, c);
9000        kfree(options);
9001}
9002
9003static void __hpsa_shutdown(struct pci_dev *pdev)
9004{
9005        struct ctlr_info *h;
9006
9007        h = pci_get_drvdata(pdev);
9008        /* Turn board interrupts off  and send the flush cache command
9009         * sendcmd will turn off interrupt, and send the flush...
9010         * To write all data in the battery backed cache to disks
9011         */
9012        hpsa_flush_cache(h);
9013        h->access.set_intr_mask(h, HPSA_INTR_OFF);
9014        hpsa_free_irqs(h);                      /* init_one 4 */
9015        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9016}
9017
9018static void hpsa_shutdown(struct pci_dev *pdev)
9019{
9020        __hpsa_shutdown(pdev);
9021        pci_disable_device(pdev);
9022}
9023
9024static void hpsa_free_device_info(struct ctlr_info *h)
9025{
9026        int i;
9027
9028        for (i = 0; i < h->ndevices; i++) {
9029                kfree(h->dev[i]);
9030                h->dev[i] = NULL;
9031        }
9032}
9033
9034static void hpsa_remove_one(struct pci_dev *pdev)
9035{
9036        struct ctlr_info *h;
9037        unsigned long flags;
9038
9039        if (pci_get_drvdata(pdev) == NULL) {
9040                dev_err(&pdev->dev, "unable to remove device\n");
9041                return;
9042        }
9043        h = pci_get_drvdata(pdev);
9044
9045        /* Get rid of any controller monitoring work items */
9046        spin_lock_irqsave(&h->lock, flags);
9047        h->remove_in_progress = 1;
9048        spin_unlock_irqrestore(&h->lock, flags);
9049        cancel_delayed_work_sync(&h->monitor_ctlr_work);
9050        cancel_delayed_work_sync(&h->rescan_ctlr_work);
9051        cancel_delayed_work_sync(&h->event_monitor_work);
9052        destroy_workqueue(h->rescan_ctlr_wq);
9053        destroy_workqueue(h->resubmit_wq);
9054        destroy_workqueue(h->monitor_ctlr_wq);
9055
9056        hpsa_delete_sas_host(h);
9057
9058        /*
9059         * Call before disabling interrupts.
9060         * scsi_remove_host can trigger I/O operations especially
9061         * when multipath is enabled. There can be SYNCHRONIZE CACHE
9062         * operations which cannot complete and will hang the system.
9063         */
9064        if (h->scsi_host)
9065                scsi_remove_host(h->scsi_host);         /* init_one 8 */
9066        /* includes hpsa_free_irqs - init_one 4 */
9067        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9068        __hpsa_shutdown(pdev);
9069
9070        hpsa_free_device_info(h);               /* scan */
9071
9072        kfree(h->hba_inquiry_data);                     /* init_one 10 */
9073        h->hba_inquiry_data = NULL;                     /* init_one 10 */
9074        hpsa_free_ioaccel2_sg_chain_blocks(h);
9075        hpsa_free_performant_mode(h);                   /* init_one 7 */
9076        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9077        hpsa_free_cmd_pool(h);                          /* init_one 5 */
9078        kfree(h->lastlogicals);
9079
9080        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9081
9082        scsi_host_put(h->scsi_host);                    /* init_one 3 */
9083        h->scsi_host = NULL;                            /* init_one 3 */
9084
9085        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9086        hpsa_free_pci_init(h);                          /* init_one 2.5 */
9087
9088        free_percpu(h->lockup_detected);                /* init_one 2 */
9089        h->lockup_detected = NULL;                      /* init_one 2 */
9090        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9091
9092        hpda_free_ctlr_info(h);                         /* init_one 1 */
9093}
9094
9095static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9096        __attribute__((unused)) pm_message_t state)
9097{
9098        return -ENOSYS;
9099}
9100
9101static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9102{
9103        return -ENOSYS;
9104}
9105
9106static struct pci_driver hpsa_pci_driver = {
9107        .name = HPSA,
9108        .probe = hpsa_init_one,
9109        .remove = hpsa_remove_one,
9110        .id_table = hpsa_pci_device_id, /* id_table */
9111        .shutdown = hpsa_shutdown,
9112        .suspend = hpsa_suspend,
9113        .resume = hpsa_resume,
9114};
9115
9116/* Fill in bucket_map[], given nsgs (the max number of
9117 * scatter gather elements supported) and bucket[],
9118 * which is an array of 8 integers.  The bucket[] array
9119 * contains 8 different DMA transfer sizes (in 16
9120 * byte increments) which the controller uses to fetch
9121 * commands.  This function fills in bucket_map[], which
9122 * maps a given number of scatter gather elements to one of
9123 * the 8 DMA transfer sizes.  The point of it is to allow the
9124 * controller to only do as much DMA as needed to fetch the
9125 * command, with the DMA transfer size encoded in the lower
9126 * bits of the command address.
9127 */
9128static void  calc_bucket_map(int bucket[], int num_buckets,
9129        int nsgs, int min_blocks, u32 *bucket_map)
9130{
9131        int i, j, b, size;
9132
9133        /* Note, bucket_map must have nsgs+1 entries. */
9134        for (i = 0; i <= nsgs; i++) {
9135                /* Compute size of a command with i SG entries */
9136                size = i + min_blocks;
9137                b = num_buckets; /* Assume the biggest bucket */
9138                /* Find the bucket that is just big enough */
9139                for (j = 0; j < num_buckets; j++) {
9140                        if (bucket[j] >= size) {
9141                                b = j;
9142                                break;
9143                        }
9144                }
9145                /* for a command with i SG entries, use bucket b. */
9146                bucket_map[i] = b;
9147        }
9148}
9149
9150/*
9151 * return -ENODEV on err, 0 on success (or no action)
9152 * allocates numerous items that must be freed later
9153 */
9154static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9155{
9156        int i;
9157        unsigned long register_value;
9158        unsigned long transMethod = CFGTBL_Trans_Performant |
9159                        (trans_support & CFGTBL_Trans_use_short_tags) |
9160                                CFGTBL_Trans_enable_directed_msix |
9161                        (trans_support & (CFGTBL_Trans_io_accel1 |
9162                                CFGTBL_Trans_io_accel2));
9163        struct access_method access = SA5_performant_access;
9164
9165        /* This is a bit complicated.  There are 8 registers on
9166         * the controller which we write to to tell it 8 different
9167         * sizes of commands which there may be.  It's a way of
9168         * reducing the DMA done to fetch each command.  Encoded into
9169         * each command's tag are 3 bits which communicate to the controller
9170         * which of the eight sizes that command fits within.  The size of
9171         * each command depends on how many scatter gather entries there are.
9172         * Each SG entry requires 16 bytes.  The eight registers are programmed
9173         * with the number of 16-byte blocks a command of that size requires.
9174         * The smallest command possible requires 5 such 16 byte blocks.
9175         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9176         * blocks.  Note, this only extends to the SG entries contained
9177         * within the command block, and does not extend to chained blocks
9178         * of SG elements.   bft[] contains the eight values we write to
9179         * the registers.  They are not evenly distributed, but have more
9180         * sizes for small commands, and fewer sizes for larger commands.
9181         */
9182        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9183#define MIN_IOACCEL2_BFT_ENTRY 5
9184#define HPSA_IOACCEL2_HEADER_SZ 4
9185        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9186                        13, 14, 15, 16, 17, 18, 19,
9187                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9188        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9189        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9190        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9191                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9192        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9193        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9194        /*  5 = 1 s/g entry or 4k
9195         *  6 = 2 s/g entry or 8k
9196         *  8 = 4 s/g entry or 16k
9197         * 10 = 6 s/g entry or 24k
9198         */
9199
9200        /* If the controller supports either ioaccel method then
9201         * we can also use the RAID stack submit path that does not
9202         * perform the superfluous readl() after each command submission.
9203         */
9204        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9205                access = SA5_performant_access_no_read;
9206
9207        /* Controller spec: zero out this buffer. */
9208        for (i = 0; i < h->nreply_queues; i++)
9209                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9210
9211        bft[7] = SG_ENTRIES_IN_CMD + 4;
9212        calc_bucket_map(bft, ARRAY_SIZE(bft),
9213                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9214        for (i = 0; i < 8; i++)
9215                writel(bft[i], &h->transtable->BlockFetch[i]);
9216
9217        /* size of controller ring buffer */
9218        writel(h->max_commands, &h->transtable->RepQSize);
9219        writel(h->nreply_queues, &h->transtable->RepQCount);
9220        writel(0, &h->transtable->RepQCtrAddrLow32);
9221        writel(0, &h->transtable->RepQCtrAddrHigh32);
9222
9223        for (i = 0; i < h->nreply_queues; i++) {
9224                writel(0, &h->transtable->RepQAddr[i].upper);
9225                writel(h->reply_queue[i].busaddr,
9226                        &h->transtable->RepQAddr[i].lower);
9227        }
9228
9229        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9230        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9231        /*
9232         * enable outbound interrupt coalescing in accelerator mode;
9233         */
9234        if (trans_support & CFGTBL_Trans_io_accel1) {
9235                access = SA5_ioaccel_mode1_access;
9236                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9237                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9238        } else
9239                if (trans_support & CFGTBL_Trans_io_accel2)
9240                        access = SA5_ioaccel_mode2_access;
9241        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9242        if (hpsa_wait_for_mode_change_ack(h)) {
9243                dev_err(&h->pdev->dev,
9244                        "performant mode problem - doorbell timeout\n");
9245                return -ENODEV;
9246        }
9247        register_value = readl(&(h->cfgtable->TransportActive));
9248        if (!(register_value & CFGTBL_Trans_Performant)) {
9249                dev_err(&h->pdev->dev,
9250                        "performant mode problem - transport not active\n");
9251                return -ENODEV;
9252        }
9253        /* Change the access methods to the performant access methods */
9254        h->access = access;
9255        h->transMethod = transMethod;
9256
9257        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9258                (trans_support & CFGTBL_Trans_io_accel2)))
9259                return 0;
9260
9261        if (trans_support & CFGTBL_Trans_io_accel1) {
9262                /* Set up I/O accelerator mode */
9263                for (i = 0; i < h->nreply_queues; i++) {
9264                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9265                        h->reply_queue[i].current_entry =
9266                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9267                }
9268                bft[7] = h->ioaccel_maxsg + 8;
9269                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9270                                h->ioaccel1_blockFetchTable);
9271
9272                /* initialize all reply queue entries to unused */
9273                for (i = 0; i < h->nreply_queues; i++)
9274                        memset(h->reply_queue[i].head,
9275                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9276                                h->reply_queue_size);
9277
9278                /* set all the constant fields in the accelerator command
9279                 * frames once at init time to save CPU cycles later.
9280                 */
9281                for (i = 0; i < h->nr_cmds; i++) {
9282                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9283
9284                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9285                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9286                                        (i * sizeof(struct ErrorInfo)));
9287                        cp->err_info_len = sizeof(struct ErrorInfo);
9288                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9289                        cp->host_context_flags =
9290                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9291                        cp->timeout_sec = 0;
9292                        cp->ReplyQueue = 0;
9293                        cp->tag =
9294                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9295                        cp->host_addr =
9296                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9297                                        (i * sizeof(struct io_accel1_cmd)));
9298                }
9299        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9300                u64 cfg_offset, cfg_base_addr_index;
9301                u32 bft2_offset, cfg_base_addr;
9302                int rc;
9303
9304                rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9305                        &cfg_base_addr_index, &cfg_offset);
9306                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9307                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9308                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9309                                4, h->ioaccel2_blockFetchTable);
9310                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9311                BUILD_BUG_ON(offsetof(struct CfgTable,
9312                                io_accel_request_size_offset) != 0xb8);
9313                h->ioaccel2_bft2_regs =
9314                        remap_pci_mem(pci_resource_start(h->pdev,
9315                                        cfg_base_addr_index) +
9316                                        cfg_offset + bft2_offset,
9317                                        ARRAY_SIZE(bft2) *
9318                                        sizeof(*h->ioaccel2_bft2_regs));
9319                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9320                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9321        }
9322        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9323        if (hpsa_wait_for_mode_change_ack(h)) {
9324                dev_err(&h->pdev->dev,
9325                        "performant mode problem - enabling ioaccel mode\n");
9326                return -ENODEV;
9327        }
9328        return 0;
9329}
9330
9331/* Free ioaccel1 mode command blocks and block fetch table */
9332static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9333{
9334        if (h->ioaccel_cmd_pool) {
9335                dma_free_coherent(&h->pdev->dev,
9336                                  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9337                                  h->ioaccel_cmd_pool,
9338                                  h->ioaccel_cmd_pool_dhandle);
9339                h->ioaccel_cmd_pool = NULL;
9340                h->ioaccel_cmd_pool_dhandle = 0;
9341        }
9342        kfree(h->ioaccel1_blockFetchTable);
9343        h->ioaccel1_blockFetchTable = NULL;
9344}
9345
9346/* Allocate ioaccel1 mode command blocks and block fetch table */
9347static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9348{
9349        h->ioaccel_maxsg =
9350                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9351        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9352                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9353
9354        /* Command structures must be aligned on a 128-byte boundary
9355         * because the 7 lower bits of the address are used by the
9356         * hardware.
9357         */
9358        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9359                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9360        h->ioaccel_cmd_pool =
9361                dma_alloc_coherent(&h->pdev->dev,
9362                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363                        &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9364
9365        h->ioaccel1_blockFetchTable =
9366                kmalloc(((h->ioaccel_maxsg + 1) *
9367                                sizeof(u32)), GFP_KERNEL);
9368
9369        if ((h->ioaccel_cmd_pool == NULL) ||
9370                (h->ioaccel1_blockFetchTable == NULL))
9371                goto clean_up;
9372
9373        memset(h->ioaccel_cmd_pool, 0,
9374                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9375        return 0;
9376
9377clean_up:
9378        hpsa_free_ioaccel1_cmd_and_bft(h);
9379        return -ENOMEM;
9380}
9381
9382/* Free ioaccel2 mode command blocks and block fetch table */
9383static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9384{
9385        hpsa_free_ioaccel2_sg_chain_blocks(h);
9386
9387        if (h->ioaccel2_cmd_pool) {
9388                dma_free_coherent(&h->pdev->dev,
9389                                  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9390                                  h->ioaccel2_cmd_pool,
9391                                  h->ioaccel2_cmd_pool_dhandle);
9392                h->ioaccel2_cmd_pool = NULL;
9393                h->ioaccel2_cmd_pool_dhandle = 0;
9394        }
9395        kfree(h->ioaccel2_blockFetchTable);
9396        h->ioaccel2_blockFetchTable = NULL;
9397}
9398
9399/* Allocate ioaccel2 mode command blocks and block fetch table */
9400static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9401{
9402        int rc;
9403
9404        /* Allocate ioaccel2 mode command blocks and block fetch table */
9405
9406        h->ioaccel_maxsg =
9407                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9408        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9409                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9410
9411        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9412                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9413        h->ioaccel2_cmd_pool =
9414                dma_alloc_coherent(&h->pdev->dev,
9415                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416                        &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9417
9418        h->ioaccel2_blockFetchTable =
9419                kmalloc(((h->ioaccel_maxsg + 1) *
9420                                sizeof(u32)), GFP_KERNEL);
9421
9422        if ((h->ioaccel2_cmd_pool == NULL) ||
9423                (h->ioaccel2_blockFetchTable == NULL)) {
9424                rc = -ENOMEM;
9425                goto clean_up;
9426        }
9427
9428        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9429        if (rc)
9430                goto clean_up;
9431
9432        memset(h->ioaccel2_cmd_pool, 0,
9433                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9434        return 0;
9435
9436clean_up:
9437        hpsa_free_ioaccel2_cmd_and_bft(h);
9438        return rc;
9439}
9440
9441/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9442static void hpsa_free_performant_mode(struct ctlr_info *h)
9443{
9444        kfree(h->blockFetchTable);
9445        h->blockFetchTable = NULL;
9446        hpsa_free_reply_queues(h);
9447        hpsa_free_ioaccel1_cmd_and_bft(h);
9448        hpsa_free_ioaccel2_cmd_and_bft(h);
9449}
9450
9451/* return -ENODEV on error, 0 on success (or no action)
9452 * allocates numerous items that must be freed later
9453 */
9454static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9455{
9456        u32 trans_support;
9457        unsigned long transMethod = CFGTBL_Trans_Performant |
9458                                        CFGTBL_Trans_use_short_tags;
9459        int i, rc;
9460
9461        if (hpsa_simple_mode)
9462                return 0;
9463
9464        trans_support = readl(&(h->cfgtable->TransportSupport));
9465        if (!(trans_support & PERFORMANT_MODE))
9466                return 0;
9467
9468        /* Check for I/O accelerator mode support */
9469        if (trans_support & CFGTBL_Trans_io_accel1) {
9470                transMethod |= CFGTBL_Trans_io_accel1 |
9471                                CFGTBL_Trans_enable_directed_msix;
9472                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9473                if (rc)
9474                        return rc;
9475        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9476                transMethod |= CFGTBL_Trans_io_accel2 |
9477                                CFGTBL_Trans_enable_directed_msix;
9478                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9479                if (rc)
9480                        return rc;
9481        }
9482
9483        h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9484        hpsa_get_max_perf_mode_cmds(h);
9485        /* Performant mode ring buffer and supporting data structures */
9486        h->reply_queue_size = h->max_commands * sizeof(u64);
9487
9488        for (i = 0; i < h->nreply_queues; i++) {
9489                h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9490                                                h->reply_queue_size,
9491                                                &h->reply_queue[i].busaddr,
9492                                                GFP_KERNEL);
9493                if (!h->reply_queue[i].head) {
9494                        rc = -ENOMEM;
9495                        goto clean1;    /* rq, ioaccel */
9496                }
9497                h->reply_queue[i].size = h->max_commands;
9498                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9499                h->reply_queue[i].current_entry = 0;
9500        }
9501
9502        /* Need a block fetch table for performant mode */
9503        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9504                                sizeof(u32)), GFP_KERNEL);
9505        if (!h->blockFetchTable) {
9506                rc = -ENOMEM;
9507                goto clean1;    /* rq, ioaccel */
9508        }
9509
9510        rc = hpsa_enter_performant_mode(h, trans_support);
9511        if (rc)
9512                goto clean2;    /* bft, rq, ioaccel */
9513        return 0;
9514
9515clean2: /* bft, rq, ioaccel */
9516        kfree(h->blockFetchTable);
9517        h->blockFetchTable = NULL;
9518clean1: /* rq, ioaccel */
9519        hpsa_free_reply_queues(h);
9520        hpsa_free_ioaccel1_cmd_and_bft(h);
9521        hpsa_free_ioaccel2_cmd_and_bft(h);
9522        return rc;
9523}
9524
9525static int is_accelerated_cmd(struct CommandList *c)
9526{
9527        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9528}
9529
9530static void hpsa_drain_accel_commands(struct ctlr_info *h)
9531{
9532        struct CommandList *c = NULL;
9533        int i, accel_cmds_out;
9534        int refcount;
9535
9536        do { /* wait for all outstanding ioaccel commands to drain out */
9537                accel_cmds_out = 0;
9538                for (i = 0; i < h->nr_cmds; i++) {
9539                        c = h->cmd_pool + i;
9540                        refcount = atomic_inc_return(&c->refcount);
9541                        if (refcount > 1) /* Command is allocated */
9542                                accel_cmds_out += is_accelerated_cmd(c);
9543                        cmd_free(h, c);
9544                }
9545                if (accel_cmds_out <= 0)
9546                        break;
9547                msleep(100);
9548        } while (1);
9549}
9550
9551static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9552                                struct hpsa_sas_port *hpsa_sas_port)
9553{
9554        struct hpsa_sas_phy *hpsa_sas_phy;
9555        struct sas_phy *phy;
9556
9557        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9558        if (!hpsa_sas_phy)
9559                return NULL;
9560
9561        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9562                hpsa_sas_port->next_phy_index);
9563        if (!phy) {
9564                kfree(hpsa_sas_phy);
9565                return NULL;
9566        }
9567
9568        hpsa_sas_port->next_phy_index++;
9569        hpsa_sas_phy->phy = phy;
9570        hpsa_sas_phy->parent_port = hpsa_sas_port;
9571
9572        return hpsa_sas_phy;
9573}
9574
9575static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9576{
9577        struct sas_phy *phy = hpsa_sas_phy->phy;
9578
9579        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9580        if (hpsa_sas_phy->added_to_port)
9581                list_del(&hpsa_sas_phy->phy_list_entry);
9582        sas_phy_delete(phy);
9583        kfree(hpsa_sas_phy);
9584}
9585
9586static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9587{
9588        int rc;
9589        struct hpsa_sas_port *hpsa_sas_port;
9590        struct sas_phy *phy;
9591        struct sas_identify *identify;
9592
9593        hpsa_sas_port = hpsa_sas_phy->parent_port;
9594        phy = hpsa_sas_phy->phy;
9595
9596        identify = &phy->identify;
9597        memset(identify, 0, sizeof(*identify));
9598        identify->sas_address = hpsa_sas_port->sas_address;
9599        identify->device_type = SAS_END_DEVICE;
9600        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9601        identify->target_port_protocols = SAS_PROTOCOL_STP;
9602        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9603        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9604        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9605        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9606        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9607
9608        rc = sas_phy_add(hpsa_sas_phy->phy);
9609        if (rc)
9610                return rc;
9611
9612        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9613        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9614                        &hpsa_sas_port->phy_list_head);
9615        hpsa_sas_phy->added_to_port = true;
9616
9617        return 0;
9618}
9619
9620static int
9621        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9622                                struct sas_rphy *rphy)
9623{
9624        struct sas_identify *identify;
9625
9626        identify = &rphy->identify;
9627        identify->sas_address = hpsa_sas_port->sas_address;
9628        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9629        identify->target_port_protocols = SAS_PROTOCOL_STP;
9630
9631        return sas_rphy_add(rphy);
9632}
9633
9634static struct hpsa_sas_port
9635        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9636                                u64 sas_address)
9637{
9638        int rc;
9639        struct hpsa_sas_port *hpsa_sas_port;
9640        struct sas_port *port;
9641
9642        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9643        if (!hpsa_sas_port)
9644                return NULL;
9645
9646        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9647        hpsa_sas_port->parent_node = hpsa_sas_node;
9648
9649        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9650        if (!port)
9651                goto free_hpsa_port;
9652
9653        rc = sas_port_add(port);
9654        if (rc)
9655                goto free_sas_port;
9656
9657        hpsa_sas_port->port = port;
9658        hpsa_sas_port->sas_address = sas_address;
9659        list_add_tail(&hpsa_sas_port->port_list_entry,
9660                        &hpsa_sas_node->port_list_head);
9661
9662        return hpsa_sas_port;
9663
9664free_sas_port:
9665        sas_port_free(port);
9666free_hpsa_port:
9667        kfree(hpsa_sas_port);
9668
9669        return NULL;
9670}
9671
9672static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9673{
9674        struct hpsa_sas_phy *hpsa_sas_phy;
9675        struct hpsa_sas_phy *next;
9676
9677        list_for_each_entry_safe(hpsa_sas_phy, next,
9678                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9679                hpsa_free_sas_phy(hpsa_sas_phy);
9680
9681        sas_port_delete(hpsa_sas_port->port);
9682        list_del(&hpsa_sas_port->port_list_entry);
9683        kfree(hpsa_sas_port);
9684}
9685
9686static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9687{
9688        struct hpsa_sas_node *hpsa_sas_node;
9689
9690        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9691        if (hpsa_sas_node) {
9692                hpsa_sas_node->parent_dev = parent_dev;
9693                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9694        }
9695
9696        return hpsa_sas_node;
9697}
9698
9699static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9700{
9701        struct hpsa_sas_port *hpsa_sas_port;
9702        struct hpsa_sas_port *next;
9703
9704        if (!hpsa_sas_node)
9705                return;
9706
9707        list_for_each_entry_safe(hpsa_sas_port, next,
9708                        &hpsa_sas_node->port_list_head, port_list_entry)
9709                hpsa_free_sas_port(hpsa_sas_port);
9710
9711        kfree(hpsa_sas_node);
9712}
9713
9714static struct hpsa_scsi_dev_t
9715        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9716                                        struct sas_rphy *rphy)
9717{
9718        int i;
9719        struct hpsa_scsi_dev_t *device;
9720
9721        for (i = 0; i < h->ndevices; i++) {
9722                device = h->dev[i];
9723                if (!device->sas_port)
9724                        continue;
9725                if (device->sas_port->rphy == rphy)
9726                        return device;
9727        }
9728
9729        return NULL;
9730}
9731
9732static int hpsa_add_sas_host(struct ctlr_info *h)
9733{
9734        int rc;
9735        struct device *parent_dev;
9736        struct hpsa_sas_node *hpsa_sas_node;
9737        struct hpsa_sas_port *hpsa_sas_port;
9738        struct hpsa_sas_phy *hpsa_sas_phy;
9739
9740        parent_dev = &h->scsi_host->shost_dev;
9741
9742        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9743        if (!hpsa_sas_node)
9744                return -ENOMEM;
9745
9746        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9747        if (!hpsa_sas_port) {
9748                rc = -ENODEV;
9749                goto free_sas_node;
9750        }
9751
9752        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9753        if (!hpsa_sas_phy) {
9754                rc = -ENODEV;
9755                goto free_sas_port;
9756        }
9757
9758        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9759        if (rc)
9760                goto free_sas_phy;
9761
9762        h->sas_host = hpsa_sas_node;
9763
9764        return 0;
9765
9766free_sas_phy:
9767        hpsa_free_sas_phy(hpsa_sas_phy);
9768free_sas_port:
9769        hpsa_free_sas_port(hpsa_sas_port);
9770free_sas_node:
9771        hpsa_free_sas_node(hpsa_sas_node);
9772
9773        return rc;
9774}
9775
9776static void hpsa_delete_sas_host(struct ctlr_info *h)
9777{
9778        hpsa_free_sas_node(h->sas_host);
9779}
9780
9781static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9782                                struct hpsa_scsi_dev_t *device)
9783{
9784        int rc;
9785        struct hpsa_sas_port *hpsa_sas_port;
9786        struct sas_rphy *rphy;
9787
9788        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9789        if (!hpsa_sas_port)
9790                return -ENOMEM;
9791
9792        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9793        if (!rphy) {
9794                rc = -ENODEV;
9795                goto free_sas_port;
9796        }
9797
9798        hpsa_sas_port->rphy = rphy;
9799        device->sas_port = hpsa_sas_port;
9800
9801        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9802        if (rc)
9803                goto free_sas_port;
9804
9805        return 0;
9806
9807free_sas_port:
9808        hpsa_free_sas_port(hpsa_sas_port);
9809        device->sas_port = NULL;
9810
9811        return rc;
9812}
9813
9814static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9815{
9816        if (device->sas_port) {
9817                hpsa_free_sas_port(device->sas_port);
9818                device->sas_port = NULL;
9819        }
9820}
9821
9822static int
9823hpsa_sas_get_linkerrors(struct sas_phy *phy)
9824{
9825        return 0;
9826}
9827
9828static int
9829hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9830{
9831        struct Scsi_Host *shost = phy_to_shost(rphy);
9832        struct ctlr_info *h;
9833        struct hpsa_scsi_dev_t *sd;
9834
9835        if (!shost)
9836                return -ENXIO;
9837
9838        h = shost_to_hba(shost);
9839
9840        if (!h)
9841                return -ENXIO;
9842
9843        sd = hpsa_find_device_by_sas_rphy(h, rphy);
9844        if (!sd)
9845                return -ENXIO;
9846
9847        *identifier = sd->eli;
9848
9849        return 0;
9850}
9851
9852static int
9853hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9854{
9855        return -ENXIO;
9856}
9857
9858static int
9859hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9860{
9861        return 0;
9862}
9863
9864static int
9865hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9866{
9867        return 0;
9868}
9869
9870static int
9871hpsa_sas_phy_setup(struct sas_phy *phy)
9872{
9873        return 0;
9874}
9875
9876static void
9877hpsa_sas_phy_release(struct sas_phy *phy)
9878{
9879}
9880
9881static int
9882hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9883{
9884        return -EINVAL;
9885}
9886
9887static struct sas_function_template hpsa_sas_transport_functions = {
9888        .get_linkerrors = hpsa_sas_get_linkerrors,
9889        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9890        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9891        .phy_reset = hpsa_sas_phy_reset,
9892        .phy_enable = hpsa_sas_phy_enable,
9893        .phy_setup = hpsa_sas_phy_setup,
9894        .phy_release = hpsa_sas_phy_release,
9895        .set_phy_speed = hpsa_sas_phy_speed,
9896};
9897
9898/*
9899 *  This is it.  Register the PCI driver information for the cards we control
9900 *  the OS will call our registered routines when it finds one of our cards.
9901 */
9902static int __init hpsa_init(void)
9903{
9904        int rc;
9905
9906        hpsa_sas_transport_template =
9907                sas_attach_transport(&hpsa_sas_transport_functions);
9908        if (!hpsa_sas_transport_template)
9909                return -ENODEV;
9910
9911        rc = pci_register_driver(&hpsa_pci_driver);
9912
9913        if (rc)
9914                sas_release_transport(hpsa_sas_transport_template);
9915
9916        return rc;
9917}
9918
9919static void __exit hpsa_cleanup(void)
9920{
9921        pci_unregister_driver(&hpsa_pci_driver);
9922        sas_release_transport(hpsa_sas_transport_template);
9923}
9924
9925static void __attribute__((unused)) verify_offsets(void)
9926{
9927#define VERIFY_OFFSET(member, offset) \
9928        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9929
9930        VERIFY_OFFSET(structure_size, 0);
9931        VERIFY_OFFSET(volume_blk_size, 4);
9932        VERIFY_OFFSET(volume_blk_cnt, 8);
9933        VERIFY_OFFSET(phys_blk_shift, 16);
9934        VERIFY_OFFSET(parity_rotation_shift, 17);
9935        VERIFY_OFFSET(strip_size, 18);
9936        VERIFY_OFFSET(disk_starting_blk, 20);
9937        VERIFY_OFFSET(disk_blk_cnt, 28);
9938        VERIFY_OFFSET(data_disks_per_row, 36);
9939        VERIFY_OFFSET(metadata_disks_per_row, 38);
9940        VERIFY_OFFSET(row_cnt, 40);
9941        VERIFY_OFFSET(layout_map_count, 42);
9942        VERIFY_OFFSET(flags, 44);
9943        VERIFY_OFFSET(dekindex, 46);
9944        /* VERIFY_OFFSET(reserved, 48 */
9945        VERIFY_OFFSET(data, 64);
9946
9947#undef VERIFY_OFFSET
9948
9949#define VERIFY_OFFSET(member, offset) \
9950        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9951
9952        VERIFY_OFFSET(IU_type, 0);
9953        VERIFY_OFFSET(direction, 1);
9954        VERIFY_OFFSET(reply_queue, 2);
9955        /* VERIFY_OFFSET(reserved1, 3);  */
9956        VERIFY_OFFSET(scsi_nexus, 4);
9957        VERIFY_OFFSET(Tag, 8);
9958        VERIFY_OFFSET(cdb, 16);
9959        VERIFY_OFFSET(cciss_lun, 32);
9960        VERIFY_OFFSET(data_len, 40);
9961        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9962        VERIFY_OFFSET(sg_count, 45);
9963        /* VERIFY_OFFSET(reserved3 */
9964        VERIFY_OFFSET(err_ptr, 48);
9965        VERIFY_OFFSET(err_len, 56);
9966        /* VERIFY_OFFSET(reserved4  */
9967        VERIFY_OFFSET(sg, 64);
9968
9969#undef VERIFY_OFFSET
9970
9971#define VERIFY_OFFSET(member, offset) \
9972        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9973
9974        VERIFY_OFFSET(dev_handle, 0x00);
9975        VERIFY_OFFSET(reserved1, 0x02);
9976        VERIFY_OFFSET(function, 0x03);
9977        VERIFY_OFFSET(reserved2, 0x04);
9978        VERIFY_OFFSET(err_info, 0x0C);
9979        VERIFY_OFFSET(reserved3, 0x10);
9980        VERIFY_OFFSET(err_info_len, 0x12);
9981        VERIFY_OFFSET(reserved4, 0x13);
9982        VERIFY_OFFSET(sgl_offset, 0x14);
9983        VERIFY_OFFSET(reserved5, 0x15);
9984        VERIFY_OFFSET(transfer_len, 0x1C);
9985        VERIFY_OFFSET(reserved6, 0x20);
9986        VERIFY_OFFSET(io_flags, 0x24);
9987        VERIFY_OFFSET(reserved7, 0x26);
9988        VERIFY_OFFSET(LUN, 0x34);
9989        VERIFY_OFFSET(control, 0x3C);
9990        VERIFY_OFFSET(CDB, 0x40);
9991        VERIFY_OFFSET(reserved8, 0x50);
9992        VERIFY_OFFSET(host_context_flags, 0x60);
9993        VERIFY_OFFSET(timeout_sec, 0x62);
9994        VERIFY_OFFSET(ReplyQueue, 0x64);
9995        VERIFY_OFFSET(reserved9, 0x65);
9996        VERIFY_OFFSET(tag, 0x68);
9997        VERIFY_OFFSET(host_addr, 0x70);
9998        VERIFY_OFFSET(CISS_LUN, 0x78);
9999        VERIFY_OFFSET(SG, 0x78 + 8);
10000#undef VERIFY_OFFSET
10001}
10002
10003module_init(hpsa_init);
10004module_exit(hpsa_cleanup);
10005