linux/drivers/soc/qcom/rpmh-rsc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
   4 */
   5
   6#define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
   7
   8#include <linux/atomic.h>
   9#include <linux/cpu_pm.h>
  10#include <linux/delay.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/iopoll.h>
  14#include <linux/kernel.h>
  15#include <linux/list.h>
  16#include <linux/of.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_platform.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spinlock.h>
  22#include <linux/wait.h>
  23
  24#include <soc/qcom/cmd-db.h>
  25#include <soc/qcom/tcs.h>
  26#include <dt-bindings/soc/qcom,rpmh-rsc.h>
  27
  28#include "rpmh-internal.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include "trace-rpmh.h"
  32
  33#define RSC_DRV_TCS_OFFSET              672
  34#define RSC_DRV_CMD_OFFSET              20
  35
  36/* DRV HW Solver Configuration Information Register */
  37#define DRV_SOLVER_CONFIG               0x04
  38#define DRV_HW_SOLVER_MASK              1
  39#define DRV_HW_SOLVER_SHIFT             24
  40
  41/* DRV TCS Configuration Information Register */
  42#define DRV_PRNT_CHLD_CONFIG            0x0C
  43#define DRV_NUM_TCS_MASK                0x3F
  44#define DRV_NUM_TCS_SHIFT               6
  45#define DRV_NCPT_MASK                   0x1F
  46#define DRV_NCPT_SHIFT                  27
  47
  48/* Offsets for common TCS Registers, one bit per TCS */
  49#define RSC_DRV_IRQ_ENABLE              0x00
  50#define RSC_DRV_IRQ_STATUS              0x04
  51#define RSC_DRV_IRQ_CLEAR               0x08    /* w/o; write 1 to clear */
  52
  53/*
  54 * Offsets for per TCS Registers.
  55 *
  56 * TCSes start at 0x10 from tcs_base and are stored one after another.
  57 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
  58 * of the below to find a register.
  59 */
  60#define RSC_DRV_CMD_WAIT_FOR_CMPL       0x10    /* 1 bit per command */
  61#define RSC_DRV_CONTROL                 0x14
  62#define RSC_DRV_STATUS                  0x18    /* zero if tcs is busy */
  63#define RSC_DRV_CMD_ENABLE              0x1C    /* 1 bit per command */
  64
  65/*
  66 * Offsets for per command in a TCS.
  67 *
  68 * Commands (up to 16) start at 0x30 in a TCS; multiply command index
  69 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
  70 */
  71#define RSC_DRV_CMD_MSGID               0x30
  72#define RSC_DRV_CMD_ADDR                0x34
  73#define RSC_DRV_CMD_DATA                0x38
  74#define RSC_DRV_CMD_STATUS              0x3C
  75#define RSC_DRV_CMD_RESP_DATA           0x40
  76
  77#define TCS_AMC_MODE_ENABLE             BIT(16)
  78#define TCS_AMC_MODE_TRIGGER            BIT(24)
  79
  80/* TCS CMD register bit mask */
  81#define CMD_MSGID_LEN                   8
  82#define CMD_MSGID_RESP_REQ              BIT(8)
  83#define CMD_MSGID_WRITE                 BIT(16)
  84#define CMD_STATUS_ISSUED               BIT(8)
  85#define CMD_STATUS_COMPL                BIT(16)
  86
  87/*
  88 * Here's a high level overview of how all the registers in RPMH work
  89 * together:
  90 *
  91 * - The main rpmh-rsc address is the base of a register space that can
  92 *   be used to find overall configuration of the hardware
  93 *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
  94 *   space are all the TCS blocks. The offset of the TCS blocks is
  95 *   specified in the device tree by "qcom,tcs-offset" and used to
  96 *   compute tcs_base.
  97 * - TCS blocks come one after another. Type, count, and order are
  98 *   specified by the device tree as "qcom,tcs-config".
  99 * - Each TCS block has some registers, then space for up to 16 commands.
 100 *   Note that though address space is reserved for 16 commands, fewer
 101 *   might be present. See ncpt (num cmds per TCS).
 102 *
 103 * Here's a picture:
 104 *
 105 *  +---------------------------------------------------+
 106 *  |RSC                                                |
 107 *  | ctrl                                              |
 108 *  |                                                   |
 109 *  | Drvs:                                             |
 110 *  | +-----------------------------------------------+ |
 111 *  | |DRV0                                           | |
 112 *  | | ctrl/config                                   | |
 113 *  | | IRQ                                           | |
 114 *  | |                                               | |
 115 *  | | TCSes:                                        | |
 116 *  | | +------------------------------------------+  | |
 117 *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 118 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
 119 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 120 *  | | +------------------------------------------+  | |
 121 *  | | +------------------------------------------+  | |
 122 *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 123 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
 124 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 125 *  | | +------------------------------------------+  | |
 126 *  | | +------------------------------------------+  | |
 127 *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 128 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
 129 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
 130 *  | | +------------------------------------------+  | |
 131 *  | |                    ......                     | |
 132 *  | +-----------------------------------------------+ |
 133 *  | +-----------------------------------------------+ |
 134 *  | |DRV1                                           | |
 135 *  | | (same as DRV0)                                | |
 136 *  | +-----------------------------------------------+ |
 137 *  |                      ......                       |
 138 *  +---------------------------------------------------+
 139 */
 140
 141static inline void __iomem *
 142tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
 143{
 144        return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
 145}
 146
 147static inline void __iomem *
 148tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
 149{
 150        return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
 151}
 152
 153static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
 154                        int cmd_id)
 155{
 156        return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
 157}
 158
 159static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
 160{
 161        return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
 162}
 163
 164static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
 165                          int cmd_id, u32 data)
 166{
 167        writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
 168}
 169
 170static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
 171                          u32 data)
 172{
 173        writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
 174}
 175
 176static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
 177                               u32 data)
 178{
 179        int i;
 180
 181        writel(data, tcs_reg_addr(drv, reg, tcs_id));
 182
 183        /*
 184         * Wait until we read back the same value.  Use a counter rather than
 185         * ktime for timeout since this may be called after timekeeping stops.
 186         */
 187        for (i = 0; i < USEC_PER_SEC; i++) {
 188                if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
 189                        return;
 190                udelay(1);
 191        }
 192        pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
 193               data, tcs_id, reg);
 194}
 195
 196/**
 197 * tcs_is_free() - Return if a TCS is totally free.
 198 * @drv:    The RSC controller.
 199 * @tcs_id: The global ID of this TCS.
 200 *
 201 * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
 202 *
 203 * Context: Must be called with the drv->lock held.
 204 *
 205 * Return: true if the given TCS is free.
 206 */
 207static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
 208{
 209        return !test_bit(tcs_id, drv->tcs_in_use);
 210}
 211
 212/**
 213 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
 214 * @drv:  The RSC controller.
 215 * @type: SLEEP_TCS or WAKE_TCS
 216 *
 217 * This will clear the "slots" variable of the given tcs_group and also
 218 * tell the hardware to forget about all entries.
 219 *
 220 * The caller must ensure that no other RPMH actions are happening when this
 221 * function is called, since otherwise the device may immediately become
 222 * used again even before this function exits.
 223 */
 224static void tcs_invalidate(struct rsc_drv *drv, int type)
 225{
 226        int m;
 227        struct tcs_group *tcs = &drv->tcs[type];
 228
 229        /* Caller ensures nobody else is running so no lock */
 230        if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
 231                return;
 232
 233        for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
 234                write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
 235                write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
 236        }
 237        bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
 238}
 239
 240/**
 241 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
 242 * @drv: The RSC controller.
 243 *
 244 * The caller must ensure that no other RPMH actions are happening when this
 245 * function is called, since otherwise the device may immediately become
 246 * used again even before this function exits.
 247 */
 248void rpmh_rsc_invalidate(struct rsc_drv *drv)
 249{
 250        tcs_invalidate(drv, SLEEP_TCS);
 251        tcs_invalidate(drv, WAKE_TCS);
 252}
 253
 254/**
 255 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
 256 * @drv: The RSC controller.
 257 * @msg: The message we want to send.
 258 *
 259 * This is normally pretty straightforward except if we are trying to send
 260 * an ACTIVE_ONLY message but don't have any active_only TCSes.
 261 *
 262 * Return: A pointer to a tcs_group or an ERR_PTR.
 263 */
 264static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
 265                                         const struct tcs_request *msg)
 266{
 267        int type;
 268        struct tcs_group *tcs;
 269
 270        switch (msg->state) {
 271        case RPMH_ACTIVE_ONLY_STATE:
 272                type = ACTIVE_TCS;
 273                break;
 274        case RPMH_WAKE_ONLY_STATE:
 275                type = WAKE_TCS;
 276                break;
 277        case RPMH_SLEEP_STATE:
 278                type = SLEEP_TCS;
 279                break;
 280        default:
 281                return ERR_PTR(-EINVAL);
 282        }
 283
 284        /*
 285         * If we are making an active request on a RSC that does not have a
 286         * dedicated TCS for active state use, then re-purpose a wake TCS to
 287         * send active votes. This is safe because we ensure any active-only
 288         * transfers have finished before we use it (maybe by running from
 289         * the last CPU in PM code).
 290         */
 291        tcs = &drv->tcs[type];
 292        if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
 293                tcs = &drv->tcs[WAKE_TCS];
 294
 295        return tcs;
 296}
 297
 298/**
 299 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
 300 * @drv:    The RSC controller.
 301 * @tcs_id: The global ID of this TCS.
 302 *
 303 * For ACTIVE_ONLY transfers we want to call back into the client when the
 304 * transfer finishes. To do this we need the "request" that the client
 305 * originally provided us. This function grabs the request that we stashed
 306 * when we started the transfer.
 307 *
 308 * This only makes sense for ACTIVE_ONLY transfers since those are the only
 309 * ones we track sending (the only ones we enable interrupts for and the only
 310 * ones we call back to the client for).
 311 *
 312 * Return: The stashed request.
 313 */
 314static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
 315                                                  int tcs_id)
 316{
 317        struct tcs_group *tcs;
 318        int i;
 319
 320        for (i = 0; i < TCS_TYPE_NR; i++) {
 321                tcs = &drv->tcs[i];
 322                if (tcs->mask & BIT(tcs_id))
 323                        return tcs->req[tcs_id - tcs->offset];
 324        }
 325
 326        return NULL;
 327}
 328
 329/**
 330 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
 331 * @drv:     The controller.
 332 * @tcs_id:  The global ID of this TCS.
 333 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
 334 *
 335 * In the normal case we only ever call with "trigger=true" to start a
 336 * transfer. That will un-trigger/disable the TCS from the last transfer
 337 * then trigger/enable for this transfer.
 338 *
 339 * If we borrowed a wake TCS for an active-only transfer we'll also call
 340 * this function with "trigger=false" to just do the un-trigger/disable
 341 * before using the TCS for wake purposes again.
 342 *
 343 * Note that the AP is only in charge of triggering active-only transfers.
 344 * The AP never triggers sleep/wake values using this function.
 345 */
 346static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
 347{
 348        u32 enable;
 349
 350        /*
 351         * HW req: Clear the DRV_CONTROL and enable TCS again
 352         * While clearing ensure that the AMC mode trigger is cleared
 353         * and then the mode enable is cleared.
 354         */
 355        enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
 356        enable &= ~TCS_AMC_MODE_TRIGGER;
 357        write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
 358        enable &= ~TCS_AMC_MODE_ENABLE;
 359        write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
 360
 361        if (trigger) {
 362                /* Enable the AMC mode on the TCS and then trigger the TCS */
 363                enable = TCS_AMC_MODE_ENABLE;
 364                write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
 365                enable |= TCS_AMC_MODE_TRIGGER;
 366                write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
 367        }
 368}
 369
 370/**
 371 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
 372 * @drv:     The controller.
 373 * @tcs_id:  The global ID of this TCS.
 374 * @enable:  If true then enable; if false then disable
 375 *
 376 * We only ever call this when we borrow a wake TCS for an active-only
 377 * transfer. For active-only TCSes interrupts are always left enabled.
 378 */
 379static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
 380{
 381        u32 data;
 382
 383        data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
 384        if (enable)
 385                data |= BIT(tcs_id);
 386        else
 387                data &= ~BIT(tcs_id);
 388        writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
 389}
 390
 391/**
 392 * tcs_tx_done() - TX Done interrupt handler.
 393 * @irq: The IRQ number (ignored).
 394 * @p:   Pointer to "struct rsc_drv".
 395 *
 396 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
 397 * IRQ for) when a transfer is done.
 398 *
 399 * Return: IRQ_HANDLED
 400 */
 401static irqreturn_t tcs_tx_done(int irq, void *p)
 402{
 403        struct rsc_drv *drv = p;
 404        int i, j, err = 0;
 405        unsigned long irq_status;
 406        const struct tcs_request *req;
 407        struct tcs_cmd *cmd;
 408
 409        irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
 410
 411        for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
 412                req = get_req_from_tcs(drv, i);
 413                if (!req) {
 414                        WARN_ON(1);
 415                        goto skip;
 416                }
 417
 418                err = 0;
 419                for (j = 0; j < req->num_cmds; j++) {
 420                        u32 sts;
 421
 422                        cmd = &req->cmds[j];
 423                        sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
 424                        if (!(sts & CMD_STATUS_ISSUED) ||
 425                           ((req->wait_for_compl || cmd->wait) &&
 426                           !(sts & CMD_STATUS_COMPL))) {
 427                                pr_err("Incomplete request: %s: addr=%#x data=%#x",
 428                                       drv->name, cmd->addr, cmd->data);
 429                                err = -EIO;
 430                        }
 431                }
 432
 433                trace_rpmh_tx_done(drv, i, req, err);
 434
 435                /*
 436                 * If wake tcs was re-purposed for sending active
 437                 * votes, clear AMC trigger & enable modes and
 438                 * disable interrupt for this TCS
 439                 */
 440                if (!drv->tcs[ACTIVE_TCS].num_tcs)
 441                        __tcs_set_trigger(drv, i, false);
 442skip:
 443                /* Reclaim the TCS */
 444                write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
 445                write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
 446                writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
 447                spin_lock(&drv->lock);
 448                clear_bit(i, drv->tcs_in_use);
 449                /*
 450                 * Disable interrupt for WAKE TCS to avoid being
 451                 * spammed with interrupts coming when the solver
 452                 * sends its wake votes.
 453                 */
 454                if (!drv->tcs[ACTIVE_TCS].num_tcs)
 455                        enable_tcs_irq(drv, i, false);
 456                spin_unlock(&drv->lock);
 457                wake_up(&drv->tcs_wait);
 458                if (req)
 459                        rpmh_tx_done(req, err);
 460        }
 461
 462        return IRQ_HANDLED;
 463}
 464
 465/**
 466 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
 467 * @drv:    The controller.
 468 * @tcs_id: The global ID of this TCS.
 469 * @cmd_id: The index within the TCS to start writing.
 470 * @msg:    The message we want to send, which will contain several addr/data
 471 *          pairs to program (but few enough that they all fit in one TCS).
 472 *
 473 * This is used for all types of transfers (active, sleep, and wake).
 474 */
 475static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
 476                               const struct tcs_request *msg)
 477{
 478        u32 msgid, cmd_msgid;
 479        u32 cmd_enable = 0;
 480        u32 cmd_complete;
 481        struct tcs_cmd *cmd;
 482        int i, j;
 483
 484        cmd_msgid = CMD_MSGID_LEN;
 485        cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
 486        cmd_msgid |= CMD_MSGID_WRITE;
 487
 488        cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
 489
 490        for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
 491                cmd = &msg->cmds[i];
 492                cmd_enable |= BIT(j);
 493                cmd_complete |= cmd->wait << j;
 494                msgid = cmd_msgid;
 495                msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
 496
 497                write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
 498                write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
 499                write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
 500                trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
 501        }
 502
 503        write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
 504        cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
 505        write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
 506}
 507
 508/**
 509 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
 510 * @drv: The controller.
 511 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
 512 * @msg: The message we want to send, which will contain several addr/data
 513 *       pairs to program (but few enough that they all fit in one TCS).
 514 *
 515 * This will walk through the TCSes in the group and check if any of them
 516 * appear to be sending to addresses referenced in the message. If it finds
 517 * one it'll return -EBUSY.
 518 *
 519 * Only for use for active-only transfers.
 520 *
 521 * Must be called with the drv->lock held since that protects tcs_in_use.
 522 *
 523 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
 524 *         The caller must re-enable interrupts between tries since that's
 525 *         the only way tcs_is_free() will ever return true and the only way
 526 *         RSC_DRV_CMD_ENABLE will ever be cleared.
 527 */
 528static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
 529                                  const struct tcs_request *msg)
 530{
 531        unsigned long curr_enabled;
 532        u32 addr;
 533        int i, j, k;
 534        int tcs_id = tcs->offset;
 535
 536        for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
 537                if (tcs_is_free(drv, tcs_id))
 538                        continue;
 539
 540                curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
 541
 542                for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
 543                        addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
 544                        for (k = 0; k < msg->num_cmds; k++) {
 545                                if (addr == msg->cmds[k].addr)
 546                                        return -EBUSY;
 547                        }
 548                }
 549        }
 550
 551        return 0;
 552}
 553
 554/**
 555 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
 556 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
 557 *       we borrowed it because there are zero active-only ones).
 558 *
 559 * Must be called with the drv->lock held since that protects tcs_in_use.
 560 *
 561 * Return: The first tcs that's free.
 562 */
 563static int find_free_tcs(struct tcs_group *tcs)
 564{
 565        int i;
 566
 567        for (i = 0; i < tcs->num_tcs; i++) {
 568                if (tcs_is_free(tcs->drv, tcs->offset + i))
 569                        return tcs->offset + i;
 570        }
 571
 572        return -EBUSY;
 573}
 574
 575/**
 576 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
 577 * @drv: The controller.
 578 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
 579 * @msg: The data to be sent.
 580 *
 581 * Claims a tcs in the given tcs_group while making sure that no existing cmd
 582 * is in flight that would conflict with the one in @msg.
 583 *
 584 * Context: Must be called with the drv->lock held since that protects
 585 * tcs_in_use.
 586 *
 587 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
 588 * or the tcs_group is full.
 589 */
 590static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
 591                             const struct tcs_request *msg)
 592{
 593        int ret;
 594
 595        /*
 596         * The h/w does not like if we send a request to the same address,
 597         * when one is already in-flight or being processed.
 598         */
 599        ret = check_for_req_inflight(drv, tcs, msg);
 600        if (ret)
 601                return ret;
 602
 603        return find_free_tcs(tcs);
 604}
 605
 606/**
 607 * rpmh_rsc_send_data() - Write / trigger active-only message.
 608 * @drv: The controller.
 609 * @msg: The data to be sent.
 610 *
 611 * NOTES:
 612 * - This is only used for "ACTIVE_ONLY" since the limitations of this
 613 *   function don't make sense for sleep/wake cases.
 614 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
 615 *   try to share. If there are none available we'll wait indefinitely
 616 *   for a free one.
 617 * - This function will not wait for the commands to be finished, only for
 618 *   data to be programmed into the RPMh. See rpmh_tx_done() which will
 619 *   be called when the transfer is fully complete.
 620 * - This function must be called with interrupts enabled. If the hardware
 621 *   is busy doing someone else's transfer we need that transfer to fully
 622 *   finish so that we can have the hardware, and to fully finish it needs
 623 *   the interrupt handler to run. If the interrupts is set to run on the
 624 *   active CPU this can never happen if interrupts are disabled.
 625 *
 626 * Return: 0 on success, -EINVAL on error.
 627 */
 628int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
 629{
 630        struct tcs_group *tcs;
 631        int tcs_id;
 632        unsigned long flags;
 633
 634        tcs = get_tcs_for_msg(drv, msg);
 635        if (IS_ERR(tcs))
 636                return PTR_ERR(tcs);
 637
 638        spin_lock_irqsave(&drv->lock, flags);
 639
 640        /* Wait forever for a free tcs. It better be there eventually! */
 641        wait_event_lock_irq(drv->tcs_wait,
 642                            (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
 643                            drv->lock);
 644
 645        tcs->req[tcs_id - tcs->offset] = msg;
 646        set_bit(tcs_id, drv->tcs_in_use);
 647        if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
 648                /*
 649                 * Clear previously programmed WAKE commands in selected
 650                 * repurposed TCS to avoid triggering them. tcs->slots will be
 651                 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
 652                 */
 653                write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
 654                write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
 655                enable_tcs_irq(drv, tcs_id, true);
 656        }
 657        spin_unlock_irqrestore(&drv->lock, flags);
 658
 659        /*
 660         * These two can be done after the lock is released because:
 661         * - We marked "tcs_in_use" under lock.
 662         * - Once "tcs_in_use" has been marked nobody else could be writing
 663         *   to these registers until the interrupt goes off.
 664         * - The interrupt can't go off until we trigger w/ the last line
 665         *   of __tcs_set_trigger() below.
 666         */
 667        __tcs_buffer_write(drv, tcs_id, 0, msg);
 668        __tcs_set_trigger(drv, tcs_id, true);
 669
 670        return 0;
 671}
 672
 673/**
 674 * find_slots() - Find a place to write the given message.
 675 * @tcs:    The tcs group to search.
 676 * @msg:    The message we want to find room for.
 677 * @tcs_id: If we return 0 from the function, we return the global ID of the
 678 *          TCS to write to here.
 679 * @cmd_id: If we return 0 from the function, we return the index of
 680 *          the command array of the returned TCS where the client should
 681 *          start writing the message.
 682 *
 683 * Only for use on sleep/wake TCSes since those are the only ones we maintain
 684 * tcs->slots for.
 685 *
 686 * Return: -ENOMEM if there was no room, else 0.
 687 */
 688static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
 689                      int *tcs_id, int *cmd_id)
 690{
 691        int slot, offset;
 692        int i = 0;
 693
 694        /* Do over, until we can fit the full payload in a single TCS */
 695        do {
 696                slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
 697                                                  i, msg->num_cmds, 0);
 698                if (slot >= tcs->num_tcs * tcs->ncpt)
 699                        return -ENOMEM;
 700                i += tcs->ncpt;
 701        } while (slot + msg->num_cmds - 1 >= i);
 702
 703        bitmap_set(tcs->slots, slot, msg->num_cmds);
 704
 705        offset = slot / tcs->ncpt;
 706        *tcs_id = offset + tcs->offset;
 707        *cmd_id = slot % tcs->ncpt;
 708
 709        return 0;
 710}
 711
 712/**
 713 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
 714 * @drv: The controller.
 715 * @msg: The data to be written to the controller.
 716 *
 717 * This should only be called for for sleep/wake state, never active-only
 718 * state.
 719 *
 720 * The caller must ensure that no other RPMH actions are happening and the
 721 * controller is idle when this function is called since it runs lockless.
 722 *
 723 * Return: 0 if no error; else -error.
 724 */
 725int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
 726{
 727        struct tcs_group *tcs;
 728        int tcs_id = 0, cmd_id = 0;
 729        int ret;
 730
 731        tcs = get_tcs_for_msg(drv, msg);
 732        if (IS_ERR(tcs))
 733                return PTR_ERR(tcs);
 734
 735        /* find the TCS id and the command in the TCS to write to */
 736        ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
 737        if (!ret)
 738                __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
 739
 740        return ret;
 741}
 742
 743/**
 744 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
 745 * @drv: The controller
 746 *
 747 * Checks if any of the AMCs are busy in handling ACTIVE sets.
 748 * This is called from the last cpu powering down before flushing
 749 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
 750 * power collapse, so deny from the last cpu's pm notification.
 751 *
 752 * Context: Must be called with the drv->lock held.
 753 *
 754 * Return:
 755 * * False              - AMCs are idle
 756 * * True               - AMCs are busy
 757 */
 758static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
 759{
 760        int m;
 761        struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
 762
 763        /*
 764         * If we made an active request on a RSC that does not have a
 765         * dedicated TCS for active state use, then re-purposed wake TCSes
 766         * should be checked for not busy, because we used wake TCSes for
 767         * active requests in this case.
 768         */
 769        if (!tcs->num_tcs)
 770                tcs = &drv->tcs[WAKE_TCS];
 771
 772        for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
 773                if (!tcs_is_free(drv, m))
 774                        return true;
 775        }
 776
 777        return false;
 778}
 779
 780/**
 781 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
 782 * @nfb:    Pointer to the notifier block in struct rsc_drv.
 783 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
 784 * @v:      Unused
 785 *
 786 * This function is given to cpu_pm_register_notifier so we can be informed
 787 * about when CPUs go down. When all CPUs go down we know no more active
 788 * transfers will be started so we write sleep/wake sets. This function gets
 789 * called from cpuidle code paths and also at system suspend time.
 790 *
 791 * If its last CPU going down and AMCs are not busy then writes cached sleep
 792 * and wake messages to TCSes. The firmware then takes care of triggering
 793 * them when entering deepest low power modes.
 794 *
 795 * Return: See cpu_pm_register_notifier()
 796 */
 797static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
 798                                    unsigned long action, void *v)
 799{
 800        struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
 801        int ret = NOTIFY_OK;
 802        int cpus_in_pm;
 803
 804        switch (action) {
 805        case CPU_PM_ENTER:
 806                cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
 807                /*
 808                 * NOTE: comments for num_online_cpus() point out that it's
 809                 * only a snapshot so we need to be careful. It should be OK
 810                 * for us to use, though.  It's important for us not to miss
 811                 * if we're the last CPU going down so it would only be a
 812                 * problem if a CPU went offline right after we did the check
 813                 * AND that CPU was not idle AND that CPU was the last non-idle
 814                 * CPU. That can't happen. CPUs would have to come out of idle
 815                 * before the CPU could go offline.
 816                 */
 817                if (cpus_in_pm < num_online_cpus())
 818                        return NOTIFY_OK;
 819                break;
 820        case CPU_PM_ENTER_FAILED:
 821        case CPU_PM_EXIT:
 822                atomic_dec(&drv->cpus_in_pm);
 823                return NOTIFY_OK;
 824        default:
 825                return NOTIFY_DONE;
 826        }
 827
 828        /*
 829         * It's likely we're on the last CPU. Grab the drv->lock and write
 830         * out the sleep/wake commands to RPMH hardware. Grabbing the lock
 831         * means that if we race with another CPU coming up we are still
 832         * guaranteed to be safe. If another CPU came up just after we checked
 833         * and has grabbed the lock or started an active transfer then we'll
 834         * notice we're busy and abort. If another CPU comes up after we start
 835         * flushing it will be blocked from starting an active transfer until
 836         * we're done flushing. If another CPU starts an active transfer after
 837         * we release the lock we're still OK because we're no longer the last
 838         * CPU.
 839         */
 840        if (spin_trylock(&drv->lock)) {
 841                if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
 842                        ret = NOTIFY_BAD;
 843                spin_unlock(&drv->lock);
 844        } else {
 845                /* Another CPU must be up */
 846                return NOTIFY_OK;
 847        }
 848
 849        if (ret == NOTIFY_BAD) {
 850                /* Double-check if we're here because someone else is up */
 851                if (cpus_in_pm < num_online_cpus())
 852                        ret = NOTIFY_OK;
 853                else
 854                        /* We won't be called w/ CPU_PM_ENTER_FAILED */
 855                        atomic_dec(&drv->cpus_in_pm);
 856        }
 857
 858        return ret;
 859}
 860
 861static int rpmh_probe_tcs_config(struct platform_device *pdev,
 862                                 struct rsc_drv *drv, void __iomem *base)
 863{
 864        struct tcs_type_config {
 865                u32 type;
 866                u32 n;
 867        } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
 868        struct device_node *dn = pdev->dev.of_node;
 869        u32 config, max_tcs, ncpt, offset;
 870        int i, ret, n, st = 0;
 871        struct tcs_group *tcs;
 872
 873        ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
 874        if (ret)
 875                return ret;
 876        drv->tcs_base = base + offset;
 877
 878        config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
 879
 880        max_tcs = config;
 881        max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
 882        max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
 883
 884        ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
 885        ncpt = ncpt >> DRV_NCPT_SHIFT;
 886
 887        n = of_property_count_u32_elems(dn, "qcom,tcs-config");
 888        if (n != 2 * TCS_TYPE_NR)
 889                return -EINVAL;
 890
 891        for (i = 0; i < TCS_TYPE_NR; i++) {
 892                ret = of_property_read_u32_index(dn, "qcom,tcs-config",
 893                                                 i * 2, &tcs_cfg[i].type);
 894                if (ret)
 895                        return ret;
 896                if (tcs_cfg[i].type >= TCS_TYPE_NR)
 897                        return -EINVAL;
 898
 899                ret = of_property_read_u32_index(dn, "qcom,tcs-config",
 900                                                 i * 2 + 1, &tcs_cfg[i].n);
 901                if (ret)
 902                        return ret;
 903                if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
 904                        return -EINVAL;
 905        }
 906
 907        for (i = 0; i < TCS_TYPE_NR; i++) {
 908                tcs = &drv->tcs[tcs_cfg[i].type];
 909                if (tcs->drv)
 910                        return -EINVAL;
 911                tcs->drv = drv;
 912                tcs->type = tcs_cfg[i].type;
 913                tcs->num_tcs = tcs_cfg[i].n;
 914                tcs->ncpt = ncpt;
 915
 916                if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
 917                        continue;
 918
 919                if (st + tcs->num_tcs > max_tcs ||
 920                    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
 921                        return -EINVAL;
 922
 923                tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
 924                tcs->offset = st;
 925                st += tcs->num_tcs;
 926        }
 927
 928        drv->num_tcs = st;
 929
 930        return 0;
 931}
 932
 933static int rpmh_rsc_probe(struct platform_device *pdev)
 934{
 935        struct device_node *dn = pdev->dev.of_node;
 936        struct rsc_drv *drv;
 937        struct resource *res;
 938        char drv_id[10] = {0};
 939        int ret, irq;
 940        u32 solver_config;
 941        void __iomem *base;
 942
 943        /*
 944         * Even though RPMh doesn't directly use cmd-db, all of its children
 945         * do. To avoid adding this check to our children we'll do it now.
 946         */
 947        ret = cmd_db_ready();
 948        if (ret) {
 949                if (ret != -EPROBE_DEFER)
 950                        dev_err(&pdev->dev, "Command DB not available (%d)\n",
 951                                                                        ret);
 952                return ret;
 953        }
 954
 955        drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
 956        if (!drv)
 957                return -ENOMEM;
 958
 959        ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
 960        if (ret)
 961                return ret;
 962
 963        drv->name = of_get_property(dn, "label", NULL);
 964        if (!drv->name)
 965                drv->name = dev_name(&pdev->dev);
 966
 967        snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
 968        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
 969        base = devm_ioremap_resource(&pdev->dev, res);
 970        if (IS_ERR(base))
 971                return PTR_ERR(base);
 972
 973        ret = rpmh_probe_tcs_config(pdev, drv, base);
 974        if (ret)
 975                return ret;
 976
 977        spin_lock_init(&drv->lock);
 978        init_waitqueue_head(&drv->tcs_wait);
 979        bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
 980
 981        irq = platform_get_irq(pdev, drv->id);
 982        if (irq < 0)
 983                return irq;
 984
 985        ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
 986                               IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
 987                               drv->name, drv);
 988        if (ret)
 989                return ret;
 990
 991        /*
 992         * CPU PM notification are not required for controllers that support
 993         * 'HW solver' mode where they can be in autonomous mode executing low
 994         * power mode to power down.
 995         */
 996        solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
 997        solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
 998        solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
 999        if (!solver_config) {
1000                drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1001                cpu_pm_register_notifier(&drv->rsc_pm);
1002        }
1003
1004        /* Enable the active TCS to send requests immediately */
1005        writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1006                       drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1007
1008        spin_lock_init(&drv->client.cache_lock);
1009        INIT_LIST_HEAD(&drv->client.cache);
1010        INIT_LIST_HEAD(&drv->client.batch_cache);
1011
1012        dev_set_drvdata(&pdev->dev, drv);
1013
1014        return devm_of_platform_populate(&pdev->dev);
1015}
1016
1017static const struct of_device_id rpmh_drv_match[] = {
1018        { .compatible = "qcom,rpmh-rsc", },
1019        { }
1020};
1021
1022static struct platform_driver rpmh_driver = {
1023        .probe = rpmh_rsc_probe,
1024        .driver = {
1025                  .name = "rpmh",
1026                  .of_match_table = rpmh_drv_match,
1027                  .suppress_bind_attrs = true,
1028        },
1029};
1030
1031static int __init rpmh_driver_init(void)
1032{
1033        return platform_driver_register(&rpmh_driver);
1034}
1035arch_initcall(rpmh_driver_init);
1036