linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29                                               unsigned int cycle_state,
  30                                               unsigned int max_packet,
  31                                               gfp_t flags)
  32{
  33        struct xhci_segment *seg;
  34        dma_addr_t      dma;
  35        int             i;
  36        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38        seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39        if (!seg)
  40                return NULL;
  41
  42        seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43        if (!seg->trbs) {
  44                kfree(seg);
  45                return NULL;
  46        }
  47
  48        if (max_packet) {
  49                seg->bounce_buf = kzalloc_node(max_packet, flags,
  50                                        dev_to_node(dev));
  51                if (!seg->bounce_buf) {
  52                        dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53                        kfree(seg);
  54                        return NULL;
  55                }
  56        }
  57        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58        if (cycle_state == 0) {
  59                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                        seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61        }
  62        seg->dma = dma;
  63        seg->next = NULL;
  64
  65        return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70        if (seg->trbs) {
  71                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                seg->trbs = NULL;
  73        }
  74        kfree(seg->bounce_buf);
  75        kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79                                struct xhci_segment *first)
  80{
  81        struct xhci_segment *seg;
  82
  83        seg = first->next;
  84        while (seg != first) {
  85                struct xhci_segment *next = seg->next;
  86                xhci_segment_free(xhci, seg);
  87                seg = next;
  88        }
  89        xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_segment *prev,
 100                               struct xhci_segment *next,
 101                               enum xhci_ring_type type, bool chain_links)
 102{
 103        u32 val;
 104
 105        if (!prev || !next)
 106                return;
 107        prev->next = next;
 108        if (type != TYPE_EVENT) {
 109                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 110                        cpu_to_le64(next->dma);
 111
 112                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 113                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 114                val &= ~TRB_TYPE_BITMASK;
 115                val |= TRB_TYPE(TRB_LINK);
 116                if (chain_links)
 117                        val |= TRB_CHAIN;
 118                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119        }
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127                struct xhci_segment *first, struct xhci_segment *last,
 128                unsigned int num_segs)
 129{
 130        struct xhci_segment *next;
 131        bool chain_links;
 132
 133        if (!ring || !first || !last)
 134                return;
 135
 136        /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 137        chain_links = !!(xhci_link_trb_quirk(xhci) ||
 138                         (ring->type == TYPE_ISOC &&
 139                          (xhci->quirks & XHCI_AMD_0x96_HOST)));
 140
 141        next = ring->enq_seg->next;
 142        xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 143        xhci_link_segments(last, next, ring->type, chain_links);
 144        ring->num_segs += num_segs;
 145        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 146
 147        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 148                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 149                        &= ~cpu_to_le32(LINK_TOGGLE);
 150                last->trbs[TRBS_PER_SEGMENT-1].link.control
 151                        |= cpu_to_le32(LINK_TOGGLE);
 152                ring->last_seg = last;
 153        }
 154}
 155
 156/*
 157 * We need a radix tree for mapping physical addresses of TRBs to which stream
 158 * ID they belong to.  We need to do this because the host controller won't tell
 159 * us which stream ring the TRB came from.  We could store the stream ID in an
 160 * event data TRB, but that doesn't help us for the cancellation case, since the
 161 * endpoint may stop before it reaches that event data TRB.
 162 *
 163 * The radix tree maps the upper portion of the TRB DMA address to a ring
 164 * segment that has the same upper portion of DMA addresses.  For example, say I
 165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 168 * pass the radix tree a key to get the right stream ID:
 169 *
 170 *      0x10c90fff >> 10 = 0x43243
 171 *      0x10c912c0 >> 10 = 0x43244
 172 *      0x10c91400 >> 10 = 0x43245
 173 *
 174 * Obviously, only those TRBs with DMA addresses that are within the segment
 175 * will make the radix tree return the stream ID for that ring.
 176 *
 177 * Caveats for the radix tree:
 178 *
 179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 184 * extended systems (where the DMA address can be bigger than 32-bits),
 185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 186 */
 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 188                struct xhci_ring *ring,
 189                struct xhci_segment *seg,
 190                gfp_t mem_flags)
 191{
 192        unsigned long key;
 193        int ret;
 194
 195        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 196        /* Skip any segments that were already added. */
 197        if (radix_tree_lookup(trb_address_map, key))
 198                return 0;
 199
 200        ret = radix_tree_maybe_preload(mem_flags);
 201        if (ret)
 202                return ret;
 203        ret = radix_tree_insert(trb_address_map,
 204                        key, ring);
 205        radix_tree_preload_end();
 206        return ret;
 207}
 208
 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 210                struct xhci_segment *seg)
 211{
 212        unsigned long key;
 213
 214        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215        if (radix_tree_lookup(trb_address_map, key))
 216                radix_tree_delete(trb_address_map, key);
 217}
 218
 219static int xhci_update_stream_segment_mapping(
 220                struct radix_tree_root *trb_address_map,
 221                struct xhci_ring *ring,
 222                struct xhci_segment *first_seg,
 223                struct xhci_segment *last_seg,
 224                gfp_t mem_flags)
 225{
 226        struct xhci_segment *seg;
 227        struct xhci_segment *failed_seg;
 228        int ret;
 229
 230        if (WARN_ON_ONCE(trb_address_map == NULL))
 231                return 0;
 232
 233        seg = first_seg;
 234        do {
 235                ret = xhci_insert_segment_mapping(trb_address_map,
 236                                ring, seg, mem_flags);
 237                if (ret)
 238                        goto remove_streams;
 239                if (seg == last_seg)
 240                        return 0;
 241                seg = seg->next;
 242        } while (seg != first_seg);
 243
 244        return 0;
 245
 246remove_streams:
 247        failed_seg = seg;
 248        seg = first_seg;
 249        do {
 250                xhci_remove_segment_mapping(trb_address_map, seg);
 251                if (seg == failed_seg)
 252                        return ret;
 253                seg = seg->next;
 254        } while (seg != first_seg);
 255
 256        return ret;
 257}
 258
 259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 260{
 261        struct xhci_segment *seg;
 262
 263        if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 264                return;
 265
 266        seg = ring->first_seg;
 267        do {
 268                xhci_remove_segment_mapping(ring->trb_address_map, seg);
 269                seg = seg->next;
 270        } while (seg != ring->first_seg);
 271}
 272
 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 274{
 275        return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 276                        ring->first_seg, ring->last_seg, mem_flags);
 277}
 278
 279/* XXX: Do we need the hcd structure in all these functions? */
 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 281{
 282        if (!ring)
 283                return;
 284
 285        trace_xhci_ring_free(ring);
 286
 287        if (ring->first_seg) {
 288                if (ring->type == TYPE_STREAM)
 289                        xhci_remove_stream_mapping(ring);
 290                xhci_free_segments_for_ring(xhci, ring->first_seg);
 291        }
 292
 293        kfree(ring);
 294}
 295
 296void xhci_initialize_ring_info(struct xhci_ring *ring,
 297                               unsigned int cycle_state)
 298{
 299        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 300        ring->enqueue = ring->first_seg->trbs;
 301        ring->enq_seg = ring->first_seg;
 302        ring->dequeue = ring->enqueue;
 303        ring->deq_seg = ring->first_seg;
 304        /* The ring is initialized to 0. The producer must write 1 to the cycle
 305         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 306         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 307         *
 308         * New rings are initialized with cycle state equal to 1; if we are
 309         * handling ring expansion, set the cycle state equal to the old ring.
 310         */
 311        ring->cycle_state = cycle_state;
 312
 313        /*
 314         * Each segment has a link TRB, and leave an extra TRB for SW
 315         * accounting purpose
 316         */
 317        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 318}
 319
 320/* Allocate segments and link them for a ring */
 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 322                struct xhci_segment **first, struct xhci_segment **last,
 323                unsigned int num_segs, unsigned int cycle_state,
 324                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 325{
 326        struct xhci_segment *prev;
 327        bool chain_links;
 328
 329        /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 330        chain_links = !!(xhci_link_trb_quirk(xhci) ||
 331                         (type == TYPE_ISOC &&
 332                          (xhci->quirks & XHCI_AMD_0x96_HOST)));
 333
 334        prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335        if (!prev)
 336                return -ENOMEM;
 337        num_segs--;
 338
 339        *first = prev;
 340        while (num_segs > 0) {
 341                struct xhci_segment     *next;
 342
 343                next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 344                if (!next) {
 345                        prev = *first;
 346                        while (prev) {
 347                                next = prev->next;
 348                                xhci_segment_free(xhci, prev);
 349                                prev = next;
 350                        }
 351                        return -ENOMEM;
 352                }
 353                xhci_link_segments(prev, next, type, chain_links);
 354
 355                prev = next;
 356                num_segs--;
 357        }
 358        xhci_link_segments(prev, *first, type, chain_links);
 359        *last = prev;
 360
 361        return 0;
 362}
 363
 364/*
 365 * Create a new ring with zero or more segments.
 366 *
 367 * Link each segment together into a ring.
 368 * Set the end flag and the cycle toggle bit on the last segment.
 369 * See section 4.9.1 and figures 15 and 16.
 370 */
 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 372                unsigned int num_segs, unsigned int cycle_state,
 373                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 374{
 375        struct xhci_ring        *ring;
 376        int ret;
 377        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 378
 379        ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 380        if (!ring)
 381                return NULL;
 382
 383        ring->num_segs = num_segs;
 384        ring->bounce_buf_len = max_packet;
 385        INIT_LIST_HEAD(&ring->td_list);
 386        ring->type = type;
 387        if (num_segs == 0)
 388                return ring;
 389
 390        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391                        &ring->last_seg, num_segs, cycle_state, type,
 392                        max_packet, flags);
 393        if (ret)
 394                goto fail;
 395
 396        /* Only event ring does not use link TRB */
 397        if (type != TYPE_EVENT) {
 398                /* See section 4.9.2.1 and 6.4.4.1 */
 399                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400                        cpu_to_le32(LINK_TOGGLE);
 401        }
 402        xhci_initialize_ring_info(ring, cycle_state);
 403        trace_xhci_ring_alloc(ring);
 404        return ring;
 405
 406fail:
 407        kfree(ring);
 408        return NULL;
 409}
 410
 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 412                struct xhci_virt_device *virt_dev,
 413                unsigned int ep_index)
 414{
 415        xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 416        virt_dev->eps[ep_index].ring = NULL;
 417}
 418
 419/*
 420 * Expand an existing ring.
 421 * Allocate a new ring which has same segment numbers and link the two rings.
 422 */
 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 424                                unsigned int num_trbs, gfp_t flags)
 425{
 426        struct xhci_segment     *first;
 427        struct xhci_segment     *last;
 428        unsigned int            num_segs;
 429        unsigned int            num_segs_needed;
 430        int                     ret;
 431
 432        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 433                                (TRBS_PER_SEGMENT - 1);
 434
 435        /* Allocate number of segments we needed, or double the ring size */
 436        num_segs = ring->num_segs > num_segs_needed ?
 437                        ring->num_segs : num_segs_needed;
 438
 439        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 440                        num_segs, ring->cycle_state, ring->type,
 441                        ring->bounce_buf_len, flags);
 442        if (ret)
 443                return -ENOMEM;
 444
 445        if (ring->type == TYPE_STREAM)
 446                ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 447                                                ring, first, last, flags);
 448        if (ret) {
 449                struct xhci_segment *next;
 450                do {
 451                        next = first->next;
 452                        xhci_segment_free(xhci, first);
 453                        if (first == last)
 454                                break;
 455                        first = next;
 456                } while (true);
 457                return ret;
 458        }
 459
 460        xhci_link_rings(xhci, ring, first, last, num_segs);
 461        trace_xhci_ring_expansion(ring);
 462        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 463                        "ring expansion succeed, now has %d segments",
 464                        ring->num_segs);
 465
 466        return 0;
 467}
 468
 469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 470                                                    int type, gfp_t flags)
 471{
 472        struct xhci_container_ctx *ctx;
 473        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 474
 475        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 476                return NULL;
 477
 478        ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 479        if (!ctx)
 480                return NULL;
 481
 482        ctx->type = type;
 483        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 484        if (type == XHCI_CTX_TYPE_INPUT)
 485                ctx->size += CTX_SIZE(xhci->hcc_params);
 486
 487        ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 488        if (!ctx->bytes) {
 489                kfree(ctx);
 490                return NULL;
 491        }
 492        return ctx;
 493}
 494
 495void xhci_free_container_ctx(struct xhci_hcd *xhci,
 496                             struct xhci_container_ctx *ctx)
 497{
 498        if (!ctx)
 499                return;
 500        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 501        kfree(ctx);
 502}
 503
 504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 505                                              struct xhci_container_ctx *ctx)
 506{
 507        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 508                return NULL;
 509
 510        return (struct xhci_input_control_ctx *)ctx->bytes;
 511}
 512
 513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 514                                        struct xhci_container_ctx *ctx)
 515{
 516        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 517                return (struct xhci_slot_ctx *)ctx->bytes;
 518
 519        return (struct xhci_slot_ctx *)
 520                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 521}
 522
 523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 524                                    struct xhci_container_ctx *ctx,
 525                                    unsigned int ep_index)
 526{
 527        /* increment ep index by offset of start of ep ctx array */
 528        ep_index++;
 529        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 530                ep_index++;
 531
 532        return (struct xhci_ep_ctx *)
 533                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 534}
 535
 536
 537/***************** Streams structures manipulation *************************/
 538
 539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 540                unsigned int num_stream_ctxs,
 541                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 542{
 543        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 544        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 545
 546        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 547                dma_free_coherent(dev, size,
 548                                stream_ctx, dma);
 549        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 550                return dma_pool_free(xhci->small_streams_pool,
 551                                stream_ctx, dma);
 552        else
 553                return dma_pool_free(xhci->medium_streams_pool,
 554                                stream_ctx, dma);
 555}
 556
 557/*
 558 * The stream context array for each endpoint with bulk streams enabled can
 559 * vary in size, based on:
 560 *  - how many streams the endpoint supports,
 561 *  - the maximum primary stream array size the host controller supports,
 562 *  - and how many streams the device driver asks for.
 563 *
 564 * The stream context array must be a power of 2, and can be as small as
 565 * 64 bytes or as large as 1MB.
 566 */
 567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 568                unsigned int num_stream_ctxs, dma_addr_t *dma,
 569                gfp_t mem_flags)
 570{
 571        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 572        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 573
 574        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 575                return dma_alloc_coherent(dev, size,
 576                                dma, mem_flags);
 577        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 578                return dma_pool_alloc(xhci->small_streams_pool,
 579                                mem_flags, dma);
 580        else
 581                return dma_pool_alloc(xhci->medium_streams_pool,
 582                                mem_flags, dma);
 583}
 584
 585struct xhci_ring *xhci_dma_to_transfer_ring(
 586                struct xhci_virt_ep *ep,
 587                u64 address)
 588{
 589        if (ep->ep_state & EP_HAS_STREAMS)
 590                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 591                                address >> TRB_SEGMENT_SHIFT);
 592        return ep->ring;
 593}
 594
 595struct xhci_ring *xhci_stream_id_to_ring(
 596                struct xhci_virt_device *dev,
 597                unsigned int ep_index,
 598                unsigned int stream_id)
 599{
 600        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 601
 602        if (stream_id == 0)
 603                return ep->ring;
 604        if (!ep->stream_info)
 605                return NULL;
 606
 607        if (stream_id >= ep->stream_info->num_streams)
 608                return NULL;
 609        return ep->stream_info->stream_rings[stream_id];
 610}
 611
 612/*
 613 * Change an endpoint's internal structure so it supports stream IDs.  The
 614 * number of requested streams includes stream 0, which cannot be used by device
 615 * drivers.
 616 *
 617 * The number of stream contexts in the stream context array may be bigger than
 618 * the number of streams the driver wants to use.  This is because the number of
 619 * stream context array entries must be a power of two.
 620 */
 621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 622                unsigned int num_stream_ctxs,
 623                unsigned int num_streams,
 624                unsigned int max_packet, gfp_t mem_flags)
 625{
 626        struct xhci_stream_info *stream_info;
 627        u32 cur_stream;
 628        struct xhci_ring *cur_ring;
 629        u64 addr;
 630        int ret;
 631        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 632
 633        xhci_dbg(xhci, "Allocating %u streams and %u "
 634                        "stream context array entries.\n",
 635                        num_streams, num_stream_ctxs);
 636        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 637                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 638                return NULL;
 639        }
 640        xhci->cmd_ring_reserved_trbs++;
 641
 642        stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 643                        dev_to_node(dev));
 644        if (!stream_info)
 645                goto cleanup_trbs;
 646
 647        stream_info->num_streams = num_streams;
 648        stream_info->num_stream_ctxs = num_stream_ctxs;
 649
 650        /* Initialize the array of virtual pointers to stream rings. */
 651        stream_info->stream_rings = kcalloc_node(
 652                        num_streams, sizeof(struct xhci_ring *), mem_flags,
 653                        dev_to_node(dev));
 654        if (!stream_info->stream_rings)
 655                goto cleanup_info;
 656
 657        /* Initialize the array of DMA addresses for stream rings for the HW. */
 658        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 659                        num_stream_ctxs, &stream_info->ctx_array_dma,
 660                        mem_flags);
 661        if (!stream_info->stream_ctx_array)
 662                goto cleanup_ctx;
 663        memset(stream_info->stream_ctx_array, 0,
 664                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 665
 666        /* Allocate everything needed to free the stream rings later */
 667        stream_info->free_streams_command =
 668                xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 669        if (!stream_info->free_streams_command)
 670                goto cleanup_ctx;
 671
 672        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 673
 674        /* Allocate rings for all the streams that the driver will use,
 675         * and add their segment DMA addresses to the radix tree.
 676         * Stream 0 is reserved.
 677         */
 678
 679        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 680                stream_info->stream_rings[cur_stream] =
 681                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 682                                        mem_flags);
 683                cur_ring = stream_info->stream_rings[cur_stream];
 684                if (!cur_ring)
 685                        goto cleanup_rings;
 686                cur_ring->stream_id = cur_stream;
 687                cur_ring->trb_address_map = &stream_info->trb_address_map;
 688                /* Set deq ptr, cycle bit, and stream context type */
 689                addr = cur_ring->first_seg->dma |
 690                        SCT_FOR_CTX(SCT_PRI_TR) |
 691                        cur_ring->cycle_state;
 692                stream_info->stream_ctx_array[cur_stream].stream_ring =
 693                        cpu_to_le64(addr);
 694                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 695                                cur_stream, (unsigned long long) addr);
 696
 697                if (xhci->quirks & XHCI_STREAM_QUIRK) {
 698                        /* dwc3 host controller has an issue where it doesn't
 699                         * process BULK IN stream rings even after ringing
 700                         * DoorBell, so setup a timer to aviod hang condition.
 701                         */
 702                        timer_setup(&cur_ring->stream_timer,
 703                                xhci_stream_timeout, 0);
 704                        cur_ring->xhci = xhci;
 705                }
 706
 707                ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 708                if (ret) {
 709                        xhci_ring_free(xhci, cur_ring);
 710                        stream_info->stream_rings[cur_stream] = NULL;
 711                        goto cleanup_rings;
 712                }
 713        }
 714        /* Leave the other unused stream ring pointers in the stream context
 715         * array initialized to zero.  This will cause the xHC to give us an
 716         * error if the device asks for a stream ID we don't have setup (if it
 717         * was any other way, the host controller would assume the ring is
 718         * "empty" and wait forever for data to be queued to that stream ID).
 719         */
 720
 721        return stream_info;
 722
 723cleanup_rings:
 724        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 725                cur_ring = stream_info->stream_rings[cur_stream];
 726                if (cur_ring) {
 727                        xhci_ring_free(xhci, cur_ring);
 728                        stream_info->stream_rings[cur_stream] = NULL;
 729                }
 730        }
 731        xhci_free_command(xhci, stream_info->free_streams_command);
 732cleanup_ctx:
 733        kfree(stream_info->stream_rings);
 734cleanup_info:
 735        kfree(stream_info);
 736cleanup_trbs:
 737        xhci->cmd_ring_reserved_trbs--;
 738        return NULL;
 739}
 740/*
 741 * Sets the MaxPStreams field and the Linear Stream Array field.
 742 * Sets the dequeue pointer to the stream context array.
 743 */
 744void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 745                struct xhci_ep_ctx *ep_ctx,
 746                struct xhci_stream_info *stream_info)
 747{
 748        u32 max_primary_streams;
 749        /* MaxPStreams is the number of stream context array entries, not the
 750         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 751         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 752         */
 753        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 754        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 755                        "Setting number of stream ctx array entries to %u",
 756                        1 << (max_primary_streams + 1));
 757        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 758        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 759                                       | EP_HAS_LSA);
 760        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 761}
 762
 763/*
 764 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 765 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 766 * not at the beginning of the ring).
 767 */
 768void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 769                struct xhci_virt_ep *ep)
 770{
 771        dma_addr_t addr;
 772        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 773        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 774        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 775}
 776
 777/* Frees all stream contexts associated with the endpoint,
 778 *
 779 * Caller should fix the endpoint context streams fields.
 780 */
 781void xhci_free_stream_info(struct xhci_hcd *xhci,
 782                struct xhci_stream_info *stream_info)
 783{
 784        int cur_stream;
 785        struct xhci_ring *cur_ring;
 786
 787        if (!stream_info)
 788                return;
 789
 790        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 791                        cur_stream++) {
 792                cur_ring = stream_info->stream_rings[cur_stream];
 793
 794                if (xhci->quirks & XHCI_STREAM_QUIRK)
 795                        del_timer_sync(&cur_ring->stream_timer);
 796
 797                if (cur_ring) {
 798                        xhci_ring_free(xhci, cur_ring);
 799                        stream_info->stream_rings[cur_stream] = NULL;
 800                }
 801        }
 802        xhci_free_command(xhci, stream_info->free_streams_command);
 803        xhci->cmd_ring_reserved_trbs--;
 804        if (stream_info->stream_ctx_array)
 805                xhci_free_stream_ctx(xhci,
 806                                stream_info->num_stream_ctxs,
 807                                stream_info->stream_ctx_array,
 808                                stream_info->ctx_array_dma);
 809
 810        kfree(stream_info->stream_rings);
 811        kfree(stream_info);
 812}
 813
 814
 815/***************** Device context manipulation *************************/
 816
 817static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 818                struct xhci_virt_ep *ep)
 819{
 820        timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 821                    0);
 822        ep->xhci = xhci;
 823}
 824
 825static void xhci_free_tt_info(struct xhci_hcd *xhci,
 826                struct xhci_virt_device *virt_dev,
 827                int slot_id)
 828{
 829        struct list_head *tt_list_head;
 830        struct xhci_tt_bw_info *tt_info, *next;
 831        bool slot_found = false;
 832
 833        /* If the device never made it past the Set Address stage,
 834         * it may not have the real_port set correctly.
 835         */
 836        if (virt_dev->real_port == 0 ||
 837                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 838                xhci_dbg(xhci, "Bad real port.\n");
 839                return;
 840        }
 841
 842        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 843        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 844                /* Multi-TT hubs will have more than one entry */
 845                if (tt_info->slot_id == slot_id) {
 846                        slot_found = true;
 847                        list_del(&tt_info->tt_list);
 848                        kfree(tt_info);
 849                } else if (slot_found) {
 850                        break;
 851                }
 852        }
 853}
 854
 855int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 856                struct xhci_virt_device *virt_dev,
 857                struct usb_device *hdev,
 858                struct usb_tt *tt, gfp_t mem_flags)
 859{
 860        struct xhci_tt_bw_info          *tt_info;
 861        unsigned int                    num_ports;
 862        int                             i, j;
 863        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 864
 865        if (!tt->multi)
 866                num_ports = 1;
 867        else
 868                num_ports = hdev->maxchild;
 869
 870        for (i = 0; i < num_ports; i++, tt_info++) {
 871                struct xhci_interval_bw_table *bw_table;
 872
 873                tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 874                                dev_to_node(dev));
 875                if (!tt_info)
 876                        goto free_tts;
 877                INIT_LIST_HEAD(&tt_info->tt_list);
 878                list_add(&tt_info->tt_list,
 879                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 880                tt_info->slot_id = virt_dev->udev->slot_id;
 881                if (tt->multi)
 882                        tt_info->ttport = i+1;
 883                bw_table = &tt_info->bw_table;
 884                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 885                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 886        }
 887        return 0;
 888
 889free_tts:
 890        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 891        return -ENOMEM;
 892}
 893
 894
 895/* All the xhci_tds in the ring's TD list should be freed at this point.
 896 * Should be called with xhci->lock held if there is any chance the TT lists
 897 * will be manipulated by the configure endpoint, allocate device, or update
 898 * hub functions while this function is removing the TT entries from the list.
 899 */
 900void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 901{
 902        struct xhci_virt_device *dev;
 903        int i;
 904        int old_active_eps = 0;
 905
 906        /* Slot ID 0 is reserved */
 907        if (slot_id == 0 || !xhci->devs[slot_id])
 908                return;
 909
 910        dev = xhci->devs[slot_id];
 911
 912        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 913        if (!dev)
 914                return;
 915
 916        trace_xhci_free_virt_device(dev);
 917
 918        if (dev->tt_info)
 919                old_active_eps = dev->tt_info->active_eps;
 920
 921        for (i = 0; i < 31; i++) {
 922                if (dev->eps[i].ring)
 923                        xhci_ring_free(xhci, dev->eps[i].ring);
 924                if (dev->eps[i].stream_info)
 925                        xhci_free_stream_info(xhci,
 926                                        dev->eps[i].stream_info);
 927                /* Endpoints on the TT/root port lists should have been removed
 928                 * when usb_disable_device() was called for the device.
 929                 * We can't drop them anyway, because the udev might have gone
 930                 * away by this point, and we can't tell what speed it was.
 931                 */
 932                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 933                        xhci_warn(xhci, "Slot %u endpoint %u "
 934                                        "not removed from BW list!\n",
 935                                        slot_id, i);
 936        }
 937        /* If this is a hub, free the TT(s) from the TT list */
 938        xhci_free_tt_info(xhci, dev, slot_id);
 939        /* If necessary, update the number of active TTs on this root port */
 940        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 941
 942        if (dev->in_ctx)
 943                xhci_free_container_ctx(xhci, dev->in_ctx);
 944        if (dev->out_ctx)
 945                xhci_free_container_ctx(xhci, dev->out_ctx);
 946
 947        if (dev->udev && dev->udev->slot_id)
 948                dev->udev->slot_id = 0;
 949        kfree(xhci->devs[slot_id]);
 950        xhci->devs[slot_id] = NULL;
 951}
 952
 953/*
 954 * Free a virt_device structure.
 955 * If the virt_device added a tt_info (a hub) and has children pointing to
 956 * that tt_info, then free the child first. Recursive.
 957 * We can't rely on udev at this point to find child-parent relationships.
 958 */
 959static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 960{
 961        struct xhci_virt_device *vdev;
 962        struct list_head *tt_list_head;
 963        struct xhci_tt_bw_info *tt_info, *next;
 964        int i;
 965
 966        vdev = xhci->devs[slot_id];
 967        if (!vdev)
 968                return;
 969
 970        if (vdev->real_port == 0 ||
 971                        vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 972                xhci_dbg(xhci, "Bad vdev->real_port.\n");
 973                goto out;
 974        }
 975
 976        tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 977        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 978                /* is this a hub device that added a tt_info to the tts list */
 979                if (tt_info->slot_id == slot_id) {
 980                        /* are any devices using this tt_info? */
 981                        for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 982                                vdev = xhci->devs[i];
 983                                if (vdev && (vdev->tt_info == tt_info))
 984                                        xhci_free_virt_devices_depth_first(
 985                                                xhci, i);
 986                        }
 987                }
 988        }
 989out:
 990        /* we are now at a leaf device */
 991        xhci_debugfs_remove_slot(xhci, slot_id);
 992        xhci_free_virt_device(xhci, slot_id);
 993}
 994
 995int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 996                struct usb_device *udev, gfp_t flags)
 997{
 998        struct xhci_virt_device *dev;
 999        int i;
1000
1001        /* Slot ID 0 is reserved */
1002        if (slot_id == 0 || xhci->devs[slot_id]) {
1003                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1004                return 0;
1005        }
1006
1007        dev = kzalloc(sizeof(*dev), flags);
1008        if (!dev)
1009                return 0;
1010
1011        /* Allocate the (output) device context that will be used in the HC. */
1012        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1013        if (!dev->out_ctx)
1014                goto fail;
1015
1016        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1017                        (unsigned long long)dev->out_ctx->dma);
1018
1019        /* Allocate the (input) device context for address device command */
1020        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1021        if (!dev->in_ctx)
1022                goto fail;
1023
1024        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1025                        (unsigned long long)dev->in_ctx->dma);
1026
1027        /* Initialize the cancellation list and watchdog timers for each ep */
1028        for (i = 0; i < 31; i++) {
1029                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1030                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1031                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1032        }
1033
1034        /* Allocate endpoint 0 ring */
1035        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1036        if (!dev->eps[0].ring)
1037                goto fail;
1038
1039        dev->udev = udev;
1040
1041        /* Point to output device context in dcbaa. */
1042        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1043        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1044                 slot_id,
1045                 &xhci->dcbaa->dev_context_ptrs[slot_id],
1046                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1047
1048        trace_xhci_alloc_virt_device(dev);
1049
1050        xhci->devs[slot_id] = dev;
1051
1052        return 1;
1053fail:
1054
1055        if (dev->in_ctx)
1056                xhci_free_container_ctx(xhci, dev->in_ctx);
1057        if (dev->out_ctx)
1058                xhci_free_container_ctx(xhci, dev->out_ctx);
1059        kfree(dev);
1060
1061        return 0;
1062}
1063
1064void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1065                struct usb_device *udev)
1066{
1067        struct xhci_virt_device *virt_dev;
1068        struct xhci_ep_ctx      *ep0_ctx;
1069        struct xhci_ring        *ep_ring;
1070
1071        virt_dev = xhci->devs[udev->slot_id];
1072        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1073        ep_ring = virt_dev->eps[0].ring;
1074        /*
1075         * FIXME we don't keep track of the dequeue pointer very well after a
1076         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1077         * host to our enqueue pointer.  This should only be called after a
1078         * configured device has reset, so all control transfers should have
1079         * been completed or cancelled before the reset.
1080         */
1081        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1082                                                        ep_ring->enqueue)
1083                                   | ep_ring->cycle_state);
1084}
1085
1086/*
1087 * The xHCI roothub may have ports of differing speeds in any order in the port
1088 * status registers.
1089 *
1090 * The xHCI hardware wants to know the roothub port number that the USB device
1091 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1092 * know is the index of that port under either the USB 2.0 or the USB 3.0
1093 * roothub, but that doesn't give us the real index into the HW port status
1094 * registers. Call xhci_find_raw_port_number() to get real index.
1095 */
1096static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1097                struct usb_device *udev)
1098{
1099        struct usb_device *top_dev;
1100        struct usb_hcd *hcd;
1101
1102        if (udev->speed >= USB_SPEED_SUPER)
1103                hcd = xhci->shared_hcd;
1104        else
1105                hcd = xhci->main_hcd;
1106
1107        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1108                        top_dev = top_dev->parent)
1109                /* Found device below root hub */;
1110
1111        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1112}
1113
1114/* Setup an xHCI virtual device for a Set Address command */
1115int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1116{
1117        struct xhci_virt_device *dev;
1118        struct xhci_ep_ctx      *ep0_ctx;
1119        struct xhci_slot_ctx    *slot_ctx;
1120        u32                     port_num;
1121        u32                     max_packets;
1122        struct usb_device *top_dev;
1123
1124        dev = xhci->devs[udev->slot_id];
1125        /* Slot ID 0 is reserved */
1126        if (udev->slot_id == 0 || !dev) {
1127                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1128                                udev->slot_id);
1129                return -EINVAL;
1130        }
1131        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1132        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1133
1134        /* 3) Only the control endpoint is valid - one endpoint context */
1135        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1136        switch (udev->speed) {
1137        case USB_SPEED_SUPER_PLUS:
1138                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1139                max_packets = MAX_PACKET(512);
1140                break;
1141        case USB_SPEED_SUPER:
1142                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1143                max_packets = MAX_PACKET(512);
1144                break;
1145        case USB_SPEED_HIGH:
1146                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1147                max_packets = MAX_PACKET(64);
1148                break;
1149        /* USB core guesses at a 64-byte max packet first for FS devices */
1150        case USB_SPEED_FULL:
1151                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1152                max_packets = MAX_PACKET(64);
1153                break;
1154        case USB_SPEED_LOW:
1155                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1156                max_packets = MAX_PACKET(8);
1157                break;
1158        case USB_SPEED_WIRELESS:
1159                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1160                return -EINVAL;
1161                break;
1162        default:
1163                /* Speed was set earlier, this shouldn't happen. */
1164                return -EINVAL;
1165        }
1166        /* Find the root hub port this device is under */
1167        port_num = xhci_find_real_port_number(xhci, udev);
1168        if (!port_num)
1169                return -EINVAL;
1170        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1171        /* Set the port number in the virtual_device to the faked port number */
1172        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1173                        top_dev = top_dev->parent)
1174                /* Found device below root hub */;
1175        dev->fake_port = top_dev->portnum;
1176        dev->real_port = port_num;
1177        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1178        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1179
1180        /* Find the right bandwidth table that this device will be a part of.
1181         * If this is a full speed device attached directly to a root port (or a
1182         * decendent of one), it counts as a primary bandwidth domain, not a
1183         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1184         * will never be created for the HS root hub.
1185         */
1186        if (!udev->tt || !udev->tt->hub->parent) {
1187                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1188        } else {
1189                struct xhci_root_port_bw_info *rh_bw;
1190                struct xhci_tt_bw_info *tt_bw;
1191
1192                rh_bw = &xhci->rh_bw[port_num - 1];
1193                /* Find the right TT. */
1194                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1195                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1196                                continue;
1197
1198                        if (!dev->udev->tt->multi ||
1199                                        (udev->tt->multi &&
1200                                         tt_bw->ttport == dev->udev->ttport)) {
1201                                dev->bw_table = &tt_bw->bw_table;
1202                                dev->tt_info = tt_bw;
1203                                break;
1204                        }
1205                }
1206                if (!dev->tt_info)
1207                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1208        }
1209
1210        /* Is this a LS/FS device under an external HS hub? */
1211        if (udev->tt && udev->tt->hub->parent) {
1212                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1213                                                (udev->ttport << 8));
1214                if (udev->tt->multi)
1215                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1216        }
1217        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1218        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1219
1220        /* Step 4 - ring already allocated */
1221        /* Step 5 */
1222        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1223
1224        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1225        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1226                                         max_packets);
1227
1228        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1229                                   dev->eps[0].ring->cycle_state);
1230
1231        trace_xhci_setup_addressable_virt_device(dev);
1232
1233        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1234
1235        return 0;
1236}
1237
1238/*
1239 * Convert interval expressed as 2^(bInterval - 1) == interval into
1240 * straight exponent value 2^n == interval.
1241 *
1242 */
1243static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1244                struct usb_host_endpoint *ep)
1245{
1246        unsigned int interval;
1247
1248        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1249        if (interval != ep->desc.bInterval - 1)
1250                dev_warn(&udev->dev,
1251                         "ep %#x - rounding interval to %d %sframes\n",
1252                         ep->desc.bEndpointAddress,
1253                         1 << interval,
1254                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1255
1256        if (udev->speed == USB_SPEED_FULL) {
1257                /*
1258                 * Full speed isoc endpoints specify interval in frames,
1259                 * not microframes. We are using microframes everywhere,
1260                 * so adjust accordingly.
1261                 */
1262                interval += 3;  /* 1 frame = 2^3 uframes */
1263        }
1264
1265        return interval;
1266}
1267
1268/*
1269 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1270 * microframes, rounded down to nearest power of 2.
1271 */
1272static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1273                struct usb_host_endpoint *ep, unsigned int desc_interval,
1274                unsigned int min_exponent, unsigned int max_exponent)
1275{
1276        unsigned int interval;
1277
1278        interval = fls(desc_interval) - 1;
1279        interval = clamp_val(interval, min_exponent, max_exponent);
1280        if ((1 << interval) != desc_interval)
1281                dev_dbg(&udev->dev,
1282                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1283                         ep->desc.bEndpointAddress,
1284                         1 << interval,
1285                         desc_interval);
1286
1287        return interval;
1288}
1289
1290static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1291                struct usb_host_endpoint *ep)
1292{
1293        if (ep->desc.bInterval == 0)
1294                return 0;
1295        return xhci_microframes_to_exponent(udev, ep,
1296                        ep->desc.bInterval, 0, 15);
1297}
1298
1299
1300static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1301                struct usb_host_endpoint *ep)
1302{
1303        return xhci_microframes_to_exponent(udev, ep,
1304                        ep->desc.bInterval * 8, 3, 10);
1305}
1306
1307/* Return the polling or NAK interval.
1308 *
1309 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1310 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1311 *
1312 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1313 * is set to 0.
1314 */
1315static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1316                struct usb_host_endpoint *ep)
1317{
1318        unsigned int interval = 0;
1319
1320        switch (udev->speed) {
1321        case USB_SPEED_HIGH:
1322                /* Max NAK rate */
1323                if (usb_endpoint_xfer_control(&ep->desc) ||
1324                    usb_endpoint_xfer_bulk(&ep->desc)) {
1325                        interval = xhci_parse_microframe_interval(udev, ep);
1326                        break;
1327                }
1328                fallthrough;    /* SS and HS isoc/int have same decoding */
1329
1330        case USB_SPEED_SUPER_PLUS:
1331        case USB_SPEED_SUPER:
1332                if (usb_endpoint_xfer_int(&ep->desc) ||
1333                    usb_endpoint_xfer_isoc(&ep->desc)) {
1334                        interval = xhci_parse_exponent_interval(udev, ep);
1335                }
1336                break;
1337
1338        case USB_SPEED_FULL:
1339                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1340                        interval = xhci_parse_exponent_interval(udev, ep);
1341                        break;
1342                }
1343                /*
1344                 * Fall through for interrupt endpoint interval decoding
1345                 * since it uses the same rules as low speed interrupt
1346                 * endpoints.
1347                 */
1348                fallthrough;
1349
1350        case USB_SPEED_LOW:
1351                if (usb_endpoint_xfer_int(&ep->desc) ||
1352                    usb_endpoint_xfer_isoc(&ep->desc)) {
1353
1354                        interval = xhci_parse_frame_interval(udev, ep);
1355                }
1356                break;
1357
1358        default:
1359                BUG();
1360        }
1361        return interval;
1362}
1363
1364/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1365 * High speed endpoint descriptors can define "the number of additional
1366 * transaction opportunities per microframe", but that goes in the Max Burst
1367 * endpoint context field.
1368 */
1369static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1370                struct usb_host_endpoint *ep)
1371{
1372        if (udev->speed < USB_SPEED_SUPER ||
1373                        !usb_endpoint_xfer_isoc(&ep->desc))
1374                return 0;
1375        return ep->ss_ep_comp.bmAttributes;
1376}
1377
1378static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1379                                       struct usb_host_endpoint *ep)
1380{
1381        /* Super speed and Plus have max burst in ep companion desc */
1382        if (udev->speed >= USB_SPEED_SUPER)
1383                return ep->ss_ep_comp.bMaxBurst;
1384
1385        if (udev->speed == USB_SPEED_HIGH &&
1386            (usb_endpoint_xfer_isoc(&ep->desc) ||
1387             usb_endpoint_xfer_int(&ep->desc)))
1388                return usb_endpoint_maxp_mult(&ep->desc) - 1;
1389
1390        return 0;
1391}
1392
1393static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1394{
1395        int in;
1396
1397        in = usb_endpoint_dir_in(&ep->desc);
1398
1399        switch (usb_endpoint_type(&ep->desc)) {
1400        case USB_ENDPOINT_XFER_CONTROL:
1401                return CTRL_EP;
1402        case USB_ENDPOINT_XFER_BULK:
1403                return in ? BULK_IN_EP : BULK_OUT_EP;
1404        case USB_ENDPOINT_XFER_ISOC:
1405                return in ? ISOC_IN_EP : ISOC_OUT_EP;
1406        case USB_ENDPOINT_XFER_INT:
1407                return in ? INT_IN_EP : INT_OUT_EP;
1408        }
1409        return 0;
1410}
1411
1412/* Return the maximum endpoint service interval time (ESIT) payload.
1413 * Basically, this is the maxpacket size, multiplied by the burst size
1414 * and mult size.
1415 */
1416static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1417                struct usb_host_endpoint *ep)
1418{
1419        int max_burst;
1420        int max_packet;
1421
1422        /* Only applies for interrupt or isochronous endpoints */
1423        if (usb_endpoint_xfer_control(&ep->desc) ||
1424                        usb_endpoint_xfer_bulk(&ep->desc))
1425                return 0;
1426
1427        /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1428        if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1429            USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1430                return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1431        /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1432        else if (udev->speed >= USB_SPEED_SUPER)
1433                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1434
1435        max_packet = usb_endpoint_maxp(&ep->desc);
1436        max_burst = usb_endpoint_maxp_mult(&ep->desc);
1437        /* A 0 in max burst means 1 transfer per ESIT */
1438        return max_packet * max_burst;
1439}
1440
1441/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1442 * Drivers will have to call usb_alloc_streams() to do that.
1443 */
1444int xhci_endpoint_init(struct xhci_hcd *xhci,
1445                struct xhci_virt_device *virt_dev,
1446                struct usb_device *udev,
1447                struct usb_host_endpoint *ep,
1448                gfp_t mem_flags)
1449{
1450        unsigned int ep_index;
1451        struct xhci_ep_ctx *ep_ctx;
1452        struct xhci_ring *ep_ring;
1453        unsigned int max_packet;
1454        enum xhci_ring_type ring_type;
1455        u32 max_esit_payload;
1456        u32 endpoint_type;
1457        unsigned int max_burst;
1458        unsigned int interval;
1459        unsigned int mult;
1460        unsigned int avg_trb_len;
1461        unsigned int err_count = 0;
1462
1463        ep_index = xhci_get_endpoint_index(&ep->desc);
1464        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1465
1466        endpoint_type = xhci_get_endpoint_type(ep);
1467        if (!endpoint_type)
1468                return -EINVAL;
1469
1470        ring_type = usb_endpoint_type(&ep->desc);
1471
1472        /*
1473         * Get values to fill the endpoint context, mostly from ep descriptor.
1474         * The average TRB buffer lengt for bulk endpoints is unclear as we
1475         * have no clue on scatter gather list entry size. For Isoc and Int,
1476         * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1477         */
1478        max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1479        interval = xhci_get_endpoint_interval(udev, ep);
1480
1481        /* Periodic endpoint bInterval limit quirk */
1482        if (usb_endpoint_xfer_int(&ep->desc) ||
1483            usb_endpoint_xfer_isoc(&ep->desc)) {
1484                if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1485                    udev->speed >= USB_SPEED_HIGH &&
1486                    interval >= 7) {
1487                        interval = 6;
1488                }
1489        }
1490
1491        mult = xhci_get_endpoint_mult(udev, ep);
1492        max_packet = usb_endpoint_maxp(&ep->desc);
1493        max_burst = xhci_get_endpoint_max_burst(udev, ep);
1494        avg_trb_len = max_esit_payload;
1495
1496        /* FIXME dig Mult and streams info out of ep companion desc */
1497
1498        /* Allow 3 retries for everything but isoc, set CErr = 3 */
1499        if (!usb_endpoint_xfer_isoc(&ep->desc))
1500                err_count = 3;
1501        /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1502        if (usb_endpoint_xfer_bulk(&ep->desc)) {
1503                if (udev->speed == USB_SPEED_HIGH)
1504                        max_packet = 512;
1505                if (udev->speed == USB_SPEED_FULL) {
1506                        max_packet = rounddown_pow_of_two(max_packet);
1507                        max_packet = clamp_val(max_packet, 8, 64);
1508                }
1509        }
1510        /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1511        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1512                avg_trb_len = 8;
1513        /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1514        if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1515                mult = 0;
1516
1517        /* Set up the endpoint ring */
1518        virt_dev->eps[ep_index].new_ring =
1519                xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1520        if (!virt_dev->eps[ep_index].new_ring)
1521                return -ENOMEM;
1522
1523        virt_dev->eps[ep_index].skip = false;
1524        ep_ring = virt_dev->eps[ep_index].new_ring;
1525
1526        /* Fill the endpoint context */
1527        ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1528                                      EP_INTERVAL(interval) |
1529                                      EP_MULT(mult));
1530        ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1531                                       MAX_PACKET(max_packet) |
1532                                       MAX_BURST(max_burst) |
1533                                       ERROR_COUNT(err_count));
1534        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1535                                  ep_ring->cycle_state);
1536
1537        ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1538                                      EP_AVG_TRB_LENGTH(avg_trb_len));
1539
1540        return 0;
1541}
1542
1543void xhci_endpoint_zero(struct xhci_hcd *xhci,
1544                struct xhci_virt_device *virt_dev,
1545                struct usb_host_endpoint *ep)
1546{
1547        unsigned int ep_index;
1548        struct xhci_ep_ctx *ep_ctx;
1549
1550        ep_index = xhci_get_endpoint_index(&ep->desc);
1551        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1552
1553        ep_ctx->ep_info = 0;
1554        ep_ctx->ep_info2 = 0;
1555        ep_ctx->deq = 0;
1556        ep_ctx->tx_info = 0;
1557        /* Don't free the endpoint ring until the set interface or configuration
1558         * request succeeds.
1559         */
1560}
1561
1562void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1563{
1564        bw_info->ep_interval = 0;
1565        bw_info->mult = 0;
1566        bw_info->num_packets = 0;
1567        bw_info->max_packet_size = 0;
1568        bw_info->type = 0;
1569        bw_info->max_esit_payload = 0;
1570}
1571
1572void xhci_update_bw_info(struct xhci_hcd *xhci,
1573                struct xhci_container_ctx *in_ctx,
1574                struct xhci_input_control_ctx *ctrl_ctx,
1575                struct xhci_virt_device *virt_dev)
1576{
1577        struct xhci_bw_info *bw_info;
1578        struct xhci_ep_ctx *ep_ctx;
1579        unsigned int ep_type;
1580        int i;
1581
1582        for (i = 1; i < 31; i++) {
1583                bw_info = &virt_dev->eps[i].bw_info;
1584
1585                /* We can't tell what endpoint type is being dropped, but
1586                 * unconditionally clearing the bandwidth info for non-periodic
1587                 * endpoints should be harmless because the info will never be
1588                 * set in the first place.
1589                 */
1590                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1591                        /* Dropped endpoint */
1592                        xhci_clear_endpoint_bw_info(bw_info);
1593                        continue;
1594                }
1595
1596                if (EP_IS_ADDED(ctrl_ctx, i)) {
1597                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1598                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1599
1600                        /* Ignore non-periodic endpoints */
1601                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1602                                        ep_type != ISOC_IN_EP &&
1603                                        ep_type != INT_IN_EP)
1604                                continue;
1605
1606                        /* Added or changed endpoint */
1607                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1608                                        le32_to_cpu(ep_ctx->ep_info));
1609                        /* Number of packets and mult are zero-based in the
1610                         * input context, but we want one-based for the
1611                         * interval table.
1612                         */
1613                        bw_info->mult = CTX_TO_EP_MULT(
1614                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1615                        bw_info->num_packets = CTX_TO_MAX_BURST(
1616                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1617                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1618                                        le32_to_cpu(ep_ctx->ep_info2));
1619                        bw_info->type = ep_type;
1620                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1621                                        le32_to_cpu(ep_ctx->tx_info));
1622                }
1623        }
1624}
1625
1626/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1627 * Useful when you want to change one particular aspect of the endpoint and then
1628 * issue a configure endpoint command.
1629 */
1630void xhci_endpoint_copy(struct xhci_hcd *xhci,
1631                struct xhci_container_ctx *in_ctx,
1632                struct xhci_container_ctx *out_ctx,
1633                unsigned int ep_index)
1634{
1635        struct xhci_ep_ctx *out_ep_ctx;
1636        struct xhci_ep_ctx *in_ep_ctx;
1637
1638        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1639        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1640
1641        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1642        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1643        in_ep_ctx->deq = out_ep_ctx->deq;
1644        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1645        if (xhci->quirks & XHCI_MTK_HOST) {
1646                in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1647                in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1648        }
1649}
1650
1651/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1652 * Useful when you want to change one particular aspect of the endpoint and then
1653 * issue a configure endpoint command.  Only the context entries field matters,
1654 * but we'll copy the whole thing anyway.
1655 */
1656void xhci_slot_copy(struct xhci_hcd *xhci,
1657                struct xhci_container_ctx *in_ctx,
1658                struct xhci_container_ctx *out_ctx)
1659{
1660        struct xhci_slot_ctx *in_slot_ctx;
1661        struct xhci_slot_ctx *out_slot_ctx;
1662
1663        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1664        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1665
1666        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1667        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1668        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1669        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1670}
1671
1672/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1673static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1674{
1675        int i;
1676        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1677        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1678
1679        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1680                        "Allocating %d scratchpad buffers", num_sp);
1681
1682        if (!num_sp)
1683                return 0;
1684
1685        xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1686                                dev_to_node(dev));
1687        if (!xhci->scratchpad)
1688                goto fail_sp;
1689
1690        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1691                                     num_sp * sizeof(u64),
1692                                     &xhci->scratchpad->sp_dma, flags);
1693        if (!xhci->scratchpad->sp_array)
1694                goto fail_sp2;
1695
1696        xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1697                                        flags, dev_to_node(dev));
1698        if (!xhci->scratchpad->sp_buffers)
1699                goto fail_sp3;
1700
1701        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1702        for (i = 0; i < num_sp; i++) {
1703                dma_addr_t dma;
1704                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1705                                               flags);
1706                if (!buf)
1707                        goto fail_sp4;
1708
1709                xhci->scratchpad->sp_array[i] = dma;
1710                xhci->scratchpad->sp_buffers[i] = buf;
1711        }
1712
1713        return 0;
1714
1715 fail_sp4:
1716        for (i = i - 1; i >= 0; i--) {
1717                dma_free_coherent(dev, xhci->page_size,
1718                                    xhci->scratchpad->sp_buffers[i],
1719                                    xhci->scratchpad->sp_array[i]);
1720        }
1721
1722        kfree(xhci->scratchpad->sp_buffers);
1723
1724 fail_sp3:
1725        dma_free_coherent(dev, num_sp * sizeof(u64),
1726                            xhci->scratchpad->sp_array,
1727                            xhci->scratchpad->sp_dma);
1728
1729 fail_sp2:
1730        kfree(xhci->scratchpad);
1731        xhci->scratchpad = NULL;
1732
1733 fail_sp:
1734        return -ENOMEM;
1735}
1736
1737static void scratchpad_free(struct xhci_hcd *xhci)
1738{
1739        int num_sp;
1740        int i;
1741        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1742
1743        if (!xhci->scratchpad)
1744                return;
1745
1746        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1747
1748        for (i = 0; i < num_sp; i++) {
1749                dma_free_coherent(dev, xhci->page_size,
1750                                    xhci->scratchpad->sp_buffers[i],
1751                                    xhci->scratchpad->sp_array[i]);
1752        }
1753        kfree(xhci->scratchpad->sp_buffers);
1754        dma_free_coherent(dev, num_sp * sizeof(u64),
1755                            xhci->scratchpad->sp_array,
1756                            xhci->scratchpad->sp_dma);
1757        kfree(xhci->scratchpad);
1758        xhci->scratchpad = NULL;
1759}
1760
1761struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1762                bool allocate_completion, gfp_t mem_flags)
1763{
1764        struct xhci_command *command;
1765        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1766
1767        command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1768        if (!command)
1769                return NULL;
1770
1771        if (allocate_completion) {
1772                command->completion =
1773                        kzalloc_node(sizeof(struct completion), mem_flags,
1774                                dev_to_node(dev));
1775                if (!command->completion) {
1776                        kfree(command);
1777                        return NULL;
1778                }
1779                init_completion(command->completion);
1780        }
1781
1782        command->status = 0;
1783        INIT_LIST_HEAD(&command->cmd_list);
1784        return command;
1785}
1786
1787struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1788                bool allocate_completion, gfp_t mem_flags)
1789{
1790        struct xhci_command *command;
1791
1792        command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1793        if (!command)
1794                return NULL;
1795
1796        command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1797                                                   mem_flags);
1798        if (!command->in_ctx) {
1799                kfree(command->completion);
1800                kfree(command);
1801                return NULL;
1802        }
1803        return command;
1804}
1805
1806void xhci_urb_free_priv(struct urb_priv *urb_priv)
1807{
1808        kfree(urb_priv);
1809}
1810
1811void xhci_free_command(struct xhci_hcd *xhci,
1812                struct xhci_command *command)
1813{
1814        xhci_free_container_ctx(xhci,
1815                        command->in_ctx);
1816        kfree(command->completion);
1817        kfree(command);
1818}
1819
1820int xhci_alloc_erst(struct xhci_hcd *xhci,
1821                    struct xhci_ring *evt_ring,
1822                    struct xhci_erst *erst,
1823                    gfp_t flags)
1824{
1825        size_t size;
1826        unsigned int val;
1827        struct xhci_segment *seg;
1828        struct xhci_erst_entry *entry;
1829
1830        size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1831        erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1832                                           size, &erst->erst_dma_addr, flags);
1833        if (!erst->entries)
1834                return -ENOMEM;
1835
1836        erst->num_entries = evt_ring->num_segs;
1837
1838        seg = evt_ring->first_seg;
1839        for (val = 0; val < evt_ring->num_segs; val++) {
1840                entry = &erst->entries[val];
1841                entry->seg_addr = cpu_to_le64(seg->dma);
1842                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1843                entry->rsvd = 0;
1844                seg = seg->next;
1845        }
1846
1847        return 0;
1848}
1849
1850void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1851{
1852        size_t size;
1853        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1854
1855        size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1856        if (erst->entries)
1857                dma_free_coherent(dev, size,
1858                                erst->entries,
1859                                erst->erst_dma_addr);
1860        erst->entries = NULL;
1861}
1862
1863void xhci_mem_cleanup(struct xhci_hcd *xhci)
1864{
1865        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1866        int i, j, num_ports;
1867
1868        cancel_delayed_work_sync(&xhci->cmd_timer);
1869
1870        xhci_free_erst(xhci, &xhci->erst);
1871
1872        if (xhci->event_ring)
1873                xhci_ring_free(xhci, xhci->event_ring);
1874        xhci->event_ring = NULL;
1875        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1876
1877        if (xhci->lpm_command)
1878                xhci_free_command(xhci, xhci->lpm_command);
1879        xhci->lpm_command = NULL;
1880        if (xhci->cmd_ring)
1881                xhci_ring_free(xhci, xhci->cmd_ring);
1882        xhci->cmd_ring = NULL;
1883        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1884        xhci_cleanup_command_queue(xhci);
1885
1886        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1887        for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1888                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1889                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1890                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1891                        while (!list_empty(ep))
1892                                list_del_init(ep->next);
1893                }
1894        }
1895
1896        for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1897                xhci_free_virt_devices_depth_first(xhci, i);
1898
1899        dma_pool_destroy(xhci->segment_pool);
1900        xhci->segment_pool = NULL;
1901        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1902
1903        dma_pool_destroy(xhci->device_pool);
1904        xhci->device_pool = NULL;
1905        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1906
1907        dma_pool_destroy(xhci->small_streams_pool);
1908        xhci->small_streams_pool = NULL;
1909        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1910                        "Freed small stream array pool");
1911
1912        dma_pool_destroy(xhci->medium_streams_pool);
1913        xhci->medium_streams_pool = NULL;
1914        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1915                        "Freed medium stream array pool");
1916
1917        if (xhci->dcbaa)
1918                dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1919                                xhci->dcbaa, xhci->dcbaa->dma);
1920        xhci->dcbaa = NULL;
1921
1922        scratchpad_free(xhci);
1923
1924        if (!xhci->rh_bw)
1925                goto no_bw;
1926
1927        for (i = 0; i < num_ports; i++) {
1928                struct xhci_tt_bw_info *tt, *n;
1929                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1930                        list_del(&tt->tt_list);
1931                        kfree(tt);
1932                }
1933        }
1934
1935no_bw:
1936        xhci->cmd_ring_reserved_trbs = 0;
1937        xhci->usb2_rhub.num_ports = 0;
1938        xhci->usb3_rhub.num_ports = 0;
1939        xhci->num_active_eps = 0;
1940        kfree(xhci->usb2_rhub.ports);
1941        kfree(xhci->usb3_rhub.ports);
1942        kfree(xhci->hw_ports);
1943        kfree(xhci->rh_bw);
1944        kfree(xhci->ext_caps);
1945        for (i = 0; i < xhci->num_port_caps; i++)
1946                kfree(xhci->port_caps[i].psi);
1947        kfree(xhci->port_caps);
1948        xhci->num_port_caps = 0;
1949
1950        xhci->usb2_rhub.ports = NULL;
1951        xhci->usb3_rhub.ports = NULL;
1952        xhci->hw_ports = NULL;
1953        xhci->rh_bw = NULL;
1954        xhci->ext_caps = NULL;
1955
1956        xhci->page_size = 0;
1957        xhci->page_shift = 0;
1958        xhci->usb2_rhub.bus_state.bus_suspended = 0;
1959        xhci->usb3_rhub.bus_state.bus_suspended = 0;
1960}
1961
1962static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1963                struct xhci_segment *input_seg,
1964                union xhci_trb *start_trb,
1965                union xhci_trb *end_trb,
1966                dma_addr_t input_dma,
1967                struct xhci_segment *result_seg,
1968                char *test_name, int test_number)
1969{
1970        unsigned long long start_dma;
1971        unsigned long long end_dma;
1972        struct xhci_segment *seg;
1973
1974        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1975        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1976
1977        seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1978        if (seg != result_seg) {
1979                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1980                                test_name, test_number);
1981                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1982                                "input DMA 0x%llx\n",
1983                                input_seg,
1984                                (unsigned long long) input_dma);
1985                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1986                                "ending TRB %p (0x%llx DMA)\n",
1987                                start_trb, start_dma,
1988                                end_trb, end_dma);
1989                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1990                                result_seg, seg);
1991                trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1992                          true);
1993                return -1;
1994        }
1995        return 0;
1996}
1997
1998/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1999static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2000{
2001        struct {
2002                dma_addr_t              input_dma;
2003                struct xhci_segment     *result_seg;
2004        } simple_test_vector [] = {
2005                /* A zeroed DMA field should fail */
2006                { 0, NULL },
2007                /* One TRB before the ring start should fail */
2008                { xhci->event_ring->first_seg->dma - 16, NULL },
2009                /* One byte before the ring start should fail */
2010                { xhci->event_ring->first_seg->dma - 1, NULL },
2011                /* Starting TRB should succeed */
2012                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2013                /* Ending TRB should succeed */
2014                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2015                        xhci->event_ring->first_seg },
2016                /* One byte after the ring end should fail */
2017                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2018                /* One TRB after the ring end should fail */
2019                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2020                /* An address of all ones should fail */
2021                { (dma_addr_t) (~0), NULL },
2022        };
2023        struct {
2024                struct xhci_segment     *input_seg;
2025                union xhci_trb          *start_trb;
2026                union xhci_trb          *end_trb;
2027                dma_addr_t              input_dma;
2028                struct xhci_segment     *result_seg;
2029        } complex_test_vector [] = {
2030                /* Test feeding a valid DMA address from a different ring */
2031                {       .input_seg = xhci->event_ring->first_seg,
2032                        .start_trb = xhci->event_ring->first_seg->trbs,
2033                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034                        .input_dma = xhci->cmd_ring->first_seg->dma,
2035                        .result_seg = NULL,
2036                },
2037                /* Test feeding a valid end TRB from a different ring */
2038                {       .input_seg = xhci->event_ring->first_seg,
2039                        .start_trb = xhci->event_ring->first_seg->trbs,
2040                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2041                        .input_dma = xhci->cmd_ring->first_seg->dma,
2042                        .result_seg = NULL,
2043                },
2044                /* Test feeding a valid start and end TRB from a different ring */
2045                {       .input_seg = xhci->event_ring->first_seg,
2046                        .start_trb = xhci->cmd_ring->first_seg->trbs,
2047                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048                        .input_dma = xhci->cmd_ring->first_seg->dma,
2049                        .result_seg = NULL,
2050                },
2051                /* TRB in this ring, but after this TD */
2052                {       .input_seg = xhci->event_ring->first_seg,
2053                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
2054                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
2055                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2056                        .result_seg = NULL,
2057                },
2058                /* TRB in this ring, but before this TD */
2059                {       .input_seg = xhci->event_ring->first_seg,
2060                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
2061                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
2062                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2063                        .result_seg = NULL,
2064                },
2065                /* TRB in this ring, but after this wrapped TD */
2066                {       .input_seg = xhci->event_ring->first_seg,
2067                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2070                        .result_seg = NULL,
2071                },
2072                /* TRB in this ring, but before this wrapped TD */
2073                {       .input_seg = xhci->event_ring->first_seg,
2074                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2075                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2076                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2077                        .result_seg = NULL,
2078                },
2079                /* TRB not in this ring, and we have a wrapped TD */
2080                {       .input_seg = xhci->event_ring->first_seg,
2081                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2082                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2083                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2084                        .result_seg = NULL,
2085                },
2086        };
2087
2088        unsigned int num_tests;
2089        int i, ret;
2090
2091        num_tests = ARRAY_SIZE(simple_test_vector);
2092        for (i = 0; i < num_tests; i++) {
2093                ret = xhci_test_trb_in_td(xhci,
2094                                xhci->event_ring->first_seg,
2095                                xhci->event_ring->first_seg->trbs,
2096                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2097                                simple_test_vector[i].input_dma,
2098                                simple_test_vector[i].result_seg,
2099                                "Simple", i);
2100                if (ret < 0)
2101                        return ret;
2102        }
2103
2104        num_tests = ARRAY_SIZE(complex_test_vector);
2105        for (i = 0; i < num_tests; i++) {
2106                ret = xhci_test_trb_in_td(xhci,
2107                                complex_test_vector[i].input_seg,
2108                                complex_test_vector[i].start_trb,
2109                                complex_test_vector[i].end_trb,
2110                                complex_test_vector[i].input_dma,
2111                                complex_test_vector[i].result_seg,
2112                                "Complex", i);
2113                if (ret < 0)
2114                        return ret;
2115        }
2116        xhci_dbg(xhci, "TRB math tests passed.\n");
2117        return 0;
2118}
2119
2120static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2121{
2122        u64 temp;
2123        dma_addr_t deq;
2124
2125        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2126                        xhci->event_ring->dequeue);
2127        if (deq == 0 && !in_interrupt())
2128                xhci_warn(xhci, "WARN something wrong with SW event ring "
2129                                "dequeue ptr.\n");
2130        /* Update HC event ring dequeue pointer */
2131        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2132        temp &= ERST_PTR_MASK;
2133        /* Don't clear the EHB bit (which is RW1C) because
2134         * there might be more events to service.
2135         */
2136        temp &= ~ERST_EHB;
2137        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138                        "// Write event ring dequeue pointer, "
2139                        "preserving EHB bit");
2140        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2141                        &xhci->ir_set->erst_dequeue);
2142}
2143
2144static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2145                __le32 __iomem *addr, int max_caps)
2146{
2147        u32 temp, port_offset, port_count;
2148        int i;
2149        u8 major_revision, minor_revision;
2150        struct xhci_hub *rhub;
2151        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2152        struct xhci_port_cap *port_cap;
2153
2154        temp = readl(addr);
2155        major_revision = XHCI_EXT_PORT_MAJOR(temp);
2156        minor_revision = XHCI_EXT_PORT_MINOR(temp);
2157
2158        if (major_revision == 0x03) {
2159                rhub = &xhci->usb3_rhub;
2160        } else if (major_revision <= 0x02) {
2161                rhub = &xhci->usb2_rhub;
2162        } else {
2163                xhci_warn(xhci, "Ignoring unknown port speed, "
2164                                "Ext Cap %p, revision = 0x%x\n",
2165                                addr, major_revision);
2166                /* Ignoring port protocol we can't understand. FIXME */
2167                return;
2168        }
2169        rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2170
2171        if (rhub->min_rev < minor_revision)
2172                rhub->min_rev = minor_revision;
2173
2174        /* Port offset and count in the third dword, see section 7.2 */
2175        temp = readl(addr + 2);
2176        port_offset = XHCI_EXT_PORT_OFF(temp);
2177        port_count = XHCI_EXT_PORT_COUNT(temp);
2178        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2179                        "Ext Cap %p, port offset = %u, "
2180                        "count = %u, revision = 0x%x",
2181                        addr, port_offset, port_count, major_revision);
2182        /* Port count includes the current port offset */
2183        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2184                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2185                return;
2186
2187        port_cap = &xhci->port_caps[xhci->num_port_caps++];
2188        if (xhci->num_port_caps > max_caps)
2189                return;
2190
2191        port_cap->maj_rev = major_revision;
2192        port_cap->min_rev = minor_revision;
2193        port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2194
2195        if (port_cap->psi_count) {
2196                port_cap->psi = kcalloc_node(port_cap->psi_count,
2197                                             sizeof(*port_cap->psi),
2198                                             GFP_KERNEL, dev_to_node(dev));
2199                if (!port_cap->psi)
2200                        port_cap->psi_count = 0;
2201
2202                port_cap->psi_uid_count++;
2203                for (i = 0; i < port_cap->psi_count; i++) {
2204                        port_cap->psi[i] = readl(addr + 4 + i);
2205
2206                        /* count unique ID values, two consecutive entries can
2207                         * have the same ID if link is assymetric
2208                         */
2209                        if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2210                                  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2211                                port_cap->psi_uid_count++;
2212
2213                        xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2214                                  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2215                                  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2216                                  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2217                                  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2218                                  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2219                                  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2220                }
2221        }
2222        /* cache usb2 port capabilities */
2223        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2224                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2225
2226        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2227                 (temp & XHCI_HLC)) {
2228                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2229                               "xHCI 1.0: support USB2 hardware lpm");
2230                xhci->hw_lpm_support = 1;
2231        }
2232
2233        port_offset--;
2234        for (i = port_offset; i < (port_offset + port_count); i++) {
2235                struct xhci_port *hw_port = &xhci->hw_ports[i];
2236                /* Duplicate entry.  Ignore the port if the revisions differ. */
2237                if (hw_port->rhub) {
2238                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2239                                        " port %u\n", addr, i);
2240                        xhci_warn(xhci, "Port was marked as USB %u, "
2241                                        "duplicated as USB %u\n",
2242                                        hw_port->rhub->maj_rev, major_revision);
2243                        /* Only adjust the roothub port counts if we haven't
2244                         * found a similar duplicate.
2245                         */
2246                        if (hw_port->rhub != rhub &&
2247                                 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2248                                hw_port->rhub->num_ports--;
2249                                hw_port->hcd_portnum = DUPLICATE_ENTRY;
2250                        }
2251                        continue;
2252                }
2253                hw_port->rhub = rhub;
2254                hw_port->port_cap = port_cap;
2255                rhub->num_ports++;
2256        }
2257        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2258}
2259
2260static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2261                                        struct xhci_hub *rhub, gfp_t flags)
2262{
2263        int port_index = 0;
2264        int i;
2265        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2266
2267        if (!rhub->num_ports)
2268                return;
2269        rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2270                        flags, dev_to_node(dev));
2271        for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2272                if (xhci->hw_ports[i].rhub != rhub ||
2273                    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2274                        continue;
2275                xhci->hw_ports[i].hcd_portnum = port_index;
2276                rhub->ports[port_index] = &xhci->hw_ports[i];
2277                port_index++;
2278                if (port_index == rhub->num_ports)
2279                        break;
2280        }
2281}
2282
2283/*
2284 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2285 * specify what speeds each port is supposed to be.  We can't count on the port
2286 * speed bits in the PORTSC register being correct until a device is connected,
2287 * but we need to set up the two fake roothubs with the correct number of USB
2288 * 3.0 and USB 2.0 ports at host controller initialization time.
2289 */
2290static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2291{
2292        void __iomem *base;
2293        u32 offset;
2294        unsigned int num_ports;
2295        int i, j;
2296        int cap_count = 0;
2297        u32 cap_start;
2298        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2299
2300        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2301        xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2302                                flags, dev_to_node(dev));
2303        if (!xhci->hw_ports)
2304                return -ENOMEM;
2305
2306        for (i = 0; i < num_ports; i++) {
2307                xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2308                        NUM_PORT_REGS * i;
2309                xhci->hw_ports[i].hw_portnum = i;
2310        }
2311
2312        xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2313                                   dev_to_node(dev));
2314        if (!xhci->rh_bw)
2315                return -ENOMEM;
2316        for (i = 0; i < num_ports; i++) {
2317                struct xhci_interval_bw_table *bw_table;
2318
2319                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2320                bw_table = &xhci->rh_bw[i].bw_table;
2321                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2322                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2323        }
2324        base = &xhci->cap_regs->hc_capbase;
2325
2326        cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2327        if (!cap_start) {
2328                xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2329                return -ENODEV;
2330        }
2331
2332        offset = cap_start;
2333        /* count extended protocol capability entries for later caching */
2334        while (offset) {
2335                cap_count++;
2336                offset = xhci_find_next_ext_cap(base, offset,
2337                                                      XHCI_EXT_CAPS_PROTOCOL);
2338        }
2339
2340        xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2341                                flags, dev_to_node(dev));
2342        if (!xhci->ext_caps)
2343                return -ENOMEM;
2344
2345        xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2346                                flags, dev_to_node(dev));
2347        if (!xhci->port_caps)
2348                return -ENOMEM;
2349
2350        offset = cap_start;
2351
2352        while (offset) {
2353                xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2354                if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2355                    num_ports)
2356                        break;
2357                offset = xhci_find_next_ext_cap(base, offset,
2358                                                XHCI_EXT_CAPS_PROTOCOL);
2359        }
2360        if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2361                xhci_warn(xhci, "No ports on the roothubs?\n");
2362                return -ENODEV;
2363        }
2364        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365                       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2366                       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2367
2368        /* Place limits on the number of roothub ports so that the hub
2369         * descriptors aren't longer than the USB core will allocate.
2370         */
2371        if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2372                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2373                                "Limiting USB 3.0 roothub ports to %u.",
2374                                USB_SS_MAXPORTS);
2375                xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2376        }
2377        if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2378                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379                                "Limiting USB 2.0 roothub ports to %u.",
2380                                USB_MAXCHILDREN);
2381                xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2382        }
2383
2384        /*
2385         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2386         * Not sure how the USB core will handle a hub with no ports...
2387         */
2388
2389        xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2390        xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2391
2392        return 0;
2393}
2394
2395int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2396{
2397        dma_addr_t      dma;
2398        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2399        unsigned int    val, val2;
2400        u64             val_64;
2401        u32             page_size, temp;
2402        int             i, ret;
2403
2404        INIT_LIST_HEAD(&xhci->cmd_list);
2405
2406        /* init command timeout work */
2407        INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2408        init_completion(&xhci->cmd_ring_stop_completion);
2409
2410        page_size = readl(&xhci->op_regs->page_size);
2411        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                        "Supported page size register = 0x%x", page_size);
2413        for (i = 0; i < 16; i++) {
2414                if ((0x1 & page_size) != 0)
2415                        break;
2416                page_size = page_size >> 1;
2417        }
2418        if (i < 16)
2419                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2421        else
2422                xhci_warn(xhci, "WARN: no supported page size\n");
2423        /* Use 4K pages, since that's common and the minimum the HC supports */
2424        xhci->page_shift = 12;
2425        xhci->page_size = 1 << xhci->page_shift;
2426        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427                        "HCD page size set to %iK", xhci->page_size / 1024);
2428
2429        /*
2430         * Program the Number of Device Slots Enabled field in the CONFIG
2431         * register with the max value of slots the HC can handle.
2432         */
2433        val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435                        "// xHC can handle at most %d device slots.", val);
2436        val2 = readl(&xhci->op_regs->config_reg);
2437        val |= (val2 & ~HCS_SLOTS_MASK);
2438        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439                        "// Setting Max device slots reg = 0x%x.", val);
2440        writel(val, &xhci->op_regs->config_reg);
2441
2442        /*
2443         * xHCI section 5.4.6 - doorbell array must be
2444         * "physically contiguous and 64-byte (cache line) aligned".
2445         */
2446        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447                        flags);
2448        if (!xhci->dcbaa)
2449                goto fail;
2450        xhci->dcbaa->dma = dma;
2451        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2453                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2454        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456        /*
2457         * Initialize the ring segment pool.  The ring must be a contiguous
2458         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459         * however, the command ring segment needs 64-byte aligned segments
2460         * and our use of dma addresses in the trb_address_map radix tree needs
2461         * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462         */
2463        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2464                        TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2465
2466        /* See Table 46 and Note on Figure 55 */
2467        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2468                        2112, 64, xhci->page_size);
2469        if (!xhci->segment_pool || !xhci->device_pool)
2470                goto fail;
2471
2472        /* Linear stream context arrays don't have any boundary restrictions,
2473         * and only need to be 16-byte aligned.
2474         */
2475        xhci->small_streams_pool =
2476                dma_pool_create("xHCI 256 byte stream ctx arrays",
2477                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2478        xhci->medium_streams_pool =
2479                dma_pool_create("xHCI 1KB stream ctx arrays",
2480                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2481        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2482         * will be allocated with dma_alloc_coherent()
2483         */
2484
2485        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2486                goto fail;
2487
2488        /* Set up the command ring to have one segments for now. */
2489        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2490        if (!xhci->cmd_ring)
2491                goto fail;
2492        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2493                        "Allocated command ring at %p", xhci->cmd_ring);
2494        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2495                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2496
2497        /* Set the address in the Command Ring Control register */
2498        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2499        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2500                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2501                xhci->cmd_ring->cycle_state;
2502        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503                        "// Setting command ring address to 0x%016llx", val_64);
2504        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2505
2506        xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2507        if (!xhci->lpm_command)
2508                goto fail;
2509
2510        /* Reserve one command ring TRB for disabling LPM.
2511         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512         * disabling LPM, we only need to reserve one TRB for all devices.
2513         */
2514        xhci->cmd_ring_reserved_trbs++;
2515
2516        val = readl(&xhci->cap_regs->db_off);
2517        val &= DBOFF_MASK;
2518        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519                        "// Doorbell array is located at offset 0x%x"
2520                        " from cap regs base addr", val);
2521        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2522        /* Set ir_set to interrupt register set 0 */
2523        xhci->ir_set = &xhci->run_regs->ir_set[0];
2524
2525        /*
2526         * Event ring setup: Allocate a normal ring, but also setup
2527         * the event ring segment table (ERST).  Section 4.9.3.
2528         */
2529        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2530        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2531                                        0, flags);
2532        if (!xhci->event_ring)
2533                goto fail;
2534        if (xhci_check_trb_in_td_math(xhci) < 0)
2535                goto fail;
2536
2537        ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2538        if (ret)
2539                goto fail;
2540
2541        /* set ERST count with the number of entries in the segment table */
2542        val = readl(&xhci->ir_set->erst_size);
2543        val &= ERST_SIZE_MASK;
2544        val |= ERST_NUM_SEGS;
2545        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2546                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2547                        val);
2548        writel(val, &xhci->ir_set->erst_size);
2549
2550        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2551                        "// Set ERST entries to point to event ring.");
2552        /* set the segment table base address */
2553        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554                        "// Set ERST base address for ir_set 0 = 0x%llx",
2555                        (unsigned long long)xhci->erst.erst_dma_addr);
2556        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2557        val_64 &= ERST_PTR_MASK;
2558        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2559        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2560
2561        /* Set the event ring dequeue address */
2562        xhci_set_hc_event_deq(xhci);
2563        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2564                        "Wrote ERST address to ir_set 0.");
2565
2566        /*
2567         * XXX: Might need to set the Interrupter Moderation Register to
2568         * something other than the default (~1ms minimum between interrupts).
2569         * See section 5.5.1.2.
2570         */
2571        for (i = 0; i < MAX_HC_SLOTS; i++)
2572                xhci->devs[i] = NULL;
2573        for (i = 0; i < USB_MAXCHILDREN; i++) {
2574                xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2575                xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2576                /* Only the USB 2.0 completions will ever be used. */
2577                init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2578                init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2579        }
2580
2581        if (scratchpad_alloc(xhci, flags))
2582                goto fail;
2583        if (xhci_setup_port_arrays(xhci, flags))
2584                goto fail;
2585
2586        /* Enable USB 3.0 device notifications for function remote wake, which
2587         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2588         * U3 (device suspend).
2589         */
2590        temp = readl(&xhci->op_regs->dev_notification);
2591        temp &= ~DEV_NOTE_MASK;
2592        temp |= DEV_NOTE_FWAKE;
2593        writel(temp, &xhci->op_regs->dev_notification);
2594
2595        return 0;
2596
2597fail:
2598        xhci_halt(xhci);
2599        xhci_reset(xhci);
2600        xhci_mem_cleanup(xhci);
2601        return -ENOMEM;
2602}
2603