linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "locking.h"
  18#include "tree-log.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "dev-replace.h"
  22#include "qgroup.h"
  23#include "block-group.h"
  24#include "space-info.h"
  25
  26#define BTRFS_ROOT_TRANS_TAG 0
  27
  28/*
  29 * Transaction states and transitions
  30 *
  31 * No running transaction (fs tree blocks are not modified)
  32 * |
  33 * | To next stage:
  34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  35 * V
  36 * Transaction N [[TRANS_STATE_RUNNING]]
  37 * |
  38 * | New trans handles can be attached to transaction N by calling all
  39 * | start_transaction() variants.
  40 * |
  41 * | To next stage:
  42 * |  Call btrfs_commit_transaction() on any trans handle attached to
  43 * |  transaction N
  44 * V
  45 * Transaction N [[TRANS_STATE_COMMIT_START]]
  46 * |
  47 * | Will wait for previous running transaction to completely finish if there
  48 * | is one
  49 * |
  50 * | Then one of the following happes:
  51 * | - Wait for all other trans handle holders to release.
  52 * |   The btrfs_commit_transaction() caller will do the commit work.
  53 * | - Wait for current transaction to be committed by others.
  54 * |   Other btrfs_commit_transaction() caller will do the commit work.
  55 * |
  56 * | At this stage, only btrfs_join_transaction*() variants can attach
  57 * | to this running transaction.
  58 * | All other variants will wait for current one to finish and attach to
  59 * | transaction N+1.
  60 * |
  61 * | To next stage:
  62 * |  Caller is chosen to commit transaction N, and all other trans handle
  63 * |  haven been released.
  64 * V
  65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  66 * |
  67 * | The heavy lifting transaction work is started.
  68 * | From running delayed refs (modifying extent tree) to creating pending
  69 * | snapshots, running qgroups.
  70 * | In short, modify supporting trees to reflect modifications of subvolume
  71 * | trees.
  72 * |
  73 * | At this stage, all start_transaction() calls will wait for this
  74 * | transaction to finish and attach to transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Until all supporting trees are updated.
  78 * V
  79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  80 * |                                                Transaction N+1
  81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  82 * | need to write them back to disk and update     |
  83 * | super blocks.                                  |
  84 * |                                                |
  85 * | At this stage, new transaction is allowed to   |
  86 * | start.                                         |
  87 * | All new start_transaction() calls will be      |
  88 * | attached to transid N+1.                       |
  89 * |                                                |
  90 * | To next stage:                                 |
  91 * |  Until all tree blocks are super blocks are    |
  92 * |  written to block devices                      |
  93 * V                                                |
  94 * Transaction N [[TRANS_STATE_COMPLETED]]          V
  95 *   All tree blocks and super blocks are written.  Transaction N+1
  96 *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
  97 *   data structures will be cleaned up.            | Life goes on
  98 */
  99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 100        [TRANS_STATE_RUNNING]           = 0U,
 101        [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
 102        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
 103                                           __TRANS_ATTACH |
 104                                           __TRANS_JOIN |
 105                                           __TRANS_JOIN_NOSTART),
 106        [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
 107                                           __TRANS_ATTACH |
 108                                           __TRANS_JOIN |
 109                                           __TRANS_JOIN_NOLOCK |
 110                                           __TRANS_JOIN_NOSTART),
 111        [TRANS_STATE_COMPLETED]         = (__TRANS_START |
 112                                           __TRANS_ATTACH |
 113                                           __TRANS_JOIN |
 114                                           __TRANS_JOIN_NOLOCK |
 115                                           __TRANS_JOIN_NOSTART),
 116};
 117
 118void btrfs_put_transaction(struct btrfs_transaction *transaction)
 119{
 120        WARN_ON(refcount_read(&transaction->use_count) == 0);
 121        if (refcount_dec_and_test(&transaction->use_count)) {
 122                BUG_ON(!list_empty(&transaction->list));
 123                WARN_ON(!RB_EMPTY_ROOT(
 124                                &transaction->delayed_refs.href_root.rb_root));
 125                WARN_ON(!RB_EMPTY_ROOT(
 126                                &transaction->delayed_refs.dirty_extent_root));
 127                if (transaction->delayed_refs.pending_csums)
 128                        btrfs_err(transaction->fs_info,
 129                                  "pending csums is %llu",
 130                                  transaction->delayed_refs.pending_csums);
 131                /*
 132                 * If any block groups are found in ->deleted_bgs then it's
 133                 * because the transaction was aborted and a commit did not
 134                 * happen (things failed before writing the new superblock
 135                 * and calling btrfs_finish_extent_commit()), so we can not
 136                 * discard the physical locations of the block groups.
 137                 */
 138                while (!list_empty(&transaction->deleted_bgs)) {
 139                        struct btrfs_block_group *cache;
 140
 141                        cache = list_first_entry(&transaction->deleted_bgs,
 142                                                 struct btrfs_block_group,
 143                                                 bg_list);
 144                        list_del_init(&cache->bg_list);
 145                        btrfs_unfreeze_block_group(cache);
 146                        btrfs_put_block_group(cache);
 147                }
 148                WARN_ON(!list_empty(&transaction->dev_update_list));
 149                kfree(transaction);
 150        }
 151}
 152
 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 154{
 155        struct btrfs_transaction *cur_trans = trans->transaction;
 156        struct btrfs_fs_info *fs_info = trans->fs_info;
 157        struct btrfs_root *root, *tmp;
 158
 159        down_write(&fs_info->commit_root_sem);
 160        list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 161                                 dirty_list) {
 162                list_del_init(&root->dirty_list);
 163                free_extent_buffer(root->commit_root);
 164                root->commit_root = btrfs_root_node(root);
 165                if (is_fstree(root->root_key.objectid))
 166                        btrfs_unpin_free_ino(root);
 167                extent_io_tree_release(&root->dirty_log_pages);
 168                btrfs_qgroup_clean_swapped_blocks(root);
 169        }
 170
 171        /* We can free old roots now. */
 172        spin_lock(&cur_trans->dropped_roots_lock);
 173        while (!list_empty(&cur_trans->dropped_roots)) {
 174                root = list_first_entry(&cur_trans->dropped_roots,
 175                                        struct btrfs_root, root_list);
 176                list_del_init(&root->root_list);
 177                spin_unlock(&cur_trans->dropped_roots_lock);
 178                btrfs_free_log(trans, root);
 179                btrfs_drop_and_free_fs_root(fs_info, root);
 180                spin_lock(&cur_trans->dropped_roots_lock);
 181        }
 182        spin_unlock(&cur_trans->dropped_roots_lock);
 183        up_write(&fs_info->commit_root_sem);
 184}
 185
 186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 187                                         unsigned int type)
 188{
 189        if (type & TRANS_EXTWRITERS)
 190                atomic_inc(&trans->num_extwriters);
 191}
 192
 193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 194                                         unsigned int type)
 195{
 196        if (type & TRANS_EXTWRITERS)
 197                atomic_dec(&trans->num_extwriters);
 198}
 199
 200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 201                                          unsigned int type)
 202{
 203        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 204}
 205
 206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 207{
 208        return atomic_read(&trans->num_extwriters);
 209}
 210
 211/*
 212 * To be called after all the new block groups attached to the transaction
 213 * handle have been created (btrfs_create_pending_block_groups()).
 214 */
 215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 216{
 217        struct btrfs_fs_info *fs_info = trans->fs_info;
 218
 219        if (!trans->chunk_bytes_reserved)
 220                return;
 221
 222        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 223
 224        btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 225                                trans->chunk_bytes_reserved, NULL);
 226        trans->chunk_bytes_reserved = 0;
 227}
 228
 229/*
 230 * either allocate a new transaction or hop into the existing one
 231 */
 232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 233                                     unsigned int type)
 234{
 235        struct btrfs_transaction *cur_trans;
 236
 237        spin_lock(&fs_info->trans_lock);
 238loop:
 239        /* The file system has been taken offline. No new transactions. */
 240        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 241                spin_unlock(&fs_info->trans_lock);
 242                return -EROFS;
 243        }
 244
 245        cur_trans = fs_info->running_transaction;
 246        if (cur_trans) {
 247                if (TRANS_ABORTED(cur_trans)) {
 248                        spin_unlock(&fs_info->trans_lock);
 249                        return cur_trans->aborted;
 250                }
 251                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 252                        spin_unlock(&fs_info->trans_lock);
 253                        return -EBUSY;
 254                }
 255                refcount_inc(&cur_trans->use_count);
 256                atomic_inc(&cur_trans->num_writers);
 257                extwriter_counter_inc(cur_trans, type);
 258                spin_unlock(&fs_info->trans_lock);
 259                return 0;
 260        }
 261        spin_unlock(&fs_info->trans_lock);
 262
 263        /*
 264         * If we are ATTACH, we just want to catch the current transaction,
 265         * and commit it. If there is no transaction, just return ENOENT.
 266         */
 267        if (type == TRANS_ATTACH)
 268                return -ENOENT;
 269
 270        /*
 271         * JOIN_NOLOCK only happens during the transaction commit, so
 272         * it is impossible that ->running_transaction is NULL
 273         */
 274        BUG_ON(type == TRANS_JOIN_NOLOCK);
 275
 276        cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 277        if (!cur_trans)
 278                return -ENOMEM;
 279
 280        spin_lock(&fs_info->trans_lock);
 281        if (fs_info->running_transaction) {
 282                /*
 283                 * someone started a transaction after we unlocked.  Make sure
 284                 * to redo the checks above
 285                 */
 286                kfree(cur_trans);
 287                goto loop;
 288        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 289                spin_unlock(&fs_info->trans_lock);
 290                kfree(cur_trans);
 291                return -EROFS;
 292        }
 293
 294        cur_trans->fs_info = fs_info;
 295        atomic_set(&cur_trans->pending_ordered, 0);
 296        init_waitqueue_head(&cur_trans->pending_wait);
 297        atomic_set(&cur_trans->num_writers, 1);
 298        extwriter_counter_init(cur_trans, type);
 299        init_waitqueue_head(&cur_trans->writer_wait);
 300        init_waitqueue_head(&cur_trans->commit_wait);
 301        cur_trans->state = TRANS_STATE_RUNNING;
 302        /*
 303         * One for this trans handle, one so it will live on until we
 304         * commit the transaction.
 305         */
 306        refcount_set(&cur_trans->use_count, 2);
 307        cur_trans->flags = 0;
 308        cur_trans->start_time = ktime_get_seconds();
 309
 310        memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 311
 312        cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 313        cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 314        atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 315
 316        /*
 317         * although the tree mod log is per file system and not per transaction,
 318         * the log must never go across transaction boundaries.
 319         */
 320        smp_mb();
 321        if (!list_empty(&fs_info->tree_mod_seq_list))
 322                WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 323        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 324                WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 325        atomic64_set(&fs_info->tree_mod_seq, 0);
 326
 327        spin_lock_init(&cur_trans->delayed_refs.lock);
 328
 329        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 330        INIT_LIST_HEAD(&cur_trans->dev_update_list);
 331        INIT_LIST_HEAD(&cur_trans->switch_commits);
 332        INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 333        INIT_LIST_HEAD(&cur_trans->io_bgs);
 334        INIT_LIST_HEAD(&cur_trans->dropped_roots);
 335        mutex_init(&cur_trans->cache_write_mutex);
 336        spin_lock_init(&cur_trans->dirty_bgs_lock);
 337        INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 338        spin_lock_init(&cur_trans->dropped_roots_lock);
 339        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 340        extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 341                        IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 342        extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 343                        IO_TREE_FS_PINNED_EXTENTS, NULL);
 344        fs_info->generation++;
 345        cur_trans->transid = fs_info->generation;
 346        fs_info->running_transaction = cur_trans;
 347        cur_trans->aborted = 0;
 348        spin_unlock(&fs_info->trans_lock);
 349
 350        return 0;
 351}
 352
 353/*
 354 * This does all the record keeping required to make sure that a shareable root
 355 * is properly recorded in a given transaction.  This is required to make sure
 356 * the old root from before we joined the transaction is deleted when the
 357 * transaction commits.
 358 */
 359static int record_root_in_trans(struct btrfs_trans_handle *trans,
 360                               struct btrfs_root *root,
 361                               int force)
 362{
 363        struct btrfs_fs_info *fs_info = root->fs_info;
 364
 365        if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 366            root->last_trans < trans->transid) || force) {
 367                WARN_ON(root == fs_info->extent_root);
 368                WARN_ON(!force && root->commit_root != root->node);
 369
 370                /*
 371                 * see below for IN_TRANS_SETUP usage rules
 372                 * we have the reloc mutex held now, so there
 373                 * is only one writer in this function
 374                 */
 375                set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 376
 377                /* make sure readers find IN_TRANS_SETUP before
 378                 * they find our root->last_trans update
 379                 */
 380                smp_wmb();
 381
 382                spin_lock(&fs_info->fs_roots_radix_lock);
 383                if (root->last_trans == trans->transid && !force) {
 384                        spin_unlock(&fs_info->fs_roots_radix_lock);
 385                        return 0;
 386                }
 387                radix_tree_tag_set(&fs_info->fs_roots_radix,
 388                                   (unsigned long)root->root_key.objectid,
 389                                   BTRFS_ROOT_TRANS_TAG);
 390                spin_unlock(&fs_info->fs_roots_radix_lock);
 391                root->last_trans = trans->transid;
 392
 393                /* this is pretty tricky.  We don't want to
 394                 * take the relocation lock in btrfs_record_root_in_trans
 395                 * unless we're really doing the first setup for this root in
 396                 * this transaction.
 397                 *
 398                 * Normally we'd use root->last_trans as a flag to decide
 399                 * if we want to take the expensive mutex.
 400                 *
 401                 * But, we have to set root->last_trans before we
 402                 * init the relocation root, otherwise, we trip over warnings
 403                 * in ctree.c.  The solution used here is to flag ourselves
 404                 * with root IN_TRANS_SETUP.  When this is 1, we're still
 405                 * fixing up the reloc trees and everyone must wait.
 406                 *
 407                 * When this is zero, they can trust root->last_trans and fly
 408                 * through btrfs_record_root_in_trans without having to take the
 409                 * lock.  smp_wmb() makes sure that all the writes above are
 410                 * done before we pop in the zero below
 411                 */
 412                btrfs_init_reloc_root(trans, root);
 413                smp_mb__before_atomic();
 414                clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 415        }
 416        return 0;
 417}
 418
 419
 420void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 421                            struct btrfs_root *root)
 422{
 423        struct btrfs_fs_info *fs_info = root->fs_info;
 424        struct btrfs_transaction *cur_trans = trans->transaction;
 425
 426        /* Add ourselves to the transaction dropped list */
 427        spin_lock(&cur_trans->dropped_roots_lock);
 428        list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 429        spin_unlock(&cur_trans->dropped_roots_lock);
 430
 431        /* Make sure we don't try to update the root at commit time */
 432        spin_lock(&fs_info->fs_roots_radix_lock);
 433        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 434                             (unsigned long)root->root_key.objectid,
 435                             BTRFS_ROOT_TRANS_TAG);
 436        spin_unlock(&fs_info->fs_roots_radix_lock);
 437}
 438
 439int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 440                               struct btrfs_root *root)
 441{
 442        struct btrfs_fs_info *fs_info = root->fs_info;
 443
 444        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 445                return 0;
 446
 447        /*
 448         * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 449         * and barriers
 450         */
 451        smp_rmb();
 452        if (root->last_trans == trans->transid &&
 453            !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 454                return 0;
 455
 456        mutex_lock(&fs_info->reloc_mutex);
 457        record_root_in_trans(trans, root, 0);
 458        mutex_unlock(&fs_info->reloc_mutex);
 459
 460        return 0;
 461}
 462
 463static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 464{
 465        return (trans->state >= TRANS_STATE_COMMIT_START &&
 466                trans->state < TRANS_STATE_UNBLOCKED &&
 467                !TRANS_ABORTED(trans));
 468}
 469
 470/* wait for commit against the current transaction to become unblocked
 471 * when this is done, it is safe to start a new transaction, but the current
 472 * transaction might not be fully on disk.
 473 */
 474static void wait_current_trans(struct btrfs_fs_info *fs_info)
 475{
 476        struct btrfs_transaction *cur_trans;
 477
 478        spin_lock(&fs_info->trans_lock);
 479        cur_trans = fs_info->running_transaction;
 480        if (cur_trans && is_transaction_blocked(cur_trans)) {
 481                refcount_inc(&cur_trans->use_count);
 482                spin_unlock(&fs_info->trans_lock);
 483
 484                wait_event(fs_info->transaction_wait,
 485                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 486                           TRANS_ABORTED(cur_trans));
 487                btrfs_put_transaction(cur_trans);
 488        } else {
 489                spin_unlock(&fs_info->trans_lock);
 490        }
 491}
 492
 493static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 494{
 495        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 496                return 0;
 497
 498        if (type == TRANS_START)
 499                return 1;
 500
 501        return 0;
 502}
 503
 504static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 505{
 506        struct btrfs_fs_info *fs_info = root->fs_info;
 507
 508        if (!fs_info->reloc_ctl ||
 509            !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 510            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 511            root->reloc_root)
 512                return false;
 513
 514        return true;
 515}
 516
 517static struct btrfs_trans_handle *
 518start_transaction(struct btrfs_root *root, unsigned int num_items,
 519                  unsigned int type, enum btrfs_reserve_flush_enum flush,
 520                  bool enforce_qgroups)
 521{
 522        struct btrfs_fs_info *fs_info = root->fs_info;
 523        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 524        struct btrfs_trans_handle *h;
 525        struct btrfs_transaction *cur_trans;
 526        u64 num_bytes = 0;
 527        u64 qgroup_reserved = 0;
 528        bool reloc_reserved = false;
 529        bool do_chunk_alloc = false;
 530        int ret;
 531
 532        /* Send isn't supposed to start transactions. */
 533        ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 534
 535        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 536                return ERR_PTR(-EROFS);
 537
 538        if (current->journal_info) {
 539                WARN_ON(type & TRANS_EXTWRITERS);
 540                h = current->journal_info;
 541                refcount_inc(&h->use_count);
 542                WARN_ON(refcount_read(&h->use_count) > 2);
 543                h->orig_rsv = h->block_rsv;
 544                h->block_rsv = NULL;
 545                goto got_it;
 546        }
 547
 548        /*
 549         * Do the reservation before we join the transaction so we can do all
 550         * the appropriate flushing if need be.
 551         */
 552        if (num_items && root != fs_info->chunk_root) {
 553                struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 554                u64 delayed_refs_bytes = 0;
 555
 556                qgroup_reserved = num_items * fs_info->nodesize;
 557                ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 558                                enforce_qgroups);
 559                if (ret)
 560                        return ERR_PTR(ret);
 561
 562                /*
 563                 * We want to reserve all the bytes we may need all at once, so
 564                 * we only do 1 enospc flushing cycle per transaction start.  We
 565                 * accomplish this by simply assuming we'll do 2 x num_items
 566                 * worth of delayed refs updates in this trans handle, and
 567                 * refill that amount for whatever is missing in the reserve.
 568                 */
 569                num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 570                if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 571                    delayed_refs_rsv->full == 0) {
 572                        delayed_refs_bytes = num_bytes;
 573                        num_bytes <<= 1;
 574                }
 575
 576                /*
 577                 * Do the reservation for the relocation root creation
 578                 */
 579                if (need_reserve_reloc_root(root)) {
 580                        num_bytes += fs_info->nodesize;
 581                        reloc_reserved = true;
 582                }
 583
 584                ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 585                if (ret)
 586                        goto reserve_fail;
 587                if (delayed_refs_bytes) {
 588                        btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 589                                                          delayed_refs_bytes);
 590                        num_bytes -= delayed_refs_bytes;
 591                }
 592
 593                if (rsv->space_info->force_alloc)
 594                        do_chunk_alloc = true;
 595        } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 596                   !delayed_refs_rsv->full) {
 597                /*
 598                 * Some people call with btrfs_start_transaction(root, 0)
 599                 * because they can be throttled, but have some other mechanism
 600                 * for reserving space.  We still want these guys to refill the
 601                 * delayed block_rsv so just add 1 items worth of reservation
 602                 * here.
 603                 */
 604                ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 605                if (ret)
 606                        goto reserve_fail;
 607        }
 608again:
 609        h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 610        if (!h) {
 611                ret = -ENOMEM;
 612                goto alloc_fail;
 613        }
 614
 615        /*
 616         * If we are JOIN_NOLOCK we're already committing a transaction and
 617         * waiting on this guy, so we don't need to do the sb_start_intwrite
 618         * because we're already holding a ref.  We need this because we could
 619         * have raced in and did an fsync() on a file which can kick a commit
 620         * and then we deadlock with somebody doing a freeze.
 621         *
 622         * If we are ATTACH, it means we just want to catch the current
 623         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 624         */
 625        if (type & __TRANS_FREEZABLE)
 626                sb_start_intwrite(fs_info->sb);
 627
 628        if (may_wait_transaction(fs_info, type))
 629                wait_current_trans(fs_info);
 630
 631        do {
 632                ret = join_transaction(fs_info, type);
 633                if (ret == -EBUSY) {
 634                        wait_current_trans(fs_info);
 635                        if (unlikely(type == TRANS_ATTACH ||
 636                                     type == TRANS_JOIN_NOSTART))
 637                                ret = -ENOENT;
 638                }
 639        } while (ret == -EBUSY);
 640
 641        if (ret < 0)
 642                goto join_fail;
 643
 644        cur_trans = fs_info->running_transaction;
 645
 646        h->transid = cur_trans->transid;
 647        h->transaction = cur_trans;
 648        h->root = root;
 649        refcount_set(&h->use_count, 1);
 650        h->fs_info = root->fs_info;
 651
 652        h->type = type;
 653        h->can_flush_pending_bgs = true;
 654        INIT_LIST_HEAD(&h->new_bgs);
 655
 656        smp_mb();
 657        if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 658            may_wait_transaction(fs_info, type)) {
 659                current->journal_info = h;
 660                btrfs_commit_transaction(h);
 661                goto again;
 662        }
 663
 664        if (num_bytes) {
 665                trace_btrfs_space_reservation(fs_info, "transaction",
 666                                              h->transid, num_bytes, 1);
 667                h->block_rsv = &fs_info->trans_block_rsv;
 668                h->bytes_reserved = num_bytes;
 669                h->reloc_reserved = reloc_reserved;
 670        }
 671
 672got_it:
 673        if (!current->journal_info)
 674                current->journal_info = h;
 675
 676        /*
 677         * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 678         * ALLOC_FORCE the first run through, and then we won't allocate for
 679         * anybody else who races in later.  We don't care about the return
 680         * value here.
 681         */
 682        if (do_chunk_alloc && num_bytes) {
 683                u64 flags = h->block_rsv->space_info->flags;
 684
 685                btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 686                                  CHUNK_ALLOC_NO_FORCE);
 687        }
 688
 689        /*
 690         * btrfs_record_root_in_trans() needs to alloc new extents, and may
 691         * call btrfs_join_transaction() while we're also starting a
 692         * transaction.
 693         *
 694         * Thus it need to be called after current->journal_info initialized,
 695         * or we can deadlock.
 696         */
 697        btrfs_record_root_in_trans(h, root);
 698
 699        return h;
 700
 701join_fail:
 702        if (type & __TRANS_FREEZABLE)
 703                sb_end_intwrite(fs_info->sb);
 704        kmem_cache_free(btrfs_trans_handle_cachep, h);
 705alloc_fail:
 706        if (num_bytes)
 707                btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 708                                        num_bytes, NULL);
 709reserve_fail:
 710        btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 711        return ERR_PTR(ret);
 712}
 713
 714struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 715                                                   unsigned int num_items)
 716{
 717        return start_transaction(root, num_items, TRANS_START,
 718                                 BTRFS_RESERVE_FLUSH_ALL, true);
 719}
 720
 721struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 722                                        struct btrfs_root *root,
 723                                        unsigned int num_items)
 724{
 725        return start_transaction(root, num_items, TRANS_START,
 726                                 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 727}
 728
 729struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 730{
 731        return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 732                                 true);
 733}
 734
 735struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 736{
 737        return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 738                                 BTRFS_RESERVE_NO_FLUSH, true);
 739}
 740
 741/*
 742 * Similar to regular join but it never starts a transaction when none is
 743 * running or after waiting for the current one to finish.
 744 */
 745struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 746{
 747        return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 748                                 BTRFS_RESERVE_NO_FLUSH, true);
 749}
 750
 751/*
 752 * btrfs_attach_transaction() - catch the running transaction
 753 *
 754 * It is used when we want to commit the current the transaction, but
 755 * don't want to start a new one.
 756 *
 757 * Note: If this function return -ENOENT, it just means there is no
 758 * running transaction. But it is possible that the inactive transaction
 759 * is still in the memory, not fully on disk. If you hope there is no
 760 * inactive transaction in the fs when -ENOENT is returned, you should
 761 * invoke
 762 *     btrfs_attach_transaction_barrier()
 763 */
 764struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 765{
 766        return start_transaction(root, 0, TRANS_ATTACH,
 767                                 BTRFS_RESERVE_NO_FLUSH, true);
 768}
 769
 770/*
 771 * btrfs_attach_transaction_barrier() - catch the running transaction
 772 *
 773 * It is similar to the above function, the difference is this one
 774 * will wait for all the inactive transactions until they fully
 775 * complete.
 776 */
 777struct btrfs_trans_handle *
 778btrfs_attach_transaction_barrier(struct btrfs_root *root)
 779{
 780        struct btrfs_trans_handle *trans;
 781
 782        trans = start_transaction(root, 0, TRANS_ATTACH,
 783                                  BTRFS_RESERVE_NO_FLUSH, true);
 784        if (trans == ERR_PTR(-ENOENT))
 785                btrfs_wait_for_commit(root->fs_info, 0);
 786
 787        return trans;
 788}
 789
 790/* wait for a transaction commit to be fully complete */
 791static noinline void wait_for_commit(struct btrfs_transaction *commit)
 792{
 793        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 794}
 795
 796int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 797{
 798        struct btrfs_transaction *cur_trans = NULL, *t;
 799        int ret = 0;
 800
 801        if (transid) {
 802                if (transid <= fs_info->last_trans_committed)
 803                        goto out;
 804
 805                /* find specified transaction */
 806                spin_lock(&fs_info->trans_lock);
 807                list_for_each_entry(t, &fs_info->trans_list, list) {
 808                        if (t->transid == transid) {
 809                                cur_trans = t;
 810                                refcount_inc(&cur_trans->use_count);
 811                                ret = 0;
 812                                break;
 813                        }
 814                        if (t->transid > transid) {
 815                                ret = 0;
 816                                break;
 817                        }
 818                }
 819                spin_unlock(&fs_info->trans_lock);
 820
 821                /*
 822                 * The specified transaction doesn't exist, or we
 823                 * raced with btrfs_commit_transaction
 824                 */
 825                if (!cur_trans) {
 826                        if (transid > fs_info->last_trans_committed)
 827                                ret = -EINVAL;
 828                        goto out;
 829                }
 830        } else {
 831                /* find newest transaction that is committing | committed */
 832                spin_lock(&fs_info->trans_lock);
 833                list_for_each_entry_reverse(t, &fs_info->trans_list,
 834                                            list) {
 835                        if (t->state >= TRANS_STATE_COMMIT_START) {
 836                                if (t->state == TRANS_STATE_COMPLETED)
 837                                        break;
 838                                cur_trans = t;
 839                                refcount_inc(&cur_trans->use_count);
 840                                break;
 841                        }
 842                }
 843                spin_unlock(&fs_info->trans_lock);
 844                if (!cur_trans)
 845                        goto out;  /* nothing committing|committed */
 846        }
 847
 848        wait_for_commit(cur_trans);
 849        btrfs_put_transaction(cur_trans);
 850out:
 851        return ret;
 852}
 853
 854void btrfs_throttle(struct btrfs_fs_info *fs_info)
 855{
 856        wait_current_trans(fs_info);
 857}
 858
 859static int should_end_transaction(struct btrfs_trans_handle *trans)
 860{
 861        struct btrfs_fs_info *fs_info = trans->fs_info;
 862
 863        if (btrfs_check_space_for_delayed_refs(fs_info))
 864                return 1;
 865
 866        return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 867}
 868
 869int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 870{
 871        struct btrfs_transaction *cur_trans = trans->transaction;
 872
 873        smp_mb();
 874        if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 875            cur_trans->delayed_refs.flushing)
 876                return 1;
 877
 878        return should_end_transaction(trans);
 879}
 880
 881static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 882
 883{
 884        struct btrfs_fs_info *fs_info = trans->fs_info;
 885
 886        if (!trans->block_rsv) {
 887                ASSERT(!trans->bytes_reserved);
 888                return;
 889        }
 890
 891        if (!trans->bytes_reserved)
 892                return;
 893
 894        ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 895        trace_btrfs_space_reservation(fs_info, "transaction",
 896                                      trans->transid, trans->bytes_reserved, 0);
 897        btrfs_block_rsv_release(fs_info, trans->block_rsv,
 898                                trans->bytes_reserved, NULL);
 899        trans->bytes_reserved = 0;
 900}
 901
 902static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 903                                   int throttle)
 904{
 905        struct btrfs_fs_info *info = trans->fs_info;
 906        struct btrfs_transaction *cur_trans = trans->transaction;
 907        int err = 0;
 908
 909        if (refcount_read(&trans->use_count) > 1) {
 910                refcount_dec(&trans->use_count);
 911                trans->block_rsv = trans->orig_rsv;
 912                return 0;
 913        }
 914
 915        btrfs_trans_release_metadata(trans);
 916        trans->block_rsv = NULL;
 917
 918        btrfs_create_pending_block_groups(trans);
 919
 920        btrfs_trans_release_chunk_metadata(trans);
 921
 922        if (trans->type & __TRANS_FREEZABLE)
 923                sb_end_intwrite(info->sb);
 924
 925        WARN_ON(cur_trans != info->running_transaction);
 926        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 927        atomic_dec(&cur_trans->num_writers);
 928        extwriter_counter_dec(cur_trans, trans->type);
 929
 930        cond_wake_up(&cur_trans->writer_wait);
 931        btrfs_put_transaction(cur_trans);
 932
 933        if (current->journal_info == trans)
 934                current->journal_info = NULL;
 935
 936        if (throttle)
 937                btrfs_run_delayed_iputs(info);
 938
 939        if (TRANS_ABORTED(trans) ||
 940            test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 941                wake_up_process(info->transaction_kthread);
 942                if (TRANS_ABORTED(trans))
 943                        err = trans->aborted;
 944                else
 945                        err = -EROFS;
 946        }
 947
 948        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 949        return err;
 950}
 951
 952int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 953{
 954        return __btrfs_end_transaction(trans, 0);
 955}
 956
 957int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 958{
 959        return __btrfs_end_transaction(trans, 1);
 960}
 961
 962/*
 963 * when btree blocks are allocated, they have some corresponding bits set for
 964 * them in one of two extent_io trees.  This is used to make sure all of
 965 * those extents are sent to disk but does not wait on them
 966 */
 967int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 968                               struct extent_io_tree *dirty_pages, int mark)
 969{
 970        int err = 0;
 971        int werr = 0;
 972        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 973        struct extent_state *cached_state = NULL;
 974        u64 start = 0;
 975        u64 end;
 976
 977        atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 978        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 979                                      mark, &cached_state)) {
 980                bool wait_writeback = false;
 981
 982                err = convert_extent_bit(dirty_pages, start, end,
 983                                         EXTENT_NEED_WAIT,
 984                                         mark, &cached_state);
 985                /*
 986                 * convert_extent_bit can return -ENOMEM, which is most of the
 987                 * time a temporary error. So when it happens, ignore the error
 988                 * and wait for writeback of this range to finish - because we
 989                 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 990                 * to __btrfs_wait_marked_extents() would not know that
 991                 * writeback for this range started and therefore wouldn't
 992                 * wait for it to finish - we don't want to commit a
 993                 * superblock that points to btree nodes/leafs for which
 994                 * writeback hasn't finished yet (and without errors).
 995                 * We cleanup any entries left in the io tree when committing
 996                 * the transaction (through extent_io_tree_release()).
 997                 */
 998                if (err == -ENOMEM) {
 999                        err = 0;
1000                        wait_writeback = true;
1001                }
1002                if (!err)
1003                        err = filemap_fdatawrite_range(mapping, start, end);
1004                if (err)
1005                        werr = err;
1006                else if (wait_writeback)
1007                        werr = filemap_fdatawait_range(mapping, start, end);
1008                free_extent_state(cached_state);
1009                cached_state = NULL;
1010                cond_resched();
1011                start = end + 1;
1012        }
1013        atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1014        return werr;
1015}
1016
1017/*
1018 * when btree blocks are allocated, they have some corresponding bits set for
1019 * them in one of two extent_io trees.  This is used to make sure all of
1020 * those extents are on disk for transaction or log commit.  We wait
1021 * on all the pages and clear them from the dirty pages state tree
1022 */
1023static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1024                                       struct extent_io_tree *dirty_pages)
1025{
1026        int err = 0;
1027        int werr = 0;
1028        struct address_space *mapping = fs_info->btree_inode->i_mapping;
1029        struct extent_state *cached_state = NULL;
1030        u64 start = 0;
1031        u64 end;
1032
1033        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034                                      EXTENT_NEED_WAIT, &cached_state)) {
1035                /*
1036                 * Ignore -ENOMEM errors returned by clear_extent_bit().
1037                 * When committing the transaction, we'll remove any entries
1038                 * left in the io tree. For a log commit, we don't remove them
1039                 * after committing the log because the tree can be accessed
1040                 * concurrently - we do it only at transaction commit time when
1041                 * it's safe to do it (through extent_io_tree_release()).
1042                 */
1043                err = clear_extent_bit(dirty_pages, start, end,
1044                                       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1045                if (err == -ENOMEM)
1046                        err = 0;
1047                if (!err)
1048                        err = filemap_fdatawait_range(mapping, start, end);
1049                if (err)
1050                        werr = err;
1051                free_extent_state(cached_state);
1052                cached_state = NULL;
1053                cond_resched();
1054                start = end + 1;
1055        }
1056        if (err)
1057                werr = err;
1058        return werr;
1059}
1060
1061static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1062                       struct extent_io_tree *dirty_pages)
1063{
1064        bool errors = false;
1065        int err;
1066
1067        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1068        if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1069                errors = true;
1070
1071        if (errors && !err)
1072                err = -EIO;
1073        return err;
1074}
1075
1076int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1077{
1078        struct btrfs_fs_info *fs_info = log_root->fs_info;
1079        struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1080        bool errors = false;
1081        int err;
1082
1083        ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1084
1085        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1086        if ((mark & EXTENT_DIRTY) &&
1087            test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1088                errors = true;
1089
1090        if ((mark & EXTENT_NEW) &&
1091            test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1092                errors = true;
1093
1094        if (errors && !err)
1095                err = -EIO;
1096        return err;
1097}
1098
1099/*
1100 * When btree blocks are allocated the corresponding extents are marked dirty.
1101 * This function ensures such extents are persisted on disk for transaction or
1102 * log commit.
1103 *
1104 * @trans: transaction whose dirty pages we'd like to write
1105 */
1106static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1107{
1108        int ret;
1109        int ret2;
1110        struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1111        struct btrfs_fs_info *fs_info = trans->fs_info;
1112        struct blk_plug plug;
1113
1114        blk_start_plug(&plug);
1115        ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1116        blk_finish_plug(&plug);
1117        ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1118
1119        extent_io_tree_release(&trans->transaction->dirty_pages);
1120
1121        if (ret)
1122                return ret;
1123        else if (ret2)
1124                return ret2;
1125        else
1126                return 0;
1127}
1128
1129/*
1130 * this is used to update the root pointer in the tree of tree roots.
1131 *
1132 * But, in the case of the extent allocation tree, updating the root
1133 * pointer may allocate blocks which may change the root of the extent
1134 * allocation tree.
1135 *
1136 * So, this loops and repeats and makes sure the cowonly root didn't
1137 * change while the root pointer was being updated in the metadata.
1138 */
1139static int update_cowonly_root(struct btrfs_trans_handle *trans,
1140                               struct btrfs_root *root)
1141{
1142        int ret;
1143        u64 old_root_bytenr;
1144        u64 old_root_used;
1145        struct btrfs_fs_info *fs_info = root->fs_info;
1146        struct btrfs_root *tree_root = fs_info->tree_root;
1147
1148        old_root_used = btrfs_root_used(&root->root_item);
1149
1150        while (1) {
1151                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1152                if (old_root_bytenr == root->node->start &&
1153                    old_root_used == btrfs_root_used(&root->root_item))
1154                        break;
1155
1156                btrfs_set_root_node(&root->root_item, root->node);
1157                ret = btrfs_update_root(trans, tree_root,
1158                                        &root->root_key,
1159                                        &root->root_item);
1160                if (ret)
1161                        return ret;
1162
1163                old_root_used = btrfs_root_used(&root->root_item);
1164        }
1165
1166        return 0;
1167}
1168
1169/*
1170 * update all the cowonly tree roots on disk
1171 *
1172 * The error handling in this function may not be obvious. Any of the
1173 * failures will cause the file system to go offline. We still need
1174 * to clean up the delayed refs.
1175 */
1176static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1177{
1178        struct btrfs_fs_info *fs_info = trans->fs_info;
1179        struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1180        struct list_head *io_bgs = &trans->transaction->io_bgs;
1181        struct list_head *next;
1182        struct extent_buffer *eb;
1183        int ret;
1184
1185        eb = btrfs_lock_root_node(fs_info->tree_root);
1186        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1187                              0, &eb, BTRFS_NESTING_COW);
1188        btrfs_tree_unlock(eb);
1189        free_extent_buffer(eb);
1190
1191        if (ret)
1192                return ret;
1193
1194        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1195        if (ret)
1196                return ret;
1197
1198        ret = btrfs_run_dev_stats(trans);
1199        if (ret)
1200                return ret;
1201        ret = btrfs_run_dev_replace(trans);
1202        if (ret)
1203                return ret;
1204        ret = btrfs_run_qgroups(trans);
1205        if (ret)
1206                return ret;
1207
1208        ret = btrfs_setup_space_cache(trans);
1209        if (ret)
1210                return ret;
1211
1212        /* run_qgroups might have added some more refs */
1213        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1214        if (ret)
1215                return ret;
1216again:
1217        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1218                struct btrfs_root *root;
1219                next = fs_info->dirty_cowonly_roots.next;
1220                list_del_init(next);
1221                root = list_entry(next, struct btrfs_root, dirty_list);
1222                clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1223
1224                if (root != fs_info->extent_root)
1225                        list_add_tail(&root->dirty_list,
1226                                      &trans->transaction->switch_commits);
1227                ret = update_cowonly_root(trans, root);
1228                if (ret)
1229                        return ret;
1230                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1231                if (ret)
1232                        return ret;
1233        }
1234
1235        while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1236                ret = btrfs_write_dirty_block_groups(trans);
1237                if (ret)
1238                        return ret;
1239                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240                if (ret)
1241                        return ret;
1242        }
1243
1244        if (!list_empty(&fs_info->dirty_cowonly_roots))
1245                goto again;
1246
1247        list_add_tail(&fs_info->extent_root->dirty_list,
1248                      &trans->transaction->switch_commits);
1249
1250        /* Update dev-replace pointer once everything is committed */
1251        fs_info->dev_replace.committed_cursor_left =
1252                fs_info->dev_replace.cursor_left_last_write_of_item;
1253
1254        return 0;
1255}
1256
1257/*
1258 * dead roots are old snapshots that need to be deleted.  This allocates
1259 * a dirty root struct and adds it into the list of dead roots that need to
1260 * be deleted
1261 */
1262void btrfs_add_dead_root(struct btrfs_root *root)
1263{
1264        struct btrfs_fs_info *fs_info = root->fs_info;
1265
1266        spin_lock(&fs_info->trans_lock);
1267        if (list_empty(&root->root_list)) {
1268                btrfs_grab_root(root);
1269                list_add_tail(&root->root_list, &fs_info->dead_roots);
1270        }
1271        spin_unlock(&fs_info->trans_lock);
1272}
1273
1274/*
1275 * update all the cowonly tree roots on disk
1276 */
1277static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1278{
1279        struct btrfs_fs_info *fs_info = trans->fs_info;
1280        struct btrfs_root *gang[8];
1281        int i;
1282        int ret;
1283        int err = 0;
1284
1285        spin_lock(&fs_info->fs_roots_radix_lock);
1286        while (1) {
1287                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1288                                                 (void **)gang, 0,
1289                                                 ARRAY_SIZE(gang),
1290                                                 BTRFS_ROOT_TRANS_TAG);
1291                if (ret == 0)
1292                        break;
1293                for (i = 0; i < ret; i++) {
1294                        struct btrfs_root *root = gang[i];
1295                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1296                                        (unsigned long)root->root_key.objectid,
1297                                        BTRFS_ROOT_TRANS_TAG);
1298                        spin_unlock(&fs_info->fs_roots_radix_lock);
1299
1300                        btrfs_free_log(trans, root);
1301                        btrfs_update_reloc_root(trans, root);
1302
1303                        btrfs_save_ino_cache(root, trans);
1304
1305                        /* see comments in should_cow_block() */
1306                        clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1307                        smp_mb__after_atomic();
1308
1309                        if (root->commit_root != root->node) {
1310                                list_add_tail(&root->dirty_list,
1311                                        &trans->transaction->switch_commits);
1312                                btrfs_set_root_node(&root->root_item,
1313                                                    root->node);
1314                        }
1315
1316                        err = btrfs_update_root(trans, fs_info->tree_root,
1317                                                &root->root_key,
1318                                                &root->root_item);
1319                        spin_lock(&fs_info->fs_roots_radix_lock);
1320                        if (err)
1321                                break;
1322                        btrfs_qgroup_free_meta_all_pertrans(root);
1323                }
1324        }
1325        spin_unlock(&fs_info->fs_roots_radix_lock);
1326        return err;
1327}
1328
1329/*
1330 * defrag a given btree.
1331 * Every leaf in the btree is read and defragged.
1332 */
1333int btrfs_defrag_root(struct btrfs_root *root)
1334{
1335        struct btrfs_fs_info *info = root->fs_info;
1336        struct btrfs_trans_handle *trans;
1337        int ret;
1338
1339        if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1340                return 0;
1341
1342        while (1) {
1343                trans = btrfs_start_transaction(root, 0);
1344                if (IS_ERR(trans))
1345                        return PTR_ERR(trans);
1346
1347                ret = btrfs_defrag_leaves(trans, root);
1348
1349                btrfs_end_transaction(trans);
1350                btrfs_btree_balance_dirty(info);
1351                cond_resched();
1352
1353                if (btrfs_fs_closing(info) || ret != -EAGAIN)
1354                        break;
1355
1356                if (btrfs_defrag_cancelled(info)) {
1357                        btrfs_debug(info, "defrag_root cancelled");
1358                        ret = -EAGAIN;
1359                        break;
1360                }
1361        }
1362        clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1363        return ret;
1364}
1365
1366/*
1367 * Do all special snapshot related qgroup dirty hack.
1368 *
1369 * Will do all needed qgroup inherit and dirty hack like switch commit
1370 * roots inside one transaction and write all btree into disk, to make
1371 * qgroup works.
1372 */
1373static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1374                                   struct btrfs_root *src,
1375                                   struct btrfs_root *parent,
1376                                   struct btrfs_qgroup_inherit *inherit,
1377                                   u64 dst_objectid)
1378{
1379        struct btrfs_fs_info *fs_info = src->fs_info;
1380        int ret;
1381
1382        /*
1383         * Save some performance in the case that qgroups are not
1384         * enabled. If this check races with the ioctl, rescan will
1385         * kick in anyway.
1386         */
1387        if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1388                return 0;
1389
1390        /*
1391         * Ensure dirty @src will be committed.  Or, after coming
1392         * commit_fs_roots() and switch_commit_roots(), any dirty but not
1393         * recorded root will never be updated again, causing an outdated root
1394         * item.
1395         */
1396        record_root_in_trans(trans, src, 1);
1397
1398        /*
1399         * We are going to commit transaction, see btrfs_commit_transaction()
1400         * comment for reason locking tree_log_mutex
1401         */
1402        mutex_lock(&fs_info->tree_log_mutex);
1403
1404        ret = commit_fs_roots(trans);
1405        if (ret)
1406                goto out;
1407        ret = btrfs_qgroup_account_extents(trans);
1408        if (ret < 0)
1409                goto out;
1410
1411        /* Now qgroup are all updated, we can inherit it to new qgroups */
1412        ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1413                                   inherit);
1414        if (ret < 0)
1415                goto out;
1416
1417        /*
1418         * Now we do a simplified commit transaction, which will:
1419         * 1) commit all subvolume and extent tree
1420         *    To ensure all subvolume and extent tree have a valid
1421         *    commit_root to accounting later insert_dir_item()
1422         * 2) write all btree blocks onto disk
1423         *    This is to make sure later btree modification will be cowed
1424         *    Or commit_root can be populated and cause wrong qgroup numbers
1425         * In this simplified commit, we don't really care about other trees
1426         * like chunk and root tree, as they won't affect qgroup.
1427         * And we don't write super to avoid half committed status.
1428         */
1429        ret = commit_cowonly_roots(trans);
1430        if (ret)
1431                goto out;
1432        switch_commit_roots(trans);
1433        ret = btrfs_write_and_wait_transaction(trans);
1434        if (ret)
1435                btrfs_handle_fs_error(fs_info, ret,
1436                        "Error while writing out transaction for qgroup");
1437
1438out:
1439        mutex_unlock(&fs_info->tree_log_mutex);
1440
1441        /*
1442         * Force parent root to be updated, as we recorded it before so its
1443         * last_trans == cur_transid.
1444         * Or it won't be committed again onto disk after later
1445         * insert_dir_item()
1446         */
1447        if (!ret)
1448                record_root_in_trans(trans, parent, 1);
1449        return ret;
1450}
1451
1452/*
1453 * new snapshots need to be created at a very specific time in the
1454 * transaction commit.  This does the actual creation.
1455 *
1456 * Note:
1457 * If the error which may affect the commitment of the current transaction
1458 * happens, we should return the error number. If the error which just affect
1459 * the creation of the pending snapshots, just return 0.
1460 */
1461static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1462                                   struct btrfs_pending_snapshot *pending)
1463{
1464
1465        struct btrfs_fs_info *fs_info = trans->fs_info;
1466        struct btrfs_key key;
1467        struct btrfs_root_item *new_root_item;
1468        struct btrfs_root *tree_root = fs_info->tree_root;
1469        struct btrfs_root *root = pending->root;
1470        struct btrfs_root *parent_root;
1471        struct btrfs_block_rsv *rsv;
1472        struct inode *parent_inode;
1473        struct btrfs_path *path;
1474        struct btrfs_dir_item *dir_item;
1475        struct dentry *dentry;
1476        struct extent_buffer *tmp;
1477        struct extent_buffer *old;
1478        struct timespec64 cur_time;
1479        int ret = 0;
1480        u64 to_reserve = 0;
1481        u64 index = 0;
1482        u64 objectid;
1483        u64 root_flags;
1484
1485        ASSERT(pending->path);
1486        path = pending->path;
1487
1488        ASSERT(pending->root_item);
1489        new_root_item = pending->root_item;
1490
1491        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1492        if (pending->error)
1493                goto no_free_objectid;
1494
1495        /*
1496         * Make qgroup to skip current new snapshot's qgroupid, as it is
1497         * accounted by later btrfs_qgroup_inherit().
1498         */
1499        btrfs_set_skip_qgroup(trans, objectid);
1500
1501        btrfs_reloc_pre_snapshot(pending, &to_reserve);
1502
1503        if (to_reserve > 0) {
1504                pending->error = btrfs_block_rsv_add(root,
1505                                                     &pending->block_rsv,
1506                                                     to_reserve,
1507                                                     BTRFS_RESERVE_NO_FLUSH);
1508                if (pending->error)
1509                        goto clear_skip_qgroup;
1510        }
1511
1512        key.objectid = objectid;
1513        key.offset = (u64)-1;
1514        key.type = BTRFS_ROOT_ITEM_KEY;
1515
1516        rsv = trans->block_rsv;
1517        trans->block_rsv = &pending->block_rsv;
1518        trans->bytes_reserved = trans->block_rsv->reserved;
1519        trace_btrfs_space_reservation(fs_info, "transaction",
1520                                      trans->transid,
1521                                      trans->bytes_reserved, 1);
1522        dentry = pending->dentry;
1523        parent_inode = pending->dir;
1524        parent_root = BTRFS_I(parent_inode)->root;
1525        record_root_in_trans(trans, parent_root, 0);
1526
1527        cur_time = current_time(parent_inode);
1528
1529        /*
1530         * insert the directory item
1531         */
1532        ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1533        BUG_ON(ret); /* -ENOMEM */
1534
1535        /* check if there is a file/dir which has the same name. */
1536        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1537                                         btrfs_ino(BTRFS_I(parent_inode)),
1538                                         dentry->d_name.name,
1539                                         dentry->d_name.len, 0);
1540        if (dir_item != NULL && !IS_ERR(dir_item)) {
1541                pending->error = -EEXIST;
1542                goto dir_item_existed;
1543        } else if (IS_ERR(dir_item)) {
1544                ret = PTR_ERR(dir_item);
1545                btrfs_abort_transaction(trans, ret);
1546                goto fail;
1547        }
1548        btrfs_release_path(path);
1549
1550        /*
1551         * pull in the delayed directory update
1552         * and the delayed inode item
1553         * otherwise we corrupt the FS during
1554         * snapshot
1555         */
1556        ret = btrfs_run_delayed_items(trans);
1557        if (ret) {      /* Transaction aborted */
1558                btrfs_abort_transaction(trans, ret);
1559                goto fail;
1560        }
1561
1562        record_root_in_trans(trans, root, 0);
1563        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1564        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1565        btrfs_check_and_init_root_item(new_root_item);
1566
1567        root_flags = btrfs_root_flags(new_root_item);
1568        if (pending->readonly)
1569                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1570        else
1571                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1572        btrfs_set_root_flags(new_root_item, root_flags);
1573
1574        btrfs_set_root_generation_v2(new_root_item,
1575                        trans->transid);
1576        generate_random_guid(new_root_item->uuid);
1577        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1578                        BTRFS_UUID_SIZE);
1579        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1580                memset(new_root_item->received_uuid, 0,
1581                       sizeof(new_root_item->received_uuid));
1582                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1583                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1584                btrfs_set_root_stransid(new_root_item, 0);
1585                btrfs_set_root_rtransid(new_root_item, 0);
1586        }
1587        btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1588        btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1589        btrfs_set_root_otransid(new_root_item, trans->transid);
1590
1591        old = btrfs_lock_root_node(root);
1592        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1593                              BTRFS_NESTING_COW);
1594        if (ret) {
1595                btrfs_tree_unlock(old);
1596                free_extent_buffer(old);
1597                btrfs_abort_transaction(trans, ret);
1598                goto fail;
1599        }
1600
1601        btrfs_set_lock_blocking_write(old);
1602
1603        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1604        /* clean up in any case */
1605        btrfs_tree_unlock(old);
1606        free_extent_buffer(old);
1607        if (ret) {
1608                btrfs_abort_transaction(trans, ret);
1609                goto fail;
1610        }
1611        /* see comments in should_cow_block() */
1612        set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1613        smp_wmb();
1614
1615        btrfs_set_root_node(new_root_item, tmp);
1616        /* record when the snapshot was created in key.offset */
1617        key.offset = trans->transid;
1618        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1619        btrfs_tree_unlock(tmp);
1620        free_extent_buffer(tmp);
1621        if (ret) {
1622                btrfs_abort_transaction(trans, ret);
1623                goto fail;
1624        }
1625
1626        /*
1627         * insert root back/forward references
1628         */
1629        ret = btrfs_add_root_ref(trans, objectid,
1630                                 parent_root->root_key.objectid,
1631                                 btrfs_ino(BTRFS_I(parent_inode)), index,
1632                                 dentry->d_name.name, dentry->d_name.len);
1633        if (ret) {
1634                btrfs_abort_transaction(trans, ret);
1635                goto fail;
1636        }
1637
1638        key.offset = (u64)-1;
1639        pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1640        if (IS_ERR(pending->snap)) {
1641                ret = PTR_ERR(pending->snap);
1642                pending->snap = NULL;
1643                btrfs_abort_transaction(trans, ret);
1644                goto fail;
1645        }
1646
1647        ret = btrfs_reloc_post_snapshot(trans, pending);
1648        if (ret) {
1649                btrfs_abort_transaction(trans, ret);
1650                goto fail;
1651        }
1652
1653        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1654        if (ret) {
1655                btrfs_abort_transaction(trans, ret);
1656                goto fail;
1657        }
1658
1659        /*
1660         * Do special qgroup accounting for snapshot, as we do some qgroup
1661         * snapshot hack to do fast snapshot.
1662         * To co-operate with that hack, we do hack again.
1663         * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1664         */
1665        ret = qgroup_account_snapshot(trans, root, parent_root,
1666                                      pending->inherit, objectid);
1667        if (ret < 0)
1668                goto fail;
1669
1670        ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1671                                    dentry->d_name.len, BTRFS_I(parent_inode),
1672                                    &key, BTRFS_FT_DIR, index);
1673        /* We have check then name at the beginning, so it is impossible. */
1674        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1675        if (ret) {
1676                btrfs_abort_transaction(trans, ret);
1677                goto fail;
1678        }
1679
1680        btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1681                                         dentry->d_name.len * 2);
1682        parent_inode->i_mtime = parent_inode->i_ctime =
1683                current_time(parent_inode);
1684        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1685        if (ret) {
1686                btrfs_abort_transaction(trans, ret);
1687                goto fail;
1688        }
1689        ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1690                                  BTRFS_UUID_KEY_SUBVOL,
1691                                  objectid);
1692        if (ret) {
1693                btrfs_abort_transaction(trans, ret);
1694                goto fail;
1695        }
1696        if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1697                ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1698                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1699                                          objectid);
1700                if (ret && ret != -EEXIST) {
1701                        btrfs_abort_transaction(trans, ret);
1702                        goto fail;
1703                }
1704        }
1705
1706        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1707        if (ret) {
1708                btrfs_abort_transaction(trans, ret);
1709                goto fail;
1710        }
1711
1712fail:
1713        pending->error = ret;
1714dir_item_existed:
1715        trans->block_rsv = rsv;
1716        trans->bytes_reserved = 0;
1717clear_skip_qgroup:
1718        btrfs_clear_skip_qgroup(trans);
1719no_free_objectid:
1720        kfree(new_root_item);
1721        pending->root_item = NULL;
1722        btrfs_free_path(path);
1723        pending->path = NULL;
1724
1725        return ret;
1726}
1727
1728/*
1729 * create all the snapshots we've scheduled for creation
1730 */
1731static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1732{
1733        struct btrfs_pending_snapshot *pending, *next;
1734        struct list_head *head = &trans->transaction->pending_snapshots;
1735        int ret = 0;
1736
1737        list_for_each_entry_safe(pending, next, head, list) {
1738                list_del(&pending->list);
1739                ret = create_pending_snapshot(trans, pending);
1740                if (ret)
1741                        break;
1742        }
1743        return ret;
1744}
1745
1746static void update_super_roots(struct btrfs_fs_info *fs_info)
1747{
1748        struct btrfs_root_item *root_item;
1749        struct btrfs_super_block *super;
1750
1751        super = fs_info->super_copy;
1752
1753        root_item = &fs_info->chunk_root->root_item;
1754        super->chunk_root = root_item->bytenr;
1755        super->chunk_root_generation = root_item->generation;
1756        super->chunk_root_level = root_item->level;
1757
1758        root_item = &fs_info->tree_root->root_item;
1759        super->root = root_item->bytenr;
1760        super->generation = root_item->generation;
1761        super->root_level = root_item->level;
1762        if (btrfs_test_opt(fs_info, SPACE_CACHE))
1763                super->cache_generation = root_item->generation;
1764        if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1765                super->uuid_tree_generation = root_item->generation;
1766}
1767
1768int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1769{
1770        struct btrfs_transaction *trans;
1771        int ret = 0;
1772
1773        spin_lock(&info->trans_lock);
1774        trans = info->running_transaction;
1775        if (trans)
1776                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1777        spin_unlock(&info->trans_lock);
1778        return ret;
1779}
1780
1781int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1782{
1783        struct btrfs_transaction *trans;
1784        int ret = 0;
1785
1786        spin_lock(&info->trans_lock);
1787        trans = info->running_transaction;
1788        if (trans)
1789                ret = is_transaction_blocked(trans);
1790        spin_unlock(&info->trans_lock);
1791        return ret;
1792}
1793
1794/*
1795 * wait for the current transaction commit to start and block subsequent
1796 * transaction joins
1797 */
1798static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1799                                            struct btrfs_transaction *trans)
1800{
1801        wait_event(fs_info->transaction_blocked_wait,
1802                   trans->state >= TRANS_STATE_COMMIT_START ||
1803                   TRANS_ABORTED(trans));
1804}
1805
1806/*
1807 * wait for the current transaction to start and then become unblocked.
1808 * caller holds ref.
1809 */
1810static void wait_current_trans_commit_start_and_unblock(
1811                                        struct btrfs_fs_info *fs_info,
1812                                        struct btrfs_transaction *trans)
1813{
1814        wait_event(fs_info->transaction_wait,
1815                   trans->state >= TRANS_STATE_UNBLOCKED ||
1816                   TRANS_ABORTED(trans));
1817}
1818
1819/*
1820 * commit transactions asynchronously. once btrfs_commit_transaction_async
1821 * returns, any subsequent transaction will not be allowed to join.
1822 */
1823struct btrfs_async_commit {
1824        struct btrfs_trans_handle *newtrans;
1825        struct work_struct work;
1826};
1827
1828static void do_async_commit(struct work_struct *work)
1829{
1830        struct btrfs_async_commit *ac =
1831                container_of(work, struct btrfs_async_commit, work);
1832
1833        /*
1834         * We've got freeze protection passed with the transaction.
1835         * Tell lockdep about it.
1836         */
1837        if (ac->newtrans->type & __TRANS_FREEZABLE)
1838                __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1839
1840        current->journal_info = ac->newtrans;
1841
1842        btrfs_commit_transaction(ac->newtrans);
1843        kfree(ac);
1844}
1845
1846int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1847                                   int wait_for_unblock)
1848{
1849        struct btrfs_fs_info *fs_info = trans->fs_info;
1850        struct btrfs_async_commit *ac;
1851        struct btrfs_transaction *cur_trans;
1852
1853        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1854        if (!ac)
1855                return -ENOMEM;
1856
1857        INIT_WORK(&ac->work, do_async_commit);
1858        ac->newtrans = btrfs_join_transaction(trans->root);
1859        if (IS_ERR(ac->newtrans)) {
1860                int err = PTR_ERR(ac->newtrans);
1861                kfree(ac);
1862                return err;
1863        }
1864
1865        /* take transaction reference */
1866        cur_trans = trans->transaction;
1867        refcount_inc(&cur_trans->use_count);
1868
1869        btrfs_end_transaction(trans);
1870
1871        /*
1872         * Tell lockdep we've released the freeze rwsem, since the
1873         * async commit thread will be the one to unlock it.
1874         */
1875        if (ac->newtrans->type & __TRANS_FREEZABLE)
1876                __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1877
1878        schedule_work(&ac->work);
1879
1880        /* wait for transaction to start and unblock */
1881        if (wait_for_unblock)
1882                wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1883        else
1884                wait_current_trans_commit_start(fs_info, cur_trans);
1885
1886        if (current->journal_info == trans)
1887                current->journal_info = NULL;
1888
1889        btrfs_put_transaction(cur_trans);
1890        return 0;
1891}
1892
1893
1894static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1895{
1896        struct btrfs_fs_info *fs_info = trans->fs_info;
1897        struct btrfs_transaction *cur_trans = trans->transaction;
1898
1899        WARN_ON(refcount_read(&trans->use_count) > 1);
1900
1901        btrfs_abort_transaction(trans, err);
1902
1903        spin_lock(&fs_info->trans_lock);
1904
1905        /*
1906         * If the transaction is removed from the list, it means this
1907         * transaction has been committed successfully, so it is impossible
1908         * to call the cleanup function.
1909         */
1910        BUG_ON(list_empty(&cur_trans->list));
1911
1912        list_del_init(&cur_trans->list);
1913        if (cur_trans == fs_info->running_transaction) {
1914                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1915                spin_unlock(&fs_info->trans_lock);
1916                wait_event(cur_trans->writer_wait,
1917                           atomic_read(&cur_trans->num_writers) == 1);
1918
1919                spin_lock(&fs_info->trans_lock);
1920        }
1921        spin_unlock(&fs_info->trans_lock);
1922
1923        btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1924
1925        spin_lock(&fs_info->trans_lock);
1926        if (cur_trans == fs_info->running_transaction)
1927                fs_info->running_transaction = NULL;
1928        spin_unlock(&fs_info->trans_lock);
1929
1930        if (trans->type & __TRANS_FREEZABLE)
1931                sb_end_intwrite(fs_info->sb);
1932        btrfs_put_transaction(cur_trans);
1933        btrfs_put_transaction(cur_trans);
1934
1935        trace_btrfs_transaction_commit(trans->root);
1936
1937        if (current->journal_info == trans)
1938                current->journal_info = NULL;
1939        btrfs_scrub_cancel(fs_info);
1940
1941        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942}
1943
1944/*
1945 * Release reserved delayed ref space of all pending block groups of the
1946 * transaction and remove them from the list
1947 */
1948static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1949{
1950       struct btrfs_fs_info *fs_info = trans->fs_info;
1951       struct btrfs_block_group *block_group, *tmp;
1952
1953       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1954               btrfs_delayed_refs_rsv_release(fs_info, 1);
1955               list_del_init(&block_group->bg_list);
1956       }
1957}
1958
1959static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1960{
1961        struct btrfs_fs_info *fs_info = trans->fs_info;
1962
1963        /*
1964         * We use writeback_inodes_sb here because if we used
1965         * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1966         * Currently are holding the fs freeze lock, if we do an async flush
1967         * we'll do btrfs_join_transaction() and deadlock because we need to
1968         * wait for the fs freeze lock.  Using the direct flushing we benefit
1969         * from already being in a transaction and our join_transaction doesn't
1970         * have to re-take the fs freeze lock.
1971         */
1972        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1973                writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1974        } else {
1975                struct btrfs_pending_snapshot *pending;
1976                struct list_head *head = &trans->transaction->pending_snapshots;
1977
1978                /*
1979                 * Flush dellaloc for any root that is going to be snapshotted.
1980                 * This is done to avoid a corrupted version of files, in the
1981                 * snapshots, that had both buffered and direct IO writes (even
1982                 * if they were done sequentially) due to an unordered update of
1983                 * the inode's size on disk.
1984                 */
1985                list_for_each_entry(pending, head, list) {
1986                        int ret;
1987
1988                        ret = btrfs_start_delalloc_snapshot(pending->root);
1989                        if (ret)
1990                                return ret;
1991                }
1992        }
1993        return 0;
1994}
1995
1996static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1997{
1998        struct btrfs_fs_info *fs_info = trans->fs_info;
1999
2000        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2001                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2002        } else {
2003                struct btrfs_pending_snapshot *pending;
2004                struct list_head *head = &trans->transaction->pending_snapshots;
2005
2006                /*
2007                 * Wait for any dellaloc that we started previously for the roots
2008                 * that are going to be snapshotted. This is to avoid a corrupted
2009                 * version of files in the snapshots that had both buffered and
2010                 * direct IO writes (even if they were done sequentially).
2011                 */
2012                list_for_each_entry(pending, head, list)
2013                        btrfs_wait_ordered_extents(pending->root,
2014                                                   U64_MAX, 0, U64_MAX);
2015        }
2016}
2017
2018int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2019{
2020        struct btrfs_fs_info *fs_info = trans->fs_info;
2021        struct btrfs_transaction *cur_trans = trans->transaction;
2022        struct btrfs_transaction *prev_trans = NULL;
2023        int ret;
2024
2025        ASSERT(refcount_read(&trans->use_count) == 1);
2026
2027        /*
2028         * Some places just start a transaction to commit it.  We need to make
2029         * sure that if this commit fails that the abort code actually marks the
2030         * transaction as failed, so set trans->dirty to make the abort code do
2031         * the right thing.
2032         */
2033        trans->dirty = true;
2034
2035        /* Stop the commit early if ->aborted is set */
2036        if (TRANS_ABORTED(cur_trans)) {
2037                ret = cur_trans->aborted;
2038                btrfs_end_transaction(trans);
2039                return ret;
2040        }
2041
2042        btrfs_trans_release_metadata(trans);
2043        trans->block_rsv = NULL;
2044
2045        /* make a pass through all the delayed refs we have so far
2046         * any runnings procs may add more while we are here
2047         */
2048        ret = btrfs_run_delayed_refs(trans, 0);
2049        if (ret) {
2050                btrfs_end_transaction(trans);
2051                return ret;
2052        }
2053
2054        cur_trans = trans->transaction;
2055
2056        /*
2057         * set the flushing flag so procs in this transaction have to
2058         * start sending their work down.
2059         */
2060        cur_trans->delayed_refs.flushing = 1;
2061        smp_wmb();
2062
2063        btrfs_create_pending_block_groups(trans);
2064
2065        ret = btrfs_run_delayed_refs(trans, 0);
2066        if (ret) {
2067                btrfs_end_transaction(trans);
2068                return ret;
2069        }
2070
2071        if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2072                int run_it = 0;
2073
2074                /* this mutex is also taken before trying to set
2075                 * block groups readonly.  We need to make sure
2076                 * that nobody has set a block group readonly
2077                 * after a extents from that block group have been
2078                 * allocated for cache files.  btrfs_set_block_group_ro
2079                 * will wait for the transaction to commit if it
2080                 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2081                 *
2082                 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2083                 * only one process starts all the block group IO.  It wouldn't
2084                 * hurt to have more than one go through, but there's no
2085                 * real advantage to it either.
2086                 */
2087                mutex_lock(&fs_info->ro_block_group_mutex);
2088                if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2089                                      &cur_trans->flags))
2090                        run_it = 1;
2091                mutex_unlock(&fs_info->ro_block_group_mutex);
2092
2093                if (run_it) {
2094                        ret = btrfs_start_dirty_block_groups(trans);
2095                        if (ret) {
2096                                btrfs_end_transaction(trans);
2097                                return ret;
2098                        }
2099                }
2100        }
2101
2102        spin_lock(&fs_info->trans_lock);
2103        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2104                spin_unlock(&fs_info->trans_lock);
2105                refcount_inc(&cur_trans->use_count);
2106                ret = btrfs_end_transaction(trans);
2107
2108                wait_for_commit(cur_trans);
2109
2110                if (TRANS_ABORTED(cur_trans))
2111                        ret = cur_trans->aborted;
2112
2113                btrfs_put_transaction(cur_trans);
2114
2115                return ret;
2116        }
2117
2118        cur_trans->state = TRANS_STATE_COMMIT_START;
2119        wake_up(&fs_info->transaction_blocked_wait);
2120
2121        if (cur_trans->list.prev != &fs_info->trans_list) {
2122                prev_trans = list_entry(cur_trans->list.prev,
2123                                        struct btrfs_transaction, list);
2124                if (prev_trans->state != TRANS_STATE_COMPLETED) {
2125                        refcount_inc(&prev_trans->use_count);
2126                        spin_unlock(&fs_info->trans_lock);
2127
2128                        wait_for_commit(prev_trans);
2129                        ret = READ_ONCE(prev_trans->aborted);
2130
2131                        btrfs_put_transaction(prev_trans);
2132                        if (ret)
2133                                goto cleanup_transaction;
2134                } else {
2135                        spin_unlock(&fs_info->trans_lock);
2136                }
2137        } else {
2138                spin_unlock(&fs_info->trans_lock);
2139                /*
2140                 * The previous transaction was aborted and was already removed
2141                 * from the list of transactions at fs_info->trans_list. So we
2142                 * abort to prevent writing a new superblock that reflects a
2143                 * corrupt state (pointing to trees with unwritten nodes/leafs).
2144                 */
2145                if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2146                        ret = -EROFS;
2147                        goto cleanup_transaction;
2148                }
2149        }
2150
2151        extwriter_counter_dec(cur_trans, trans->type);
2152
2153        ret = btrfs_start_delalloc_flush(trans);
2154        if (ret)
2155                goto cleanup_transaction;
2156
2157        ret = btrfs_run_delayed_items(trans);
2158        if (ret)
2159                goto cleanup_transaction;
2160
2161        wait_event(cur_trans->writer_wait,
2162                   extwriter_counter_read(cur_trans) == 0);
2163
2164        /* some pending stuffs might be added after the previous flush. */
2165        ret = btrfs_run_delayed_items(trans);
2166        if (ret)
2167                goto cleanup_transaction;
2168
2169        btrfs_wait_delalloc_flush(trans);
2170
2171        /*
2172         * Wait for all ordered extents started by a fast fsync that joined this
2173         * transaction. Otherwise if this transaction commits before the ordered
2174         * extents complete we lose logged data after a power failure.
2175         */
2176        wait_event(cur_trans->pending_wait,
2177                   atomic_read(&cur_trans->pending_ordered) == 0);
2178
2179        btrfs_scrub_pause(fs_info);
2180        /*
2181         * Ok now we need to make sure to block out any other joins while we
2182         * commit the transaction.  We could have started a join before setting
2183         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2184         */
2185        spin_lock(&fs_info->trans_lock);
2186        cur_trans->state = TRANS_STATE_COMMIT_DOING;
2187        spin_unlock(&fs_info->trans_lock);
2188        wait_event(cur_trans->writer_wait,
2189                   atomic_read(&cur_trans->num_writers) == 1);
2190
2191        if (TRANS_ABORTED(cur_trans)) {
2192                ret = cur_trans->aborted;
2193                goto scrub_continue;
2194        }
2195        /*
2196         * the reloc mutex makes sure that we stop
2197         * the balancing code from coming in and moving
2198         * extents around in the middle of the commit
2199         */
2200        mutex_lock(&fs_info->reloc_mutex);
2201
2202        /*
2203         * We needn't worry about the delayed items because we will
2204         * deal with them in create_pending_snapshot(), which is the
2205         * core function of the snapshot creation.
2206         */
2207        ret = create_pending_snapshots(trans);
2208        if (ret)
2209                goto unlock_reloc;
2210
2211        /*
2212         * We insert the dir indexes of the snapshots and update the inode
2213         * of the snapshots' parents after the snapshot creation, so there
2214         * are some delayed items which are not dealt with. Now deal with
2215         * them.
2216         *
2217         * We needn't worry that this operation will corrupt the snapshots,
2218         * because all the tree which are snapshoted will be forced to COW
2219         * the nodes and leaves.
2220         */
2221        ret = btrfs_run_delayed_items(trans);
2222        if (ret)
2223                goto unlock_reloc;
2224
2225        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2226        if (ret)
2227                goto unlock_reloc;
2228
2229        /*
2230         * make sure none of the code above managed to slip in a
2231         * delayed item
2232         */
2233        btrfs_assert_delayed_root_empty(fs_info);
2234
2235        WARN_ON(cur_trans != trans->transaction);
2236
2237        /* btrfs_commit_tree_roots is responsible for getting the
2238         * various roots consistent with each other.  Every pointer
2239         * in the tree of tree roots has to point to the most up to date
2240         * root for every subvolume and other tree.  So, we have to keep
2241         * the tree logging code from jumping in and changing any
2242         * of the trees.
2243         *
2244         * At this point in the commit, there can't be any tree-log
2245         * writers, but a little lower down we drop the trans mutex
2246         * and let new people in.  By holding the tree_log_mutex
2247         * from now until after the super is written, we avoid races
2248         * with the tree-log code.
2249         */
2250        mutex_lock(&fs_info->tree_log_mutex);
2251
2252        ret = commit_fs_roots(trans);
2253        if (ret)
2254                goto unlock_tree_log;
2255
2256        /*
2257         * Since the transaction is done, we can apply the pending changes
2258         * before the next transaction.
2259         */
2260        btrfs_apply_pending_changes(fs_info);
2261
2262        /* commit_fs_roots gets rid of all the tree log roots, it is now
2263         * safe to free the root of tree log roots
2264         */
2265        btrfs_free_log_root_tree(trans, fs_info);
2266
2267        /*
2268         * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2269         * new delayed refs. Must handle them or qgroup can be wrong.
2270         */
2271        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2272        if (ret)
2273                goto unlock_tree_log;
2274
2275        /*
2276         * Since fs roots are all committed, we can get a quite accurate
2277         * new_roots. So let's do quota accounting.
2278         */
2279        ret = btrfs_qgroup_account_extents(trans);
2280        if (ret < 0)
2281                goto unlock_tree_log;
2282
2283        ret = commit_cowonly_roots(trans);
2284        if (ret)
2285                goto unlock_tree_log;
2286
2287        /*
2288         * The tasks which save the space cache and inode cache may also
2289         * update ->aborted, check it.
2290         */
2291        if (TRANS_ABORTED(cur_trans)) {
2292                ret = cur_trans->aborted;
2293                goto unlock_tree_log;
2294        }
2295
2296        btrfs_prepare_extent_commit(fs_info);
2297
2298        cur_trans = fs_info->running_transaction;
2299
2300        btrfs_set_root_node(&fs_info->tree_root->root_item,
2301                            fs_info->tree_root->node);
2302        list_add_tail(&fs_info->tree_root->dirty_list,
2303                      &cur_trans->switch_commits);
2304
2305        btrfs_set_root_node(&fs_info->chunk_root->root_item,
2306                            fs_info->chunk_root->node);
2307        list_add_tail(&fs_info->chunk_root->dirty_list,
2308                      &cur_trans->switch_commits);
2309
2310        switch_commit_roots(trans);
2311
2312        ASSERT(list_empty(&cur_trans->dirty_bgs));
2313        ASSERT(list_empty(&cur_trans->io_bgs));
2314        update_super_roots(fs_info);
2315
2316        btrfs_set_super_log_root(fs_info->super_copy, 0);
2317        btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2318        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2319               sizeof(*fs_info->super_copy));
2320
2321        btrfs_commit_device_sizes(cur_trans);
2322
2323        clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2324        clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2325
2326        btrfs_trans_release_chunk_metadata(trans);
2327
2328        spin_lock(&fs_info->trans_lock);
2329        cur_trans->state = TRANS_STATE_UNBLOCKED;
2330        fs_info->running_transaction = NULL;
2331        spin_unlock(&fs_info->trans_lock);
2332        mutex_unlock(&fs_info->reloc_mutex);
2333
2334        wake_up(&fs_info->transaction_wait);
2335
2336        ret = btrfs_write_and_wait_transaction(trans);
2337        if (ret) {
2338                btrfs_handle_fs_error(fs_info, ret,
2339                                      "Error while writing out transaction");
2340                /*
2341                 * reloc_mutex has been unlocked, tree_log_mutex is still held
2342                 * but we can't jump to unlock_tree_log causing double unlock
2343                 */
2344                mutex_unlock(&fs_info->tree_log_mutex);
2345                goto scrub_continue;
2346        }
2347
2348        ret = write_all_supers(fs_info, 0);
2349        /*
2350         * the super is written, we can safely allow the tree-loggers
2351         * to go about their business
2352         */
2353        mutex_unlock(&fs_info->tree_log_mutex);
2354        if (ret)
2355                goto scrub_continue;
2356
2357        btrfs_finish_extent_commit(trans);
2358
2359        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2360                btrfs_clear_space_info_full(fs_info);
2361
2362        fs_info->last_trans_committed = cur_trans->transid;
2363        /*
2364         * We needn't acquire the lock here because there is no other task
2365         * which can change it.
2366         */
2367        cur_trans->state = TRANS_STATE_COMPLETED;
2368        wake_up(&cur_trans->commit_wait);
2369
2370        spin_lock(&fs_info->trans_lock);
2371        list_del_init(&cur_trans->list);
2372        spin_unlock(&fs_info->trans_lock);
2373
2374        btrfs_put_transaction(cur_trans);
2375        btrfs_put_transaction(cur_trans);
2376
2377        if (trans->type & __TRANS_FREEZABLE)
2378                sb_end_intwrite(fs_info->sb);
2379
2380        trace_btrfs_transaction_commit(trans->root);
2381
2382        btrfs_scrub_continue(fs_info);
2383
2384        if (current->journal_info == trans)
2385                current->journal_info = NULL;
2386
2387        kmem_cache_free(btrfs_trans_handle_cachep, trans);
2388
2389        return ret;
2390
2391unlock_tree_log:
2392        mutex_unlock(&fs_info->tree_log_mutex);
2393unlock_reloc:
2394        mutex_unlock(&fs_info->reloc_mutex);
2395scrub_continue:
2396        btrfs_scrub_continue(fs_info);
2397cleanup_transaction:
2398        btrfs_trans_release_metadata(trans);
2399        btrfs_cleanup_pending_block_groups(trans);
2400        btrfs_trans_release_chunk_metadata(trans);
2401        trans->block_rsv = NULL;
2402        btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2403        if (current->journal_info == trans)
2404                current->journal_info = NULL;
2405        cleanup_transaction(trans, ret);
2406
2407        return ret;
2408}
2409
2410/*
2411 * return < 0 if error
2412 * 0 if there are no more dead_roots at the time of call
2413 * 1 there are more to be processed, call me again
2414 *
2415 * The return value indicates there are certainly more snapshots to delete, but
2416 * if there comes a new one during processing, it may return 0. We don't mind,
2417 * because btrfs_commit_super will poke cleaner thread and it will process it a
2418 * few seconds later.
2419 */
2420int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2421{
2422        int ret;
2423        struct btrfs_fs_info *fs_info = root->fs_info;
2424
2425        spin_lock(&fs_info->trans_lock);
2426        if (list_empty(&fs_info->dead_roots)) {
2427                spin_unlock(&fs_info->trans_lock);
2428                return 0;
2429        }
2430        root = list_first_entry(&fs_info->dead_roots,
2431                        struct btrfs_root, root_list);
2432        list_del_init(&root->root_list);
2433        spin_unlock(&fs_info->trans_lock);
2434
2435        btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2436
2437        btrfs_kill_all_delayed_nodes(root);
2438        if (root->ino_cache_inode) {
2439                iput(root->ino_cache_inode);
2440                root->ino_cache_inode = NULL;
2441        }
2442
2443        if (btrfs_header_backref_rev(root->node) <
2444                        BTRFS_MIXED_BACKREF_REV)
2445                ret = btrfs_drop_snapshot(root, 0, 0);
2446        else
2447                ret = btrfs_drop_snapshot(root, 1, 0);
2448
2449        btrfs_put_root(root);
2450        return (ret < 0) ? 0 : 1;
2451}
2452
2453void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2454{
2455        unsigned long prev;
2456        unsigned long bit;
2457
2458        prev = xchg(&fs_info->pending_changes, 0);
2459        if (!prev)
2460                return;
2461
2462        bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2463        if (prev & bit)
2464                btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2465        prev &= ~bit;
2466
2467        bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2468        if (prev & bit)
2469                btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2470        prev &= ~bit;
2471
2472        bit = 1 << BTRFS_PENDING_COMMIT;
2473        if (prev & bit)
2474                btrfs_debug(fs_info, "pending commit done");
2475        prev &= ~bit;
2476
2477        if (prev)
2478                btrfs_warn(fs_info,
2479                        "unknown pending changes left 0x%lx, ignoring", prev);
2480}
2481