linux/fs/hugetlbfs/inode.c
<<
>>
Prefs
   1/*
   2 * hugetlbpage-backed filesystem.  Based on ramfs.
   3 *
   4 * Nadia Yvette Chambers, 2002
   5 *
   6 * Copyright (C) 2002 Linus Torvalds.
   7 * License: GPL
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/thread_info.h>
  13#include <asm/current.h>
  14#include <linux/sched/signal.h>         /* remove ASAP */
  15#include <linux/falloc.h>
  16#include <linux/fs.h>
  17#include <linux/mount.h>
  18#include <linux/file.h>
  19#include <linux/kernel.h>
  20#include <linux/writeback.h>
  21#include <linux/pagemap.h>
  22#include <linux/highmem.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/capability.h>
  26#include <linux/ctype.h>
  27#include <linux/backing-dev.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagevec.h>
  30#include <linux/fs_parser.h>
  31#include <linux/mman.h>
  32#include <linux/slab.h>
  33#include <linux/dnotify.h>
  34#include <linux/statfs.h>
  35#include <linux/security.h>
  36#include <linux/magic.h>
  37#include <linux/migrate.h>
  38#include <linux/uio.h>
  39
  40#include <linux/uaccess.h>
  41#include <linux/sched/mm.h>
  42
  43static const struct super_operations hugetlbfs_ops;
  44static const struct address_space_operations hugetlbfs_aops;
  45const struct file_operations hugetlbfs_file_operations;
  46static const struct inode_operations hugetlbfs_dir_inode_operations;
  47static const struct inode_operations hugetlbfs_inode_operations;
  48
  49enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
  50
  51struct hugetlbfs_fs_context {
  52        struct hstate           *hstate;
  53        unsigned long long      max_size_opt;
  54        unsigned long long      min_size_opt;
  55        long                    max_hpages;
  56        long                    nr_inodes;
  57        long                    min_hpages;
  58        enum hugetlbfs_size_type max_val_type;
  59        enum hugetlbfs_size_type min_val_type;
  60        kuid_t                  uid;
  61        kgid_t                  gid;
  62        umode_t                 mode;
  63};
  64
  65int sysctl_hugetlb_shm_group;
  66
  67enum hugetlb_param {
  68        Opt_gid,
  69        Opt_min_size,
  70        Opt_mode,
  71        Opt_nr_inodes,
  72        Opt_pagesize,
  73        Opt_size,
  74        Opt_uid,
  75};
  76
  77static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
  78        fsparam_u32   ("gid",           Opt_gid),
  79        fsparam_string("min_size",      Opt_min_size),
  80        fsparam_u32   ("mode",          Opt_mode),
  81        fsparam_string("nr_inodes",     Opt_nr_inodes),
  82        fsparam_string("pagesize",      Opt_pagesize),
  83        fsparam_string("size",          Opt_size),
  84        fsparam_u32   ("uid",           Opt_uid),
  85        {}
  86};
  87
  88#ifdef CONFIG_NUMA
  89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  90                                        struct inode *inode, pgoff_t index)
  91{
  92        vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  93                                                        index);
  94}
  95
  96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  97{
  98        mpol_cond_put(vma->vm_policy);
  99}
 100#else
 101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 102                                        struct inode *inode, pgoff_t index)
 103{
 104}
 105
 106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 107{
 108}
 109#endif
 110
 111static void huge_pagevec_release(struct pagevec *pvec)
 112{
 113        int i;
 114
 115        for (i = 0; i < pagevec_count(pvec); ++i)
 116                put_page(pvec->pages[i]);
 117
 118        pagevec_reinit(pvec);
 119}
 120
 121/*
 122 * Mask used when checking the page offset value passed in via system
 123 * calls.  This value will be converted to a loff_t which is signed.
 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 125 * value.  The extra bit (- 1 in the shift value) is to take the sign
 126 * bit into account.
 127 */
 128#define PGOFF_LOFFT_MAX \
 129        (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 130
 131static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 132{
 133        struct inode *inode = file_inode(file);
 134        loff_t len, vma_len;
 135        int ret;
 136        struct hstate *h = hstate_file(file);
 137
 138        /*
 139         * vma address alignment (but not the pgoff alignment) has
 140         * already been checked by prepare_hugepage_range.  If you add
 141         * any error returns here, do so after setting VM_HUGETLB, so
 142         * is_vm_hugetlb_page tests below unmap_region go the right
 143         * way when do_mmap unwinds (may be important on powerpc
 144         * and ia64).
 145         */
 146        vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 147        vma->vm_ops = &hugetlb_vm_ops;
 148
 149        /*
 150         * page based offset in vm_pgoff could be sufficiently large to
 151         * overflow a loff_t when converted to byte offset.  This can
 152         * only happen on architectures where sizeof(loff_t) ==
 153         * sizeof(unsigned long).  So, only check in those instances.
 154         */
 155        if (sizeof(unsigned long) == sizeof(loff_t)) {
 156                if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 157                        return -EINVAL;
 158        }
 159
 160        /* must be huge page aligned */
 161        if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 162                return -EINVAL;
 163
 164        vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 165        len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 166        /* check for overflow */
 167        if (len < vma_len)
 168                return -EINVAL;
 169
 170        inode_lock(inode);
 171        file_accessed(file);
 172
 173        ret = -ENOMEM;
 174        if (hugetlb_reserve_pages(inode,
 175                                vma->vm_pgoff >> huge_page_order(h),
 176                                len >> huge_page_shift(h), vma,
 177                                vma->vm_flags))
 178                goto out;
 179
 180        ret = 0;
 181        if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 182                i_size_write(inode, len);
 183out:
 184        inode_unlock(inode);
 185
 186        return ret;
 187}
 188
 189/*
 190 * Called under mmap_write_lock(mm).
 191 */
 192
 193#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 194static unsigned long
 195hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
 196                unsigned long len, unsigned long pgoff, unsigned long flags)
 197{
 198        struct hstate *h = hstate_file(file);
 199        struct vm_unmapped_area_info info;
 200
 201        info.flags = 0;
 202        info.length = len;
 203        info.low_limit = current->mm->mmap_base;
 204        info.high_limit = TASK_SIZE;
 205        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 206        info.align_offset = 0;
 207        return vm_unmapped_area(&info);
 208}
 209
 210static unsigned long
 211hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
 212                unsigned long len, unsigned long pgoff, unsigned long flags)
 213{
 214        struct hstate *h = hstate_file(file);
 215        struct vm_unmapped_area_info info;
 216
 217        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 218        info.length = len;
 219        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
 220        info.high_limit = current->mm->mmap_base;
 221        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 222        info.align_offset = 0;
 223        addr = vm_unmapped_area(&info);
 224
 225        /*
 226         * A failed mmap() very likely causes application failure,
 227         * so fall back to the bottom-up function here. This scenario
 228         * can happen with large stack limits and large mmap()
 229         * allocations.
 230         */
 231        if (unlikely(offset_in_page(addr))) {
 232                VM_BUG_ON(addr != -ENOMEM);
 233                info.flags = 0;
 234                info.low_limit = current->mm->mmap_base;
 235                info.high_limit = TASK_SIZE;
 236                addr = vm_unmapped_area(&info);
 237        }
 238
 239        return addr;
 240}
 241
 242static unsigned long
 243hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 244                unsigned long len, unsigned long pgoff, unsigned long flags)
 245{
 246        struct mm_struct *mm = current->mm;
 247        struct vm_area_struct *vma;
 248        struct hstate *h = hstate_file(file);
 249
 250        if (len & ~huge_page_mask(h))
 251                return -EINVAL;
 252        if (len > TASK_SIZE)
 253                return -ENOMEM;
 254
 255        if (flags & MAP_FIXED) {
 256                if (prepare_hugepage_range(file, addr, len))
 257                        return -EINVAL;
 258                return addr;
 259        }
 260
 261        if (addr) {
 262                addr = ALIGN(addr, huge_page_size(h));
 263                vma = find_vma(mm, addr);
 264                if (TASK_SIZE - len >= addr &&
 265                    (!vma || addr + len <= vm_start_gap(vma)))
 266                        return addr;
 267        }
 268
 269        /*
 270         * Use mm->get_unmapped_area value as a hint to use topdown routine.
 271         * If architectures have special needs, they should define their own
 272         * version of hugetlb_get_unmapped_area.
 273         */
 274        if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
 275                return hugetlb_get_unmapped_area_topdown(file, addr, len,
 276                                pgoff, flags);
 277        return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 278                        pgoff, flags);
 279}
 280#endif
 281
 282static size_t
 283hugetlbfs_read_actor(struct page *page, unsigned long offset,
 284                        struct iov_iter *to, unsigned long size)
 285{
 286        size_t copied = 0;
 287        int i, chunksize;
 288
 289        /* Find which 4k chunk and offset with in that chunk */
 290        i = offset >> PAGE_SHIFT;
 291        offset = offset & ~PAGE_MASK;
 292
 293        while (size) {
 294                size_t n;
 295                chunksize = PAGE_SIZE;
 296                if (offset)
 297                        chunksize -= offset;
 298                if (chunksize > size)
 299                        chunksize = size;
 300                n = copy_page_to_iter(&page[i], offset, chunksize, to);
 301                copied += n;
 302                if (n != chunksize)
 303                        return copied;
 304                offset = 0;
 305                size -= chunksize;
 306                i++;
 307        }
 308        return copied;
 309}
 310
 311/*
 312 * Support for read() - Find the page attached to f_mapping and copy out the
 313 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 314 * since it has PAGE_SIZE assumptions.
 315 */
 316static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 317{
 318        struct file *file = iocb->ki_filp;
 319        struct hstate *h = hstate_file(file);
 320        struct address_space *mapping = file->f_mapping;
 321        struct inode *inode = mapping->host;
 322        unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 323        unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 324        unsigned long end_index;
 325        loff_t isize;
 326        ssize_t retval = 0;
 327
 328        while (iov_iter_count(to)) {
 329                struct page *page;
 330                size_t nr, copied;
 331
 332                /* nr is the maximum number of bytes to copy from this page */
 333                nr = huge_page_size(h);
 334                isize = i_size_read(inode);
 335                if (!isize)
 336                        break;
 337                end_index = (isize - 1) >> huge_page_shift(h);
 338                if (index > end_index)
 339                        break;
 340                if (index == end_index) {
 341                        nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 342                        if (nr <= offset)
 343                                break;
 344                }
 345                nr = nr - offset;
 346
 347                /* Find the page */
 348                page = find_lock_page(mapping, index);
 349                if (unlikely(page == NULL)) {
 350                        /*
 351                         * We have a HOLE, zero out the user-buffer for the
 352                         * length of the hole or request.
 353                         */
 354                        copied = iov_iter_zero(nr, to);
 355                } else {
 356                        unlock_page(page);
 357
 358                        /*
 359                         * We have the page, copy it to user space buffer.
 360                         */
 361                        copied = hugetlbfs_read_actor(page, offset, to, nr);
 362                        put_page(page);
 363                }
 364                offset += copied;
 365                retval += copied;
 366                if (copied != nr && iov_iter_count(to)) {
 367                        if (!retval)
 368                                retval = -EFAULT;
 369                        break;
 370                }
 371                index += offset >> huge_page_shift(h);
 372                offset &= ~huge_page_mask(h);
 373        }
 374        iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 375        return retval;
 376}
 377
 378static int hugetlbfs_write_begin(struct file *file,
 379                        struct address_space *mapping,
 380                        loff_t pos, unsigned len, unsigned flags,
 381                        struct page **pagep, void **fsdata)
 382{
 383        return -EINVAL;
 384}
 385
 386static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 387                        loff_t pos, unsigned len, unsigned copied,
 388                        struct page *page, void *fsdata)
 389{
 390        BUG();
 391        return -EINVAL;
 392}
 393
 394static void remove_huge_page(struct page *page)
 395{
 396        ClearPageDirty(page);
 397        ClearPageUptodate(page);
 398        delete_from_page_cache(page);
 399}
 400
 401static void
 402hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 403{
 404        struct vm_area_struct *vma;
 405
 406        /*
 407         * end == 0 indicates that the entire range after
 408         * start should be unmapped.
 409         */
 410        vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 411                unsigned long v_offset;
 412                unsigned long v_end;
 413
 414                /*
 415                 * Can the expression below overflow on 32-bit arches?
 416                 * No, because the interval tree returns us only those vmas
 417                 * which overlap the truncated area starting at pgoff,
 418                 * and no vma on a 32-bit arch can span beyond the 4GB.
 419                 */
 420                if (vma->vm_pgoff < start)
 421                        v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 422                else
 423                        v_offset = 0;
 424
 425                if (!end)
 426                        v_end = vma->vm_end;
 427                else {
 428                        v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 429                                                        + vma->vm_start;
 430                        if (v_end > vma->vm_end)
 431                                v_end = vma->vm_end;
 432                }
 433
 434                unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 435                                                                        NULL);
 436        }
 437}
 438
 439/*
 440 * remove_inode_hugepages handles two distinct cases: truncation and hole
 441 * punch.  There are subtle differences in operation for each case.
 442 *
 443 * truncation is indicated by end of range being LLONG_MAX
 444 *      In this case, we first scan the range and release found pages.
 445 *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 446 *      maps and global counts.  Page faults can not race with truncation
 447 *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
 448 *      page faults in the truncated range by checking i_size.  i_size is
 449 *      modified while holding i_mmap_rwsem.
 450 * hole punch is indicated if end is not LLONG_MAX
 451 *      In the hole punch case we scan the range and release found pages.
 452 *      Only when releasing a page is the associated region/reserv map
 453 *      deleted.  The region/reserv map for ranges without associated
 454 *      pages are not modified.  Page faults can race with hole punch.
 455 *      This is indicated if we find a mapped page.
 456 * Note: If the passed end of range value is beyond the end of file, but
 457 * not LLONG_MAX this routine still performs a hole punch operation.
 458 */
 459static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 460                                   loff_t lend)
 461{
 462        struct hstate *h = hstate_inode(inode);
 463        struct address_space *mapping = &inode->i_data;
 464        const pgoff_t start = lstart >> huge_page_shift(h);
 465        const pgoff_t end = lend >> huge_page_shift(h);
 466        struct vm_area_struct pseudo_vma;
 467        struct pagevec pvec;
 468        pgoff_t next, index;
 469        int i, freed = 0;
 470        bool truncate_op = (lend == LLONG_MAX);
 471
 472        vma_init(&pseudo_vma, current->mm);
 473        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 474        pagevec_init(&pvec);
 475        next = start;
 476        while (next < end) {
 477                /*
 478                 * When no more pages are found, we are done.
 479                 */
 480                if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 481                        break;
 482
 483                for (i = 0; i < pagevec_count(&pvec); ++i) {
 484                        struct page *page = pvec.pages[i];
 485                        u32 hash;
 486
 487                        index = page->index;
 488                        hash = hugetlb_fault_mutex_hash(mapping, index);
 489                        if (!truncate_op) {
 490                                /*
 491                                 * Only need to hold the fault mutex in the
 492                                 * hole punch case.  This prevents races with
 493                                 * page faults.  Races are not possible in the
 494                                 * case of truncation.
 495                                 */
 496                                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 497                        }
 498
 499                        /*
 500                         * If page is mapped, it was faulted in after being
 501                         * unmapped in caller.  Unmap (again) now after taking
 502                         * the fault mutex.  The mutex will prevent faults
 503                         * until we finish removing the page.
 504                         *
 505                         * This race can only happen in the hole punch case.
 506                         * Getting here in a truncate operation is a bug.
 507                         */
 508                        if (unlikely(page_mapped(page))) {
 509                                BUG_ON(truncate_op);
 510
 511                                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 512                                i_mmap_lock_write(mapping);
 513                                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 514                                hugetlb_vmdelete_list(&mapping->i_mmap,
 515                                        index * pages_per_huge_page(h),
 516                                        (index + 1) * pages_per_huge_page(h));
 517                                i_mmap_unlock_write(mapping);
 518                        }
 519
 520                        lock_page(page);
 521                        /*
 522                         * We must free the huge page and remove from page
 523                         * cache (remove_huge_page) BEFORE removing the
 524                         * region/reserve map (hugetlb_unreserve_pages).  In
 525                         * rare out of memory conditions, removal of the
 526                         * region/reserve map could fail. Correspondingly,
 527                         * the subpool and global reserve usage count can need
 528                         * to be adjusted.
 529                         */
 530                        VM_BUG_ON(PagePrivate(page));
 531                        remove_huge_page(page);
 532                        freed++;
 533                        if (!truncate_op) {
 534                                if (unlikely(hugetlb_unreserve_pages(inode,
 535                                                        index, index + 1, 1)))
 536                                        hugetlb_fix_reserve_counts(inode);
 537                        }
 538
 539                        unlock_page(page);
 540                        if (!truncate_op)
 541                                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 542                }
 543                huge_pagevec_release(&pvec);
 544                cond_resched();
 545        }
 546
 547        if (truncate_op)
 548                (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 549}
 550
 551static void hugetlbfs_evict_inode(struct inode *inode)
 552{
 553        struct resv_map *resv_map;
 554
 555        remove_inode_hugepages(inode, 0, LLONG_MAX);
 556
 557        /*
 558         * Get the resv_map from the address space embedded in the inode.
 559         * This is the address space which points to any resv_map allocated
 560         * at inode creation time.  If this is a device special inode,
 561         * i_mapping may not point to the original address space.
 562         */
 563        resv_map = (struct resv_map *)(&inode->i_data)->private_data;
 564        /* Only regular and link inodes have associated reserve maps */
 565        if (resv_map)
 566                resv_map_release(&resv_map->refs);
 567        clear_inode(inode);
 568}
 569
 570static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 571{
 572        pgoff_t pgoff;
 573        struct address_space *mapping = inode->i_mapping;
 574        struct hstate *h = hstate_inode(inode);
 575
 576        BUG_ON(offset & ~huge_page_mask(h));
 577        pgoff = offset >> PAGE_SHIFT;
 578
 579        i_mmap_lock_write(mapping);
 580        i_size_write(inode, offset);
 581        if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 582                hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 583        i_mmap_unlock_write(mapping);
 584        remove_inode_hugepages(inode, offset, LLONG_MAX);
 585        return 0;
 586}
 587
 588static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 589{
 590        struct hstate *h = hstate_inode(inode);
 591        loff_t hpage_size = huge_page_size(h);
 592        loff_t hole_start, hole_end;
 593
 594        /*
 595         * For hole punch round up the beginning offset of the hole and
 596         * round down the end.
 597         */
 598        hole_start = round_up(offset, hpage_size);
 599        hole_end = round_down(offset + len, hpage_size);
 600
 601        if (hole_end > hole_start) {
 602                struct address_space *mapping = inode->i_mapping;
 603                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 604
 605                inode_lock(inode);
 606
 607                /* protected by i_mutex */
 608                if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 609                        inode_unlock(inode);
 610                        return -EPERM;
 611                }
 612
 613                i_mmap_lock_write(mapping);
 614                if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 615                        hugetlb_vmdelete_list(&mapping->i_mmap,
 616                                                hole_start >> PAGE_SHIFT,
 617                                                hole_end  >> PAGE_SHIFT);
 618                i_mmap_unlock_write(mapping);
 619                remove_inode_hugepages(inode, hole_start, hole_end);
 620                inode_unlock(inode);
 621        }
 622
 623        return 0;
 624}
 625
 626static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 627                                loff_t len)
 628{
 629        struct inode *inode = file_inode(file);
 630        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 631        struct address_space *mapping = inode->i_mapping;
 632        struct hstate *h = hstate_inode(inode);
 633        struct vm_area_struct pseudo_vma;
 634        struct mm_struct *mm = current->mm;
 635        loff_t hpage_size = huge_page_size(h);
 636        unsigned long hpage_shift = huge_page_shift(h);
 637        pgoff_t start, index, end;
 638        int error;
 639        u32 hash;
 640
 641        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 642                return -EOPNOTSUPP;
 643
 644        if (mode & FALLOC_FL_PUNCH_HOLE)
 645                return hugetlbfs_punch_hole(inode, offset, len);
 646
 647        /*
 648         * Default preallocate case.
 649         * For this range, start is rounded down and end is rounded up
 650         * as well as being converted to page offsets.
 651         */
 652        start = offset >> hpage_shift;
 653        end = (offset + len + hpage_size - 1) >> hpage_shift;
 654
 655        inode_lock(inode);
 656
 657        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 658        error = inode_newsize_ok(inode, offset + len);
 659        if (error)
 660                goto out;
 661
 662        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 663                error = -EPERM;
 664                goto out;
 665        }
 666
 667        /*
 668         * Initialize a pseudo vma as this is required by the huge page
 669         * allocation routines.  If NUMA is configured, use page index
 670         * as input to create an allocation policy.
 671         */
 672        vma_init(&pseudo_vma, mm);
 673        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 674        pseudo_vma.vm_file = file;
 675
 676        for (index = start; index < end; index++) {
 677                /*
 678                 * This is supposed to be the vaddr where the page is being
 679                 * faulted in, but we have no vaddr here.
 680                 */
 681                struct page *page;
 682                unsigned long addr;
 683                int avoid_reserve = 0;
 684
 685                cond_resched();
 686
 687                /*
 688                 * fallocate(2) manpage permits EINTR; we may have been
 689                 * interrupted because we are using up too much memory.
 690                 */
 691                if (signal_pending(current)) {
 692                        error = -EINTR;
 693                        break;
 694                }
 695
 696                /* Set numa allocation policy based on index */
 697                hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 698
 699                /* addr is the offset within the file (zero based) */
 700                addr = index * hpage_size;
 701
 702                /*
 703                 * fault mutex taken here, protects against fault path
 704                 * and hole punch.  inode_lock previously taken protects
 705                 * against truncation.
 706                 */
 707                hash = hugetlb_fault_mutex_hash(mapping, index);
 708                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 709
 710                /* See if already present in mapping to avoid alloc/free */
 711                page = find_get_page(mapping, index);
 712                if (page) {
 713                        put_page(page);
 714                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 715                        hugetlb_drop_vma_policy(&pseudo_vma);
 716                        continue;
 717                }
 718
 719                /* Allocate page and add to page cache */
 720                page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 721                hugetlb_drop_vma_policy(&pseudo_vma);
 722                if (IS_ERR(page)) {
 723                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 724                        error = PTR_ERR(page);
 725                        goto out;
 726                }
 727                clear_huge_page(page, addr, pages_per_huge_page(h));
 728                __SetPageUptodate(page);
 729                error = huge_add_to_page_cache(page, mapping, index);
 730                if (unlikely(error)) {
 731                        put_page(page);
 732                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 733                        goto out;
 734                }
 735
 736                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 737
 738                /*
 739                 * unlock_page because locked by add_to_page_cache()
 740                 * page_put due to reference from alloc_huge_page()
 741                 */
 742                unlock_page(page);
 743                put_page(page);
 744        }
 745
 746        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 747                i_size_write(inode, offset + len);
 748        inode->i_ctime = current_time(inode);
 749out:
 750        inode_unlock(inode);
 751        return error;
 752}
 753
 754static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 755{
 756        struct inode *inode = d_inode(dentry);
 757        struct hstate *h = hstate_inode(inode);
 758        int error;
 759        unsigned int ia_valid = attr->ia_valid;
 760        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 761
 762        BUG_ON(!inode);
 763
 764        error = setattr_prepare(dentry, attr);
 765        if (error)
 766                return error;
 767
 768        if (ia_valid & ATTR_SIZE) {
 769                loff_t oldsize = inode->i_size;
 770                loff_t newsize = attr->ia_size;
 771
 772                if (newsize & ~huge_page_mask(h))
 773                        return -EINVAL;
 774                /* protected by i_mutex */
 775                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 776                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 777                        return -EPERM;
 778                error = hugetlb_vmtruncate(inode, newsize);
 779                if (error)
 780                        return error;
 781        }
 782
 783        setattr_copy(inode, attr);
 784        mark_inode_dirty(inode);
 785        return 0;
 786}
 787
 788static struct inode *hugetlbfs_get_root(struct super_block *sb,
 789                                        struct hugetlbfs_fs_context *ctx)
 790{
 791        struct inode *inode;
 792
 793        inode = new_inode(sb);
 794        if (inode) {
 795                inode->i_ino = get_next_ino();
 796                inode->i_mode = S_IFDIR | ctx->mode;
 797                inode->i_uid = ctx->uid;
 798                inode->i_gid = ctx->gid;
 799                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 800                inode->i_op = &hugetlbfs_dir_inode_operations;
 801                inode->i_fop = &simple_dir_operations;
 802                /* directory inodes start off with i_nlink == 2 (for "." entry) */
 803                inc_nlink(inode);
 804                lockdep_annotate_inode_mutex_key(inode);
 805        }
 806        return inode;
 807}
 808
 809/*
 810 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 811 * be taken from reclaim -- unlike regular filesystems. This needs an
 812 * annotation because huge_pmd_share() does an allocation under hugetlb's
 813 * i_mmap_rwsem.
 814 */
 815static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 816
 817static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 818                                        struct inode *dir,
 819                                        umode_t mode, dev_t dev)
 820{
 821        struct inode *inode;
 822        struct resv_map *resv_map = NULL;
 823
 824        /*
 825         * Reserve maps are only needed for inodes that can have associated
 826         * page allocations.
 827         */
 828        if (S_ISREG(mode) || S_ISLNK(mode)) {
 829                resv_map = resv_map_alloc();
 830                if (!resv_map)
 831                        return NULL;
 832        }
 833
 834        inode = new_inode(sb);
 835        if (inode) {
 836                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 837
 838                inode->i_ino = get_next_ino();
 839                inode_init_owner(inode, dir, mode);
 840                lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 841                                &hugetlbfs_i_mmap_rwsem_key);
 842                inode->i_mapping->a_ops = &hugetlbfs_aops;
 843                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 844                inode->i_mapping->private_data = resv_map;
 845                info->seals = F_SEAL_SEAL;
 846                switch (mode & S_IFMT) {
 847                default:
 848                        init_special_inode(inode, mode, dev);
 849                        break;
 850                case S_IFREG:
 851                        inode->i_op = &hugetlbfs_inode_operations;
 852                        inode->i_fop = &hugetlbfs_file_operations;
 853                        break;
 854                case S_IFDIR:
 855                        inode->i_op = &hugetlbfs_dir_inode_operations;
 856                        inode->i_fop = &simple_dir_operations;
 857
 858                        /* directory inodes start off with i_nlink == 2 (for "." entry) */
 859                        inc_nlink(inode);
 860                        break;
 861                case S_IFLNK:
 862                        inode->i_op = &page_symlink_inode_operations;
 863                        inode_nohighmem(inode);
 864                        break;
 865                }
 866                lockdep_annotate_inode_mutex_key(inode);
 867        } else {
 868                if (resv_map)
 869                        kref_put(&resv_map->refs, resv_map_release);
 870        }
 871
 872        return inode;
 873}
 874
 875/*
 876 * File creation. Allocate an inode, and we're done..
 877 */
 878static int do_hugetlbfs_mknod(struct inode *dir,
 879                        struct dentry *dentry,
 880                        umode_t mode,
 881                        dev_t dev,
 882                        bool tmpfile)
 883{
 884        struct inode *inode;
 885        int error = -ENOSPC;
 886
 887        inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 888        if (inode) {
 889                dir->i_ctime = dir->i_mtime = current_time(dir);
 890                if (tmpfile) {
 891                        d_tmpfile(dentry, inode);
 892                } else {
 893                        d_instantiate(dentry, inode);
 894                        dget(dentry);/* Extra count - pin the dentry in core */
 895                }
 896                error = 0;
 897        }
 898        return error;
 899}
 900
 901static int hugetlbfs_mknod(struct inode *dir,
 902                        struct dentry *dentry, umode_t mode, dev_t dev)
 903{
 904        return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
 905}
 906
 907static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 908{
 909        int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 910        if (!retval)
 911                inc_nlink(dir);
 912        return retval;
 913}
 914
 915static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 916{
 917        return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 918}
 919
 920static int hugetlbfs_tmpfile(struct inode *dir,
 921                        struct dentry *dentry, umode_t mode)
 922{
 923        return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
 924}
 925
 926static int hugetlbfs_symlink(struct inode *dir,
 927                        struct dentry *dentry, const char *symname)
 928{
 929        struct inode *inode;
 930        int error = -ENOSPC;
 931
 932        inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 933        if (inode) {
 934                int l = strlen(symname)+1;
 935                error = page_symlink(inode, symname, l);
 936                if (!error) {
 937                        d_instantiate(dentry, inode);
 938                        dget(dentry);
 939                } else
 940                        iput(inode);
 941        }
 942        dir->i_ctime = dir->i_mtime = current_time(dir);
 943
 944        return error;
 945}
 946
 947/*
 948 * mark the head page dirty
 949 */
 950static int hugetlbfs_set_page_dirty(struct page *page)
 951{
 952        struct page *head = compound_head(page);
 953
 954        SetPageDirty(head);
 955        return 0;
 956}
 957
 958static int hugetlbfs_migrate_page(struct address_space *mapping,
 959                                struct page *newpage, struct page *page,
 960                                enum migrate_mode mode)
 961{
 962        int rc;
 963
 964        rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 965        if (rc != MIGRATEPAGE_SUCCESS)
 966                return rc;
 967
 968        /*
 969         * page_private is subpool pointer in hugetlb pages.  Transfer to
 970         * new page.  PagePrivate is not associated with page_private for
 971         * hugetlb pages and can not be set here as only page_huge_active
 972         * pages can be migrated.
 973         */
 974        if (page_private(page)) {
 975                set_page_private(newpage, page_private(page));
 976                set_page_private(page, 0);
 977        }
 978
 979        if (mode != MIGRATE_SYNC_NO_COPY)
 980                migrate_page_copy(newpage, page);
 981        else
 982                migrate_page_states(newpage, page);
 983
 984        return MIGRATEPAGE_SUCCESS;
 985}
 986
 987static int hugetlbfs_error_remove_page(struct address_space *mapping,
 988                                struct page *page)
 989{
 990        struct inode *inode = mapping->host;
 991        pgoff_t index = page->index;
 992
 993        remove_huge_page(page);
 994        if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 995                hugetlb_fix_reserve_counts(inode);
 996
 997        return 0;
 998}
 999
1000/*
1001 * Display the mount options in /proc/mounts.
1002 */
1003static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1004{
1005        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1006        struct hugepage_subpool *spool = sbinfo->spool;
1007        unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1008        unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1009        char mod;
1010
1011        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1012                seq_printf(m, ",uid=%u",
1013                           from_kuid_munged(&init_user_ns, sbinfo->uid));
1014        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1015                seq_printf(m, ",gid=%u",
1016                           from_kgid_munged(&init_user_ns, sbinfo->gid));
1017        if (sbinfo->mode != 0755)
1018                seq_printf(m, ",mode=%o", sbinfo->mode);
1019        if (sbinfo->max_inodes != -1)
1020                seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1021
1022        hpage_size /= 1024;
1023        mod = 'K';
1024        if (hpage_size >= 1024) {
1025                hpage_size /= 1024;
1026                mod = 'M';
1027        }
1028        seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1029        if (spool) {
1030                if (spool->max_hpages != -1)
1031                        seq_printf(m, ",size=%llu",
1032                                   (unsigned long long)spool->max_hpages << hpage_shift);
1033                if (spool->min_hpages != -1)
1034                        seq_printf(m, ",min_size=%llu",
1035                                   (unsigned long long)spool->min_hpages << hpage_shift);
1036        }
1037        return 0;
1038}
1039
1040static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1041{
1042        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1043        struct hstate *h = hstate_inode(d_inode(dentry));
1044
1045        buf->f_type = HUGETLBFS_MAGIC;
1046        buf->f_bsize = huge_page_size(h);
1047        if (sbinfo) {
1048                spin_lock(&sbinfo->stat_lock);
1049                /* If no limits set, just report 0 for max/free/used
1050                 * blocks, like simple_statfs() */
1051                if (sbinfo->spool) {
1052                        long free_pages;
1053
1054                        spin_lock(&sbinfo->spool->lock);
1055                        buf->f_blocks = sbinfo->spool->max_hpages;
1056                        free_pages = sbinfo->spool->max_hpages
1057                                - sbinfo->spool->used_hpages;
1058                        buf->f_bavail = buf->f_bfree = free_pages;
1059                        spin_unlock(&sbinfo->spool->lock);
1060                        buf->f_files = sbinfo->max_inodes;
1061                        buf->f_ffree = sbinfo->free_inodes;
1062                }
1063                spin_unlock(&sbinfo->stat_lock);
1064        }
1065        buf->f_namelen = NAME_MAX;
1066        return 0;
1067}
1068
1069static void hugetlbfs_put_super(struct super_block *sb)
1070{
1071        struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1072
1073        if (sbi) {
1074                sb->s_fs_info = NULL;
1075
1076                if (sbi->spool)
1077                        hugepage_put_subpool(sbi->spool);
1078
1079                kfree(sbi);
1080        }
1081}
1082
1083static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1084{
1085        if (sbinfo->free_inodes >= 0) {
1086                spin_lock(&sbinfo->stat_lock);
1087                if (unlikely(!sbinfo->free_inodes)) {
1088                        spin_unlock(&sbinfo->stat_lock);
1089                        return 0;
1090                }
1091                sbinfo->free_inodes--;
1092                spin_unlock(&sbinfo->stat_lock);
1093        }
1094
1095        return 1;
1096}
1097
1098static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1099{
1100        if (sbinfo->free_inodes >= 0) {
1101                spin_lock(&sbinfo->stat_lock);
1102                sbinfo->free_inodes++;
1103                spin_unlock(&sbinfo->stat_lock);
1104        }
1105}
1106
1107
1108static struct kmem_cache *hugetlbfs_inode_cachep;
1109
1110static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1111{
1112        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1113        struct hugetlbfs_inode_info *p;
1114
1115        if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1116                return NULL;
1117        p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1118        if (unlikely(!p)) {
1119                hugetlbfs_inc_free_inodes(sbinfo);
1120                return NULL;
1121        }
1122
1123        /*
1124         * Any time after allocation, hugetlbfs_destroy_inode can be called
1125         * for the inode.  mpol_free_shared_policy is unconditionally called
1126         * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1127         * in case of a quick call to destroy.
1128         *
1129         * Note that the policy is initialized even if we are creating a
1130         * private inode.  This simplifies hugetlbfs_destroy_inode.
1131         */
1132        mpol_shared_policy_init(&p->policy, NULL);
1133
1134        return &p->vfs_inode;
1135}
1136
1137static void hugetlbfs_free_inode(struct inode *inode)
1138{
1139        kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1140}
1141
1142static void hugetlbfs_destroy_inode(struct inode *inode)
1143{
1144        hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1145        mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1146}
1147
1148static const struct address_space_operations hugetlbfs_aops = {
1149        .write_begin    = hugetlbfs_write_begin,
1150        .write_end      = hugetlbfs_write_end,
1151        .set_page_dirty = hugetlbfs_set_page_dirty,
1152        .migratepage    = hugetlbfs_migrate_page,
1153        .error_remove_page      = hugetlbfs_error_remove_page,
1154};
1155
1156
1157static void init_once(void *foo)
1158{
1159        struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1160
1161        inode_init_once(&ei->vfs_inode);
1162}
1163
1164const struct file_operations hugetlbfs_file_operations = {
1165        .read_iter              = hugetlbfs_read_iter,
1166        .mmap                   = hugetlbfs_file_mmap,
1167        .fsync                  = noop_fsync,
1168        .get_unmapped_area      = hugetlb_get_unmapped_area,
1169        .llseek                 = default_llseek,
1170        .fallocate              = hugetlbfs_fallocate,
1171};
1172
1173static const struct inode_operations hugetlbfs_dir_inode_operations = {
1174        .create         = hugetlbfs_create,
1175        .lookup         = simple_lookup,
1176        .link           = simple_link,
1177        .unlink         = simple_unlink,
1178        .symlink        = hugetlbfs_symlink,
1179        .mkdir          = hugetlbfs_mkdir,
1180        .rmdir          = simple_rmdir,
1181        .mknod          = hugetlbfs_mknod,
1182        .rename         = simple_rename,
1183        .setattr        = hugetlbfs_setattr,
1184        .tmpfile        = hugetlbfs_tmpfile,
1185};
1186
1187static const struct inode_operations hugetlbfs_inode_operations = {
1188        .setattr        = hugetlbfs_setattr,
1189};
1190
1191static const struct super_operations hugetlbfs_ops = {
1192        .alloc_inode    = hugetlbfs_alloc_inode,
1193        .free_inode     = hugetlbfs_free_inode,
1194        .destroy_inode  = hugetlbfs_destroy_inode,
1195        .evict_inode    = hugetlbfs_evict_inode,
1196        .statfs         = hugetlbfs_statfs,
1197        .put_super      = hugetlbfs_put_super,
1198        .show_options   = hugetlbfs_show_options,
1199};
1200
1201/*
1202 * Convert size option passed from command line to number of huge pages
1203 * in the pool specified by hstate.  Size option could be in bytes
1204 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1205 */
1206static long
1207hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1208                         enum hugetlbfs_size_type val_type)
1209{
1210        if (val_type == NO_SIZE)
1211                return -1;
1212
1213        if (val_type == SIZE_PERCENT) {
1214                size_opt <<= huge_page_shift(h);
1215                size_opt *= h->max_huge_pages;
1216                do_div(size_opt, 100);
1217        }
1218
1219        size_opt >>= huge_page_shift(h);
1220        return size_opt;
1221}
1222
1223/*
1224 * Parse one mount parameter.
1225 */
1226static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1227{
1228        struct hugetlbfs_fs_context *ctx = fc->fs_private;
1229        struct fs_parse_result result;
1230        char *rest;
1231        unsigned long ps;
1232        int opt;
1233
1234        opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1235        if (opt < 0)
1236                return opt;
1237
1238        switch (opt) {
1239        case Opt_uid:
1240                ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1241                if (!uid_valid(ctx->uid))
1242                        goto bad_val;
1243                return 0;
1244
1245        case Opt_gid:
1246                ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1247                if (!gid_valid(ctx->gid))
1248                        goto bad_val;
1249                return 0;
1250
1251        case Opt_mode:
1252                ctx->mode = result.uint_32 & 01777U;
1253                return 0;
1254
1255        case Opt_size:
1256                /* memparse() will accept a K/M/G without a digit */
1257                if (!isdigit(param->string[0]))
1258                        goto bad_val;
1259                ctx->max_size_opt = memparse(param->string, &rest);
1260                ctx->max_val_type = SIZE_STD;
1261                if (*rest == '%')
1262                        ctx->max_val_type = SIZE_PERCENT;
1263                return 0;
1264
1265        case Opt_nr_inodes:
1266                /* memparse() will accept a K/M/G without a digit */
1267                if (!isdigit(param->string[0]))
1268                        goto bad_val;
1269                ctx->nr_inodes = memparse(param->string, &rest);
1270                return 0;
1271
1272        case Opt_pagesize:
1273                ps = memparse(param->string, &rest);
1274                ctx->hstate = size_to_hstate(ps);
1275                if (!ctx->hstate) {
1276                        pr_err("Unsupported page size %lu MB\n", ps >> 20);
1277                        return -EINVAL;
1278                }
1279                return 0;
1280
1281        case Opt_min_size:
1282                /* memparse() will accept a K/M/G without a digit */
1283                if (!isdigit(param->string[0]))
1284                        goto bad_val;
1285                ctx->min_size_opt = memparse(param->string, &rest);
1286                ctx->min_val_type = SIZE_STD;
1287                if (*rest == '%')
1288                        ctx->min_val_type = SIZE_PERCENT;
1289                return 0;
1290
1291        default:
1292                return -EINVAL;
1293        }
1294
1295bad_val:
1296        return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1297                      param->string, param->key);
1298}
1299
1300/*
1301 * Validate the parsed options.
1302 */
1303static int hugetlbfs_validate(struct fs_context *fc)
1304{
1305        struct hugetlbfs_fs_context *ctx = fc->fs_private;
1306
1307        /*
1308         * Use huge page pool size (in hstate) to convert the size
1309         * options to number of huge pages.  If NO_SIZE, -1 is returned.
1310         */
1311        ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1312                                                   ctx->max_size_opt,
1313                                                   ctx->max_val_type);
1314        ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1315                                                   ctx->min_size_opt,
1316                                                   ctx->min_val_type);
1317
1318        /*
1319         * If max_size was specified, then min_size must be smaller
1320         */
1321        if (ctx->max_val_type > NO_SIZE &&
1322            ctx->min_hpages > ctx->max_hpages) {
1323                pr_err("Minimum size can not be greater than maximum size\n");
1324                return -EINVAL;
1325        }
1326
1327        return 0;
1328}
1329
1330static int
1331hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1332{
1333        struct hugetlbfs_fs_context *ctx = fc->fs_private;
1334        struct hugetlbfs_sb_info *sbinfo;
1335
1336        sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1337        if (!sbinfo)
1338                return -ENOMEM;
1339        sb->s_fs_info = sbinfo;
1340        spin_lock_init(&sbinfo->stat_lock);
1341        sbinfo->hstate          = ctx->hstate;
1342        sbinfo->max_inodes      = ctx->nr_inodes;
1343        sbinfo->free_inodes     = ctx->nr_inodes;
1344        sbinfo->spool           = NULL;
1345        sbinfo->uid             = ctx->uid;
1346        sbinfo->gid             = ctx->gid;
1347        sbinfo->mode            = ctx->mode;
1348
1349        /*
1350         * Allocate and initialize subpool if maximum or minimum size is
1351         * specified.  Any needed reservations (for minimim size) are taken
1352         * taken when the subpool is created.
1353         */
1354        if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1355                sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1356                                                     ctx->max_hpages,
1357                                                     ctx->min_hpages);
1358                if (!sbinfo->spool)
1359                        goto out_free;
1360        }
1361        sb->s_maxbytes = MAX_LFS_FILESIZE;
1362        sb->s_blocksize = huge_page_size(ctx->hstate);
1363        sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1364        sb->s_magic = HUGETLBFS_MAGIC;
1365        sb->s_op = &hugetlbfs_ops;
1366        sb->s_time_gran = 1;
1367
1368        /*
1369         * Due to the special and limited functionality of hugetlbfs, it does
1370         * not work well as a stacking filesystem.
1371         */
1372        sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1373        sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1374        if (!sb->s_root)
1375                goto out_free;
1376        return 0;
1377out_free:
1378        kfree(sbinfo->spool);
1379        kfree(sbinfo);
1380        return -ENOMEM;
1381}
1382
1383static int hugetlbfs_get_tree(struct fs_context *fc)
1384{
1385        int err = hugetlbfs_validate(fc);
1386        if (err)
1387                return err;
1388        return get_tree_nodev(fc, hugetlbfs_fill_super);
1389}
1390
1391static void hugetlbfs_fs_context_free(struct fs_context *fc)
1392{
1393        kfree(fc->fs_private);
1394}
1395
1396static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1397        .free           = hugetlbfs_fs_context_free,
1398        .parse_param    = hugetlbfs_parse_param,
1399        .get_tree       = hugetlbfs_get_tree,
1400};
1401
1402static int hugetlbfs_init_fs_context(struct fs_context *fc)
1403{
1404        struct hugetlbfs_fs_context *ctx;
1405
1406        ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1407        if (!ctx)
1408                return -ENOMEM;
1409
1410        ctx->max_hpages = -1; /* No limit on size by default */
1411        ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1412        ctx->uid        = current_fsuid();
1413        ctx->gid        = current_fsgid();
1414        ctx->mode       = 0755;
1415        ctx->hstate     = &default_hstate;
1416        ctx->min_hpages = -1; /* No default minimum size */
1417        ctx->max_val_type = NO_SIZE;
1418        ctx->min_val_type = NO_SIZE;
1419        fc->fs_private = ctx;
1420        fc->ops = &hugetlbfs_fs_context_ops;
1421        return 0;
1422}
1423
1424static struct file_system_type hugetlbfs_fs_type = {
1425        .name                   = "hugetlbfs",
1426        .init_fs_context        = hugetlbfs_init_fs_context,
1427        .parameters             = hugetlb_fs_parameters,
1428        .kill_sb                = kill_litter_super,
1429};
1430
1431static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1432
1433static int can_do_hugetlb_shm(void)
1434{
1435        kgid_t shm_group;
1436        shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1437        return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1438}
1439
1440static int get_hstate_idx(int page_size_log)
1441{
1442        struct hstate *h = hstate_sizelog(page_size_log);
1443
1444        if (!h)
1445                return -1;
1446        return h - hstates;
1447}
1448
1449/*
1450 * Note that size should be aligned to proper hugepage size in caller side,
1451 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1452 */
1453struct file *hugetlb_file_setup(const char *name, size_t size,
1454                                vm_flags_t acctflag, struct user_struct **user,
1455                                int creat_flags, int page_size_log)
1456{
1457        struct inode *inode;
1458        struct vfsmount *mnt;
1459        int hstate_idx;
1460        struct file *file;
1461
1462        hstate_idx = get_hstate_idx(page_size_log);
1463        if (hstate_idx < 0)
1464                return ERR_PTR(-ENODEV);
1465
1466        *user = NULL;
1467        mnt = hugetlbfs_vfsmount[hstate_idx];
1468        if (!mnt)
1469                return ERR_PTR(-ENOENT);
1470
1471        if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1472                *user = current_user();
1473                if (user_shm_lock(size, *user)) {
1474                        task_lock(current);
1475                        pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1476                                current->comm, current->pid);
1477                        task_unlock(current);
1478                } else {
1479                        *user = NULL;
1480                        return ERR_PTR(-EPERM);
1481                }
1482        }
1483
1484        file = ERR_PTR(-ENOSPC);
1485        inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1486        if (!inode)
1487                goto out;
1488        if (creat_flags == HUGETLB_SHMFS_INODE)
1489                inode->i_flags |= S_PRIVATE;
1490
1491        inode->i_size = size;
1492        clear_nlink(inode);
1493
1494        if (hugetlb_reserve_pages(inode, 0,
1495                        size >> huge_page_shift(hstate_inode(inode)), NULL,
1496                        acctflag))
1497                file = ERR_PTR(-ENOMEM);
1498        else
1499                file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1500                                        &hugetlbfs_file_operations);
1501        if (!IS_ERR(file))
1502                return file;
1503
1504        iput(inode);
1505out:
1506        if (*user) {
1507                user_shm_unlock(size, *user);
1508                *user = NULL;
1509        }
1510        return file;
1511}
1512
1513static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1514{
1515        struct fs_context *fc;
1516        struct vfsmount *mnt;
1517
1518        fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1519        if (IS_ERR(fc)) {
1520                mnt = ERR_CAST(fc);
1521        } else {
1522                struct hugetlbfs_fs_context *ctx = fc->fs_private;
1523                ctx->hstate = h;
1524                mnt = fc_mount(fc);
1525                put_fs_context(fc);
1526        }
1527        if (IS_ERR(mnt))
1528                pr_err("Cannot mount internal hugetlbfs for page size %uK",
1529                       1U << (h->order + PAGE_SHIFT - 10));
1530        return mnt;
1531}
1532
1533static int __init init_hugetlbfs_fs(void)
1534{
1535        struct vfsmount *mnt;
1536        struct hstate *h;
1537        int error;
1538        int i;
1539
1540        if (!hugepages_supported()) {
1541                pr_info("disabling because there are no supported hugepage sizes\n");
1542                return -ENOTSUPP;
1543        }
1544
1545        error = -ENOMEM;
1546        hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1547                                        sizeof(struct hugetlbfs_inode_info),
1548                                        0, SLAB_ACCOUNT, init_once);
1549        if (hugetlbfs_inode_cachep == NULL)
1550                goto out;
1551
1552        error = register_filesystem(&hugetlbfs_fs_type);
1553        if (error)
1554                goto out_free;
1555
1556        /* default hstate mount is required */
1557        mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1558        if (IS_ERR(mnt)) {
1559                error = PTR_ERR(mnt);
1560                goto out_unreg;
1561        }
1562        hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1563
1564        /* other hstates are optional */
1565        i = 0;
1566        for_each_hstate(h) {
1567                if (i == default_hstate_idx) {
1568                        i++;
1569                        continue;
1570                }
1571
1572                mnt = mount_one_hugetlbfs(h);
1573                if (IS_ERR(mnt))
1574                        hugetlbfs_vfsmount[i] = NULL;
1575                else
1576                        hugetlbfs_vfsmount[i] = mnt;
1577                i++;
1578        }
1579
1580        return 0;
1581
1582 out_unreg:
1583        (void)unregister_filesystem(&hugetlbfs_fs_type);
1584 out_free:
1585        kmem_cache_destroy(hugetlbfs_inode_cachep);
1586 out:
1587        return error;
1588}
1589fs_initcall(init_hugetlbfs_fs)
1590