linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t     *xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29        struct xfs_mount        *mp,
  30        struct xfs_buftarg      *log_target,
  31        xfs_daddr_t             blk_offset,
  32        int                     num_bblks);
  33STATIC int
  34xlog_space_left(
  35        struct xlog             *log,
  36        atomic64_t              *head);
  37STATIC void
  38xlog_dealloc_log(
  39        struct xlog             *log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43        struct xlog_in_core     *iclog);
  44STATIC int
  45xlog_state_get_iclog_space(
  46        struct xlog             *log,
  47        int                     len,
  48        struct xlog_in_core     **iclog,
  49        struct xlog_ticket      *ticket,
  50        int                     *continued_write,
  51        int                     *logoffsetp);
  52STATIC void
  53xlog_state_switch_iclogs(
  54        struct xlog             *log,
  55        struct xlog_in_core     *iclog,
  56        int                     eventual_size);
  57STATIC void
  58xlog_grant_push_ail(
  59        struct xlog             *log,
  60        int                     need_bytes);
  61STATIC void
  62xlog_sync(
  63        struct xlog             *log,
  64        struct xlog_in_core     *iclog);
  65#if defined(DEBUG)
  66STATIC void
  67xlog_verify_dest_ptr(
  68        struct xlog             *log,
  69        void                    *ptr);
  70STATIC void
  71xlog_verify_grant_tail(
  72        struct xlog *log);
  73STATIC void
  74xlog_verify_iclog(
  75        struct xlog             *log,
  76        struct xlog_in_core     *iclog,
  77        int                     count);
  78STATIC void
  79xlog_verify_tail_lsn(
  80        struct xlog             *log,
  81        struct xlog_in_core     *iclog,
  82        xfs_lsn_t               tail_lsn);
  83#else
  84#define xlog_verify_dest_ptr(a,b)
  85#define xlog_verify_grant_tail(a)
  86#define xlog_verify_iclog(a,b,c)
  87#define xlog_verify_tail_lsn(a,b,c)
  88#endif
  89
  90STATIC int
  91xlog_iclogs_empty(
  92        struct xlog             *log);
  93
  94static void
  95xlog_grant_sub_space(
  96        struct xlog             *log,
  97        atomic64_t              *head,
  98        int                     bytes)
  99{
 100        int64_t head_val = atomic64_read(head);
 101        int64_t new, old;
 102
 103        do {
 104                int     cycle, space;
 105
 106                xlog_crack_grant_head_val(head_val, &cycle, &space);
 107
 108                space -= bytes;
 109                if (space < 0) {
 110                        space += log->l_logsize;
 111                        cycle--;
 112                }
 113
 114                old = head_val;
 115                new = xlog_assign_grant_head_val(cycle, space);
 116                head_val = atomic64_cmpxchg(head, old, new);
 117        } while (head_val != old);
 118}
 119
 120static void
 121xlog_grant_add_space(
 122        struct xlog             *log,
 123        atomic64_t              *head,
 124        int                     bytes)
 125{
 126        int64_t head_val = atomic64_read(head);
 127        int64_t new, old;
 128
 129        do {
 130                int             tmp;
 131                int             cycle, space;
 132
 133                xlog_crack_grant_head_val(head_val, &cycle, &space);
 134
 135                tmp = log->l_logsize - space;
 136                if (tmp > bytes)
 137                        space += bytes;
 138                else {
 139                        space = bytes - tmp;
 140                        cycle++;
 141                }
 142
 143                old = head_val;
 144                new = xlog_assign_grant_head_val(cycle, space);
 145                head_val = atomic64_cmpxchg(head, old, new);
 146        } while (head_val != old);
 147}
 148
 149STATIC void
 150xlog_grant_head_init(
 151        struct xlog_grant_head  *head)
 152{
 153        xlog_assign_grant_head(&head->grant, 1, 0);
 154        INIT_LIST_HEAD(&head->waiters);
 155        spin_lock_init(&head->lock);
 156}
 157
 158STATIC void
 159xlog_grant_head_wake_all(
 160        struct xlog_grant_head  *head)
 161{
 162        struct xlog_ticket      *tic;
 163
 164        spin_lock(&head->lock);
 165        list_for_each_entry(tic, &head->waiters, t_queue)
 166                wake_up_process(tic->t_task);
 167        spin_unlock(&head->lock);
 168}
 169
 170static inline int
 171xlog_ticket_reservation(
 172        struct xlog             *log,
 173        struct xlog_grant_head  *head,
 174        struct xlog_ticket      *tic)
 175{
 176        if (head == &log->l_write_head) {
 177                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 178                return tic->t_unit_res;
 179        } else {
 180                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 181                        return tic->t_unit_res * tic->t_cnt;
 182                else
 183                        return tic->t_unit_res;
 184        }
 185}
 186
 187STATIC bool
 188xlog_grant_head_wake(
 189        struct xlog             *log,
 190        struct xlog_grant_head  *head,
 191        int                     *free_bytes)
 192{
 193        struct xlog_ticket      *tic;
 194        int                     need_bytes;
 195        bool                    woken_task = false;
 196
 197        list_for_each_entry(tic, &head->waiters, t_queue) {
 198
 199                /*
 200                 * There is a chance that the size of the CIL checkpoints in
 201                 * progress at the last AIL push target calculation resulted in
 202                 * limiting the target to the log head (l_last_sync_lsn) at the
 203                 * time. This may not reflect where the log head is now as the
 204                 * CIL checkpoints may have completed.
 205                 *
 206                 * Hence when we are woken here, it may be that the head of the
 207                 * log that has moved rather than the tail. As the tail didn't
 208                 * move, there still won't be space available for the
 209                 * reservation we require.  However, if the AIL has already
 210                 * pushed to the target defined by the old log head location, we
 211                 * will hang here waiting for something else to update the AIL
 212                 * push target.
 213                 *
 214                 * Therefore, if there isn't space to wake the first waiter on
 215                 * the grant head, we need to push the AIL again to ensure the
 216                 * target reflects both the current log tail and log head
 217                 * position before we wait for the tail to move again.
 218                 */
 219
 220                need_bytes = xlog_ticket_reservation(log, head, tic);
 221                if (*free_bytes < need_bytes) {
 222                        if (!woken_task)
 223                                xlog_grant_push_ail(log, need_bytes);
 224                        return false;
 225                }
 226
 227                *free_bytes -= need_bytes;
 228                trace_xfs_log_grant_wake_up(log, tic);
 229                wake_up_process(tic->t_task);
 230                woken_task = true;
 231        }
 232
 233        return true;
 234}
 235
 236STATIC int
 237xlog_grant_head_wait(
 238        struct xlog             *log,
 239        struct xlog_grant_head  *head,
 240        struct xlog_ticket      *tic,
 241        int                     need_bytes) __releases(&head->lock)
 242                                            __acquires(&head->lock)
 243{
 244        list_add_tail(&tic->t_queue, &head->waiters);
 245
 246        do {
 247                if (XLOG_FORCED_SHUTDOWN(log))
 248                        goto shutdown;
 249                xlog_grant_push_ail(log, need_bytes);
 250
 251                __set_current_state(TASK_UNINTERRUPTIBLE);
 252                spin_unlock(&head->lock);
 253
 254                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 255
 256                trace_xfs_log_grant_sleep(log, tic);
 257                schedule();
 258                trace_xfs_log_grant_wake(log, tic);
 259
 260                spin_lock(&head->lock);
 261                if (XLOG_FORCED_SHUTDOWN(log))
 262                        goto shutdown;
 263        } while (xlog_space_left(log, &head->grant) < need_bytes);
 264
 265        list_del_init(&tic->t_queue);
 266        return 0;
 267shutdown:
 268        list_del_init(&tic->t_queue);
 269        return -EIO;
 270}
 271
 272/*
 273 * Atomically get the log space required for a log ticket.
 274 *
 275 * Once a ticket gets put onto head->waiters, it will only return after the
 276 * needed reservation is satisfied.
 277 *
 278 * This function is structured so that it has a lock free fast path. This is
 279 * necessary because every new transaction reservation will come through this
 280 * path. Hence any lock will be globally hot if we take it unconditionally on
 281 * every pass.
 282 *
 283 * As tickets are only ever moved on and off head->waiters under head->lock, we
 284 * only need to take that lock if we are going to add the ticket to the queue
 285 * and sleep. We can avoid taking the lock if the ticket was never added to
 286 * head->waiters because the t_queue list head will be empty and we hold the
 287 * only reference to it so it can safely be checked unlocked.
 288 */
 289STATIC int
 290xlog_grant_head_check(
 291        struct xlog             *log,
 292        struct xlog_grant_head  *head,
 293        struct xlog_ticket      *tic,
 294        int                     *need_bytes)
 295{
 296        int                     free_bytes;
 297        int                     error = 0;
 298
 299        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 300
 301        /*
 302         * If there are other waiters on the queue then give them a chance at
 303         * logspace before us.  Wake up the first waiters, if we do not wake
 304         * up all the waiters then go to sleep waiting for more free space,
 305         * otherwise try to get some space for this transaction.
 306         */
 307        *need_bytes = xlog_ticket_reservation(log, head, tic);
 308        free_bytes = xlog_space_left(log, &head->grant);
 309        if (!list_empty_careful(&head->waiters)) {
 310                spin_lock(&head->lock);
 311                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 312                    free_bytes < *need_bytes) {
 313                        error = xlog_grant_head_wait(log, head, tic,
 314                                                     *need_bytes);
 315                }
 316                spin_unlock(&head->lock);
 317        } else if (free_bytes < *need_bytes) {
 318                spin_lock(&head->lock);
 319                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 320                spin_unlock(&head->lock);
 321        }
 322
 323        return error;
 324}
 325
 326static void
 327xlog_tic_reset_res(xlog_ticket_t *tic)
 328{
 329        tic->t_res_num = 0;
 330        tic->t_res_arr_sum = 0;
 331        tic->t_res_num_ophdrs = 0;
 332}
 333
 334static void
 335xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 336{
 337        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 338                /* add to overflow and start again */
 339                tic->t_res_o_flow += tic->t_res_arr_sum;
 340                tic->t_res_num = 0;
 341                tic->t_res_arr_sum = 0;
 342        }
 343
 344        tic->t_res_arr[tic->t_res_num].r_len = len;
 345        tic->t_res_arr[tic->t_res_num].r_type = type;
 346        tic->t_res_arr_sum += len;
 347        tic->t_res_num++;
 348}
 349
 350/*
 351 * Replenish the byte reservation required by moving the grant write head.
 352 */
 353int
 354xfs_log_regrant(
 355        struct xfs_mount        *mp,
 356        struct xlog_ticket      *tic)
 357{
 358        struct xlog             *log = mp->m_log;
 359        int                     need_bytes;
 360        int                     error = 0;
 361
 362        if (XLOG_FORCED_SHUTDOWN(log))
 363                return -EIO;
 364
 365        XFS_STATS_INC(mp, xs_try_logspace);
 366
 367        /*
 368         * This is a new transaction on the ticket, so we need to change the
 369         * transaction ID so that the next transaction has a different TID in
 370         * the log. Just add one to the existing tid so that we can see chains
 371         * of rolling transactions in the log easily.
 372         */
 373        tic->t_tid++;
 374
 375        xlog_grant_push_ail(log, tic->t_unit_res);
 376
 377        tic->t_curr_res = tic->t_unit_res;
 378        xlog_tic_reset_res(tic);
 379
 380        if (tic->t_cnt > 0)
 381                return 0;
 382
 383        trace_xfs_log_regrant(log, tic);
 384
 385        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 386                                      &need_bytes);
 387        if (error)
 388                goto out_error;
 389
 390        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 391        trace_xfs_log_regrant_exit(log, tic);
 392        xlog_verify_grant_tail(log);
 393        return 0;
 394
 395out_error:
 396        /*
 397         * If we are failing, make sure the ticket doesn't have any current
 398         * reservations.  We don't want to add this back when the ticket/
 399         * transaction gets cancelled.
 400         */
 401        tic->t_curr_res = 0;
 402        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 403        return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416        struct xfs_mount        *mp,
 417        int                     unit_bytes,
 418        int                     cnt,
 419        struct xlog_ticket      **ticp,
 420        uint8_t                 client,
 421        bool                    permanent)
 422{
 423        struct xlog             *log = mp->m_log;
 424        struct xlog_ticket      *tic;
 425        int                     need_bytes;
 426        int                     error = 0;
 427
 428        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 429
 430        if (XLOG_FORCED_SHUTDOWN(log))
 431                return -EIO;
 432
 433        XFS_STATS_INC(mp, xs_try_logspace);
 434
 435        ASSERT(*ticp == NULL);
 436        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 437        *ticp = tic;
 438
 439        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 440                                            : tic->t_unit_res);
 441
 442        trace_xfs_log_reserve(log, tic);
 443
 444        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 445                                      &need_bytes);
 446        if (error)
 447                goto out_error;
 448
 449        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 450        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 451        trace_xfs_log_reserve_exit(log, tic);
 452        xlog_verify_grant_tail(log);
 453        return 0;
 454
 455out_error:
 456        /*
 457         * If we are failing, make sure the ticket doesn't have any current
 458         * reservations.  We don't want to add this back when the ticket/
 459         * transaction gets cancelled.
 460         */
 461        tic->t_curr_res = 0;
 462        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 463        return error;
 464}
 465
 466static bool
 467__xlog_state_release_iclog(
 468        struct xlog             *log,
 469        struct xlog_in_core     *iclog)
 470{
 471        lockdep_assert_held(&log->l_icloglock);
 472
 473        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 474                /* update tail before writing to iclog */
 475                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 476
 477                iclog->ic_state = XLOG_STATE_SYNCING;
 478                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 479                xlog_verify_tail_lsn(log, iclog, tail_lsn);
 480                /* cycle incremented when incrementing curr_block */
 481                return true;
 482        }
 483
 484        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 485        return false;
 486}
 487
 488/*
 489 * Flush iclog to disk if this is the last reference to the given iclog and the
 490 * it is in the WANT_SYNC state.
 491 */
 492static int
 493xlog_state_release_iclog(
 494        struct xlog             *log,
 495        struct xlog_in_core     *iclog)
 496{
 497        lockdep_assert_held(&log->l_icloglock);
 498
 499        if (iclog->ic_state == XLOG_STATE_IOERROR)
 500                return -EIO;
 501
 502        if (atomic_dec_and_test(&iclog->ic_refcnt) &&
 503            __xlog_state_release_iclog(log, iclog)) {
 504                spin_unlock(&log->l_icloglock);
 505                xlog_sync(log, iclog);
 506                spin_lock(&log->l_icloglock);
 507        }
 508
 509        return 0;
 510}
 511
 512void
 513xfs_log_release_iclog(
 514        struct xlog_in_core     *iclog)
 515{
 516        struct xlog             *log = iclog->ic_log;
 517        bool                    sync = false;
 518
 519        if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
 520                if (iclog->ic_state != XLOG_STATE_IOERROR)
 521                        sync = __xlog_state_release_iclog(log, iclog);
 522                spin_unlock(&log->l_icloglock);
 523        }
 524
 525        if (sync)
 526                xlog_sync(log, iclog);
 527}
 528
 529/*
 530 * Mount a log filesystem
 531 *
 532 * mp           - ubiquitous xfs mount point structure
 533 * log_target   - buftarg of on-disk log device
 534 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 535 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 536 *
 537 * Return error or zero.
 538 */
 539int
 540xfs_log_mount(
 541        xfs_mount_t     *mp,
 542        xfs_buftarg_t   *log_target,
 543        xfs_daddr_t     blk_offset,
 544        int             num_bblks)
 545{
 546        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 547        int             error = 0;
 548        int             min_logfsbs;
 549
 550        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 551                xfs_notice(mp, "Mounting V%d Filesystem",
 552                           XFS_SB_VERSION_NUM(&mp->m_sb));
 553        } else {
 554                xfs_notice(mp,
 555"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 556                           XFS_SB_VERSION_NUM(&mp->m_sb));
 557                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 558        }
 559
 560        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 561        if (IS_ERR(mp->m_log)) {
 562                error = PTR_ERR(mp->m_log);
 563                goto out;
 564        }
 565
 566        /*
 567         * Validate the given log space and drop a critical message via syslog
 568         * if the log size is too small that would lead to some unexpected
 569         * situations in transaction log space reservation stage.
 570         *
 571         * Note: we can't just reject the mount if the validation fails.  This
 572         * would mean that people would have to downgrade their kernel just to
 573         * remedy the situation as there is no way to grow the log (short of
 574         * black magic surgery with xfs_db).
 575         *
 576         * We can, however, reject mounts for CRC format filesystems, as the
 577         * mkfs binary being used to make the filesystem should never create a
 578         * filesystem with a log that is too small.
 579         */
 580        min_logfsbs = xfs_log_calc_minimum_size(mp);
 581
 582        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 583                xfs_warn(mp,
 584                "Log size %d blocks too small, minimum size is %d blocks",
 585                         mp->m_sb.sb_logblocks, min_logfsbs);
 586                error = -EINVAL;
 587        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 588                xfs_warn(mp,
 589                "Log size %d blocks too large, maximum size is %lld blocks",
 590                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 591                error = -EINVAL;
 592        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 593                xfs_warn(mp,
 594                "log size %lld bytes too large, maximum size is %lld bytes",
 595                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 596                         XFS_MAX_LOG_BYTES);
 597                error = -EINVAL;
 598        } else if (mp->m_sb.sb_logsunit > 1 &&
 599                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 600                xfs_warn(mp,
 601                "log stripe unit %u bytes must be a multiple of block size",
 602                         mp->m_sb.sb_logsunit);
 603                error = -EINVAL;
 604                fatal = true;
 605        }
 606        if (error) {
 607                /*
 608                 * Log check errors are always fatal on v5; or whenever bad
 609                 * metadata leads to a crash.
 610                 */
 611                if (fatal) {
 612                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 613                        ASSERT(0);
 614                        goto out_free_log;
 615                }
 616                xfs_crit(mp, "Log size out of supported range.");
 617                xfs_crit(mp,
 618"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 619        }
 620
 621        /*
 622         * Initialize the AIL now we have a log.
 623         */
 624        error = xfs_trans_ail_init(mp);
 625        if (error) {
 626                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 627                goto out_free_log;
 628        }
 629        mp->m_log->l_ailp = mp->m_ail;
 630
 631        /*
 632         * skip log recovery on a norecovery mount.  pretend it all
 633         * just worked.
 634         */
 635        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 636                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 637
 638                if (readonly)
 639                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 640
 641                error = xlog_recover(mp->m_log);
 642
 643                if (readonly)
 644                        mp->m_flags |= XFS_MOUNT_RDONLY;
 645                if (error) {
 646                        xfs_warn(mp, "log mount/recovery failed: error %d",
 647                                error);
 648                        xlog_recover_cancel(mp->m_log);
 649                        goto out_destroy_ail;
 650                }
 651        }
 652
 653        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 654                               "log");
 655        if (error)
 656                goto out_destroy_ail;
 657
 658        /* Normal transactions can now occur */
 659        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 660
 661        /*
 662         * Now the log has been fully initialised and we know were our
 663         * space grant counters are, we can initialise the permanent ticket
 664         * needed for delayed logging to work.
 665         */
 666        xlog_cil_init_post_recovery(mp->m_log);
 667
 668        return 0;
 669
 670out_destroy_ail:
 671        xfs_trans_ail_destroy(mp);
 672out_free_log:
 673        xlog_dealloc_log(mp->m_log);
 674out:
 675        return error;
 676}
 677
 678/*
 679 * Finish the recovery of the file system.  This is separate from the
 680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 682 * here.
 683 *
 684 * If we finish recovery successfully, start the background log work. If we are
 685 * not doing recovery, then we have a RO filesystem and we don't need to start
 686 * it.
 687 */
 688int
 689xfs_log_mount_finish(
 690        struct xfs_mount        *mp)
 691{
 692        int     error = 0;
 693        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 694        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 695
 696        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 697                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 698                return 0;
 699        } else if (readonly) {
 700                /* Allow unlinked processing to proceed */
 701                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 702        }
 703
 704        /*
 705         * During the second phase of log recovery, we need iget and
 706         * iput to behave like they do for an active filesystem.
 707         * xfs_fs_drop_inode needs to be able to prevent the deletion
 708         * of inodes before we're done replaying log items on those
 709         * inodes.  Turn it off immediately after recovery finishes
 710         * so that we don't leak the quota inodes if subsequent mount
 711         * activities fail.
 712         *
 713         * We let all inodes involved in redo item processing end up on
 714         * the LRU instead of being evicted immediately so that if we do
 715         * something to an unlinked inode, the irele won't cause
 716         * premature truncation and freeing of the inode, which results
 717         * in log recovery failure.  We have to evict the unreferenced
 718         * lru inodes after clearing SB_ACTIVE because we don't
 719         * otherwise clean up the lru if there's a subsequent failure in
 720         * xfs_mountfs, which leads to us leaking the inodes if nothing
 721         * else (e.g. quotacheck) references the inodes before the
 722         * mount failure occurs.
 723         */
 724        mp->m_super->s_flags |= SB_ACTIVE;
 725        error = xlog_recover_finish(mp->m_log);
 726        if (!error)
 727                xfs_log_work_queue(mp);
 728        mp->m_super->s_flags &= ~SB_ACTIVE;
 729        evict_inodes(mp->m_super);
 730
 731        /*
 732         * Drain the buffer LRU after log recovery. This is required for v4
 733         * filesystems to avoid leaving around buffers with NULL verifier ops,
 734         * but we do it unconditionally to make sure we're always in a clean
 735         * cache state after mount.
 736         *
 737         * Don't push in the error case because the AIL may have pending intents
 738         * that aren't removed until recovery is cancelled.
 739         */
 740        if (!error && recovered) {
 741                xfs_log_force(mp, XFS_LOG_SYNC);
 742                xfs_ail_push_all_sync(mp->m_ail);
 743        }
 744        xfs_wait_buftarg(mp->m_ddev_targp);
 745
 746        if (readonly)
 747                mp->m_flags |= XFS_MOUNT_RDONLY;
 748
 749        return error;
 750}
 751
 752/*
 753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 754 * the log.
 755 */
 756void
 757xfs_log_mount_cancel(
 758        struct xfs_mount        *mp)
 759{
 760        xlog_recover_cancel(mp->m_log);
 761        xfs_log_unmount(mp);
 762}
 763
 764/*
 765 * Wait for the iclog to be written disk, or return an error if the log has been
 766 * shut down.
 767 */
 768static int
 769xlog_wait_on_iclog(
 770        struct xlog_in_core     *iclog)
 771                __releases(iclog->ic_log->l_icloglock)
 772{
 773        struct xlog             *log = iclog->ic_log;
 774
 775        if (!XLOG_FORCED_SHUTDOWN(log) &&
 776            iclog->ic_state != XLOG_STATE_ACTIVE &&
 777            iclog->ic_state != XLOG_STATE_DIRTY) {
 778                XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 779                xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 780        } else {
 781                spin_unlock(&log->l_icloglock);
 782        }
 783
 784        if (XLOG_FORCED_SHUTDOWN(log))
 785                return -EIO;
 786        return 0;
 787}
 788
 789/*
 790 * Write out an unmount record using the ticket provided. We have to account for
 791 * the data space used in the unmount ticket as this write is not done from a
 792 * transaction context that has already done the accounting for us.
 793 */
 794static int
 795xlog_write_unmount_record(
 796        struct xlog             *log,
 797        struct xlog_ticket      *ticket,
 798        xfs_lsn_t               *lsn,
 799        uint                    flags)
 800{
 801        struct xfs_unmount_log_format ulf = {
 802                .magic = XLOG_UNMOUNT_TYPE,
 803        };
 804        struct xfs_log_iovec reg = {
 805                .i_addr = &ulf,
 806                .i_len = sizeof(ulf),
 807                .i_type = XLOG_REG_TYPE_UNMOUNT,
 808        };
 809        struct xfs_log_vec vec = {
 810                .lv_niovecs = 1,
 811                .lv_iovecp = &reg,
 812        };
 813
 814        /* account for space used by record data */
 815        ticket->t_curr_res -= sizeof(ulf);
 816        return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
 817}
 818
 819/*
 820 * Mark the filesystem clean by writing an unmount record to the head of the
 821 * log.
 822 */
 823static void
 824xlog_unmount_write(
 825        struct xlog             *log)
 826{
 827        struct xfs_mount        *mp = log->l_mp;
 828        struct xlog_in_core     *iclog;
 829        struct xlog_ticket      *tic = NULL;
 830        xfs_lsn_t               lsn;
 831        uint                    flags = XLOG_UNMOUNT_TRANS;
 832        int                     error;
 833
 834        error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 835        if (error)
 836                goto out_err;
 837
 838        error = xlog_write_unmount_record(log, tic, &lsn, flags);
 839        /*
 840         * At this point, we're umounting anyway, so there's no point in
 841         * transitioning log state to IOERROR. Just continue...
 842         */
 843out_err:
 844        if (error)
 845                xfs_alert(mp, "%s: unmount record failed", __func__);
 846
 847        spin_lock(&log->l_icloglock);
 848        iclog = log->l_iclog;
 849        atomic_inc(&iclog->ic_refcnt);
 850        if (iclog->ic_state == XLOG_STATE_ACTIVE)
 851                xlog_state_switch_iclogs(log, iclog, 0);
 852        else
 853                ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 854                       iclog->ic_state == XLOG_STATE_IOERROR);
 855        error = xlog_state_release_iclog(log, iclog);
 856        xlog_wait_on_iclog(iclog);
 857
 858        if (tic) {
 859                trace_xfs_log_umount_write(log, tic);
 860                xfs_log_ticket_ungrant(log, tic);
 861        }
 862}
 863
 864static void
 865xfs_log_unmount_verify_iclog(
 866        struct xlog             *log)
 867{
 868        struct xlog_in_core     *iclog = log->l_iclog;
 869
 870        do {
 871                ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 872                ASSERT(iclog->ic_offset == 0);
 873        } while ((iclog = iclog->ic_next) != log->l_iclog);
 874}
 875
 876/*
 877 * Unmount record used to have a string "Unmount filesystem--" in the
 878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 879 * We just write the magic number now since that particular field isn't
 880 * currently architecture converted and "Unmount" is a bit foo.
 881 * As far as I know, there weren't any dependencies on the old behaviour.
 882 */
 883static void
 884xfs_log_unmount_write(
 885        struct xfs_mount        *mp)
 886{
 887        struct xlog             *log = mp->m_log;
 888
 889        /*
 890         * Don't write out unmount record on norecovery mounts or ro devices.
 891         * Or, if we are doing a forced umount (typically because of IO errors).
 892         */
 893        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 894            xfs_readonly_buftarg(log->l_targ)) {
 895                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 896                return;
 897        }
 898
 899        xfs_log_force(mp, XFS_LOG_SYNC);
 900
 901        if (XLOG_FORCED_SHUTDOWN(log))
 902                return;
 903
 904        /*
 905         * If we think the summary counters are bad, avoid writing the unmount
 906         * record to force log recovery at next mount, after which the summary
 907         * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 908         * more details.
 909         */
 910        if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 911                        XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 912                xfs_alert(mp, "%s: will fix summary counters at next mount",
 913                                __func__);
 914                return;
 915        }
 916
 917        xfs_log_unmount_verify_iclog(log);
 918        xlog_unmount_write(log);
 919}
 920
 921/*
 922 * Empty the log for unmount/freeze.
 923 *
 924 * To do this, we first need to shut down the background log work so it is not
 925 * trying to cover the log as we clean up. We then need to unpin all objects in
 926 * the log so we can then flush them out. Once they have completed their IO and
 927 * run the callbacks removing themselves from the AIL, we can write the unmount
 928 * record.
 929 */
 930void
 931xfs_log_quiesce(
 932        struct xfs_mount        *mp)
 933{
 934        cancel_delayed_work_sync(&mp->m_log->l_work);
 935        xfs_log_force(mp, XFS_LOG_SYNC);
 936
 937        /*
 938         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 939         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 940         * xfs_buf_iowait() cannot be used because it was pushed with the
 941         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 942         * the IO to complete.
 943         */
 944        xfs_ail_push_all_sync(mp->m_ail);
 945        xfs_wait_buftarg(mp->m_ddev_targp);
 946        xfs_buf_lock(mp->m_sb_bp);
 947        xfs_buf_unlock(mp->m_sb_bp);
 948
 949        xfs_log_unmount_write(mp);
 950}
 951
 952/*
 953 * Shut down and release the AIL and Log.
 954 *
 955 * During unmount, we need to ensure we flush all the dirty metadata objects
 956 * from the AIL so that the log is empty before we write the unmount record to
 957 * the log. Once this is done, we can tear down the AIL and the log.
 958 */
 959void
 960xfs_log_unmount(
 961        struct xfs_mount        *mp)
 962{
 963        xfs_log_quiesce(mp);
 964
 965        xfs_trans_ail_destroy(mp);
 966
 967        xfs_sysfs_del(&mp->m_log->l_kobj);
 968
 969        xlog_dealloc_log(mp->m_log);
 970}
 971
 972void
 973xfs_log_item_init(
 974        struct xfs_mount        *mp,
 975        struct xfs_log_item     *item,
 976        int                     type,
 977        const struct xfs_item_ops *ops)
 978{
 979        item->li_mountp = mp;
 980        item->li_ailp = mp->m_ail;
 981        item->li_type = type;
 982        item->li_ops = ops;
 983        item->li_lv = NULL;
 984
 985        INIT_LIST_HEAD(&item->li_ail);
 986        INIT_LIST_HEAD(&item->li_cil);
 987        INIT_LIST_HEAD(&item->li_bio_list);
 988        INIT_LIST_HEAD(&item->li_trans);
 989}
 990
 991/*
 992 * Wake up processes waiting for log space after we have moved the log tail.
 993 */
 994void
 995xfs_log_space_wake(
 996        struct xfs_mount        *mp)
 997{
 998        struct xlog             *log = mp->m_log;
 999        int                     free_bytes;
1000
1001        if (XLOG_FORCED_SHUTDOWN(log))
1002                return;
1003
1004        if (!list_empty_careful(&log->l_write_head.waiters)) {
1005                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1006
1007                spin_lock(&log->l_write_head.lock);
1008                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1009                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1010                spin_unlock(&log->l_write_head.lock);
1011        }
1012
1013        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1014                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1015
1016                spin_lock(&log->l_reserve_head.lock);
1017                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1018                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1019                spin_unlock(&log->l_reserve_head.lock);
1020        }
1021}
1022
1023/*
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1028 *
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1031 * state.
1032 *
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1039 */
1040static int
1041xfs_log_need_covered(xfs_mount_t *mp)
1042{
1043        struct xlog     *log = mp->m_log;
1044        int             needed = 0;
1045
1046        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1047                return 0;
1048
1049        if (!xlog_cil_empty(log))
1050                return 0;
1051
1052        spin_lock(&log->l_icloglock);
1053        switch (log->l_covered_state) {
1054        case XLOG_STATE_COVER_DONE:
1055        case XLOG_STATE_COVER_DONE2:
1056        case XLOG_STATE_COVER_IDLE:
1057                break;
1058        case XLOG_STATE_COVER_NEED:
1059        case XLOG_STATE_COVER_NEED2:
1060                if (xfs_ail_min_lsn(log->l_ailp))
1061                        break;
1062                if (!xlog_iclogs_empty(log))
1063                        break;
1064
1065                needed = 1;
1066                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1067                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1068                else
1069                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1070                break;
1071        default:
1072                needed = 1;
1073                break;
1074        }
1075        spin_unlock(&log->l_icloglock);
1076        return needed;
1077}
1078
1079/*
1080 * We may be holding the log iclog lock upon entering this routine.
1081 */
1082xfs_lsn_t
1083xlog_assign_tail_lsn_locked(
1084        struct xfs_mount        *mp)
1085{
1086        struct xlog             *log = mp->m_log;
1087        struct xfs_log_item     *lip;
1088        xfs_lsn_t               tail_lsn;
1089
1090        assert_spin_locked(&mp->m_ail->ail_lock);
1091
1092        /*
1093         * To make sure we always have a valid LSN for the log tail we keep
1094         * track of the last LSN which was committed in log->l_last_sync_lsn,
1095         * and use that when the AIL was empty.
1096         */
1097        lip = xfs_ail_min(mp->m_ail);
1098        if (lip)
1099                tail_lsn = lip->li_lsn;
1100        else
1101                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1102        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1103        atomic64_set(&log->l_tail_lsn, tail_lsn);
1104        return tail_lsn;
1105}
1106
1107xfs_lsn_t
1108xlog_assign_tail_lsn(
1109        struct xfs_mount        *mp)
1110{
1111        xfs_lsn_t               tail_lsn;
1112
1113        spin_lock(&mp->m_ail->ail_lock);
1114        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1115        spin_unlock(&mp->m_ail->ail_lock);
1116
1117        return tail_lsn;
1118}
1119
1120/*
1121 * Return the space in the log between the tail and the head.  The head
1122 * is passed in the cycle/bytes formal parms.  In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid.  In this case, just return 0 which means there is no space
1125 * in the log.  This works for all places where this function is called
1126 * with the reserve head.  Of course, if the write head were to ever
1127 * wrap the tail, we should blow up.  Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1129 *
1130 * This code also handles the case where the reservation head is behind
1131 * the tail.  The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
1133 */
1134STATIC int
1135xlog_space_left(
1136        struct xlog     *log,
1137        atomic64_t      *head)
1138{
1139        int             free_bytes;
1140        int             tail_bytes;
1141        int             tail_cycle;
1142        int             head_cycle;
1143        int             head_bytes;
1144
1145        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1146        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1147        tail_bytes = BBTOB(tail_bytes);
1148        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1149                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1150        else if (tail_cycle + 1 < head_cycle)
1151                return 0;
1152        else if (tail_cycle < head_cycle) {
1153                ASSERT(tail_cycle == (head_cycle - 1));
1154                free_bytes = tail_bytes - head_bytes;
1155        } else {
1156                /*
1157                 * The reservation head is behind the tail.
1158                 * In this case we just want to return the size of the
1159                 * log as the amount of space left.
1160                 */
1161                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1162                xfs_alert(log->l_mp,
1163                          "  tail_cycle = %d, tail_bytes = %d",
1164                          tail_cycle, tail_bytes);
1165                xfs_alert(log->l_mp,
1166                          "  GH   cycle = %d, GH   bytes = %d",
1167                          head_cycle, head_bytes);
1168                ASSERT(0);
1169                free_bytes = log->l_logsize;
1170        }
1171        return free_bytes;
1172}
1173
1174
1175static void
1176xlog_ioend_work(
1177        struct work_struct      *work)
1178{
1179        struct xlog_in_core     *iclog =
1180                container_of(work, struct xlog_in_core, ic_end_io_work);
1181        struct xlog             *log = iclog->ic_log;
1182        int                     error;
1183
1184        error = blk_status_to_errno(iclog->ic_bio.bi_status);
1185#ifdef DEBUG
1186        /* treat writes with injected CRC errors as failed */
1187        if (iclog->ic_fail_crc)
1188                error = -EIO;
1189#endif
1190
1191        /*
1192         * Race to shutdown the filesystem if we see an error.
1193         */
1194        if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1195                xfs_alert(log->l_mp, "log I/O error %d", error);
1196                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1197        }
1198
1199        xlog_state_done_syncing(iclog);
1200        bio_uninit(&iclog->ic_bio);
1201
1202        /*
1203         * Drop the lock to signal that we are done. Nothing references the
1204         * iclog after this, so an unmount waiting on this lock can now tear it
1205         * down safely. As such, it is unsafe to reference the iclog after the
1206         * unlock as we could race with it being freed.
1207         */
1208        up(&iclog->ic_sema);
1209}
1210
1211/*
1212 * Return size of each in-core log record buffer.
1213 *
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1215 *
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1218 */
1219STATIC void
1220xlog_get_iclog_buffer_size(
1221        struct xfs_mount        *mp,
1222        struct xlog             *log)
1223{
1224        if (mp->m_logbufs <= 0)
1225                mp->m_logbufs = XLOG_MAX_ICLOGS;
1226        if (mp->m_logbsize <= 0)
1227                mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1228
1229        log->l_iclog_bufs = mp->m_logbufs;
1230        log->l_iclog_size = mp->m_logbsize;
1231
1232        /*
1233         * # headers = size / 32k - one header holds cycles from 32k of data.
1234         */
1235        log->l_iclog_heads =
1236                DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1237        log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1238}
1239
1240void
1241xfs_log_work_queue(
1242        struct xfs_mount        *mp)
1243{
1244        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1245                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1246}
1247
1248/*
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1252 */
1253static void
1254xfs_log_worker(
1255        struct work_struct      *work)
1256{
1257        struct xlog             *log = container_of(to_delayed_work(work),
1258                                                struct xlog, l_work);
1259        struct xfs_mount        *mp = log->l_mp;
1260
1261        /* dgc: errors ignored - not fatal and nowhere to report them */
1262        if (xfs_log_need_covered(mp)) {
1263                /*
1264                 * Dump a transaction into the log that contains no real change.
1265                 * This is needed to stamp the current tail LSN into the log
1266                 * during the covering operation.
1267                 *
1268                 * We cannot use an inode here for this - that will push dirty
1269                 * state back up into the VFS and then periodic inode flushing
1270                 * will prevent log covering from making progress. Hence we
1271                 * synchronously log the superblock instead to ensure the
1272                 * superblock is immediately unpinned and can be written back.
1273                 */
1274                xfs_sync_sb(mp, true);
1275        } else
1276                xfs_log_force(mp, 0);
1277
1278        /* start pushing all the metadata that is currently dirty */
1279        xfs_ail_push_all(mp->m_ail);
1280
1281        /* queue us up again */
1282        xfs_log_work_queue(mp);
1283}
1284
1285/*
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1288 * some other stuff may be filled in too.
1289 */
1290STATIC struct xlog *
1291xlog_alloc_log(
1292        struct xfs_mount        *mp,
1293        struct xfs_buftarg      *log_target,
1294        xfs_daddr_t             blk_offset,
1295        int                     num_bblks)
1296{
1297        struct xlog             *log;
1298        xlog_rec_header_t       *head;
1299        xlog_in_core_t          **iclogp;
1300        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1301        int                     i;
1302        int                     error = -ENOMEM;
1303        uint                    log2_size = 0;
1304
1305        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306        if (!log) {
1307                xfs_warn(mp, "Log allocation failed: No memory!");
1308                goto out;
1309        }
1310
1311        log->l_mp          = mp;
1312        log->l_targ        = log_target;
1313        log->l_logsize     = BBTOB(num_bblks);
1314        log->l_logBBstart  = blk_offset;
1315        log->l_logBBsize   = num_bblks;
1316        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1318        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319
1320        log->l_prev_block  = -1;
1321        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1325
1326        xlog_grant_head_init(&log->l_reserve_head);
1327        xlog_grant_head_init(&log->l_write_head);
1328
1329        error = -EFSCORRUPTED;
1330        if (xfs_sb_version_hassector(&mp->m_sb)) {
1331                log2_size = mp->m_sb.sb_logsectlog;
1332                if (log2_size < BBSHIFT) {
1333                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334                                log2_size, BBSHIFT);
1335                        goto out_free_log;
1336                }
1337
1338                log2_size -= BBSHIFT;
1339                if (log2_size > mp->m_sectbb_log) {
1340                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341                                log2_size, mp->m_sectbb_log);
1342                        goto out_free_log;
1343                }
1344
1345                /* for larger sector sizes, must have v2 or external log */
1346                if (log2_size && log->l_logBBstart > 0 &&
1347                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348                        xfs_warn(mp,
1349                "log sector size (0x%x) invalid for configuration.",
1350                                log2_size);
1351                        goto out_free_log;
1352                }
1353        }
1354        log->l_sectBBsize = 1 << log2_size;
1355
1356        xlog_get_iclog_buffer_size(mp, log);
1357
1358        spin_lock_init(&log->l_icloglock);
1359        init_waitqueue_head(&log->l_flush_wait);
1360
1361        iclogp = &log->l_iclog;
1362        /*
1363         * The amount of memory to allocate for the iclog structure is
1364         * rather funky due to the way the structure is defined.  It is
1365         * done this way so that we can use different sizes for machines
1366         * with different amounts of memory.  See the definition of
1367         * xlog_in_core_t in xfs_log_priv.h for details.
1368         */
1369        ASSERT(log->l_iclog_size >= 4096);
1370        for (i = 0; i < log->l_iclog_bufs; i++) {
1371                int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1372                size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1373                                sizeof(struct bio_vec);
1374
1375                iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1376                if (!iclog)
1377                        goto out_free_iclog;
1378
1379                *iclogp = iclog;
1380                iclog->ic_prev = prev_iclog;
1381                prev_iclog = iclog;
1382
1383                iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1384                                                KM_MAYFAIL | KM_ZERO);
1385                if (!iclog->ic_data)
1386                        goto out_free_iclog;
1387#ifdef DEBUG
1388                log->l_iclog_bak[i] = &iclog->ic_header;
1389#endif
1390                head = &iclog->ic_header;
1391                memset(head, 0, sizeof(xlog_rec_header_t));
1392                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1393                head->h_version = cpu_to_be32(
1394                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1395                head->h_size = cpu_to_be32(log->l_iclog_size);
1396                /* new fields */
1397                head->h_fmt = cpu_to_be32(XLOG_FMT);
1398                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1399
1400                iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1401                iclog->ic_state = XLOG_STATE_ACTIVE;
1402                iclog->ic_log = log;
1403                atomic_set(&iclog->ic_refcnt, 0);
1404                spin_lock_init(&iclog->ic_callback_lock);
1405                INIT_LIST_HEAD(&iclog->ic_callbacks);
1406                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1407
1408                init_waitqueue_head(&iclog->ic_force_wait);
1409                init_waitqueue_head(&iclog->ic_write_wait);
1410                INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1411                sema_init(&iclog->ic_sema, 1);
1412
1413                iclogp = &iclog->ic_next;
1414        }
1415        *iclogp = log->l_iclog;                 /* complete ring */
1416        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1417
1418        log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1419                        WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1420                        mp->m_super->s_id);
1421        if (!log->l_ioend_workqueue)
1422                goto out_free_iclog;
1423
1424        error = xlog_cil_init(log);
1425        if (error)
1426                goto out_destroy_workqueue;
1427        return log;
1428
1429out_destroy_workqueue:
1430        destroy_workqueue(log->l_ioend_workqueue);
1431out_free_iclog:
1432        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1433                prev_iclog = iclog->ic_next;
1434                kmem_free(iclog->ic_data);
1435                kmem_free(iclog);
1436                if (prev_iclog == log->l_iclog)
1437                        break;
1438        }
1439out_free_log:
1440        kmem_free(log);
1441out:
1442        return ERR_PTR(error);
1443}       /* xlog_alloc_log */
1444
1445/*
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
1448 */
1449int
1450xlog_commit_record(
1451        struct xlog             *log,
1452        struct xlog_ticket      *ticket,
1453        struct xlog_in_core     **iclog,
1454        xfs_lsn_t               *lsn)
1455{
1456        struct xfs_log_iovec reg = {
1457                .i_addr = NULL,
1458                .i_len = 0,
1459                .i_type = XLOG_REG_TYPE_COMMIT,
1460        };
1461        struct xfs_log_vec vec = {
1462                .lv_niovecs = 1,
1463                .lv_iovecp = &reg,
1464        };
1465        int     error;
1466
1467        if (XLOG_FORCED_SHUTDOWN(log))
1468                return -EIO;
1469
1470        error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1471                           false);
1472        if (error)
1473                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1474        return error;
1475}
1476
1477/*
1478 * Compute the LSN that we'd need to push the log tail towards in order to have
1479 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1480 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1481 * log free space already meets all three thresholds, this function returns
1482 * NULLCOMMITLSN.
1483 */
1484xfs_lsn_t
1485xlog_grant_push_threshold(
1486        struct xlog     *log,
1487        int             need_bytes)
1488{
1489        xfs_lsn_t       threshold_lsn = 0;
1490        xfs_lsn_t       last_sync_lsn;
1491        int             free_blocks;
1492        int             free_bytes;
1493        int             threshold_block;
1494        int             threshold_cycle;
1495        int             free_threshold;
1496
1497        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498
1499        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500        free_blocks = BTOBBT(free_bytes);
1501
1502        /*
1503         * Set the threshold for the minimum number of free blocks in the
1504         * log to the maximum of what the caller needs, one quarter of the
1505         * log, and 256 blocks.
1506         */
1507        free_threshold = BTOBB(need_bytes);
1508        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1509        free_threshold = max(free_threshold, 256);
1510        if (free_blocks >= free_threshold)
1511                return NULLCOMMITLSN;
1512
1513        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514                                                &threshold_block);
1515        threshold_block += free_threshold;
1516        if (threshold_block >= log->l_logBBsize) {
1517                threshold_block -= log->l_logBBsize;
1518                threshold_cycle += 1;
1519        }
1520        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521                                        threshold_block);
1522        /*
1523         * Don't pass in an lsn greater than the lsn of the last
1524         * log record known to be on disk. Use a snapshot of the last sync lsn
1525         * so that it doesn't change between the compare and the set.
1526         */
1527        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529                threshold_lsn = last_sync_lsn;
1530
1531        return threshold_lsn;
1532}
1533
1534/*
1535 * Push the tail of the log if we need to do so to maintain the free log space
1536 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1537 * policy which pushes on an lsn which is further along in the log once we
1538 * reach the high water mark.  In this manner, we would be creating a low water
1539 * mark.
1540 */
1541STATIC void
1542xlog_grant_push_ail(
1543        struct xlog     *log,
1544        int             need_bytes)
1545{
1546        xfs_lsn_t       threshold_lsn;
1547
1548        threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1549        if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1550                return;
1551
1552        /*
1553         * Get the transaction layer to kick the dirty buffers out to
1554         * disk asynchronously. No point in trying to do this if
1555         * the filesystem is shutting down.
1556         */
1557        xfs_ail_push(log->l_ailp, threshold_lsn);
1558}
1559
1560/*
1561 * Stamp cycle number in every block
1562 */
1563STATIC void
1564xlog_pack_data(
1565        struct xlog             *log,
1566        struct xlog_in_core     *iclog,
1567        int                     roundoff)
1568{
1569        int                     i, j, k;
1570        int                     size = iclog->ic_offset + roundoff;
1571        __be32                  cycle_lsn;
1572        char                    *dp;
1573
1574        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1575
1576        dp = iclog->ic_datap;
1577        for (i = 0; i < BTOBB(size); i++) {
1578                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1579                        break;
1580                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1581                *(__be32 *)dp = cycle_lsn;
1582                dp += BBSIZE;
1583        }
1584
1585        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1586                xlog_in_core_2_t *xhdr = iclog->ic_data;
1587
1588                for ( ; i < BTOBB(size); i++) {
1589                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1590                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1591                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1592                        *(__be32 *)dp = cycle_lsn;
1593                        dp += BBSIZE;
1594                }
1595
1596                for (i = 1; i < log->l_iclog_heads; i++)
1597                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1598        }
1599}
1600
1601/*
1602 * Calculate the checksum for a log buffer.
1603 *
1604 * This is a little more complicated than it should be because the various
1605 * headers and the actual data are non-contiguous.
1606 */
1607__le32
1608xlog_cksum(
1609        struct xlog             *log,
1610        struct xlog_rec_header  *rhead,
1611        char                    *dp,
1612        int                     size)
1613{
1614        uint32_t                crc;
1615
1616        /* first generate the crc for the record header ... */
1617        crc = xfs_start_cksum_update((char *)rhead,
1618                              sizeof(struct xlog_rec_header),
1619                              offsetof(struct xlog_rec_header, h_crc));
1620
1621        /* ... then for additional cycle data for v2 logs ... */
1622        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1623                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1624                int             i;
1625                int             xheads;
1626
1627                xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1628
1629                for (i = 1; i < xheads; i++) {
1630                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1631                                     sizeof(struct xlog_rec_ext_header));
1632                }
1633        }
1634
1635        /* ... and finally for the payload */
1636        crc = crc32c(crc, dp, size);
1637
1638        return xfs_end_cksum(crc);
1639}
1640
1641static void
1642xlog_bio_end_io(
1643        struct bio              *bio)
1644{
1645        struct xlog_in_core     *iclog = bio->bi_private;
1646
1647        queue_work(iclog->ic_log->l_ioend_workqueue,
1648                   &iclog->ic_end_io_work);
1649}
1650
1651static int
1652xlog_map_iclog_data(
1653        struct bio              *bio,
1654        void                    *data,
1655        size_t                  count)
1656{
1657        do {
1658                struct page     *page = kmem_to_page(data);
1659                unsigned int    off = offset_in_page(data);
1660                size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1661
1662                if (bio_add_page(bio, page, len, off) != len)
1663                        return -EIO;
1664
1665                data += len;
1666                count -= len;
1667        } while (count);
1668
1669        return 0;
1670}
1671
1672STATIC void
1673xlog_write_iclog(
1674        struct xlog             *log,
1675        struct xlog_in_core     *iclog,
1676        uint64_t                bno,
1677        unsigned int            count,
1678        bool                    need_flush)
1679{
1680        ASSERT(bno < log->l_logBBsize);
1681
1682        /*
1683         * We lock the iclogbufs here so that we can serialise against I/O
1684         * completion during unmount.  We might be processing a shutdown
1685         * triggered during unmount, and that can occur asynchronously to the
1686         * unmount thread, and hence we need to ensure that completes before
1687         * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1688         * across the log IO to archieve that.
1689         */
1690        down(&iclog->ic_sema);
1691        if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1692                /*
1693                 * It would seem logical to return EIO here, but we rely on
1694                 * the log state machine to propagate I/O errors instead of
1695                 * doing it here.  We kick of the state machine and unlock
1696                 * the buffer manually, the code needs to be kept in sync
1697                 * with the I/O completion path.
1698                 */
1699                xlog_state_done_syncing(iclog);
1700                up(&iclog->ic_sema);
1701                return;
1702        }
1703
1704        bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1705        bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1706        iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1707        iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1708        iclog->ic_bio.bi_private = iclog;
1709
1710        /*
1711         * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1712         * IOs coming immediately after this one. This prevents the block layer
1713         * writeback throttle from throttling log writes behind background
1714         * metadata writeback and causing priority inversions.
1715         */
1716        iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1717                                REQ_IDLE | REQ_FUA;
1718        if (need_flush)
1719                iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1720
1721        if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1722                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1723                return;
1724        }
1725        if (is_vmalloc_addr(iclog->ic_data))
1726                flush_kernel_vmap_range(iclog->ic_data, count);
1727
1728        /*
1729         * If this log buffer would straddle the end of the log we will have
1730         * to split it up into two bios, so that we can continue at the start.
1731         */
1732        if (bno + BTOBB(count) > log->l_logBBsize) {
1733                struct bio *split;
1734
1735                split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1736                                  GFP_NOIO, &fs_bio_set);
1737                bio_chain(split, &iclog->ic_bio);
1738                submit_bio(split);
1739
1740                /* restart at logical offset zero for the remainder */
1741                iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1742        }
1743
1744        submit_bio(&iclog->ic_bio);
1745}
1746
1747/*
1748 * We need to bump cycle number for the part of the iclog that is
1749 * written to the start of the log. Watch out for the header magic
1750 * number case, though.
1751 */
1752static void
1753xlog_split_iclog(
1754        struct xlog             *log,
1755        void                    *data,
1756        uint64_t                bno,
1757        unsigned int            count)
1758{
1759        unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1760        unsigned int            i;
1761
1762        for (i = split_offset; i < count; i += BBSIZE) {
1763                uint32_t cycle = get_unaligned_be32(data + i);
1764
1765                if (++cycle == XLOG_HEADER_MAGIC_NUM)
1766                        cycle++;
1767                put_unaligned_be32(cycle, data + i);
1768        }
1769}
1770
1771static int
1772xlog_calc_iclog_size(
1773        struct xlog             *log,
1774        struct xlog_in_core     *iclog,
1775        uint32_t                *roundoff)
1776{
1777        uint32_t                count_init, count;
1778        bool                    use_lsunit;
1779
1780        use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1781                        log->l_mp->m_sb.sb_logsunit > 1;
1782
1783        /* Add for LR header */
1784        count_init = log->l_iclog_hsize + iclog->ic_offset;
1785
1786        /* Round out the log write size */
1787        if (use_lsunit) {
1788                /* we have a v2 stripe unit to use */
1789                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1790        } else {
1791                count = BBTOB(BTOBB(count_init));
1792        }
1793
1794        ASSERT(count >= count_init);
1795        *roundoff = count - count_init;
1796
1797        if (use_lsunit)
1798                ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1799        else
1800                ASSERT(*roundoff < BBTOB(1));
1801        return count;
1802}
1803
1804/*
1805 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1806 * fashion.  Previously, we should have moved the current iclog
1807 * ptr in the log to point to the next available iclog.  This allows further
1808 * write to continue while this code syncs out an iclog ready to go.
1809 * Before an in-core log can be written out, the data section must be scanned
1810 * to save away the 1st word of each BBSIZE block into the header.  We replace
1811 * it with the current cycle count.  Each BBSIZE block is tagged with the
1812 * cycle count because there in an implicit assumption that drives will
1813 * guarantee that entire 512 byte blocks get written at once.  In other words,
1814 * we can't have part of a 512 byte block written and part not written.  By
1815 * tagging each block, we will know which blocks are valid when recovering
1816 * after an unclean shutdown.
1817 *
1818 * This routine is single threaded on the iclog.  No other thread can be in
1819 * this routine with the same iclog.  Changing contents of iclog can there-
1820 * fore be done without grabbing the state machine lock.  Updating the global
1821 * log will require grabbing the lock though.
1822 *
1823 * The entire log manager uses a logical block numbering scheme.  Only
1824 * xlog_write_iclog knows about the fact that the log may not start with
1825 * block zero on a given device.
1826 */
1827STATIC void
1828xlog_sync(
1829        struct xlog             *log,
1830        struct xlog_in_core     *iclog)
1831{
1832        unsigned int            count;          /* byte count of bwrite */
1833        unsigned int            roundoff;       /* roundoff to BB or stripe */
1834        uint64_t                bno;
1835        unsigned int            size;
1836        bool                    need_flush = true, split = false;
1837
1838        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1839
1840        count = xlog_calc_iclog_size(log, iclog, &roundoff);
1841
1842        /* move grant heads by roundoff in sync */
1843        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1844        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1845
1846        /* put cycle number in every block */
1847        xlog_pack_data(log, iclog, roundoff); 
1848
1849        /* real byte length */
1850        size = iclog->ic_offset;
1851        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1852                size += roundoff;
1853        iclog->ic_header.h_len = cpu_to_be32(size);
1854
1855        XFS_STATS_INC(log->l_mp, xs_log_writes);
1856        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1857
1858        bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1859
1860        /* Do we need to split this write into 2 parts? */
1861        if (bno + BTOBB(count) > log->l_logBBsize) {
1862                xlog_split_iclog(log, &iclog->ic_header, bno, count);
1863                split = true;
1864        }
1865
1866        /* calculcate the checksum */
1867        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1868                                            iclog->ic_datap, size);
1869        /*
1870         * Intentionally corrupt the log record CRC based on the error injection
1871         * frequency, if defined. This facilitates testing log recovery in the
1872         * event of torn writes. Hence, set the IOABORT state to abort the log
1873         * write on I/O completion and shutdown the fs. The subsequent mount
1874         * detects the bad CRC and attempts to recover.
1875         */
1876#ifdef DEBUG
1877        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1878                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1879                iclog->ic_fail_crc = true;
1880                xfs_warn(log->l_mp,
1881        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1882                         be64_to_cpu(iclog->ic_header.h_lsn));
1883        }
1884#endif
1885
1886        /*
1887         * Flush the data device before flushing the log to make sure all meta
1888         * data written back from the AIL actually made it to disk before
1889         * stamping the new log tail LSN into the log buffer.  For an external
1890         * log we need to issue the flush explicitly, and unfortunately
1891         * synchronously here; for an internal log we can simply use the block
1892         * layer state machine for preflushes.
1893         */
1894        if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1895                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1896                need_flush = false;
1897        }
1898
1899        xlog_verify_iclog(log, iclog, count);
1900        xlog_write_iclog(log, iclog, bno, count, need_flush);
1901}
1902
1903/*
1904 * Deallocate a log structure
1905 */
1906STATIC void
1907xlog_dealloc_log(
1908        struct xlog     *log)
1909{
1910        xlog_in_core_t  *iclog, *next_iclog;
1911        int             i;
1912
1913        xlog_cil_destroy(log);
1914
1915        /*
1916         * Cycle all the iclogbuf locks to make sure all log IO completion
1917         * is done before we tear down these buffers.
1918         */
1919        iclog = log->l_iclog;
1920        for (i = 0; i < log->l_iclog_bufs; i++) {
1921                down(&iclog->ic_sema);
1922                up(&iclog->ic_sema);
1923                iclog = iclog->ic_next;
1924        }
1925
1926        iclog = log->l_iclog;
1927        for (i = 0; i < log->l_iclog_bufs; i++) {
1928                next_iclog = iclog->ic_next;
1929                kmem_free(iclog->ic_data);
1930                kmem_free(iclog);
1931                iclog = next_iclog;
1932        }
1933
1934        log->l_mp->m_log = NULL;
1935        destroy_workqueue(log->l_ioend_workqueue);
1936        kmem_free(log);
1937}
1938
1939/*
1940 * Update counters atomically now that memcpy is done.
1941 */
1942static inline void
1943xlog_state_finish_copy(
1944        struct xlog             *log,
1945        struct xlog_in_core     *iclog,
1946        int                     record_cnt,
1947        int                     copy_bytes)
1948{
1949        lockdep_assert_held(&log->l_icloglock);
1950
1951        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1952        iclog->ic_offset += copy_bytes;
1953}
1954
1955/*
1956 * print out info relating to regions written which consume
1957 * the reservation
1958 */
1959void
1960xlog_print_tic_res(
1961        struct xfs_mount        *mp,
1962        struct xlog_ticket      *ticket)
1963{
1964        uint i;
1965        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1966
1967        /* match with XLOG_REG_TYPE_* in xfs_log.h */
1968#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1969        static char *res_type_str[] = {
1970            REG_TYPE_STR(BFORMAT, "bformat"),
1971            REG_TYPE_STR(BCHUNK, "bchunk"),
1972            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1973            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1974            REG_TYPE_STR(IFORMAT, "iformat"),
1975            REG_TYPE_STR(ICORE, "icore"),
1976            REG_TYPE_STR(IEXT, "iext"),
1977            REG_TYPE_STR(IBROOT, "ibroot"),
1978            REG_TYPE_STR(ILOCAL, "ilocal"),
1979            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1980            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1981            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1982            REG_TYPE_STR(QFORMAT, "qformat"),
1983            REG_TYPE_STR(DQUOT, "dquot"),
1984            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1985            REG_TYPE_STR(LRHEADER, "LR header"),
1986            REG_TYPE_STR(UNMOUNT, "unmount"),
1987            REG_TYPE_STR(COMMIT, "commit"),
1988            REG_TYPE_STR(TRANSHDR, "trans header"),
1989            REG_TYPE_STR(ICREATE, "inode create"),
1990            REG_TYPE_STR(RUI_FORMAT, "rui_format"),
1991            REG_TYPE_STR(RUD_FORMAT, "rud_format"),
1992            REG_TYPE_STR(CUI_FORMAT, "cui_format"),
1993            REG_TYPE_STR(CUD_FORMAT, "cud_format"),
1994            REG_TYPE_STR(BUI_FORMAT, "bui_format"),
1995            REG_TYPE_STR(BUD_FORMAT, "bud_format"),
1996        };
1997        BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
1998#undef REG_TYPE_STR
1999
2000        xfs_warn(mp, "ticket reservation summary:");
2001        xfs_warn(mp, "  unit res    = %d bytes",
2002                 ticket->t_unit_res);
2003        xfs_warn(mp, "  current res = %d bytes",
2004                 ticket->t_curr_res);
2005        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2006                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2007        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2008                 ticket->t_res_num_ophdrs, ophdr_spc);
2009        xfs_warn(mp, "  ophdr + reg = %u bytes",
2010                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2011        xfs_warn(mp, "  num regions = %u",
2012                 ticket->t_res_num);
2013
2014        for (i = 0; i < ticket->t_res_num; i++) {
2015                uint r_type = ticket->t_res_arr[i].r_type;
2016                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2017                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2018                            "bad-rtype" : res_type_str[r_type]),
2019                            ticket->t_res_arr[i].r_len);
2020        }
2021}
2022
2023/*
2024 * Print a summary of the transaction.
2025 */
2026void
2027xlog_print_trans(
2028        struct xfs_trans        *tp)
2029{
2030        struct xfs_mount        *mp = tp->t_mountp;
2031        struct xfs_log_item     *lip;
2032
2033        /* dump core transaction and ticket info */
2034        xfs_warn(mp, "transaction summary:");
2035        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2036        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2037        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2038
2039        xlog_print_tic_res(mp, tp->t_ticket);
2040
2041        /* dump each log item */
2042        list_for_each_entry(lip, &tp->t_items, li_trans) {
2043                struct xfs_log_vec      *lv = lip->li_lv;
2044                struct xfs_log_iovec    *vec;
2045                int                     i;
2046
2047                xfs_warn(mp, "log item: ");
2048                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2049                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2050                if (!lv)
2051                        continue;
2052                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2053                xfs_warn(mp, "  size    = %d", lv->lv_size);
2054                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2055                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2056
2057                /* dump each iovec for the log item */
2058                vec = lv->lv_iovecp;
2059                for (i = 0; i < lv->lv_niovecs; i++) {
2060                        int dumplen = min(vec->i_len, 32);
2061
2062                        xfs_warn(mp, "  iovec[%d]", i);
2063                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2064                        xfs_warn(mp, "    len   = %d", vec->i_len);
2065                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2066                        xfs_hex_dump(vec->i_addr, dumplen);
2067
2068                        vec++;
2069                }
2070        }
2071}
2072
2073/*
2074 * Calculate the potential space needed by the log vector.  We may need a start
2075 * record, and each region gets its own struct xlog_op_header and may need to be
2076 * double word aligned.
2077 */
2078static int
2079xlog_write_calc_vec_length(
2080        struct xlog_ticket      *ticket,
2081        struct xfs_log_vec      *log_vector,
2082        bool                    need_start_rec)
2083{
2084        struct xfs_log_vec      *lv;
2085        int                     headers = need_start_rec ? 1 : 0;
2086        int                     len = 0;
2087        int                     i;
2088
2089        for (lv = log_vector; lv; lv = lv->lv_next) {
2090                /* we don't write ordered log vectors */
2091                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2092                        continue;
2093
2094                headers += lv->lv_niovecs;
2095
2096                for (i = 0; i < lv->lv_niovecs; i++) {
2097                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2098
2099                        len += vecp->i_len;
2100                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2101                }
2102        }
2103
2104        ticket->t_res_num_ophdrs += headers;
2105        len += headers * sizeof(struct xlog_op_header);
2106
2107        return len;
2108}
2109
2110static void
2111xlog_write_start_rec(
2112        struct xlog_op_header   *ophdr,
2113        struct xlog_ticket      *ticket)
2114{
2115        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2116        ophdr->oh_clientid = ticket->t_clientid;
2117        ophdr->oh_len = 0;
2118        ophdr->oh_flags = XLOG_START_TRANS;
2119        ophdr->oh_res2 = 0;
2120}
2121
2122static xlog_op_header_t *
2123xlog_write_setup_ophdr(
2124        struct xlog             *log,
2125        struct xlog_op_header   *ophdr,
2126        struct xlog_ticket      *ticket,
2127        uint                    flags)
2128{
2129        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2130        ophdr->oh_clientid = ticket->t_clientid;
2131        ophdr->oh_res2 = 0;
2132
2133        /* are we copying a commit or unmount record? */
2134        ophdr->oh_flags = flags;
2135
2136        /*
2137         * We've seen logs corrupted with bad transaction client ids.  This
2138         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2139         * and shut down the filesystem.
2140         */
2141        switch (ophdr->oh_clientid)  {
2142        case XFS_TRANSACTION:
2143        case XFS_VOLUME:
2144        case XFS_LOG:
2145                break;
2146        default:
2147                xfs_warn(log->l_mp,
2148                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2149                        ophdr->oh_clientid, ticket);
2150                return NULL;
2151        }
2152
2153        return ophdr;
2154}
2155
2156/*
2157 * Set up the parameters of the region copy into the log. This has
2158 * to handle region write split across multiple log buffers - this
2159 * state is kept external to this function so that this code can
2160 * be written in an obvious, self documenting manner.
2161 */
2162static int
2163xlog_write_setup_copy(
2164        struct xlog_ticket      *ticket,
2165        struct xlog_op_header   *ophdr,
2166        int                     space_available,
2167        int                     space_required,
2168        int                     *copy_off,
2169        int                     *copy_len,
2170        int                     *last_was_partial_copy,
2171        int                     *bytes_consumed)
2172{
2173        int                     still_to_copy;
2174
2175        still_to_copy = space_required - *bytes_consumed;
2176        *copy_off = *bytes_consumed;
2177
2178        if (still_to_copy <= space_available) {
2179                /* write of region completes here */
2180                *copy_len = still_to_copy;
2181                ophdr->oh_len = cpu_to_be32(*copy_len);
2182                if (*last_was_partial_copy)
2183                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2184                *last_was_partial_copy = 0;
2185                *bytes_consumed = 0;
2186                return 0;
2187        }
2188
2189        /* partial write of region, needs extra log op header reservation */
2190        *copy_len = space_available;
2191        ophdr->oh_len = cpu_to_be32(*copy_len);
2192        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2193        if (*last_was_partial_copy)
2194                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2195        *bytes_consumed += *copy_len;
2196        (*last_was_partial_copy)++;
2197
2198        /* account for new log op header */
2199        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2200        ticket->t_res_num_ophdrs++;
2201
2202        return sizeof(struct xlog_op_header);
2203}
2204
2205static int
2206xlog_write_copy_finish(
2207        struct xlog             *log,
2208        struct xlog_in_core     *iclog,
2209        uint                    flags,
2210        int                     *record_cnt,
2211        int                     *data_cnt,
2212        int                     *partial_copy,
2213        int                     *partial_copy_len,
2214        int                     log_offset,
2215        struct xlog_in_core     **commit_iclog)
2216{
2217        int                     error;
2218
2219        if (*partial_copy) {
2220                /*
2221                 * This iclog has already been marked WANT_SYNC by
2222                 * xlog_state_get_iclog_space.
2223                 */
2224                spin_lock(&log->l_icloglock);
2225                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2226                *record_cnt = 0;
2227                *data_cnt = 0;
2228                goto release_iclog;
2229        }
2230
2231        *partial_copy = 0;
2232        *partial_copy_len = 0;
2233
2234        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2235                /* no more space in this iclog - push it. */
2236                spin_lock(&log->l_icloglock);
2237                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2238                *record_cnt = 0;
2239                *data_cnt = 0;
2240
2241                if (iclog->ic_state == XLOG_STATE_ACTIVE)
2242                        xlog_state_switch_iclogs(log, iclog, 0);
2243                else
2244                        ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2245                               iclog->ic_state == XLOG_STATE_IOERROR);
2246                if (!commit_iclog)
2247                        goto release_iclog;
2248                spin_unlock(&log->l_icloglock);
2249                ASSERT(flags & XLOG_COMMIT_TRANS);
2250                *commit_iclog = iclog;
2251        }
2252
2253        return 0;
2254
2255release_iclog:
2256        error = xlog_state_release_iclog(log, iclog);
2257        spin_unlock(&log->l_icloglock);
2258        return error;
2259}
2260
2261/*
2262 * Write some region out to in-core log
2263 *
2264 * This will be called when writing externally provided regions or when
2265 * writing out a commit record for a given transaction.
2266 *
2267 * General algorithm:
2268 *      1. Find total length of this write.  This may include adding to the
2269 *              lengths passed in.
2270 *      2. Check whether we violate the tickets reservation.
2271 *      3. While writing to this iclog
2272 *          A. Reserve as much space in this iclog as can get
2273 *          B. If this is first write, save away start lsn
2274 *          C. While writing this region:
2275 *              1. If first write of transaction, write start record
2276 *              2. Write log operation header (header per region)
2277 *              3. Find out if we can fit entire region into this iclog
2278 *              4. Potentially, verify destination memcpy ptr
2279 *              5. Memcpy (partial) region
2280 *              6. If partial copy, release iclog; otherwise, continue
2281 *                      copying more regions into current iclog
2282 *      4. Mark want sync bit (in simulation mode)
2283 *      5. Release iclog for potential flush to on-disk log.
2284 *
2285 * ERRORS:
2286 * 1.   Panic if reservation is overrun.  This should never happen since
2287 *      reservation amounts are generated internal to the filesystem.
2288 * NOTES:
2289 * 1. Tickets are single threaded data structures.
2290 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2291 *      syncing routine.  When a single log_write region needs to span
2292 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2293 *      on all log operation writes which don't contain the end of the
2294 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2295 *      operation which contains the end of the continued log_write region.
2296 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2297 *      we don't really know exactly how much space will be used.  As a result,
2298 *      we don't update ic_offset until the end when we know exactly how many
2299 *      bytes have been written out.
2300 */
2301int
2302xlog_write(
2303        struct xlog             *log,
2304        struct xfs_log_vec      *log_vector,
2305        struct xlog_ticket      *ticket,
2306        xfs_lsn_t               *start_lsn,
2307        struct xlog_in_core     **commit_iclog,
2308        uint                    flags,
2309        bool                    need_start_rec)
2310{
2311        struct xlog_in_core     *iclog = NULL;
2312        struct xfs_log_vec      *lv = log_vector;
2313        struct xfs_log_iovec    *vecp = lv->lv_iovecp;
2314        int                     index = 0;
2315        int                     len;
2316        int                     partial_copy = 0;
2317        int                     partial_copy_len = 0;
2318        int                     contwr = 0;
2319        int                     record_cnt = 0;
2320        int                     data_cnt = 0;
2321        int                     error = 0;
2322
2323        /*
2324         * If this is a commit or unmount transaction, we don't need a start
2325         * record to be written.  We do, however, have to account for the
2326         * commit or unmount header that gets written. Hence we always have
2327         * to account for an extra xlog_op_header here.
2328         */
2329        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2330        if (ticket->t_curr_res < 0) {
2331                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2332                     "ctx ticket reservation ran out. Need to up reservation");
2333                xlog_print_tic_res(log->l_mp, ticket);
2334                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2335        }
2336
2337        len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2338        *start_lsn = 0;
2339        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2340                void            *ptr;
2341                int             log_offset;
2342
2343                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2344                                                   &contwr, &log_offset);
2345                if (error)
2346                        return error;
2347
2348                ASSERT(log_offset <= iclog->ic_size - 1);
2349                ptr = iclog->ic_datap + log_offset;
2350
2351                /* start_lsn is the first lsn written to. That's all we need. */
2352                if (!*start_lsn)
2353                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2354
2355                /*
2356                 * This loop writes out as many regions as can fit in the amount
2357                 * of space which was allocated by xlog_state_get_iclog_space().
2358                 */
2359                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2360                        struct xfs_log_iovec    *reg;
2361                        struct xlog_op_header   *ophdr;
2362                        int                     copy_len;
2363                        int                     copy_off;
2364                        bool                    ordered = false;
2365
2366                        /* ordered log vectors have no regions to write */
2367                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2368                                ASSERT(lv->lv_niovecs == 0);
2369                                ordered = true;
2370                                goto next_lv;
2371                        }
2372
2373                        reg = &vecp[index];
2374                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2375                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2376
2377                        /*
2378                         * Before we start formatting log vectors, we need to
2379                         * write a start record. Only do this for the first
2380                         * iclog we write to.
2381                         */
2382                        if (need_start_rec) {
2383                                xlog_write_start_rec(ptr, ticket);
2384                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2385                                                sizeof(struct xlog_op_header));
2386                        }
2387
2388                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2389                        if (!ophdr)
2390                                return -EIO;
2391
2392                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2393                                           sizeof(struct xlog_op_header));
2394
2395                        len += xlog_write_setup_copy(ticket, ophdr,
2396                                                     iclog->ic_size-log_offset,
2397                                                     reg->i_len,
2398                                                     &copy_off, &copy_len,
2399                                                     &partial_copy,
2400                                                     &partial_copy_len);
2401                        xlog_verify_dest_ptr(log, ptr);
2402
2403                        /*
2404                         * Copy region.
2405                         *
2406                         * Unmount records just log an opheader, so can have
2407                         * empty payloads with no data region to copy. Hence we
2408                         * only copy the payload if the vector says it has data
2409                         * to copy.
2410                         */
2411                        ASSERT(copy_len >= 0);
2412                        if (copy_len > 0) {
2413                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2414                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2415                                                   copy_len);
2416                        }
2417                        copy_len += sizeof(struct xlog_op_header);
2418                        record_cnt++;
2419                        if (need_start_rec) {
2420                                copy_len += sizeof(struct xlog_op_header);
2421                                record_cnt++;
2422                                need_start_rec = false;
2423                        }
2424                        data_cnt += contwr ? copy_len : 0;
2425
2426                        error = xlog_write_copy_finish(log, iclog, flags,
2427                                                       &record_cnt, &data_cnt,
2428                                                       &partial_copy,
2429                                                       &partial_copy_len,
2430                                                       log_offset,
2431                                                       commit_iclog);
2432                        if (error)
2433                                return error;
2434
2435                        /*
2436                         * if we had a partial copy, we need to get more iclog
2437                         * space but we don't want to increment the region
2438                         * index because there is still more is this region to
2439                         * write.
2440                         *
2441                         * If we completed writing this region, and we flushed
2442                         * the iclog (indicated by resetting of the record
2443                         * count), then we also need to get more log space. If
2444                         * this was the last record, though, we are done and
2445                         * can just return.
2446                         */
2447                        if (partial_copy)
2448                                break;
2449
2450                        if (++index == lv->lv_niovecs) {
2451next_lv:
2452                                lv = lv->lv_next;
2453                                index = 0;
2454                                if (lv)
2455                                        vecp = lv->lv_iovecp;
2456                        }
2457                        if (record_cnt == 0 && !ordered) {
2458                                if (!lv)
2459                                        return 0;
2460                                break;
2461                        }
2462                }
2463        }
2464
2465        ASSERT(len == 0);
2466
2467        spin_lock(&log->l_icloglock);
2468        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2469        if (commit_iclog) {
2470                ASSERT(flags & XLOG_COMMIT_TRANS);
2471                *commit_iclog = iclog;
2472        } else {
2473                error = xlog_state_release_iclog(log, iclog);
2474        }
2475        spin_unlock(&log->l_icloglock);
2476
2477        return error;
2478}
2479
2480static void
2481xlog_state_activate_iclog(
2482        struct xlog_in_core     *iclog,
2483        int                     *iclogs_changed)
2484{
2485        ASSERT(list_empty_careful(&iclog->ic_callbacks));
2486
2487        /*
2488         * If the number of ops in this iclog indicate it just contains the
2489         * dummy transaction, we can change state into IDLE (the second time
2490         * around). Otherwise we should change the state into NEED a dummy.
2491         * We don't need to cover the dummy.
2492         */
2493        if (*iclogs_changed == 0 &&
2494            iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2495                *iclogs_changed = 1;
2496        } else {
2497                /*
2498                 * We have two dirty iclogs so start over.  This could also be
2499                 * num of ops indicating this is not the dummy going out.
2500                 */
2501                *iclogs_changed = 2;
2502        }
2503
2504        iclog->ic_state = XLOG_STATE_ACTIVE;
2505        iclog->ic_offset = 0;
2506        iclog->ic_header.h_num_logops = 0;
2507        memset(iclog->ic_header.h_cycle_data, 0,
2508                sizeof(iclog->ic_header.h_cycle_data));
2509        iclog->ic_header.h_lsn = 0;
2510}
2511
2512/*
2513 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2514 * ACTIVE after iclog I/O has completed.
2515 */
2516static void
2517xlog_state_activate_iclogs(
2518        struct xlog             *log,
2519        int                     *iclogs_changed)
2520{
2521        struct xlog_in_core     *iclog = log->l_iclog;
2522
2523        do {
2524                if (iclog->ic_state == XLOG_STATE_DIRTY)
2525                        xlog_state_activate_iclog(iclog, iclogs_changed);
2526                /*
2527                 * The ordering of marking iclogs ACTIVE must be maintained, so
2528                 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2529                 */
2530                else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2531                        break;
2532        } while ((iclog = iclog->ic_next) != log->l_iclog);
2533}
2534
2535static int
2536xlog_covered_state(
2537        int                     prev_state,
2538        int                     iclogs_changed)
2539{
2540        /*
2541         * We usually go to NEED. But we go to NEED2 if the changed indicates we
2542         * are done writing the dummy record.  If we are done with the second
2543         * dummy recored (DONE2), then we go to IDLE.
2544         */
2545        switch (prev_state) {
2546        case XLOG_STATE_COVER_IDLE:
2547        case XLOG_STATE_COVER_NEED:
2548        case XLOG_STATE_COVER_NEED2:
2549                break;
2550        case XLOG_STATE_COVER_DONE:
2551                if (iclogs_changed == 1)
2552                        return XLOG_STATE_COVER_NEED2;
2553                break;
2554        case XLOG_STATE_COVER_DONE2:
2555                if (iclogs_changed == 1)
2556                        return XLOG_STATE_COVER_IDLE;
2557                break;
2558        default:
2559                ASSERT(0);
2560        }
2561
2562        return XLOG_STATE_COVER_NEED;
2563}
2564
2565STATIC void
2566xlog_state_clean_iclog(
2567        struct xlog             *log,
2568        struct xlog_in_core     *dirty_iclog)
2569{
2570        int                     iclogs_changed = 0;
2571
2572        dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2573
2574        xlog_state_activate_iclogs(log, &iclogs_changed);
2575        wake_up_all(&dirty_iclog->ic_force_wait);
2576
2577        if (iclogs_changed) {
2578                log->l_covered_state = xlog_covered_state(log->l_covered_state,
2579                                iclogs_changed);
2580        }
2581}
2582
2583STATIC xfs_lsn_t
2584xlog_get_lowest_lsn(
2585        struct xlog             *log)
2586{
2587        struct xlog_in_core     *iclog = log->l_iclog;
2588        xfs_lsn_t               lowest_lsn = 0, lsn;
2589
2590        do {
2591                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2592                    iclog->ic_state == XLOG_STATE_DIRTY)
2593                        continue;
2594
2595                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2596                if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2597                        lowest_lsn = lsn;
2598        } while ((iclog = iclog->ic_next) != log->l_iclog);
2599
2600        return lowest_lsn;
2601}
2602
2603/*
2604 * Completion of a iclog IO does not imply that a transaction has completed, as
2605 * transactions can be large enough to span many iclogs. We cannot change the
2606 * tail of the log half way through a transaction as this may be the only
2607 * transaction in the log and moving the tail to point to the middle of it
2608 * will prevent recovery from finding the start of the transaction. Hence we
2609 * should only update the last_sync_lsn if this iclog contains transaction
2610 * completion callbacks on it.
2611 *
2612 * We have to do this before we drop the icloglock to ensure we are the only one
2613 * that can update it.
2614 *
2615 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2616 * the reservation grant head pushing. This is due to the fact that the push
2617 * target is bound by the current last_sync_lsn value. Hence if we have a large
2618 * amount of log space bound up in this committing transaction then the
2619 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2620 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2621 * should push the AIL to ensure the push target (and hence the grant head) is
2622 * no longer bound by the old log head location and can move forwards and make
2623 * progress again.
2624 */
2625static void
2626xlog_state_set_callback(
2627        struct xlog             *log,
2628        struct xlog_in_core     *iclog,
2629        xfs_lsn_t               header_lsn)
2630{
2631        iclog->ic_state = XLOG_STATE_CALLBACK;
2632
2633        ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2634                           header_lsn) <= 0);
2635
2636        if (list_empty_careful(&iclog->ic_callbacks))
2637                return;
2638
2639        atomic64_set(&log->l_last_sync_lsn, header_lsn);
2640        xlog_grant_push_ail(log, 0);
2641}
2642
2643/*
2644 * Return true if we need to stop processing, false to continue to the next
2645 * iclog. The caller will need to run callbacks if the iclog is returned in the
2646 * XLOG_STATE_CALLBACK state.
2647 */
2648static bool
2649xlog_state_iodone_process_iclog(
2650        struct xlog             *log,
2651        struct xlog_in_core     *iclog,
2652        bool                    *ioerror)
2653{
2654        xfs_lsn_t               lowest_lsn;
2655        xfs_lsn_t               header_lsn;
2656
2657        switch (iclog->ic_state) {
2658        case XLOG_STATE_ACTIVE:
2659        case XLOG_STATE_DIRTY:
2660                /*
2661                 * Skip all iclogs in the ACTIVE & DIRTY states:
2662                 */
2663                return false;
2664        case XLOG_STATE_IOERROR:
2665                /*
2666                 * Between marking a filesystem SHUTDOWN and stopping the log,
2667                 * we do flush all iclogs to disk (if there wasn't a log I/O
2668                 * error). So, we do want things to go smoothly in case of just
2669                 * a SHUTDOWN w/o a LOG_IO_ERROR.
2670                 */
2671                *ioerror = true;
2672                return false;
2673        case XLOG_STATE_DONE_SYNC:
2674                /*
2675                 * Now that we have an iclog that is in the DONE_SYNC state, do
2676                 * one more check here to see if we have chased our tail around.
2677                 * If this is not the lowest lsn iclog, then we will leave it
2678                 * for another completion to process.
2679                 */
2680                header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2681                lowest_lsn = xlog_get_lowest_lsn(log);
2682                if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2683                        return false;
2684                xlog_state_set_callback(log, iclog, header_lsn);
2685                return false;
2686        default:
2687                /*
2688                 * Can only perform callbacks in order.  Since this iclog is not
2689                 * in the DONE_SYNC state, we skip the rest and just try to
2690                 * clean up.
2691                 */
2692                return true;
2693        }
2694}
2695
2696/*
2697 * Keep processing entries in the iclog callback list until we come around and
2698 * it is empty.  We need to atomically see that the list is empty and change the
2699 * state to DIRTY so that we don't miss any more callbacks being added.
2700 *
2701 * This function is called with the icloglock held and returns with it held. We
2702 * drop it while running callbacks, however, as holding it over thousands of
2703 * callbacks is unnecessary and causes excessive contention if we do.
2704 */
2705static void
2706xlog_state_do_iclog_callbacks(
2707        struct xlog             *log,
2708        struct xlog_in_core     *iclog)
2709                __releases(&log->l_icloglock)
2710                __acquires(&log->l_icloglock)
2711{
2712        spin_unlock(&log->l_icloglock);
2713        spin_lock(&iclog->ic_callback_lock);
2714        while (!list_empty(&iclog->ic_callbacks)) {
2715                LIST_HEAD(tmp);
2716
2717                list_splice_init(&iclog->ic_callbacks, &tmp);
2718
2719                spin_unlock(&iclog->ic_callback_lock);
2720                xlog_cil_process_committed(&tmp);
2721                spin_lock(&iclog->ic_callback_lock);
2722        }
2723
2724        /*
2725         * Pick up the icloglock while still holding the callback lock so we
2726         * serialise against anyone trying to add more callbacks to this iclog
2727         * now we've finished processing.
2728         */
2729        spin_lock(&log->l_icloglock);
2730        spin_unlock(&iclog->ic_callback_lock);
2731}
2732
2733STATIC void
2734xlog_state_do_callback(
2735        struct xlog             *log)
2736{
2737        struct xlog_in_core     *iclog;
2738        struct xlog_in_core     *first_iclog;
2739        bool                    cycled_icloglock;
2740        bool                    ioerror;
2741        int                     flushcnt = 0;
2742        int                     repeats = 0;
2743
2744        spin_lock(&log->l_icloglock);
2745        do {
2746                /*
2747                 * Scan all iclogs starting with the one pointed to by the
2748                 * log.  Reset this starting point each time the log is
2749                 * unlocked (during callbacks).
2750                 *
2751                 * Keep looping through iclogs until one full pass is made
2752                 * without running any callbacks.
2753                 */
2754                first_iclog = log->l_iclog;
2755                iclog = log->l_iclog;
2756                cycled_icloglock = false;
2757                ioerror = false;
2758                repeats++;
2759
2760                do {
2761                        if (xlog_state_iodone_process_iclog(log, iclog,
2762                                                        &ioerror))
2763                                break;
2764
2765                        if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2766                            iclog->ic_state != XLOG_STATE_IOERROR) {
2767                                iclog = iclog->ic_next;
2768                                continue;
2769                        }
2770
2771                        /*
2772                         * Running callbacks will drop the icloglock which means
2773                         * we'll have to run at least one more complete loop.
2774                         */
2775                        cycled_icloglock = true;
2776                        xlog_state_do_iclog_callbacks(log, iclog);
2777                        if (XLOG_FORCED_SHUTDOWN(log))
2778                                wake_up_all(&iclog->ic_force_wait);
2779                        else
2780                                xlog_state_clean_iclog(log, iclog);
2781                        iclog = iclog->ic_next;
2782                } while (first_iclog != iclog);
2783
2784                if (repeats > 5000) {
2785                        flushcnt += repeats;
2786                        repeats = 0;
2787                        xfs_warn(log->l_mp,
2788                                "%s: possible infinite loop (%d iterations)",
2789                                __func__, flushcnt);
2790                }
2791        } while (!ioerror && cycled_icloglock);
2792
2793        if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2794            log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2795                wake_up_all(&log->l_flush_wait);
2796
2797        spin_unlock(&log->l_icloglock);
2798}
2799
2800
2801/*
2802 * Finish transitioning this iclog to the dirty state.
2803 *
2804 * Make sure that we completely execute this routine only when this is
2805 * the last call to the iclog.  There is a good chance that iclog flushes,
2806 * when we reach the end of the physical log, get turned into 2 separate
2807 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2808 * routine.  By using the reference count bwritecnt, we guarantee that only
2809 * the second completion goes through.
2810 *
2811 * Callbacks could take time, so they are done outside the scope of the
2812 * global state machine log lock.
2813 */
2814STATIC void
2815xlog_state_done_syncing(
2816        struct xlog_in_core     *iclog)
2817{
2818        struct xlog             *log = iclog->ic_log;
2819
2820        spin_lock(&log->l_icloglock);
2821        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2822
2823        /*
2824         * If we got an error, either on the first buffer, or in the case of
2825         * split log writes, on the second, we shut down the file system and
2826         * no iclogs should ever be attempted to be written to disk again.
2827         */
2828        if (!XLOG_FORCED_SHUTDOWN(log)) {
2829                ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2830                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2831        }
2832
2833        /*
2834         * Someone could be sleeping prior to writing out the next
2835         * iclog buffer, we wake them all, one will get to do the
2836         * I/O, the others get to wait for the result.
2837         */
2838        wake_up_all(&iclog->ic_write_wait);
2839        spin_unlock(&log->l_icloglock);
2840        xlog_state_do_callback(log);
2841}
2842
2843/*
2844 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2845 * sleep.  We wait on the flush queue on the head iclog as that should be
2846 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2847 * we will wait here and all new writes will sleep until a sync completes.
2848 *
2849 * The in-core logs are used in a circular fashion. They are not used
2850 * out-of-order even when an iclog past the head is free.
2851 *
2852 * return:
2853 *      * log_offset where xlog_write() can start writing into the in-core
2854 *              log's data space.
2855 *      * in-core log pointer to which xlog_write() should write.
2856 *      * boolean indicating this is a continued write to an in-core log.
2857 *              If this is the last write, then the in-core log's offset field
2858 *              needs to be incremented, depending on the amount of data which
2859 *              is copied.
2860 */
2861STATIC int
2862xlog_state_get_iclog_space(
2863        struct xlog             *log,
2864        int                     len,
2865        struct xlog_in_core     **iclogp,
2866        struct xlog_ticket      *ticket,
2867        int                     *continued_write,
2868        int                     *logoffsetp)
2869{
2870        int               log_offset;
2871        xlog_rec_header_t *head;
2872        xlog_in_core_t    *iclog;
2873
2874restart:
2875        spin_lock(&log->l_icloglock);
2876        if (XLOG_FORCED_SHUTDOWN(log)) {
2877                spin_unlock(&log->l_icloglock);
2878                return -EIO;
2879        }
2880
2881        iclog = log->l_iclog;
2882        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2883                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2884
2885                /* Wait for log writes to have flushed */
2886                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2887                goto restart;
2888        }
2889
2890        head = &iclog->ic_header;
2891
2892        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2893        log_offset = iclog->ic_offset;
2894
2895        /* On the 1st write to an iclog, figure out lsn.  This works
2896         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2897         * committing to.  If the offset is set, that's how many blocks
2898         * must be written.
2899         */
2900        if (log_offset == 0) {
2901                ticket->t_curr_res -= log->l_iclog_hsize;
2902                xlog_tic_add_region(ticket,
2903                                    log->l_iclog_hsize,
2904                                    XLOG_REG_TYPE_LRHEADER);
2905                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2906                head->h_lsn = cpu_to_be64(
2907                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2908                ASSERT(log->l_curr_block >= 0);
2909        }
2910
2911        /* If there is enough room to write everything, then do it.  Otherwise,
2912         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2913         * bit is on, so this will get flushed out.  Don't update ic_offset
2914         * until you know exactly how many bytes get copied.  Therefore, wait
2915         * until later to update ic_offset.
2916         *
2917         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2918         * can fit into remaining data section.
2919         */
2920        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2921                int             error = 0;
2922
2923                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2924
2925                /*
2926                 * If we are the only one writing to this iclog, sync it to
2927                 * disk.  We need to do an atomic compare and decrement here to
2928                 * avoid racing with concurrent atomic_dec_and_lock() calls in
2929                 * xlog_state_release_iclog() when there is more than one
2930                 * reference to the iclog.
2931                 */
2932                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2933                        error = xlog_state_release_iclog(log, iclog);
2934                spin_unlock(&log->l_icloglock);
2935                if (error)
2936                        return error;
2937                goto restart;
2938        }
2939
2940        /* Do we have enough room to write the full amount in the remainder
2941         * of this iclog?  Or must we continue a write on the next iclog and
2942         * mark this iclog as completely taken?  In the case where we switch
2943         * iclogs (to mark it taken), this particular iclog will release/sync
2944         * to disk in xlog_write().
2945         */
2946        if (len <= iclog->ic_size - iclog->ic_offset) {
2947                *continued_write = 0;
2948                iclog->ic_offset += len;
2949        } else {
2950                *continued_write = 1;
2951                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2952        }
2953        *iclogp = iclog;
2954
2955        ASSERT(iclog->ic_offset <= iclog->ic_size);
2956        spin_unlock(&log->l_icloglock);
2957
2958        *logoffsetp = log_offset;
2959        return 0;
2960}
2961
2962/*
2963 * The first cnt-1 times a ticket goes through here we don't need to move the
2964 * grant write head because the permanent reservation has reserved cnt times the
2965 * unit amount.  Release part of current permanent unit reservation and reset
2966 * current reservation to be one units worth.  Also move grant reservation head
2967 * forward.
2968 */
2969void
2970xfs_log_ticket_regrant(
2971        struct xlog             *log,
2972        struct xlog_ticket      *ticket)
2973{
2974        trace_xfs_log_ticket_regrant(log, ticket);
2975
2976        if (ticket->t_cnt > 0)
2977                ticket->t_cnt--;
2978
2979        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2980                                        ticket->t_curr_res);
2981        xlog_grant_sub_space(log, &log->l_write_head.grant,
2982                                        ticket->t_curr_res);
2983        ticket->t_curr_res = ticket->t_unit_res;
2984        xlog_tic_reset_res(ticket);
2985
2986        trace_xfs_log_ticket_regrant_sub(log, ticket);
2987
2988        /* just return if we still have some of the pre-reserved space */
2989        if (!ticket->t_cnt) {
2990                xlog_grant_add_space(log, &log->l_reserve_head.grant,
2991                                     ticket->t_unit_res);
2992                trace_xfs_log_ticket_regrant_exit(log, ticket);
2993
2994                ticket->t_curr_res = ticket->t_unit_res;
2995                xlog_tic_reset_res(ticket);
2996        }
2997
2998        xfs_log_ticket_put(ticket);
2999}
3000
3001/*
3002 * Give back the space left from a reservation.
3003 *
3004 * All the information we need to make a correct determination of space left
3005 * is present.  For non-permanent reservations, things are quite easy.  The
3006 * count should have been decremented to zero.  We only need to deal with the
3007 * space remaining in the current reservation part of the ticket.  If the
3008 * ticket contains a permanent reservation, there may be left over space which
3009 * needs to be released.  A count of N means that N-1 refills of the current
3010 * reservation can be done before we need to ask for more space.  The first
3011 * one goes to fill up the first current reservation.  Once we run out of
3012 * space, the count will stay at zero and the only space remaining will be
3013 * in the current reservation field.
3014 */
3015void
3016xfs_log_ticket_ungrant(
3017        struct xlog             *log,
3018        struct xlog_ticket      *ticket)
3019{
3020        int                     bytes;
3021
3022        trace_xfs_log_ticket_ungrant(log, ticket);
3023
3024        if (ticket->t_cnt > 0)
3025                ticket->t_cnt--;
3026
3027        trace_xfs_log_ticket_ungrant_sub(log, ticket);
3028
3029        /*
3030         * If this is a permanent reservation ticket, we may be able to free
3031         * up more space based on the remaining count.
3032         */
3033        bytes = ticket->t_curr_res;
3034        if (ticket->t_cnt > 0) {
3035                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3036                bytes += ticket->t_unit_res*ticket->t_cnt;
3037        }
3038
3039        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3040        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3041
3042        trace_xfs_log_ticket_ungrant_exit(log, ticket);
3043
3044        xfs_log_space_wake(log->l_mp);
3045        xfs_log_ticket_put(ticket);
3046}
3047
3048/*
3049 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3050 * the current iclog pointer to the next iclog in the ring.
3051 */
3052STATIC void
3053xlog_state_switch_iclogs(
3054        struct xlog             *log,
3055        struct xlog_in_core     *iclog,
3056        int                     eventual_size)
3057{
3058        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3059        assert_spin_locked(&log->l_icloglock);
3060
3061        if (!eventual_size)
3062                eventual_size = iclog->ic_offset;
3063        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3064        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3065        log->l_prev_block = log->l_curr_block;
3066        log->l_prev_cycle = log->l_curr_cycle;
3067
3068        /* roll log?: ic_offset changed later */
3069        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3070
3071        /* Round up to next log-sunit */
3072        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3073            log->l_mp->m_sb.sb_logsunit > 1) {
3074                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3075                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3076        }
3077
3078        if (log->l_curr_block >= log->l_logBBsize) {
3079                /*
3080                 * Rewind the current block before the cycle is bumped to make
3081                 * sure that the combined LSN never transiently moves forward
3082                 * when the log wraps to the next cycle. This is to support the
3083                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3084                 * other cases should acquire l_icloglock.
3085                 */
3086                log->l_curr_block -= log->l_logBBsize;
3087                ASSERT(log->l_curr_block >= 0);
3088                smp_wmb();
3089                log->l_curr_cycle++;
3090                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3091                        log->l_curr_cycle++;
3092        }
3093        ASSERT(iclog == log->l_iclog);
3094        log->l_iclog = iclog->ic_next;
3095}
3096
3097/*
3098 * Write out all data in the in-core log as of this exact moment in time.
3099 *
3100 * Data may be written to the in-core log during this call.  However,
3101 * we don't guarantee this data will be written out.  A change from past
3102 * implementation means this routine will *not* write out zero length LRs.
3103 *
3104 * Basically, we try and perform an intelligent scan of the in-core logs.
3105 * If we determine there is no flushable data, we just return.  There is no
3106 * flushable data if:
3107 *
3108 *      1. the current iclog is active and has no data; the previous iclog
3109 *              is in the active or dirty state.
3110 *      2. the current iclog is drity, and the previous iclog is in the
3111 *              active or dirty state.
3112 *
3113 * We may sleep if:
3114 *
3115 *      1. the current iclog is not in the active nor dirty state.
3116 *      2. the current iclog dirty, and the previous iclog is not in the
3117 *              active nor dirty state.
3118 *      3. the current iclog is active, and there is another thread writing
3119 *              to this particular iclog.
3120 *      4. a) the current iclog is active and has no other writers
3121 *         b) when we return from flushing out this iclog, it is still
3122 *              not in the active nor dirty state.
3123 */
3124int
3125xfs_log_force(
3126        struct xfs_mount        *mp,
3127        uint                    flags)
3128{
3129        struct xlog             *log = mp->m_log;
3130        struct xlog_in_core     *iclog;
3131        xfs_lsn_t               lsn;
3132
3133        XFS_STATS_INC(mp, xs_log_force);
3134        trace_xfs_log_force(mp, 0, _RET_IP_);
3135
3136        xlog_cil_force(log);
3137
3138        spin_lock(&log->l_icloglock);
3139        iclog = log->l_iclog;
3140        if (iclog->ic_state == XLOG_STATE_IOERROR)
3141                goto out_error;
3142
3143        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3144            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3145             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3146                /*
3147                 * If the head is dirty or (active and empty), then we need to
3148                 * look at the previous iclog.
3149                 *
3150                 * If the previous iclog is active or dirty we are done.  There
3151                 * is nothing to sync out. Otherwise, we attach ourselves to the
3152                 * previous iclog and go to sleep.
3153                 */
3154                iclog = iclog->ic_prev;
3155        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3156                if (atomic_read(&iclog->ic_refcnt) == 0) {
3157                        /*
3158                         * We are the only one with access to this iclog.
3159                         *
3160                         * Flush it out now.  There should be a roundoff of zero
3161                         * to show that someone has already taken care of the
3162                         * roundoff from the previous sync.
3163                         */
3164                        atomic_inc(&iclog->ic_refcnt);
3165                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3166                        xlog_state_switch_iclogs(log, iclog, 0);
3167                        if (xlog_state_release_iclog(log, iclog))
3168                                goto out_error;
3169
3170                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3171                                goto out_unlock;
3172                } else {
3173                        /*
3174                         * Someone else is writing to this iclog.
3175                         *
3176                         * Use its call to flush out the data.  However, the
3177                         * other thread may not force out this LR, so we mark
3178                         * it WANT_SYNC.
3179                         */
3180                        xlog_state_switch_iclogs(log, iclog, 0);
3181                }
3182        } else {
3183                /*
3184                 * If the head iclog is not active nor dirty, we just attach
3185                 * ourselves to the head and go to sleep if necessary.
3186                 */
3187                ;
3188        }
3189
3190        if (flags & XFS_LOG_SYNC)
3191                return xlog_wait_on_iclog(iclog);
3192out_unlock:
3193        spin_unlock(&log->l_icloglock);
3194        return 0;
3195out_error:
3196        spin_unlock(&log->l_icloglock);
3197        return -EIO;
3198}
3199
3200static int
3201__xfs_log_force_lsn(
3202        struct xfs_mount        *mp,
3203        xfs_lsn_t               lsn,
3204        uint                    flags,
3205        int                     *log_flushed,
3206        bool                    already_slept)
3207{
3208        struct xlog             *log = mp->m_log;
3209        struct xlog_in_core     *iclog;
3210
3211        spin_lock(&log->l_icloglock);
3212        iclog = log->l_iclog;
3213        if (iclog->ic_state == XLOG_STATE_IOERROR)
3214                goto out_error;
3215
3216        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3217                iclog = iclog->ic_next;
3218                if (iclog == log->l_iclog)
3219                        goto out_unlock;
3220        }
3221
3222        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3223                /*
3224                 * We sleep here if we haven't already slept (e.g. this is the
3225                 * first time we've looked at the correct iclog buf) and the
3226                 * buffer before us is going to be sync'ed.  The reason for this
3227                 * is that if we are doing sync transactions here, by waiting
3228                 * for the previous I/O to complete, we can allow a few more
3229                 * transactions into this iclog before we close it down.
3230                 *
3231                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3232                 * refcnt so we can release the log (which drops the ref count).
3233                 * The state switch keeps new transaction commits from using
3234                 * this buffer.  When the current commits finish writing into
3235                 * the buffer, the refcount will drop to zero and the buffer
3236                 * will go out then.
3237                 */
3238                if (!already_slept &&
3239                    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3240                     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3241                        XFS_STATS_INC(mp, xs_log_force_sleep);
3242
3243                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3244                                        &log->l_icloglock);
3245                        return -EAGAIN;
3246                }
3247                atomic_inc(&iclog->ic_refcnt);
3248                xlog_state_switch_iclogs(log, iclog, 0);
3249                if (xlog_state_release_iclog(log, iclog))
3250                        goto out_error;
3251                if (log_flushed)
3252                        *log_flushed = 1;
3253        }
3254
3255        if (flags & XFS_LOG_SYNC)
3256                return xlog_wait_on_iclog(iclog);
3257out_unlock:
3258        spin_unlock(&log->l_icloglock);
3259        return 0;
3260out_error:
3261        spin_unlock(&log->l_icloglock);
3262        return -EIO;
3263}
3264
3265/*
3266 * Force the in-core log to disk for a specific LSN.
3267 *
3268 * Find in-core log with lsn.
3269 *      If it is in the DIRTY state, just return.
3270 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3271 *              state and go to sleep or return.
3272 *      If it is in any other state, go to sleep or return.
3273 *
3274 * Synchronous forces are implemented with a wait queue.  All callers trying
3275 * to force a given lsn to disk must wait on the queue attached to the
3276 * specific in-core log.  When given in-core log finally completes its write
3277 * to disk, that thread will wake up all threads waiting on the queue.
3278 */
3279int
3280xfs_log_force_lsn(
3281        struct xfs_mount        *mp,
3282        xfs_lsn_t               lsn,
3283        uint                    flags,
3284        int                     *log_flushed)
3285{
3286        int                     ret;
3287        ASSERT(lsn != 0);
3288
3289        XFS_STATS_INC(mp, xs_log_force);
3290        trace_xfs_log_force(mp, lsn, _RET_IP_);
3291
3292        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3293        if (lsn == NULLCOMMITLSN)
3294                return 0;
3295
3296        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3297        if (ret == -EAGAIN)
3298                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3299        return ret;
3300}
3301
3302/*
3303 * Free a used ticket when its refcount falls to zero.
3304 */
3305void
3306xfs_log_ticket_put(
3307        xlog_ticket_t   *ticket)
3308{
3309        ASSERT(atomic_read(&ticket->t_ref) > 0);
3310        if (atomic_dec_and_test(&ticket->t_ref))
3311                kmem_cache_free(xfs_log_ticket_zone, ticket);
3312}
3313
3314xlog_ticket_t *
3315xfs_log_ticket_get(
3316        xlog_ticket_t   *ticket)
3317{
3318        ASSERT(atomic_read(&ticket->t_ref) > 0);
3319        atomic_inc(&ticket->t_ref);
3320        return ticket;
3321}
3322
3323/*
3324 * Figure out the total log space unit (in bytes) that would be
3325 * required for a log ticket.
3326 */
3327int
3328xfs_log_calc_unit_res(
3329        struct xfs_mount        *mp,
3330        int                     unit_bytes)
3331{
3332        struct xlog             *log = mp->m_log;
3333        int                     iclog_space;
3334        uint                    num_headers;
3335
3336        /*
3337         * Permanent reservations have up to 'cnt'-1 active log operations
3338         * in the log.  A unit in this case is the amount of space for one
3339         * of these log operations.  Normal reservations have a cnt of 1
3340         * and their unit amount is the total amount of space required.
3341         *
3342         * The following lines of code account for non-transaction data
3343         * which occupy space in the on-disk log.
3344         *
3345         * Normal form of a transaction is:
3346         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3347         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3348         *
3349         * We need to account for all the leadup data and trailer data
3350         * around the transaction data.
3351         * And then we need to account for the worst case in terms of using
3352         * more space.
3353         * The worst case will happen if:
3354         * - the placement of the transaction happens to be such that the
3355         *   roundoff is at its maximum
3356         * - the transaction data is synced before the commit record is synced
3357         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3358         *   Therefore the commit record is in its own Log Record.
3359         *   This can happen as the commit record is called with its
3360         *   own region to xlog_write().
3361         *   This then means that in the worst case, roundoff can happen for
3362         *   the commit-rec as well.
3363         *   The commit-rec is smaller than padding in this scenario and so it is
3364         *   not added separately.
3365         */
3366
3367        /* for trans header */
3368        unit_bytes += sizeof(xlog_op_header_t);
3369        unit_bytes += sizeof(xfs_trans_header_t);
3370
3371        /* for start-rec */
3372        unit_bytes += sizeof(xlog_op_header_t);
3373
3374        /*
3375         * for LR headers - the space for data in an iclog is the size minus
3376         * the space used for the headers. If we use the iclog size, then we
3377         * undercalculate the number of headers required.
3378         *
3379         * Furthermore - the addition of op headers for split-recs might
3380         * increase the space required enough to require more log and op
3381         * headers, so take that into account too.
3382         *
3383         * IMPORTANT: This reservation makes the assumption that if this
3384         * transaction is the first in an iclog and hence has the LR headers
3385         * accounted to it, then the remaining space in the iclog is
3386         * exclusively for this transaction.  i.e. if the transaction is larger
3387         * than the iclog, it will be the only thing in that iclog.
3388         * Fundamentally, this means we must pass the entire log vector to
3389         * xlog_write to guarantee this.
3390         */
3391        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3392        num_headers = howmany(unit_bytes, iclog_space);
3393
3394        /* for split-recs - ophdrs added when data split over LRs */
3395        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3396
3397        /* add extra header reservations if we overrun */
3398        while (!num_headers ||
3399               howmany(unit_bytes, iclog_space) > num_headers) {
3400                unit_bytes += sizeof(xlog_op_header_t);
3401                num_headers++;
3402        }
3403        unit_bytes += log->l_iclog_hsize * num_headers;
3404
3405        /* for commit-rec LR header - note: padding will subsume the ophdr */
3406        unit_bytes += log->l_iclog_hsize;
3407
3408        /* for roundoff padding for transaction data and one for commit record */
3409        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3410                /* log su roundoff */
3411                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3412        } else {
3413                /* BB roundoff */
3414                unit_bytes += 2 * BBSIZE;
3415        }
3416
3417        return unit_bytes;
3418}
3419
3420/*
3421 * Allocate and initialise a new log ticket.
3422 */
3423struct xlog_ticket *
3424xlog_ticket_alloc(
3425        struct xlog             *log,
3426        int                     unit_bytes,
3427        int                     cnt,
3428        char                    client,
3429        bool                    permanent)
3430{
3431        struct xlog_ticket      *tic;
3432        int                     unit_res;
3433
3434        tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3435
3436        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3437
3438        atomic_set(&tic->t_ref, 1);
3439        tic->t_task             = current;
3440        INIT_LIST_HEAD(&tic->t_queue);
3441        tic->t_unit_res         = unit_res;
3442        tic->t_curr_res         = unit_res;
3443        tic->t_cnt              = cnt;
3444        tic->t_ocnt             = cnt;
3445        tic->t_tid              = prandom_u32();
3446        tic->t_clientid         = client;
3447        if (permanent)
3448                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3449
3450        xlog_tic_reset_res(tic);
3451
3452        return tic;
3453}
3454
3455#if defined(DEBUG)
3456/*
3457 * Make sure that the destination ptr is within the valid data region of
3458 * one of the iclogs.  This uses backup pointers stored in a different
3459 * part of the log in case we trash the log structure.
3460 */
3461STATIC void
3462xlog_verify_dest_ptr(
3463        struct xlog     *log,
3464        void            *ptr)
3465{
3466        int i;
3467        int good_ptr = 0;
3468
3469        for (i = 0; i < log->l_iclog_bufs; i++) {
3470                if (ptr >= log->l_iclog_bak[i] &&
3471                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3472                        good_ptr++;
3473        }
3474
3475        if (!good_ptr)
3476                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3477}
3478
3479/*
3480 * Check to make sure the grant write head didn't just over lap the tail.  If
3481 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3482 * the cycles differ by exactly one and check the byte count.
3483 *
3484 * This check is run unlocked, so can give false positives. Rather than assert
3485 * on failures, use a warn-once flag and a panic tag to allow the admin to
3486 * determine if they want to panic the machine when such an error occurs. For
3487 * debug kernels this will have the same effect as using an assert but, unlinke
3488 * an assert, it can be turned off at runtime.
3489 */
3490STATIC void
3491xlog_verify_grant_tail(
3492        struct xlog     *log)
3493{
3494        int             tail_cycle, tail_blocks;
3495        int             cycle, space;
3496
3497        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3498        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3499        if (tail_cycle != cycle) {
3500                if (cycle - 1 != tail_cycle &&
3501                    !(log->l_flags & XLOG_TAIL_WARN)) {
3502                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3503                                "%s: cycle - 1 != tail_cycle", __func__);
3504                        log->l_flags |= XLOG_TAIL_WARN;
3505                }
3506
3507                if (space > BBTOB(tail_blocks) &&
3508                    !(log->l_flags & XLOG_TAIL_WARN)) {
3509                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3510                                "%s: space > BBTOB(tail_blocks)", __func__);
3511                        log->l_flags |= XLOG_TAIL_WARN;
3512                }
3513        }
3514}
3515
3516/* check if it will fit */
3517STATIC void
3518xlog_verify_tail_lsn(
3519        struct xlog             *log,
3520        struct xlog_in_core     *iclog,
3521        xfs_lsn_t               tail_lsn)
3522{
3523    int blocks;
3524
3525    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3526        blocks =
3527            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3528        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3529                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3530    } else {
3531        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3532
3533        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3534                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3535
3536        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3537        if (blocks < BTOBB(iclog->ic_offset) + 1)
3538                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3539    }
3540}
3541
3542/*
3543 * Perform a number of checks on the iclog before writing to disk.
3544 *
3545 * 1. Make sure the iclogs are still circular
3546 * 2. Make sure we have a good magic number
3547 * 3. Make sure we don't have magic numbers in the data
3548 * 4. Check fields of each log operation header for:
3549 *      A. Valid client identifier
3550 *      B. tid ptr value falls in valid ptr space (user space code)
3551 *      C. Length in log record header is correct according to the
3552 *              individual operation headers within record.
3553 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3554 *      log, check the preceding blocks of the physical log to make sure all
3555 *      the cycle numbers agree with the current cycle number.
3556 */
3557STATIC void
3558xlog_verify_iclog(
3559        struct xlog             *log,
3560        struct xlog_in_core     *iclog,
3561        int                     count)
3562{
3563        xlog_op_header_t        *ophead;
3564        xlog_in_core_t          *icptr;
3565        xlog_in_core_2_t        *xhdr;
3566        void                    *base_ptr, *ptr, *p;
3567        ptrdiff_t               field_offset;
3568        uint8_t                 clientid;
3569        int                     len, i, j, k, op_len;
3570        int                     idx;
3571
3572        /* check validity of iclog pointers */
3573        spin_lock(&log->l_icloglock);
3574        icptr = log->l_iclog;
3575        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3576                ASSERT(icptr);
3577
3578        if (icptr != log->l_iclog)
3579                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3580        spin_unlock(&log->l_icloglock);
3581
3582        /* check log magic numbers */
3583        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3584                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3585
3586        base_ptr = ptr = &iclog->ic_header;
3587        p = &iclog->ic_header;
3588        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3589                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3590                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3591                                __func__);
3592        }
3593
3594        /* check fields */
3595        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3596        base_ptr = ptr = iclog->ic_datap;
3597        ophead = ptr;
3598        xhdr = iclog->ic_data;
3599        for (i = 0; i < len; i++) {
3600                ophead = ptr;
3601
3602                /* clientid is only 1 byte */
3603                p = &ophead->oh_clientid;
3604                field_offset = p - base_ptr;
3605                if (field_offset & 0x1ff) {
3606                        clientid = ophead->oh_clientid;
3607                } else {
3608                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3609                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3610                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3611                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3612                                clientid = xlog_get_client_id(
3613                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3614                        } else {
3615                                clientid = xlog_get_client_id(
3616                                        iclog->ic_header.h_cycle_data[idx]);
3617                        }
3618                }
3619                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3620                        xfs_warn(log->l_mp,
3621                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3622                                __func__, clientid, ophead,
3623                                (unsigned long)field_offset);
3624
3625                /* check length */
3626                p = &ophead->oh_len;
3627                field_offset = p - base_ptr;
3628                if (field_offset & 0x1ff) {
3629                        op_len = be32_to_cpu(ophead->oh_len);
3630                } else {
3631                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3632                                    (uintptr_t)iclog->ic_datap);
3633                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3634                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3635                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3636                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3637                        } else {
3638                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3639                        }
3640                }
3641                ptr += sizeof(xlog_op_header_t) + op_len;
3642        }
3643}
3644#endif
3645
3646/*
3647 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3648 */
3649STATIC int
3650xlog_state_ioerror(
3651        struct xlog     *log)
3652{
3653        xlog_in_core_t  *iclog, *ic;
3654
3655        iclog = log->l_iclog;
3656        if (iclog->ic_state != XLOG_STATE_IOERROR) {
3657                /*
3658                 * Mark all the incore logs IOERROR.
3659                 * From now on, no log flushes will result.
3660                 */
3661                ic = iclog;
3662                do {
3663                        ic->ic_state = XLOG_STATE_IOERROR;
3664                        ic = ic->ic_next;
3665                } while (ic != iclog);
3666                return 0;
3667        }
3668        /*
3669         * Return non-zero, if state transition has already happened.
3670         */
3671        return 1;
3672}
3673
3674/*
3675 * This is called from xfs_force_shutdown, when we're forcibly
3676 * shutting down the filesystem, typically because of an IO error.
3677 * Our main objectives here are to make sure that:
3678 *      a. if !logerror, flush the logs to disk. Anything modified
3679 *         after this is ignored.
3680 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3681 *         parties to find out, 'atomically'.
3682 *      c. those who're sleeping on log reservations, pinned objects and
3683 *          other resources get woken up, and be told the bad news.
3684 *      d. nothing new gets queued up after (b) and (c) are done.
3685 *
3686 * Note: for the !logerror case we need to flush the regions held in memory out
3687 * to disk first. This needs to be done before the log is marked as shutdown,
3688 * otherwise the iclog writes will fail.
3689 */
3690int
3691xfs_log_force_umount(
3692        struct xfs_mount        *mp,
3693        int                     logerror)
3694{
3695        struct xlog     *log;
3696        int             retval;
3697
3698        log = mp->m_log;
3699
3700        /*
3701         * If this happens during log recovery, don't worry about
3702         * locking; the log isn't open for business yet.
3703         */
3704        if (!log ||
3705            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3706                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3707                if (mp->m_sb_bp)
3708                        mp->m_sb_bp->b_flags |= XBF_DONE;
3709                return 0;
3710        }
3711
3712        /*
3713         * Somebody could've already done the hard work for us.
3714         * No need to get locks for this.
3715         */
3716        if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3717                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3718                return 1;
3719        }
3720
3721        /*
3722         * Flush all the completed transactions to disk before marking the log
3723         * being shut down. We need to do it in this order to ensure that
3724         * completed operations are safely on disk before we shut down, and that
3725         * we don't have to issue any buffer IO after the shutdown flags are set
3726         * to guarantee this.
3727         */
3728        if (!logerror)
3729                xfs_log_force(mp, XFS_LOG_SYNC);
3730
3731        /*
3732         * mark the filesystem and the as in a shutdown state and wake
3733         * everybody up to tell them the bad news.
3734         */
3735        spin_lock(&log->l_icloglock);
3736        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3737        if (mp->m_sb_bp)
3738                mp->m_sb_bp->b_flags |= XBF_DONE;
3739
3740        /*
3741         * Mark the log and the iclogs with IO error flags to prevent any
3742         * further log IO from being issued or completed.
3743         */
3744        log->l_flags |= XLOG_IO_ERROR;
3745        retval = xlog_state_ioerror(log);
3746        spin_unlock(&log->l_icloglock);
3747
3748        /*
3749         * We don't want anybody waiting for log reservations after this. That
3750         * means we have to wake up everybody queued up on reserveq as well as
3751         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3752         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3753         * action is protected by the grant locks.
3754         */
3755        xlog_grant_head_wake_all(&log->l_reserve_head);
3756        xlog_grant_head_wake_all(&log->l_write_head);
3757
3758        /*
3759         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3760         * as if the log writes were completed. The abort handling in the log
3761         * item committed callback functions will do this again under lock to
3762         * avoid races.
3763         */
3764        spin_lock(&log->l_cilp->xc_push_lock);
3765        wake_up_all(&log->l_cilp->xc_commit_wait);
3766        spin_unlock(&log->l_cilp->xc_push_lock);
3767        xlog_state_do_callback(log);
3768
3769        /* return non-zero if log IOERROR transition had already happened */
3770        return retval;
3771}
3772
3773STATIC int
3774xlog_iclogs_empty(
3775        struct xlog     *log)
3776{
3777        xlog_in_core_t  *iclog;
3778
3779        iclog = log->l_iclog;
3780        do {
3781                /* endianness does not matter here, zero is zero in
3782                 * any language.
3783                 */
3784                if (iclog->ic_header.h_num_logops)
3785                        return 0;
3786                iclog = iclog->ic_next;
3787        } while (iclog != log->l_iclog);
3788        return 1;
3789}
3790
3791/*
3792 * Verify that an LSN stamped into a piece of metadata is valid. This is
3793 * intended for use in read verifiers on v5 superblocks.
3794 */
3795bool
3796xfs_log_check_lsn(
3797        struct xfs_mount        *mp,
3798        xfs_lsn_t               lsn)
3799{
3800        struct xlog             *log = mp->m_log;
3801        bool                    valid;
3802
3803        /*
3804         * norecovery mode skips mount-time log processing and unconditionally
3805         * resets the in-core LSN. We can't validate in this mode, but
3806         * modifications are not allowed anyways so just return true.
3807         */
3808        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3809                return true;
3810
3811        /*
3812         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3813         * handled by recovery and thus safe to ignore here.
3814         */
3815        if (lsn == NULLCOMMITLSN)
3816                return true;
3817
3818        valid = xlog_valid_lsn(mp->m_log, lsn);
3819
3820        /* warn the user about what's gone wrong before verifier failure */
3821        if (!valid) {
3822                spin_lock(&log->l_icloglock);
3823                xfs_warn(mp,
3824"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3825"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3826                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3827                         log->l_curr_cycle, log->l_curr_block);
3828                spin_unlock(&log->l_icloglock);
3829        }
3830
3831        return valid;
3832}
3833
3834bool
3835xfs_log_in_recovery(
3836        struct xfs_mount        *mp)
3837{
3838        struct xlog             *log = mp->m_log;
3839
3840        return log->l_flags & XLOG_ACTIVE_RECOVERY;
3841}
3842