linux/include/linux/hyperv.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *
   4 * Copyright (c) 2011, Microsoft Corporation.
   5 *
   6 * Authors:
   7 *   Haiyang Zhang <haiyangz@microsoft.com>
   8 *   Hank Janssen  <hjanssen@microsoft.com>
   9 *   K. Y. Srinivasan <kys@microsoft.com>
  10 */
  11
  12#ifndef _HYPERV_H
  13#define _HYPERV_H
  14
  15#include <uapi/linux/hyperv.h>
  16
  17#include <linux/mm.h>
  18#include <linux/types.h>
  19#include <linux/scatterlist.h>
  20#include <linux/list.h>
  21#include <linux/timer.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/mod_devicetable.h>
  25#include <linux/interrupt.h>
  26#include <linux/reciprocal_div.h>
  27#include <asm/hyperv-tlfs.h>
  28
  29#define MAX_PAGE_BUFFER_COUNT                           32
  30#define MAX_MULTIPAGE_BUFFER_COUNT                      32 /* 128K */
  31
  32#pragma pack(push, 1)
  33
  34/*
  35 * Types for GPADL, decides is how GPADL header is created.
  36 *
  37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
  38 * same as HV_HYP_PAGE_SIZE.
  39 *
  40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
  41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
  42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
  43 * HV_HYP_PAGE will be different between different types of GPADL, for example
  44 * if PAGE_SIZE is 64K:
  45 *
  46 * BUFFER:
  47 *
  48 * gva:    |--       64k      --|--       64k      --| ... |
  49 * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
  50 * index:  0    1    2     15   16   17   18 .. 31   32 ...
  51 *         |    |    ...   |    |    |   ...    |   ...
  52 *         v    V          V    V    V          V
  53 * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
  54 * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
  55 *
  56 * RING:
  57 *
  58 *         | header  |           data           | header  |     data      |
  59 * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
  60 * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
  61 * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
  62 *         |         /    /          /          |         /               /
  63 *         |        /    /          /           |        /               /
  64 *         |       /    /   ...    /    ...     |       /      ...      /
  65 *         |      /    /          /             |      /               /
  66 *         |     /    /          /              |     /               /
  67 *         V    V    V          V               V    V               v
  68 * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
  69 * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
  70 */
  71enum hv_gpadl_type {
  72        HV_GPADL_BUFFER,
  73        HV_GPADL_RING
  74};
  75
  76/* Single-page buffer */
  77struct hv_page_buffer {
  78        u32 len;
  79        u32 offset;
  80        u64 pfn;
  81};
  82
  83/* Multiple-page buffer */
  84struct hv_multipage_buffer {
  85        /* Length and Offset determines the # of pfns in the array */
  86        u32 len;
  87        u32 offset;
  88        u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
  89};
  90
  91/*
  92 * Multiple-page buffer array; the pfn array is variable size:
  93 * The number of entries in the PFN array is determined by
  94 * "len" and "offset".
  95 */
  96struct hv_mpb_array {
  97        /* Length and Offset determines the # of pfns in the array */
  98        u32 len;
  99        u32 offset;
 100        u64 pfn_array[];
 101};
 102
 103/* 0x18 includes the proprietary packet header */
 104#define MAX_PAGE_BUFFER_PACKET          (0x18 +                 \
 105                                        (sizeof(struct hv_page_buffer) * \
 106                                         MAX_PAGE_BUFFER_COUNT))
 107#define MAX_MULTIPAGE_BUFFER_PACKET     (0x18 +                 \
 108                                         sizeof(struct hv_multipage_buffer))
 109
 110
 111#pragma pack(pop)
 112
 113struct hv_ring_buffer {
 114        /* Offset in bytes from the start of ring data below */
 115        u32 write_index;
 116
 117        /* Offset in bytes from the start of ring data below */
 118        u32 read_index;
 119
 120        u32 interrupt_mask;
 121
 122        /*
 123         * WS2012/Win8 and later versions of Hyper-V implement interrupt
 124         * driven flow management. The feature bit feat_pending_send_sz
 125         * is set by the host on the host->guest ring buffer, and by the
 126         * guest on the guest->host ring buffer.
 127         *
 128         * The meaning of the feature bit is a bit complex in that it has
 129         * semantics that apply to both ring buffers.  If the guest sets
 130         * the feature bit in the guest->host ring buffer, the guest is
 131         * telling the host that:
 132         * 1) It will set the pending_send_sz field in the guest->host ring
 133         *    buffer when it is waiting for space to become available, and
 134         * 2) It will read the pending_send_sz field in the host->guest
 135         *    ring buffer and interrupt the host when it frees enough space
 136         *
 137         * Similarly, if the host sets the feature bit in the host->guest
 138         * ring buffer, the host is telling the guest that:
 139         * 1) It will set the pending_send_sz field in the host->guest ring
 140         *    buffer when it is waiting for space to become available, and
 141         * 2) It will read the pending_send_sz field in the guest->host
 142         *    ring buffer and interrupt the guest when it frees enough space
 143         *
 144         * If either the guest or host does not set the feature bit that it
 145         * owns, that guest or host must do polling if it encounters a full
 146         * ring buffer, and not signal the other end with an interrupt.
 147         */
 148        u32 pending_send_sz;
 149        u32 reserved1[12];
 150        union {
 151                struct {
 152                        u32 feat_pending_send_sz:1;
 153                };
 154                u32 value;
 155        } feature_bits;
 156
 157        /* Pad it to PAGE_SIZE so that data starts on page boundary */
 158        u8      reserved2[PAGE_SIZE - 68];
 159
 160        /*
 161         * Ring data starts here + RingDataStartOffset
 162         * !!! DO NOT place any fields below this !!!
 163         */
 164        u8 buffer[];
 165} __packed;
 166
 167/* Calculate the proper size of a ringbuffer, it must be page-aligned */
 168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
 169                                               (payload_sz))
 170
 171struct hv_ring_buffer_info {
 172        struct hv_ring_buffer *ring_buffer;
 173        u32 ring_size;                  /* Include the shared header */
 174        struct reciprocal_value ring_size_div10_reciprocal;
 175        spinlock_t ring_lock;
 176
 177        u32 ring_datasize;              /* < ring_size */
 178        u32 priv_read_index;
 179        /*
 180         * The ring buffer mutex lock. This lock prevents the ring buffer from
 181         * being freed while the ring buffer is being accessed.
 182         */
 183        struct mutex ring_buffer_mutex;
 184};
 185
 186
 187static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
 188{
 189        u32 read_loc, write_loc, dsize, read;
 190
 191        dsize = rbi->ring_datasize;
 192        read_loc = rbi->ring_buffer->read_index;
 193        write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 194
 195        read = write_loc >= read_loc ? (write_loc - read_loc) :
 196                (dsize - read_loc) + write_loc;
 197
 198        return read;
 199}
 200
 201static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
 202{
 203        u32 read_loc, write_loc, dsize, write;
 204
 205        dsize = rbi->ring_datasize;
 206        read_loc = READ_ONCE(rbi->ring_buffer->read_index);
 207        write_loc = rbi->ring_buffer->write_index;
 208
 209        write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
 210                read_loc - write_loc;
 211        return write;
 212}
 213
 214static inline u32 hv_get_avail_to_write_percent(
 215                const struct hv_ring_buffer_info *rbi)
 216{
 217        u32 avail_write = hv_get_bytes_to_write(rbi);
 218
 219        return reciprocal_divide(
 220                        (avail_write  << 3) + (avail_write << 1),
 221                        rbi->ring_size_div10_reciprocal);
 222}
 223
 224/*
 225 * VMBUS version is 32 bit entity broken up into
 226 * two 16 bit quantities: major_number. minor_number.
 227 *
 228 * 0 . 13 (Windows Server 2008)
 229 * 1 . 1  (Windows 7)
 230 * 2 . 4  (Windows 8)
 231 * 3 . 0  (Windows 8 R2)
 232 * 4 . 0  (Windows 10)
 233 * 4 . 1  (Windows 10 RS3)
 234 * 5 . 0  (Newer Windows 10)
 235 * 5 . 1  (Windows 10 RS4)
 236 * 5 . 2  (Windows Server 2019, RS5)
 237 */
 238
 239#define VERSION_WS2008  ((0 << 16) | (13))
 240#define VERSION_WIN7    ((1 << 16) | (1))
 241#define VERSION_WIN8    ((2 << 16) | (4))
 242#define VERSION_WIN8_1    ((3 << 16) | (0))
 243#define VERSION_WIN10 ((4 << 16) | (0))
 244#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
 245#define VERSION_WIN10_V5 ((5 << 16) | (0))
 246#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
 247#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
 248
 249/* Make maximum size of pipe payload of 16K */
 250#define MAX_PIPE_DATA_PAYLOAD           (sizeof(u8) * 16384)
 251
 252/* Define PipeMode values. */
 253#define VMBUS_PIPE_TYPE_BYTE            0x00000000
 254#define VMBUS_PIPE_TYPE_MESSAGE         0x00000004
 255
 256/* The size of the user defined data buffer for non-pipe offers. */
 257#define MAX_USER_DEFINED_BYTES          120
 258
 259/* The size of the user defined data buffer for pipe offers. */
 260#define MAX_PIPE_USER_DEFINED_BYTES     116
 261
 262/*
 263 * At the center of the Channel Management library is the Channel Offer. This
 264 * struct contains the fundamental information about an offer.
 265 */
 266struct vmbus_channel_offer {
 267        guid_t if_type;
 268        guid_t if_instance;
 269
 270        /*
 271         * These two fields are not currently used.
 272         */
 273        u64 reserved1;
 274        u64 reserved2;
 275
 276        u16 chn_flags;
 277        u16 mmio_megabytes;             /* in bytes * 1024 * 1024 */
 278
 279        union {
 280                /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
 281                struct {
 282                        unsigned char user_def[MAX_USER_DEFINED_BYTES];
 283                } std;
 284
 285                /*
 286                 * Pipes:
 287                 * The following sructure is an integrated pipe protocol, which
 288                 * is implemented on top of standard user-defined data. Pipe
 289                 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
 290                 * use.
 291                 */
 292                struct {
 293                        u32  pipe_mode;
 294                        unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
 295                } pipe;
 296        } u;
 297        /*
 298         * The sub_channel_index is defined in Win8: a value of zero means a
 299         * primary channel and a value of non-zero means a sub-channel.
 300         *
 301         * Before Win8, the field is reserved, meaning it's always zero.
 302         */
 303        u16 sub_channel_index;
 304        u16 reserved3;
 305} __packed;
 306
 307/* Server Flags */
 308#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE        1
 309#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES    2
 310#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS            4
 311#define VMBUS_CHANNEL_NAMED_PIPE_MODE                   0x10
 312#define VMBUS_CHANNEL_LOOPBACK_OFFER                    0x100
 313#define VMBUS_CHANNEL_PARENT_OFFER                      0x200
 314#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION    0x400
 315#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER              0x2000
 316
 317struct vmpacket_descriptor {
 318        u16 type;
 319        u16 offset8;
 320        u16 len8;
 321        u16 flags;
 322        u64 trans_id;
 323} __packed;
 324
 325struct vmpacket_header {
 326        u32 prev_pkt_start_offset;
 327        struct vmpacket_descriptor descriptor;
 328} __packed;
 329
 330struct vmtransfer_page_range {
 331        u32 byte_count;
 332        u32 byte_offset;
 333} __packed;
 334
 335struct vmtransfer_page_packet_header {
 336        struct vmpacket_descriptor d;
 337        u16 xfer_pageset_id;
 338        u8  sender_owns_set;
 339        u8 reserved;
 340        u32 range_cnt;
 341        struct vmtransfer_page_range ranges[1];
 342} __packed;
 343
 344struct vmgpadl_packet_header {
 345        struct vmpacket_descriptor d;
 346        u32 gpadl;
 347        u32 reserved;
 348} __packed;
 349
 350struct vmadd_remove_transfer_page_set {
 351        struct vmpacket_descriptor d;
 352        u32 gpadl;
 353        u16 xfer_pageset_id;
 354        u16 reserved;
 355} __packed;
 356
 357/*
 358 * This structure defines a range in guest physical space that can be made to
 359 * look virtually contiguous.
 360 */
 361struct gpa_range {
 362        u32 byte_count;
 363        u32 byte_offset;
 364        u64 pfn_array[];
 365};
 366
 367/*
 368 * This is the format for an Establish Gpadl packet, which contains a handle by
 369 * which this GPADL will be known and a set of GPA ranges associated with it.
 370 * This can be converted to a MDL by the guest OS.  If there are multiple GPA
 371 * ranges, then the resulting MDL will be "chained," representing multiple VA
 372 * ranges.
 373 */
 374struct vmestablish_gpadl {
 375        struct vmpacket_descriptor d;
 376        u32 gpadl;
 377        u32 range_cnt;
 378        struct gpa_range range[1];
 379} __packed;
 380
 381/*
 382 * This is the format for a Teardown Gpadl packet, which indicates that the
 383 * GPADL handle in the Establish Gpadl packet will never be referenced again.
 384 */
 385struct vmteardown_gpadl {
 386        struct vmpacket_descriptor d;
 387        u32 gpadl;
 388        u32 reserved;   /* for alignment to a 8-byte boundary */
 389} __packed;
 390
 391/*
 392 * This is the format for a GPA-Direct packet, which contains a set of GPA
 393 * ranges, in addition to commands and/or data.
 394 */
 395struct vmdata_gpa_direct {
 396        struct vmpacket_descriptor d;
 397        u32 reserved;
 398        u32 range_cnt;
 399        struct gpa_range range[1];
 400} __packed;
 401
 402/* This is the format for a Additional Data Packet. */
 403struct vmadditional_data {
 404        struct vmpacket_descriptor d;
 405        u64 total_bytes;
 406        u32 offset;
 407        u32 byte_cnt;
 408        unsigned char data[1];
 409} __packed;
 410
 411union vmpacket_largest_possible_header {
 412        struct vmpacket_descriptor simple_hdr;
 413        struct vmtransfer_page_packet_header xfer_page_hdr;
 414        struct vmgpadl_packet_header gpadl_hdr;
 415        struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
 416        struct vmestablish_gpadl establish_gpadl_hdr;
 417        struct vmteardown_gpadl teardown_gpadl_hdr;
 418        struct vmdata_gpa_direct data_gpa_direct_hdr;
 419};
 420
 421#define VMPACKET_DATA_START_ADDRESS(__packet)   \
 422        (void *)(((unsigned char *)__packet) +  \
 423         ((struct vmpacket_descriptor)__packet)->offset8 * 8)
 424
 425#define VMPACKET_DATA_LENGTH(__packet)          \
 426        ((((struct vmpacket_descriptor)__packet)->len8 -        \
 427          ((struct vmpacket_descriptor)__packet)->offset8) * 8)
 428
 429#define VMPACKET_TRANSFER_MODE(__packet)        \
 430        (((struct IMPACT)__packet)->type)
 431
 432enum vmbus_packet_type {
 433        VM_PKT_INVALID                          = 0x0,
 434        VM_PKT_SYNCH                            = 0x1,
 435        VM_PKT_ADD_XFER_PAGESET                 = 0x2,
 436        VM_PKT_RM_XFER_PAGESET                  = 0x3,
 437        VM_PKT_ESTABLISH_GPADL                  = 0x4,
 438        VM_PKT_TEARDOWN_GPADL                   = 0x5,
 439        VM_PKT_DATA_INBAND                      = 0x6,
 440        VM_PKT_DATA_USING_XFER_PAGES            = 0x7,
 441        VM_PKT_DATA_USING_GPADL                 = 0x8,
 442        VM_PKT_DATA_USING_GPA_DIRECT            = 0x9,
 443        VM_PKT_CANCEL_REQUEST                   = 0xa,
 444        VM_PKT_COMP                             = 0xb,
 445        VM_PKT_DATA_USING_ADDITIONAL_PKT        = 0xc,
 446        VM_PKT_ADDITIONAL_DATA                  = 0xd
 447};
 448
 449#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED     1
 450
 451
 452/* Version 1 messages */
 453enum vmbus_channel_message_type {
 454        CHANNELMSG_INVALID                      =  0,
 455        CHANNELMSG_OFFERCHANNEL         =  1,
 456        CHANNELMSG_RESCIND_CHANNELOFFER =  2,
 457        CHANNELMSG_REQUESTOFFERS                =  3,
 458        CHANNELMSG_ALLOFFERS_DELIVERED  =  4,
 459        CHANNELMSG_OPENCHANNEL          =  5,
 460        CHANNELMSG_OPENCHANNEL_RESULT           =  6,
 461        CHANNELMSG_CLOSECHANNEL         =  7,
 462        CHANNELMSG_GPADL_HEADER         =  8,
 463        CHANNELMSG_GPADL_BODY                   =  9,
 464        CHANNELMSG_GPADL_CREATED                = 10,
 465        CHANNELMSG_GPADL_TEARDOWN               = 11,
 466        CHANNELMSG_GPADL_TORNDOWN               = 12,
 467        CHANNELMSG_RELID_RELEASED               = 13,
 468        CHANNELMSG_INITIATE_CONTACT             = 14,
 469        CHANNELMSG_VERSION_RESPONSE             = 15,
 470        CHANNELMSG_UNLOAD                       = 16,
 471        CHANNELMSG_UNLOAD_RESPONSE              = 17,
 472        CHANNELMSG_18                           = 18,
 473        CHANNELMSG_19                           = 19,
 474        CHANNELMSG_20                           = 20,
 475        CHANNELMSG_TL_CONNECT_REQUEST           = 21,
 476        CHANNELMSG_MODIFYCHANNEL                = 22,
 477        CHANNELMSG_TL_CONNECT_RESULT            = 23,
 478        CHANNELMSG_COUNT
 479};
 480
 481/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
 482#define INVALID_RELID   U32_MAX
 483
 484struct vmbus_channel_message_header {
 485        enum vmbus_channel_message_type msgtype;
 486        u32 padding;
 487} __packed;
 488
 489/* Query VMBus Version parameters */
 490struct vmbus_channel_query_vmbus_version {
 491        struct vmbus_channel_message_header header;
 492        u32 version;
 493} __packed;
 494
 495/* VMBus Version Supported parameters */
 496struct vmbus_channel_version_supported {
 497        struct vmbus_channel_message_header header;
 498        u8 version_supported;
 499} __packed;
 500
 501/* Offer Channel parameters */
 502struct vmbus_channel_offer_channel {
 503        struct vmbus_channel_message_header header;
 504        struct vmbus_channel_offer offer;
 505        u32 child_relid;
 506        u8 monitorid;
 507        /*
 508         * win7 and beyond splits this field into a bit field.
 509         */
 510        u8 monitor_allocated:1;
 511        u8 reserved:7;
 512        /*
 513         * These are new fields added in win7 and later.
 514         * Do not access these fields without checking the
 515         * negotiated protocol.
 516         *
 517         * If "is_dedicated_interrupt" is set, we must not set the
 518         * associated bit in the channel bitmap while sending the
 519         * interrupt to the host.
 520         *
 521         * connection_id is to be used in signaling the host.
 522         */
 523        u16 is_dedicated_interrupt:1;
 524        u16 reserved1:15;
 525        u32 connection_id;
 526} __packed;
 527
 528/* Rescind Offer parameters */
 529struct vmbus_channel_rescind_offer {
 530        struct vmbus_channel_message_header header;
 531        u32 child_relid;
 532} __packed;
 533
 534static inline u32
 535hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
 536{
 537        return rbi->ring_buffer->pending_send_sz;
 538}
 539
 540/*
 541 * Request Offer -- no parameters, SynIC message contains the partition ID
 542 * Set Snoop -- no parameters, SynIC message contains the partition ID
 543 * Clear Snoop -- no parameters, SynIC message contains the partition ID
 544 * All Offers Delivered -- no parameters, SynIC message contains the partition
 545 *                         ID
 546 * Flush Client -- no parameters, SynIC message contains the partition ID
 547 */
 548
 549/* Open Channel parameters */
 550struct vmbus_channel_open_channel {
 551        struct vmbus_channel_message_header header;
 552
 553        /* Identifies the specific VMBus channel that is being opened. */
 554        u32 child_relid;
 555
 556        /* ID making a particular open request at a channel offer unique. */
 557        u32 openid;
 558
 559        /* GPADL for the channel's ring buffer. */
 560        u32 ringbuffer_gpadlhandle;
 561
 562        /*
 563         * Starting with win8, this field will be used to specify
 564         * the target virtual processor on which to deliver the interrupt for
 565         * the host to guest communication.
 566         * Prior to win8, incoming channel interrupts would only
 567         * be delivered on cpu 0. Setting this value to 0 would
 568         * preserve the earlier behavior.
 569         */
 570        u32 target_vp;
 571
 572        /*
 573         * The upstream ring buffer begins at offset zero in the memory
 574         * described by RingBufferGpadlHandle. The downstream ring buffer
 575         * follows it at this offset (in pages).
 576         */
 577        u32 downstream_ringbuffer_pageoffset;
 578
 579        /* User-specific data to be passed along to the server endpoint. */
 580        unsigned char userdata[MAX_USER_DEFINED_BYTES];
 581} __packed;
 582
 583/* Open Channel Result parameters */
 584struct vmbus_channel_open_result {
 585        struct vmbus_channel_message_header header;
 586        u32 child_relid;
 587        u32 openid;
 588        u32 status;
 589} __packed;
 590
 591/* Close channel parameters; */
 592struct vmbus_channel_close_channel {
 593        struct vmbus_channel_message_header header;
 594        u32 child_relid;
 595} __packed;
 596
 597/* Channel Message GPADL */
 598#define GPADL_TYPE_RING_BUFFER          1
 599#define GPADL_TYPE_SERVER_SAVE_AREA     2
 600#define GPADL_TYPE_TRANSACTION          8
 601
 602/*
 603 * The number of PFNs in a GPADL message is defined by the number of
 604 * pages that would be spanned by ByteCount and ByteOffset.  If the
 605 * implied number of PFNs won't fit in this packet, there will be a
 606 * follow-up packet that contains more.
 607 */
 608struct vmbus_channel_gpadl_header {
 609        struct vmbus_channel_message_header header;
 610        u32 child_relid;
 611        u32 gpadl;
 612        u16 range_buflen;
 613        u16 rangecount;
 614        struct gpa_range range[];
 615} __packed;
 616
 617/* This is the followup packet that contains more PFNs. */
 618struct vmbus_channel_gpadl_body {
 619        struct vmbus_channel_message_header header;
 620        u32 msgnumber;
 621        u32 gpadl;
 622        u64 pfn[];
 623} __packed;
 624
 625struct vmbus_channel_gpadl_created {
 626        struct vmbus_channel_message_header header;
 627        u32 child_relid;
 628        u32 gpadl;
 629        u32 creation_status;
 630} __packed;
 631
 632struct vmbus_channel_gpadl_teardown {
 633        struct vmbus_channel_message_header header;
 634        u32 child_relid;
 635        u32 gpadl;
 636} __packed;
 637
 638struct vmbus_channel_gpadl_torndown {
 639        struct vmbus_channel_message_header header;
 640        u32 gpadl;
 641} __packed;
 642
 643struct vmbus_channel_relid_released {
 644        struct vmbus_channel_message_header header;
 645        u32 child_relid;
 646} __packed;
 647
 648struct vmbus_channel_initiate_contact {
 649        struct vmbus_channel_message_header header;
 650        u32 vmbus_version_requested;
 651        u32 target_vcpu; /* The VCPU the host should respond to */
 652        union {
 653                u64 interrupt_page;
 654                struct {
 655                        u8      msg_sint;
 656                        u8      padding1[3];
 657                        u32     padding2;
 658                };
 659        };
 660        u64 monitor_page1;
 661        u64 monitor_page2;
 662} __packed;
 663
 664/* Hyper-V socket: guest's connect()-ing to host */
 665struct vmbus_channel_tl_connect_request {
 666        struct vmbus_channel_message_header header;
 667        guid_t guest_endpoint_id;
 668        guid_t host_service_id;
 669} __packed;
 670
 671/* Modify Channel parameters, cf. vmbus_send_modifychannel() */
 672struct vmbus_channel_modifychannel {
 673        struct vmbus_channel_message_header header;
 674        u32 child_relid;
 675        u32 target_vp;
 676} __packed;
 677
 678struct vmbus_channel_version_response {
 679        struct vmbus_channel_message_header header;
 680        u8 version_supported;
 681
 682        u8 connection_state;
 683        u16 padding;
 684
 685        /*
 686         * On new hosts that support VMBus protocol 5.0, we must use
 687         * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
 688         * and for subsequent messages, we must use the Message Connection ID
 689         * field in the host-returned Version Response Message.
 690         *
 691         * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
 692         */
 693        u32 msg_conn_id;
 694} __packed;
 695
 696enum vmbus_channel_state {
 697        CHANNEL_OFFER_STATE,
 698        CHANNEL_OPENING_STATE,
 699        CHANNEL_OPEN_STATE,
 700        CHANNEL_OPENED_STATE,
 701};
 702
 703/*
 704 * Represents each channel msg on the vmbus connection This is a
 705 * variable-size data structure depending on the msg type itself
 706 */
 707struct vmbus_channel_msginfo {
 708        /* Bookkeeping stuff */
 709        struct list_head msglistentry;
 710
 711        /* So far, this is only used to handle gpadl body message */
 712        struct list_head submsglist;
 713
 714        /* Synchronize the request/response if needed */
 715        struct completion  waitevent;
 716        struct vmbus_channel *waiting_channel;
 717        union {
 718                struct vmbus_channel_version_supported version_supported;
 719                struct vmbus_channel_open_result open_result;
 720                struct vmbus_channel_gpadl_torndown gpadl_torndown;
 721                struct vmbus_channel_gpadl_created gpadl_created;
 722                struct vmbus_channel_version_response version_response;
 723        } response;
 724
 725        u32 msgsize;
 726        /*
 727         * The channel message that goes out on the "wire".
 728         * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
 729         */
 730        unsigned char msg[];
 731};
 732
 733struct vmbus_close_msg {
 734        struct vmbus_channel_msginfo info;
 735        struct vmbus_channel_close_channel msg;
 736};
 737
 738/* Define connection identifier type. */
 739union hv_connection_id {
 740        u32 asu32;
 741        struct {
 742                u32 id:24;
 743                u32 reserved:8;
 744        } u;
 745};
 746
 747enum vmbus_device_type {
 748        HV_IDE = 0,
 749        HV_SCSI,
 750        HV_FC,
 751        HV_NIC,
 752        HV_ND,
 753        HV_PCIE,
 754        HV_FB,
 755        HV_KBD,
 756        HV_MOUSE,
 757        HV_KVP,
 758        HV_TS,
 759        HV_HB,
 760        HV_SHUTDOWN,
 761        HV_FCOPY,
 762        HV_BACKUP,
 763        HV_DM,
 764        HV_UNKNOWN,
 765};
 766
 767struct vmbus_device {
 768        u16  dev_type;
 769        guid_t guid;
 770        bool perf_device;
 771};
 772
 773struct vmbus_channel {
 774        struct list_head listentry;
 775
 776        struct hv_device *device_obj;
 777
 778        enum vmbus_channel_state state;
 779
 780        struct vmbus_channel_offer_channel offermsg;
 781        /*
 782         * These are based on the OfferMsg.MonitorId.
 783         * Save it here for easy access.
 784         */
 785        u8 monitor_grp;
 786        u8 monitor_bit;
 787
 788        bool rescind; /* got rescind msg */
 789        struct completion rescind_event;
 790
 791        u32 ringbuffer_gpadlhandle;
 792
 793        /* Allocated memory for ring buffer */
 794        struct page *ringbuffer_page;
 795        u32 ringbuffer_pagecount;
 796        u32 ringbuffer_send_offset;
 797        struct hv_ring_buffer_info outbound;    /* send to parent */
 798        struct hv_ring_buffer_info inbound;     /* receive from parent */
 799
 800        struct vmbus_close_msg close_msg;
 801
 802        /* Statistics */
 803        u64     interrupts;     /* Host to Guest interrupts */
 804        u64     sig_events;     /* Guest to Host events */
 805
 806        /*
 807         * Guest to host interrupts caused by the outbound ring buffer changing
 808         * from empty to not empty.
 809         */
 810        u64 intr_out_empty;
 811
 812        /*
 813         * Indicates that a full outbound ring buffer was encountered. The flag
 814         * is set to true when a full outbound ring buffer is encountered and
 815         * set to false when a write to the outbound ring buffer is completed.
 816         */
 817        bool out_full_flag;
 818
 819        /* Channel callback's invoked in softirq context */
 820        struct tasklet_struct callback_event;
 821        void (*onchannel_callback)(void *context);
 822        void *channel_callback_context;
 823
 824        void (*change_target_cpu_callback)(struct vmbus_channel *channel,
 825                        u32 old, u32 new);
 826
 827        /*
 828         * Synchronize channel scheduling and channel removal; see the inline
 829         * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
 830         */
 831        spinlock_t sched_lock;
 832
 833        /*
 834         * A channel can be marked for one of three modes of reading:
 835         *   BATCHED - callback called from taslket and should read
 836         *            channel until empty. Interrupts from the host
 837         *            are masked while read is in process (default).
 838         *   DIRECT - callback called from tasklet (softirq).
 839         *   ISR - callback called in interrupt context and must
 840         *         invoke its own deferred processing.
 841         *         Host interrupts are disabled and must be re-enabled
 842         *         when ring is empty.
 843         */
 844        enum hv_callback_mode {
 845                HV_CALL_BATCHED,
 846                HV_CALL_DIRECT,
 847                HV_CALL_ISR
 848        } callback_mode;
 849
 850        bool is_dedicated_interrupt;
 851        u64 sig_event;
 852
 853        /*
 854         * Starting with win8, this field will be used to specify the
 855         * target CPU on which to deliver the interrupt for the host
 856         * to guest communication.
 857         *
 858         * Prior to win8, incoming channel interrupts would only be
 859         * delivered on CPU 0. Setting this value to 0 would preserve
 860         * the earlier behavior.
 861         */
 862        u32 target_cpu;
 863        /*
 864         * Support for sub-channels. For high performance devices,
 865         * it will be useful to have multiple sub-channels to support
 866         * a scalable communication infrastructure with the host.
 867         * The support for sub-channels is implemented as an extention
 868         * to the current infrastructure.
 869         * The initial offer is considered the primary channel and this
 870         * offer message will indicate if the host supports sub-channels.
 871         * The guest is free to ask for sub-channels to be offerred and can
 872         * open these sub-channels as a normal "primary" channel. However,
 873         * all sub-channels will have the same type and instance guids as the
 874         * primary channel. Requests sent on a given channel will result in a
 875         * response on the same channel.
 876         */
 877
 878        /*
 879         * Sub-channel creation callback. This callback will be called in
 880         * process context when a sub-channel offer is received from the host.
 881         * The guest can open the sub-channel in the context of this callback.
 882         */
 883        void (*sc_creation_callback)(struct vmbus_channel *new_sc);
 884
 885        /*
 886         * Channel rescind callback. Some channels (the hvsock ones), need to
 887         * register a callback which is invoked in vmbus_onoffer_rescind().
 888         */
 889        void (*chn_rescind_callback)(struct vmbus_channel *channel);
 890
 891        /*
 892         * All Sub-channels of a primary channel are linked here.
 893         */
 894        struct list_head sc_list;
 895        /*
 896         * The primary channel this sub-channel belongs to.
 897         * This will be NULL for the primary channel.
 898         */
 899        struct vmbus_channel *primary_channel;
 900        /*
 901         * Support per-channel state for use by vmbus drivers.
 902         */
 903        void *per_channel_state;
 904
 905        /*
 906         * Defer freeing channel until after all cpu's have
 907         * gone through grace period.
 908         */
 909        struct rcu_head rcu;
 910
 911        /*
 912         * For sysfs per-channel properties.
 913         */
 914        struct kobject                  kobj;
 915
 916        /*
 917         * For performance critical channels (storage, networking
 918         * etc,), Hyper-V has a mechanism to enhance the throughput
 919         * at the expense of latency:
 920         * When the host is to be signaled, we just set a bit in a shared page
 921         * and this bit will be inspected by the hypervisor within a certain
 922         * window and if the bit is set, the host will be signaled. The window
 923         * of time is the monitor latency - currently around 100 usecs. This
 924         * mechanism improves throughput by:
 925         *
 926         * A) Making the host more efficient - each time it wakes up,
 927         *    potentially it will process morev number of packets. The
 928         *    monitor latency allows a batch to build up.
 929         * B) By deferring the hypercall to signal, we will also minimize
 930         *    the interrupts.
 931         *
 932         * Clearly, these optimizations improve throughput at the expense of
 933         * latency. Furthermore, since the channel is shared for both
 934         * control and data messages, control messages currently suffer
 935         * unnecessary latency adversley impacting performance and boot
 936         * time. To fix this issue, permit tagging the channel as being
 937         * in "low latency" mode. In this mode, we will bypass the monitor
 938         * mechanism.
 939         */
 940        bool low_latency;
 941
 942        bool probe_done;
 943
 944        /*
 945         * Cache the device ID here for easy access; this is useful, in
 946         * particular, in situations where the channel's device_obj has
 947         * not been allocated/initialized yet.
 948         */
 949        u16 device_id;
 950
 951        /*
 952         * We must offload the handling of the primary/sub channels
 953         * from the single-threaded vmbus_connection.work_queue to
 954         * two different workqueue, otherwise we can block
 955         * vmbus_connection.work_queue and hang: see vmbus_process_offer().
 956         */
 957        struct work_struct add_channel_work;
 958
 959        /*
 960         * Guest to host interrupts caused by the inbound ring buffer changing
 961         * from full to not full while a packet is waiting.
 962         */
 963        u64 intr_in_full;
 964
 965        /*
 966         * The total number of write operations that encountered a full
 967         * outbound ring buffer.
 968         */
 969        u64 out_full_total;
 970
 971        /*
 972         * The number of write operations that were the first to encounter a
 973         * full outbound ring buffer.
 974         */
 975        u64 out_full_first;
 976
 977        /* enabling/disabling fuzz testing on the channel (default is false)*/
 978        bool fuzz_testing_state;
 979
 980        /*
 981         * Interrupt delay will delay the guest from emptying the ring buffer
 982         * for a specific amount of time. The delay is in microseconds and will
 983         * be between 1 to a maximum of 1000, its default is 0 (no delay).
 984         * The  Message delay will delay guest reading on a per message basis
 985         * in microseconds between 1 to 1000 with the default being 0
 986         * (no delay).
 987         */
 988        u32 fuzz_testing_interrupt_delay;
 989        u32 fuzz_testing_message_delay;
 990
 991};
 992
 993static inline bool is_hvsock_channel(const struct vmbus_channel *c)
 994{
 995        return !!(c->offermsg.offer.chn_flags &
 996                  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
 997}
 998
 999static inline bool is_sub_channel(const struct vmbus_channel *c)
1000{
1001        return c->offermsg.offer.sub_channel_index != 0;
1002}
1003
1004static inline void set_channel_read_mode(struct vmbus_channel *c,
1005                                        enum hv_callback_mode mode)
1006{
1007        c->callback_mode = mode;
1008}
1009
1010static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1011{
1012        c->per_channel_state = s;
1013}
1014
1015static inline void *get_per_channel_state(struct vmbus_channel *c)
1016{
1017        return c->per_channel_state;
1018}
1019
1020static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1021                                                 u32 size)
1022{
1023        unsigned long flags;
1024
1025        if (size) {
1026                spin_lock_irqsave(&c->outbound.ring_lock, flags);
1027                ++c->out_full_total;
1028
1029                if (!c->out_full_flag) {
1030                        ++c->out_full_first;
1031                        c->out_full_flag = true;
1032                }
1033                spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1034        } else {
1035                c->out_full_flag = false;
1036        }
1037
1038        c->outbound.ring_buffer->pending_send_sz = size;
1039}
1040
1041static inline void set_low_latency_mode(struct vmbus_channel *c)
1042{
1043        c->low_latency = true;
1044}
1045
1046static inline void clear_low_latency_mode(struct vmbus_channel *c)
1047{
1048        c->low_latency = false;
1049}
1050
1051void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1052
1053int vmbus_request_offers(void);
1054
1055/*
1056 * APIs for managing sub-channels.
1057 */
1058
1059void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1060                        void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1061
1062void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1063                void (*chn_rescind_cb)(struct vmbus_channel *));
1064
1065/*
1066 * Check if sub-channels have already been offerred. This API will be useful
1067 * when the driver is unloaded after establishing sub-channels. In this case,
1068 * when the driver is re-loaded, the driver would have to check if the
1069 * subchannels have already been established before attempting to request
1070 * the creation of sub-channels.
1071 * This function returns TRUE to indicate that subchannels have already been
1072 * created.
1073 * This function should be invoked after setting the callback function for
1074 * sub-channel creation.
1075 */
1076bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1077
1078/* The format must be the same as struct vmdata_gpa_direct */
1079struct vmbus_channel_packet_page_buffer {
1080        u16 type;
1081        u16 dataoffset8;
1082        u16 length8;
1083        u16 flags;
1084        u64 transactionid;
1085        u32 reserved;
1086        u32 rangecount;
1087        struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1088} __packed;
1089
1090/* The format must be the same as struct vmdata_gpa_direct */
1091struct vmbus_channel_packet_multipage_buffer {
1092        u16 type;
1093        u16 dataoffset8;
1094        u16 length8;
1095        u16 flags;
1096        u64 transactionid;
1097        u32 reserved;
1098        u32 rangecount;         /* Always 1 in this case */
1099        struct hv_multipage_buffer range;
1100} __packed;
1101
1102/* The format must be the same as struct vmdata_gpa_direct */
1103struct vmbus_packet_mpb_array {
1104        u16 type;
1105        u16 dataoffset8;
1106        u16 length8;
1107        u16 flags;
1108        u64 transactionid;
1109        u32 reserved;
1110        u32 rangecount;         /* Always 1 in this case */
1111        struct hv_mpb_array range;
1112} __packed;
1113
1114int vmbus_alloc_ring(struct vmbus_channel *channel,
1115                     u32 send_size, u32 recv_size);
1116void vmbus_free_ring(struct vmbus_channel *channel);
1117
1118int vmbus_connect_ring(struct vmbus_channel *channel,
1119                       void (*onchannel_callback)(void *context),
1120                       void *context);
1121int vmbus_disconnect_ring(struct vmbus_channel *channel);
1122
1123extern int vmbus_open(struct vmbus_channel *channel,
1124                            u32 send_ringbuffersize,
1125                            u32 recv_ringbuffersize,
1126                            void *userdata,
1127                            u32 userdatalen,
1128                            void (*onchannel_callback)(void *context),
1129                            void *context);
1130
1131extern void vmbus_close(struct vmbus_channel *channel);
1132
1133extern int vmbus_sendpacket(struct vmbus_channel *channel,
1134                                  void *buffer,
1135                                  u32 bufferLen,
1136                                  u64 requestid,
1137                                  enum vmbus_packet_type type,
1138                                  u32 flags);
1139
1140extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1141                                            struct hv_page_buffer pagebuffers[],
1142                                            u32 pagecount,
1143                                            void *buffer,
1144                                            u32 bufferlen,
1145                                            u64 requestid);
1146
1147extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1148                                     struct vmbus_packet_mpb_array *mpb,
1149                                     u32 desc_size,
1150                                     void *buffer,
1151                                     u32 bufferlen,
1152                                     u64 requestid);
1153
1154extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1155                                      void *kbuffer,
1156                                      u32 size,
1157                                      u32 *gpadl_handle);
1158
1159extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1160                                     u32 gpadl_handle);
1161
1162void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1163
1164extern int vmbus_recvpacket(struct vmbus_channel *channel,
1165                                  void *buffer,
1166                                  u32 bufferlen,
1167                                  u32 *buffer_actual_len,
1168                                  u64 *requestid);
1169
1170extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1171                                     void *buffer,
1172                                     u32 bufferlen,
1173                                     u32 *buffer_actual_len,
1174                                     u64 *requestid);
1175
1176
1177extern void vmbus_ontimer(unsigned long data);
1178
1179/* Base driver object */
1180struct hv_driver {
1181        const char *name;
1182
1183        /*
1184         * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1185         * channel flag, actually doesn't mean a synthetic device because the
1186         * offer's if_type/if_instance can change for every new hvsock
1187         * connection.
1188         *
1189         * However, to facilitate the notification of new-offer/rescind-offer
1190         * from vmbus driver to hvsock driver, we can handle hvsock offer as
1191         * a special vmbus device, and hence we need the below flag to
1192         * indicate if the driver is the hvsock driver or not: we need to
1193         * specially treat the hvosck offer & driver in vmbus_match().
1194         */
1195        bool hvsock;
1196
1197        /* the device type supported by this driver */
1198        guid_t dev_type;
1199        const struct hv_vmbus_device_id *id_table;
1200
1201        struct device_driver driver;
1202
1203        /* dynamic device GUID's */
1204        struct  {
1205                spinlock_t lock;
1206                struct list_head list;
1207        } dynids;
1208
1209        int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1210        int (*remove)(struct hv_device *);
1211        void (*shutdown)(struct hv_device *);
1212
1213        int (*suspend)(struct hv_device *);
1214        int (*resume)(struct hv_device *);
1215
1216};
1217
1218/* Base device object */
1219struct hv_device {
1220        /* the device type id of this device */
1221        guid_t dev_type;
1222
1223        /* the device instance id of this device */
1224        guid_t dev_instance;
1225        u16 vendor_id;
1226        u16 device_id;
1227
1228        struct device device;
1229        char *driver_override; /* Driver name to force a match */
1230
1231        struct vmbus_channel *channel;
1232        struct kset          *channels_kset;
1233
1234        /* place holder to keep track of the dir for hv device in debugfs */
1235        struct dentry *debug_dir;
1236
1237};
1238
1239
1240static inline struct hv_device *device_to_hv_device(struct device *d)
1241{
1242        return container_of(d, struct hv_device, device);
1243}
1244
1245static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1246{
1247        return container_of(d, struct hv_driver, driver);
1248}
1249
1250static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1251{
1252        dev_set_drvdata(&dev->device, data);
1253}
1254
1255static inline void *hv_get_drvdata(struct hv_device *dev)
1256{
1257        return dev_get_drvdata(&dev->device);
1258}
1259
1260struct hv_ring_buffer_debug_info {
1261        u32 current_interrupt_mask;
1262        u32 current_read_index;
1263        u32 current_write_index;
1264        u32 bytes_avail_toread;
1265        u32 bytes_avail_towrite;
1266};
1267
1268
1269int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1270                                struct hv_ring_buffer_debug_info *debug_info);
1271
1272/* Vmbus interface */
1273#define vmbus_driver_register(driver)   \
1274        __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1275int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1276                                         struct module *owner,
1277                                         const char *mod_name);
1278void vmbus_driver_unregister(struct hv_driver *hv_driver);
1279
1280void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1281
1282int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1283                        resource_size_t min, resource_size_t max,
1284                        resource_size_t size, resource_size_t align,
1285                        bool fb_overlap_ok);
1286void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1287
1288/*
1289 * GUID definitions of various offer types - services offered to the guest.
1290 */
1291
1292/*
1293 * Network GUID
1294 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1295 */
1296#define HV_NIC_GUID \
1297        .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1298                          0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1299
1300/*
1301 * IDE GUID
1302 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1303 */
1304#define HV_IDE_GUID \
1305        .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1306                          0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1307
1308/*
1309 * SCSI GUID
1310 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1311 */
1312#define HV_SCSI_GUID \
1313        .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1314                          0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1315
1316/*
1317 * Shutdown GUID
1318 * {0e0b6031-5213-4934-818b-38d90ced39db}
1319 */
1320#define HV_SHUTDOWN_GUID \
1321        .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1322                          0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1323
1324/*
1325 * Time Synch GUID
1326 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1327 */
1328#define HV_TS_GUID \
1329        .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1330                          0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1331
1332/*
1333 * Heartbeat GUID
1334 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1335 */
1336#define HV_HEART_BEAT_GUID \
1337        .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1338                          0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1339
1340/*
1341 * KVP GUID
1342 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1343 */
1344#define HV_KVP_GUID \
1345        .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1346                          0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1347
1348/*
1349 * Dynamic memory GUID
1350 * {525074dc-8985-46e2-8057-a307dc18a502}
1351 */
1352#define HV_DM_GUID \
1353        .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1354                          0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1355
1356/*
1357 * Mouse GUID
1358 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1359 */
1360#define HV_MOUSE_GUID \
1361        .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1362                          0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1363
1364/*
1365 * Keyboard GUID
1366 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1367 */
1368#define HV_KBD_GUID \
1369        .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1370                          0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1371
1372/*
1373 * VSS (Backup/Restore) GUID
1374 */
1375#define HV_VSS_GUID \
1376        .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1377                          0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1378/*
1379 * Synthetic Video GUID
1380 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1381 */
1382#define HV_SYNTHVID_GUID \
1383        .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1384                          0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1385
1386/*
1387 * Synthetic FC GUID
1388 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1389 */
1390#define HV_SYNTHFC_GUID \
1391        .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1392                          0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1393
1394/*
1395 * Guest File Copy Service
1396 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1397 */
1398
1399#define HV_FCOPY_GUID \
1400        .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1401                          0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1402
1403/*
1404 * NetworkDirect. This is the guest RDMA service.
1405 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1406 */
1407#define HV_ND_GUID \
1408        .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1409                          0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1410
1411/*
1412 * PCI Express Pass Through
1413 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1414 */
1415
1416#define HV_PCIE_GUID \
1417        .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1418                          0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1419
1420/*
1421 * Linux doesn't support the 3 devices: the first two are for
1422 * Automatic Virtual Machine Activation, and the third is for
1423 * Remote Desktop Virtualization.
1424 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1425 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1426 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1427 */
1428
1429#define HV_AVMA1_GUID \
1430        .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1431                          0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1432
1433#define HV_AVMA2_GUID \
1434        .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1435                          0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1436
1437#define HV_RDV_GUID \
1438        .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1439                          0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1440
1441/*
1442 * Common header for Hyper-V ICs
1443 */
1444
1445#define ICMSGTYPE_NEGOTIATE             0
1446#define ICMSGTYPE_HEARTBEAT             1
1447#define ICMSGTYPE_KVPEXCHANGE           2
1448#define ICMSGTYPE_SHUTDOWN              3
1449#define ICMSGTYPE_TIMESYNC              4
1450#define ICMSGTYPE_VSS                   5
1451
1452#define ICMSGHDRFLAG_TRANSACTION        1
1453#define ICMSGHDRFLAG_REQUEST            2
1454#define ICMSGHDRFLAG_RESPONSE           4
1455
1456
1457/*
1458 * While we want to handle util services as regular devices,
1459 * there is only one instance of each of these services; so
1460 * we statically allocate the service specific state.
1461 */
1462
1463struct hv_util_service {
1464        u8 *recv_buffer;
1465        void *channel;
1466        void (*util_cb)(void *);
1467        int (*util_init)(struct hv_util_service *);
1468        void (*util_deinit)(void);
1469        int (*util_pre_suspend)(void);
1470        int (*util_pre_resume)(void);
1471};
1472
1473struct vmbuspipe_hdr {
1474        u32 flags;
1475        u32 msgsize;
1476} __packed;
1477
1478struct ic_version {
1479        u16 major;
1480        u16 minor;
1481} __packed;
1482
1483struct icmsg_hdr {
1484        struct ic_version icverframe;
1485        u16 icmsgtype;
1486        struct ic_version icvermsg;
1487        u16 icmsgsize;
1488        u32 status;
1489        u8 ictransaction_id;
1490        u8 icflags;
1491        u8 reserved[2];
1492} __packed;
1493
1494struct icmsg_negotiate {
1495        u16 icframe_vercnt;
1496        u16 icmsg_vercnt;
1497        u32 reserved;
1498        struct ic_version icversion_data[1]; /* any size array */
1499} __packed;
1500
1501struct shutdown_msg_data {
1502        u32 reason_code;
1503        u32 timeout_seconds;
1504        u32 flags;
1505        u8  display_message[2048];
1506} __packed;
1507
1508struct heartbeat_msg_data {
1509        u64 seq_num;
1510        u32 reserved[8];
1511} __packed;
1512
1513/* Time Sync IC defs */
1514#define ICTIMESYNCFLAG_PROBE    0
1515#define ICTIMESYNCFLAG_SYNC     1
1516#define ICTIMESYNCFLAG_SAMPLE   2
1517
1518#ifdef __x86_64__
1519#define WLTIMEDELTA     116444736000000000L     /* in 100ns unit */
1520#else
1521#define WLTIMEDELTA     116444736000000000LL
1522#endif
1523
1524struct ictimesync_data {
1525        u64 parenttime;
1526        u64 childtime;
1527        u64 roundtriptime;
1528        u8 flags;
1529} __packed;
1530
1531struct ictimesync_ref_data {
1532        u64 parenttime;
1533        u64 vmreferencetime;
1534        u8 flags;
1535        char leapflags;
1536        char stratum;
1537        u8 reserved[3];
1538} __packed;
1539
1540struct hyperv_service_callback {
1541        u8 msg_type;
1542        char *log_msg;
1543        guid_t data;
1544        struct vmbus_channel *channel;
1545        void (*callback)(void *context);
1546};
1547
1548#define MAX_SRV_VER     0x7ffffff
1549extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1550                                const int *fw_version, int fw_vercnt,
1551                                const int *srv_version, int srv_vercnt,
1552                                int *nego_fw_version, int *nego_srv_version);
1553
1554void hv_process_channel_removal(struct vmbus_channel *channel);
1555
1556void vmbus_setevent(struct vmbus_channel *channel);
1557/*
1558 * Negotiated version with the Host.
1559 */
1560
1561extern __u32 vmbus_proto_version;
1562
1563int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1564                                  const guid_t *shv_host_servie_id);
1565int vmbus_send_modifychannel(u32 child_relid, u32 target_vp);
1566void vmbus_set_event(struct vmbus_channel *channel);
1567
1568/* Get the start of the ring buffer. */
1569static inline void *
1570hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1571{
1572        return ring_info->ring_buffer->buffer;
1573}
1574
1575/*
1576 * Mask off host interrupt callback notifications
1577 */
1578static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1579{
1580        rbi->ring_buffer->interrupt_mask = 1;
1581
1582        /* make sure mask update is not reordered */
1583        virt_mb();
1584}
1585
1586/*
1587 * Re-enable host callback and return number of outstanding bytes
1588 */
1589static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1590{
1591
1592        rbi->ring_buffer->interrupt_mask = 0;
1593
1594        /* make sure mask update is not reordered */
1595        virt_mb();
1596
1597        /*
1598         * Now check to see if the ring buffer is still empty.
1599         * If it is not, we raced and we need to process new
1600         * incoming messages.
1601         */
1602        return hv_get_bytes_to_read(rbi);
1603}
1604
1605/*
1606 * An API to support in-place processing of incoming VMBUS packets.
1607 */
1608
1609/* Get data payload associated with descriptor */
1610static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1611{
1612        return (void *)((unsigned long)desc + (desc->offset8 << 3));
1613}
1614
1615/* Get data size associated with descriptor */
1616static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1617{
1618        return (desc->len8 << 3) - (desc->offset8 << 3);
1619}
1620
1621
1622struct vmpacket_descriptor *
1623hv_pkt_iter_first(struct vmbus_channel *channel);
1624
1625struct vmpacket_descriptor *
1626__hv_pkt_iter_next(struct vmbus_channel *channel,
1627                   const struct vmpacket_descriptor *pkt);
1628
1629void hv_pkt_iter_close(struct vmbus_channel *channel);
1630
1631/*
1632 * Get next packet descriptor from iterator
1633 * If at end of list, return NULL and update host.
1634 */
1635static inline struct vmpacket_descriptor *
1636hv_pkt_iter_next(struct vmbus_channel *channel,
1637                 const struct vmpacket_descriptor *pkt)
1638{
1639        struct vmpacket_descriptor *nxt;
1640
1641        nxt = __hv_pkt_iter_next(channel, pkt);
1642        if (!nxt)
1643                hv_pkt_iter_close(channel);
1644
1645        return nxt;
1646}
1647
1648#define foreach_vmbus_pkt(pkt, channel) \
1649        for (pkt = hv_pkt_iter_first(channel); pkt; \
1650            pkt = hv_pkt_iter_next(channel, pkt))
1651
1652/*
1653 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1654 * sends requests to read and write blocks. Each block must be 128 bytes or
1655 * smaller. Optionally, the VF driver can register a callback function which
1656 * will be invoked when the host says that one or more of the first 64 block
1657 * IDs is "invalid" which means that the VF driver should reread them.
1658 */
1659#define HV_CONFIG_BLOCK_SIZE_MAX 128
1660
1661int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1662                        unsigned int block_id, unsigned int *bytes_returned);
1663int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1664                         unsigned int block_id);
1665int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1666                                void (*block_invalidate)(void *context,
1667                                                         u64 block_mask));
1668
1669struct hyperv_pci_block_ops {
1670        int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1671                          unsigned int block_id, unsigned int *bytes_returned);
1672        int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1673                           unsigned int block_id);
1674        int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1675                                  void (*block_invalidate)(void *context,
1676                                                           u64 block_mask));
1677};
1678
1679extern struct hyperv_pci_block_ops hvpci_block_ops;
1680
1681static inline unsigned long virt_to_hvpfn(void *addr)
1682{
1683        phys_addr_t paddr;
1684
1685        if (is_vmalloc_addr(addr))
1686                paddr = page_to_phys(vmalloc_to_page(addr)) +
1687                                     offset_in_page(addr);
1688        else
1689                paddr = __pa(addr);
1690
1691        return  paddr >> HV_HYP_PAGE_SHIFT;
1692}
1693
1694#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1695#define offset_in_hvpage(ptr)   ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1696#define HVPFN_UP(x)     (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1697#define page_to_hvpfn(page)     (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1698
1699#endif /* _HYPERV_H */
1700