linux/include/linux/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_H
   3#define _LINUX_MM_H
   4
   5#include <linux/errno.h>
   6
   7#ifdef __KERNEL__
   8
   9#include <linux/mmdebug.h>
  10#include <linux/gfp.h>
  11#include <linux/bug.h>
  12#include <linux/list.h>
  13#include <linux/mmzone.h>
  14#include <linux/rbtree.h>
  15#include <linux/atomic.h>
  16#include <linux/debug_locks.h>
  17#include <linux/mm_types.h>
  18#include <linux/mmap_lock.h>
  19#include <linux/range.h>
  20#include <linux/pfn.h>
  21#include <linux/percpu-refcount.h>
  22#include <linux/bit_spinlock.h>
  23#include <linux/shrinker.h>
  24#include <linux/resource.h>
  25#include <linux/page_ext.h>
  26#include <linux/err.h>
  27#include <linux/page-flags.h>
  28#include <linux/page_ref.h>
  29#include <linux/memremap.h>
  30#include <linux/overflow.h>
  31#include <linux/sizes.h>
  32#include <linux/sched.h>
  33#include <linux/pgtable.h>
  34
  35struct mempolicy;
  36struct anon_vma;
  37struct anon_vma_chain;
  38struct file_ra_state;
  39struct user_struct;
  40struct writeback_control;
  41struct bdi_writeback;
  42struct pt_regs;
  43
  44extern int sysctl_page_lock_unfairness;
  45
  46void init_mm_internals(void);
  47
  48#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  49extern unsigned long max_mapnr;
  50
  51static inline void set_max_mapnr(unsigned long limit)
  52{
  53        max_mapnr = limit;
  54}
  55#else
  56static inline void set_max_mapnr(unsigned long limit) { }
  57#endif
  58
  59extern atomic_long_t _totalram_pages;
  60static inline unsigned long totalram_pages(void)
  61{
  62        return (unsigned long)atomic_long_read(&_totalram_pages);
  63}
  64
  65static inline void totalram_pages_inc(void)
  66{
  67        atomic_long_inc(&_totalram_pages);
  68}
  69
  70static inline void totalram_pages_dec(void)
  71{
  72        atomic_long_dec(&_totalram_pages);
  73}
  74
  75static inline void totalram_pages_add(long count)
  76{
  77        atomic_long_add(count, &_totalram_pages);
  78}
  79
  80extern void * high_memory;
  81extern int page_cluster;
  82
  83#ifdef CONFIG_SYSCTL
  84extern int sysctl_legacy_va_layout;
  85#else
  86#define sysctl_legacy_va_layout 0
  87#endif
  88
  89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  90extern const int mmap_rnd_bits_min;
  91extern const int mmap_rnd_bits_max;
  92extern int mmap_rnd_bits __read_mostly;
  93#endif
  94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  95extern const int mmap_rnd_compat_bits_min;
  96extern const int mmap_rnd_compat_bits_max;
  97extern int mmap_rnd_compat_bits __read_mostly;
  98#endif
  99
 100#include <asm/page.h>
 101#include <asm/processor.h>
 102
 103/*
 104 * Architectures that support memory tagging (assigning tags to memory regions,
 105 * embedding these tags into addresses that point to these memory regions, and
 106 * checking that the memory and the pointer tags match on memory accesses)
 107 * redefine this macro to strip tags from pointers.
 108 * It's defined as noop for arcitectures that don't support memory tagging.
 109 */
 110#ifndef untagged_addr
 111#define untagged_addr(addr) (addr)
 112#endif
 113
 114#ifndef __pa_symbol
 115#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 116#endif
 117
 118#ifndef page_to_virt
 119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
 120#endif
 121
 122#ifndef lm_alias
 123#define lm_alias(x)     __va(__pa_symbol(x))
 124#endif
 125
 126/*
 127 * To prevent common memory management code establishing
 128 * a zero page mapping on a read fault.
 129 * This macro should be defined within <asm/pgtable.h>.
 130 * s390 does this to prevent multiplexing of hardware bits
 131 * related to the physical page in case of virtualization.
 132 */
 133#ifndef mm_forbids_zeropage
 134#define mm_forbids_zeropage(X)  (0)
 135#endif
 136
 137/*
 138 * On some architectures it is expensive to call memset() for small sizes.
 139 * If an architecture decides to implement their own version of
 140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 141 * define their own version of this macro in <asm/pgtable.h>
 142 */
 143#if BITS_PER_LONG == 64
 144/* This function must be updated when the size of struct page grows above 80
 145 * or reduces below 56. The idea that compiler optimizes out switch()
 146 * statement, and only leaves move/store instructions. Also the compiler can
 147 * combine write statments if they are both assignments and can be reordered,
 148 * this can result in several of the writes here being dropped.
 149 */
 150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 151static inline void __mm_zero_struct_page(struct page *page)
 152{
 153        unsigned long *_pp = (void *)page;
 154
 155         /* Check that struct page is either 56, 64, 72, or 80 bytes */
 156        BUILD_BUG_ON(sizeof(struct page) & 7);
 157        BUILD_BUG_ON(sizeof(struct page) < 56);
 158        BUILD_BUG_ON(sizeof(struct page) > 80);
 159
 160        switch (sizeof(struct page)) {
 161        case 80:
 162                _pp[9] = 0;
 163                fallthrough;
 164        case 72:
 165                _pp[8] = 0;
 166                fallthrough;
 167        case 64:
 168                _pp[7] = 0;
 169                fallthrough;
 170        case 56:
 171                _pp[6] = 0;
 172                _pp[5] = 0;
 173                _pp[4] = 0;
 174                _pp[3] = 0;
 175                _pp[2] = 0;
 176                _pp[1] = 0;
 177                _pp[0] = 0;
 178        }
 179}
 180#else
 181#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 182#endif
 183
 184/*
 185 * Default maximum number of active map areas, this limits the number of vmas
 186 * per mm struct. Users can overwrite this number by sysctl but there is a
 187 * problem.
 188 *
 189 * When a program's coredump is generated as ELF format, a section is created
 190 * per a vma. In ELF, the number of sections is represented in unsigned short.
 191 * This means the number of sections should be smaller than 65535 at coredump.
 192 * Because the kernel adds some informative sections to a image of program at
 193 * generating coredump, we need some margin. The number of extra sections is
 194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 195 *
 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 197 * not a hard limit any more. Although some userspace tools can be surprised by
 198 * that.
 199 */
 200#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 201#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 202
 203extern int sysctl_max_map_count;
 204
 205extern unsigned long sysctl_user_reserve_kbytes;
 206extern unsigned long sysctl_admin_reserve_kbytes;
 207
 208extern int sysctl_overcommit_memory;
 209extern int sysctl_overcommit_ratio;
 210extern unsigned long sysctl_overcommit_kbytes;
 211
 212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
 213                loff_t *);
 214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
 215                loff_t *);
 216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
 217                loff_t *);
 218
 219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 220
 221/* to align the pointer to the (next) page boundary */
 222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 223
 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 225#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 226
 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
 228
 229/*
 230 * Linux kernel virtual memory manager primitives.
 231 * The idea being to have a "virtual" mm in the same way
 232 * we have a virtual fs - giving a cleaner interface to the
 233 * mm details, and allowing different kinds of memory mappings
 234 * (from shared memory to executable loading to arbitrary
 235 * mmap() functions).
 236 */
 237
 238struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 239struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 240void vm_area_free(struct vm_area_struct *);
 241
 242#ifndef CONFIG_MMU
 243extern struct rb_root nommu_region_tree;
 244extern struct rw_semaphore nommu_region_sem;
 245
 246extern unsigned int kobjsize(const void *objp);
 247#endif
 248
 249/*
 250 * vm_flags in vm_area_struct, see mm_types.h.
 251 * When changing, update also include/trace/events/mmflags.h
 252 */
 253#define VM_NONE         0x00000000
 254
 255#define VM_READ         0x00000001      /* currently active flags */
 256#define VM_WRITE        0x00000002
 257#define VM_EXEC         0x00000004
 258#define VM_SHARED       0x00000008
 259
 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 261#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 262#define VM_MAYWRITE     0x00000020
 263#define VM_MAYEXEC      0x00000040
 264#define VM_MAYSHARE     0x00000080
 265
 266#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 267#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 268#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 269#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 270#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 271
 272#define VM_LOCKED       0x00002000
 273#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 274
 275                                        /* Used by sys_madvise() */
 276#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 277#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 278
 279#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 280#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 281#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 282#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 283#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 284#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 285#define VM_SYNC         0x00800000      /* Synchronous page faults */
 286#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 287#define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
 288#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 289
 290#ifdef CONFIG_MEM_SOFT_DIRTY
 291# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 292#else
 293# define VM_SOFTDIRTY   0
 294#endif
 295
 296#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 297#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 298#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 299#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 300
 301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 302#define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
 303#define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
 304#define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
 305#define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
 306#define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
 307#define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
 308#define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
 309#define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
 310#define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
 311#define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
 312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 313
 314#ifdef CONFIG_ARCH_HAS_PKEYS
 315# define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
 316# define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
 317# define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
 318# define VM_PKEY_BIT2   VM_HIGH_ARCH_2
 319# define VM_PKEY_BIT3   VM_HIGH_ARCH_3
 320#ifdef CONFIG_PPC
 321# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 322#else
 323# define VM_PKEY_BIT4  0
 324#endif
 325#endif /* CONFIG_ARCH_HAS_PKEYS */
 326
 327#if defined(CONFIG_X86)
 328# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 329#elif defined(CONFIG_PPC)
 330# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 331#elif defined(CONFIG_PARISC)
 332# define VM_GROWSUP     VM_ARCH_1
 333#elif defined(CONFIG_IA64)
 334# define VM_GROWSUP     VM_ARCH_1
 335#elif defined(CONFIG_SPARC64)
 336# define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
 337# define VM_ARCH_CLEAR  VM_SPARC_ADI
 338#elif defined(CONFIG_ARM64)
 339# define VM_ARM64_BTI   VM_ARCH_1       /* BTI guarded page, a.k.a. GP bit */
 340# define VM_ARCH_CLEAR  VM_ARM64_BTI
 341#elif !defined(CONFIG_MMU)
 342# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 343#endif
 344
 345#if defined(CONFIG_ARM64_MTE)
 346# define VM_MTE         VM_HIGH_ARCH_0  /* Use Tagged memory for access control */
 347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1  /* Tagged memory permitted */
 348#else
 349# define VM_MTE         VM_NONE
 350# define VM_MTE_ALLOWED VM_NONE
 351#endif
 352
 353#ifndef VM_GROWSUP
 354# define VM_GROWSUP     VM_NONE
 355#endif
 356
 357/* Bits set in the VMA until the stack is in its final location */
 358#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 359
 360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
 361
 362/* Common data flag combinations */
 363#define VM_DATA_FLAGS_TSK_EXEC  (VM_READ | VM_WRITE | TASK_EXEC | \
 364                                 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 365#define VM_DATA_FLAGS_NON_EXEC  (VM_READ | VM_WRITE | VM_MAYREAD | \
 366                                 VM_MAYWRITE | VM_MAYEXEC)
 367#define VM_DATA_FLAGS_EXEC      (VM_READ | VM_WRITE | VM_EXEC | \
 368                                 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 369
 370#ifndef VM_DATA_DEFAULT_FLAGS           /* arch can override this */
 371#define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
 372#endif
 373
 374#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 376#endif
 377
 378#ifdef CONFIG_STACK_GROWSUP
 379#define VM_STACK        VM_GROWSUP
 380#else
 381#define VM_STACK        VM_GROWSDOWN
 382#endif
 383
 384#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 385
 386/* VMA basic access permission flags */
 387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
 388
 389
 390/*
 391 * Special vmas that are non-mergable, non-mlock()able.
 392 */
 393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 394
 395/* This mask prevents VMA from being scanned with khugepaged */
 396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 397
 398/* This mask defines which mm->def_flags a process can inherit its parent */
 399#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 400
 401/* This mask is used to clear all the VMA flags used by mlock */
 402#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 403
 404/* Arch-specific flags to clear when updating VM flags on protection change */
 405#ifndef VM_ARCH_CLEAR
 406# define VM_ARCH_CLEAR  VM_NONE
 407#endif
 408#define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 409
 410/*
 411 * mapping from the currently active vm_flags protection bits (the
 412 * low four bits) to a page protection mask..
 413 */
 414extern pgprot_t protection_map[16];
 415
 416/**
 417 * Fault flag definitions.
 418 *
 419 * @FAULT_FLAG_WRITE: Fault was a write fault.
 420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
 421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
 423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
 424 * @FAULT_FLAG_TRIED: The fault has been tried once.
 425 * @FAULT_FLAG_USER: The fault originated in userspace.
 426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
 427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
 428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
 429 *
 430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
 431 * whether we would allow page faults to retry by specifying these two
 432 * fault flags correctly.  Currently there can be three legal combinations:
 433 *
 434 * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
 435 *                              this is the first try
 436 *
 437 * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
 438 *                              we've already tried at least once
 439 *
 440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
 441 *
 442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
 443 * be used.  Note that page faults can be allowed to retry for multiple times,
 444 * in which case we'll have an initial fault with flags (a) then later on
 445 * continuous faults with flags (b).  We should always try to detect pending
 446 * signals before a retry to make sure the continuous page faults can still be
 447 * interrupted if necessary.
 448 */
 449#define FAULT_FLAG_WRITE                        0x01
 450#define FAULT_FLAG_MKWRITE                      0x02
 451#define FAULT_FLAG_ALLOW_RETRY                  0x04
 452#define FAULT_FLAG_RETRY_NOWAIT                 0x08
 453#define FAULT_FLAG_KILLABLE                     0x10
 454#define FAULT_FLAG_TRIED                        0x20
 455#define FAULT_FLAG_USER                         0x40
 456#define FAULT_FLAG_REMOTE                       0x80
 457#define FAULT_FLAG_INSTRUCTION                  0x100
 458#define FAULT_FLAG_INTERRUPTIBLE                0x200
 459
 460/*
 461 * The default fault flags that should be used by most of the
 462 * arch-specific page fault handlers.
 463 */
 464#define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
 465                             FAULT_FLAG_KILLABLE | \
 466                             FAULT_FLAG_INTERRUPTIBLE)
 467
 468/**
 469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
 470 *
 471 * This is mostly used for places where we want to try to avoid taking
 472 * the mmap_lock for too long a time when waiting for another condition
 473 * to change, in which case we can try to be polite to release the
 474 * mmap_lock in the first round to avoid potential starvation of other
 475 * processes that would also want the mmap_lock.
 476 *
 477 * Return: true if the page fault allows retry and this is the first
 478 * attempt of the fault handling; false otherwise.
 479 */
 480static inline bool fault_flag_allow_retry_first(unsigned int flags)
 481{
 482        return (flags & FAULT_FLAG_ALLOW_RETRY) &&
 483            (!(flags & FAULT_FLAG_TRIED));
 484}
 485
 486#define FAULT_FLAG_TRACE \
 487        { FAULT_FLAG_WRITE,             "WRITE" }, \
 488        { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
 489        { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
 490        { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
 491        { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
 492        { FAULT_FLAG_TRIED,             "TRIED" }, \
 493        { FAULT_FLAG_USER,              "USER" }, \
 494        { FAULT_FLAG_REMOTE,            "REMOTE" }, \
 495        { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }, \
 496        { FAULT_FLAG_INTERRUPTIBLE,     "INTERRUPTIBLE" }
 497
 498/*
 499 * vm_fault is filled by the pagefault handler and passed to the vma's
 500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 502 *
 503 * MM layer fills up gfp_mask for page allocations but fault handler might
 504 * alter it if its implementation requires a different allocation context.
 505 *
 506 * pgoff should be used in favour of virtual_address, if possible.
 507 */
 508struct vm_fault {
 509        struct vm_area_struct *vma;     /* Target VMA */
 510        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 511        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 512        pgoff_t pgoff;                  /* Logical page offset based on vma */
 513        unsigned long address;          /* Faulting virtual address */
 514        pmd_t *pmd;                     /* Pointer to pmd entry matching
 515                                         * the 'address' */
 516        pud_t *pud;                     /* Pointer to pud entry matching
 517                                         * the 'address'
 518                                         */
 519        pte_t orig_pte;                 /* Value of PTE at the time of fault */
 520
 521        struct page *cow_page;          /* Page handler may use for COW fault */
 522        struct page *page;              /* ->fault handlers should return a
 523                                         * page here, unless VM_FAULT_NOPAGE
 524                                         * is set (which is also implied by
 525                                         * VM_FAULT_ERROR).
 526                                         */
 527        /* These three entries are valid only while holding ptl lock */
 528        pte_t *pte;                     /* Pointer to pte entry matching
 529                                         * the 'address'. NULL if the page
 530                                         * table hasn't been allocated.
 531                                         */
 532        spinlock_t *ptl;                /* Page table lock.
 533                                         * Protects pte page table if 'pte'
 534                                         * is not NULL, otherwise pmd.
 535                                         */
 536        pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
 537                                         * vm_ops->map_pages() calls
 538                                         * alloc_set_pte() from atomic context.
 539                                         * do_fault_around() pre-allocates
 540                                         * page table to avoid allocation from
 541                                         * atomic context.
 542                                         */
 543};
 544
 545/* page entry size for vm->huge_fault() */
 546enum page_entry_size {
 547        PE_SIZE_PTE = 0,
 548        PE_SIZE_PMD,
 549        PE_SIZE_PUD,
 550};
 551
 552/*
 553 * These are the virtual MM functions - opening of an area, closing and
 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 555 * to the functions called when a no-page or a wp-page exception occurs.
 556 */
 557struct vm_operations_struct {
 558        void (*open)(struct vm_area_struct * area);
 559        void (*close)(struct vm_area_struct * area);
 560        int (*split)(struct vm_area_struct * area, unsigned long addr);
 561        int (*mremap)(struct vm_area_struct * area);
 562        vm_fault_t (*fault)(struct vm_fault *vmf);
 563        vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 564                        enum page_entry_size pe_size);
 565        void (*map_pages)(struct vm_fault *vmf,
 566                        pgoff_t start_pgoff, pgoff_t end_pgoff);
 567        unsigned long (*pagesize)(struct vm_area_struct * area);
 568
 569        /* notification that a previously read-only page is about to become
 570         * writable, if an error is returned it will cause a SIGBUS */
 571        vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 572
 573        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 574        vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 575
 576        /* called by access_process_vm when get_user_pages() fails, typically
 577         * for use by special VMAs that can switch between memory and hardware
 578         */
 579        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 580                      void *buf, int len, int write);
 581
 582        /* Called by the /proc/PID/maps code to ask the vma whether it
 583         * has a special name.  Returning non-NULL will also cause this
 584         * vma to be dumped unconditionally. */
 585        const char *(*name)(struct vm_area_struct *vma);
 586
 587#ifdef CONFIG_NUMA
 588        /*
 589         * set_policy() op must add a reference to any non-NULL @new mempolicy
 590         * to hold the policy upon return.  Caller should pass NULL @new to
 591         * remove a policy and fall back to surrounding context--i.e. do not
 592         * install a MPOL_DEFAULT policy, nor the task or system default
 593         * mempolicy.
 594         */
 595        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 596
 597        /*
 598         * get_policy() op must add reference [mpol_get()] to any policy at
 599         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 600         * in mm/mempolicy.c will do this automatically.
 601         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 602         * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
 603         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 604         * must return NULL--i.e., do not "fallback" to task or system default
 605         * policy.
 606         */
 607        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 608                                        unsigned long addr);
 609#endif
 610        /*
 611         * Called by vm_normal_page() for special PTEs to find the
 612         * page for @addr.  This is useful if the default behavior
 613         * (using pte_page()) would not find the correct page.
 614         */
 615        struct page *(*find_special_page)(struct vm_area_struct *vma,
 616                                          unsigned long addr);
 617};
 618
 619static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 620{
 621        static const struct vm_operations_struct dummy_vm_ops = {};
 622
 623        memset(vma, 0, sizeof(*vma));
 624        vma->vm_mm = mm;
 625        vma->vm_ops = &dummy_vm_ops;
 626        INIT_LIST_HEAD(&vma->anon_vma_chain);
 627}
 628
 629static inline void vma_set_anonymous(struct vm_area_struct *vma)
 630{
 631        vma->vm_ops = NULL;
 632}
 633
 634static inline bool vma_is_anonymous(struct vm_area_struct *vma)
 635{
 636        return !vma->vm_ops;
 637}
 638
 639static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
 640{
 641        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 642
 643        if (!maybe_stack)
 644                return false;
 645
 646        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
 647                                                VM_STACK_INCOMPLETE_SETUP)
 648                return true;
 649
 650        return false;
 651}
 652
 653static inline bool vma_is_foreign(struct vm_area_struct *vma)
 654{
 655        if (!current->mm)
 656                return true;
 657
 658        if (current->mm != vma->vm_mm)
 659                return true;
 660
 661        return false;
 662}
 663
 664static inline bool vma_is_accessible(struct vm_area_struct *vma)
 665{
 666        return vma->vm_flags & VM_ACCESS_FLAGS;
 667}
 668
 669#ifdef CONFIG_SHMEM
 670/*
 671 * The vma_is_shmem is not inline because it is used only by slow
 672 * paths in userfault.
 673 */
 674bool vma_is_shmem(struct vm_area_struct *vma);
 675#else
 676static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
 677#endif
 678
 679int vma_is_stack_for_current(struct vm_area_struct *vma);
 680
 681/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 682#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 683
 684struct mmu_gather;
 685struct inode;
 686
 687#include <linux/huge_mm.h>
 688
 689/*
 690 * Methods to modify the page usage count.
 691 *
 692 * What counts for a page usage:
 693 * - cache mapping   (page->mapping)
 694 * - private data    (page->private)
 695 * - page mapped in a task's page tables, each mapping
 696 *   is counted separately
 697 *
 698 * Also, many kernel routines increase the page count before a critical
 699 * routine so they can be sure the page doesn't go away from under them.
 700 */
 701
 702/*
 703 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 704 */
 705static inline int put_page_testzero(struct page *page)
 706{
 707        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 708        return page_ref_dec_and_test(page);
 709}
 710
 711/*
 712 * Try to grab a ref unless the page has a refcount of zero, return false if
 713 * that is the case.
 714 * This can be called when MMU is off so it must not access
 715 * any of the virtual mappings.
 716 */
 717static inline int get_page_unless_zero(struct page *page)
 718{
 719        return page_ref_add_unless(page, 1, 0);
 720}
 721
 722extern int page_is_ram(unsigned long pfn);
 723
 724enum {
 725        REGION_INTERSECTS,
 726        REGION_DISJOINT,
 727        REGION_MIXED,
 728};
 729
 730int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 731                      unsigned long desc);
 732
 733/* Support for virtually mapped pages */
 734struct page *vmalloc_to_page(const void *addr);
 735unsigned long vmalloc_to_pfn(const void *addr);
 736
 737/*
 738 * Determine if an address is within the vmalloc range
 739 *
 740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 741 * is no special casing required.
 742 */
 743
 744#ifndef is_ioremap_addr
 745#define is_ioremap_addr(x) is_vmalloc_addr(x)
 746#endif
 747
 748#ifdef CONFIG_MMU
 749extern bool is_vmalloc_addr(const void *x);
 750extern int is_vmalloc_or_module_addr(const void *x);
 751#else
 752static inline bool is_vmalloc_addr(const void *x)
 753{
 754        return false;
 755}
 756static inline int is_vmalloc_or_module_addr(const void *x)
 757{
 758        return 0;
 759}
 760#endif
 761
 762extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 763static inline void *kvmalloc(size_t size, gfp_t flags)
 764{
 765        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 766}
 767static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 768{
 769        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 770}
 771static inline void *kvzalloc(size_t size, gfp_t flags)
 772{
 773        return kvmalloc(size, flags | __GFP_ZERO);
 774}
 775
 776static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 777{
 778        size_t bytes;
 779
 780        if (unlikely(check_mul_overflow(n, size, &bytes)))
 781                return NULL;
 782
 783        return kvmalloc(bytes, flags);
 784}
 785
 786static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 787{
 788        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 789}
 790
 791extern void kvfree(const void *addr);
 792extern void kvfree_sensitive(const void *addr, size_t len);
 793
 794static inline int head_compound_mapcount(struct page *head)
 795{
 796        return atomic_read(compound_mapcount_ptr(head)) + 1;
 797}
 798
 799/*
 800 * Mapcount of compound page as a whole, does not include mapped sub-pages.
 801 *
 802 * Must be called only for compound pages or any their tail sub-pages.
 803 */
 804static inline int compound_mapcount(struct page *page)
 805{
 806        VM_BUG_ON_PAGE(!PageCompound(page), page);
 807        page = compound_head(page);
 808        return head_compound_mapcount(page);
 809}
 810
 811/*
 812 * The atomic page->_mapcount, starts from -1: so that transitions
 813 * both from it and to it can be tracked, using atomic_inc_and_test
 814 * and atomic_add_negative(-1).
 815 */
 816static inline void page_mapcount_reset(struct page *page)
 817{
 818        atomic_set(&(page)->_mapcount, -1);
 819}
 820
 821int __page_mapcount(struct page *page);
 822
 823/*
 824 * Mapcount of 0-order page; when compound sub-page, includes
 825 * compound_mapcount().
 826 *
 827 * Result is undefined for pages which cannot be mapped into userspace.
 828 * For example SLAB or special types of pages. See function page_has_type().
 829 * They use this place in struct page differently.
 830 */
 831static inline int page_mapcount(struct page *page)
 832{
 833        if (unlikely(PageCompound(page)))
 834                return __page_mapcount(page);
 835        return atomic_read(&page->_mapcount) + 1;
 836}
 837
 838#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 839int total_mapcount(struct page *page);
 840int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 841#else
 842static inline int total_mapcount(struct page *page)
 843{
 844        return page_mapcount(page);
 845}
 846static inline int page_trans_huge_mapcount(struct page *page,
 847                                           int *total_mapcount)
 848{
 849        int mapcount = page_mapcount(page);
 850        if (total_mapcount)
 851                *total_mapcount = mapcount;
 852        return mapcount;
 853}
 854#endif
 855
 856static inline struct page *virt_to_head_page(const void *x)
 857{
 858        struct page *page = virt_to_page(x);
 859
 860        return compound_head(page);
 861}
 862
 863void __put_page(struct page *page);
 864
 865void put_pages_list(struct list_head *pages);
 866
 867void split_page(struct page *page, unsigned int order);
 868
 869/*
 870 * Compound pages have a destructor function.  Provide a
 871 * prototype for that function and accessor functions.
 872 * These are _only_ valid on the head of a compound page.
 873 */
 874typedef void compound_page_dtor(struct page *);
 875
 876/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 877enum compound_dtor_id {
 878        NULL_COMPOUND_DTOR,
 879        COMPOUND_PAGE_DTOR,
 880#ifdef CONFIG_HUGETLB_PAGE
 881        HUGETLB_PAGE_DTOR,
 882#endif
 883#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 884        TRANSHUGE_PAGE_DTOR,
 885#endif
 886        NR_COMPOUND_DTORS,
 887};
 888extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
 889
 890static inline void set_compound_page_dtor(struct page *page,
 891                enum compound_dtor_id compound_dtor)
 892{
 893        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 894        page[1].compound_dtor = compound_dtor;
 895}
 896
 897static inline void destroy_compound_page(struct page *page)
 898{
 899        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 900        compound_page_dtors[page[1].compound_dtor](page);
 901}
 902
 903static inline unsigned int compound_order(struct page *page)
 904{
 905        if (!PageHead(page))
 906                return 0;
 907        return page[1].compound_order;
 908}
 909
 910static inline bool hpage_pincount_available(struct page *page)
 911{
 912        /*
 913         * Can the page->hpage_pinned_refcount field be used? That field is in
 914         * the 3rd page of the compound page, so the smallest (2-page) compound
 915         * pages cannot support it.
 916         */
 917        page = compound_head(page);
 918        return PageCompound(page) && compound_order(page) > 1;
 919}
 920
 921static inline int head_compound_pincount(struct page *head)
 922{
 923        return atomic_read(compound_pincount_ptr(head));
 924}
 925
 926static inline int compound_pincount(struct page *page)
 927{
 928        VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
 929        page = compound_head(page);
 930        return head_compound_pincount(page);
 931}
 932
 933static inline void set_compound_order(struct page *page, unsigned int order)
 934{
 935        page[1].compound_order = order;
 936        page[1].compound_nr = 1U << order;
 937}
 938
 939/* Returns the number of pages in this potentially compound page. */
 940static inline unsigned long compound_nr(struct page *page)
 941{
 942        if (!PageHead(page))
 943                return 1;
 944        return page[1].compound_nr;
 945}
 946
 947/* Returns the number of bytes in this potentially compound page. */
 948static inline unsigned long page_size(struct page *page)
 949{
 950        return PAGE_SIZE << compound_order(page);
 951}
 952
 953/* Returns the number of bits needed for the number of bytes in a page */
 954static inline unsigned int page_shift(struct page *page)
 955{
 956        return PAGE_SHIFT + compound_order(page);
 957}
 958
 959void free_compound_page(struct page *page);
 960
 961#ifdef CONFIG_MMU
 962/*
 963 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 964 * servicing faults for write access.  In the normal case, do always want
 965 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 966 * that do not have writing enabled, when used by access_process_vm.
 967 */
 968static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 969{
 970        if (likely(vma->vm_flags & VM_WRITE))
 971                pte = pte_mkwrite(pte);
 972        return pte;
 973}
 974
 975vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
 976vm_fault_t finish_fault(struct vm_fault *vmf);
 977vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 978#endif
 979
 980/*
 981 * Multiple processes may "see" the same page. E.g. for untouched
 982 * mappings of /dev/null, all processes see the same page full of
 983 * zeroes, and text pages of executables and shared libraries have
 984 * only one copy in memory, at most, normally.
 985 *
 986 * For the non-reserved pages, page_count(page) denotes a reference count.
 987 *   page_count() == 0 means the page is free. page->lru is then used for
 988 *   freelist management in the buddy allocator.
 989 *   page_count() > 0  means the page has been allocated.
 990 *
 991 * Pages are allocated by the slab allocator in order to provide memory
 992 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 994 * unless a particular usage is carefully commented. (the responsibility of
 995 * freeing the kmalloc memory is the caller's, of course).
 996 *
 997 * A page may be used by anyone else who does a __get_free_page().
 998 * In this case, page_count still tracks the references, and should only
 999 * be used through the normal accessor functions. The top bits of page->flags
1000 * and page->virtual store page management information, but all other fields
1001 * are unused and could be used privately, carefully. The management of this
1002 * page is the responsibility of the one who allocated it, and those who have
1003 * subsequently been given references to it.
1004 *
1005 * The other pages (we may call them "pagecache pages") are completely
1006 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007 * The following discussion applies only to them.
1008 *
1009 * A pagecache page contains an opaque `private' member, which belongs to the
1010 * page's address_space. Usually, this is the address of a circular list of
1011 * the page's disk buffers. PG_private must be set to tell the VM to call
1012 * into the filesystem to release these pages.
1013 *
1014 * A page may belong to an inode's memory mapping. In this case, page->mapping
1015 * is the pointer to the inode, and page->index is the file offset of the page,
1016 * in units of PAGE_SIZE.
1017 *
1018 * If pagecache pages are not associated with an inode, they are said to be
1019 * anonymous pages. These may become associated with the swapcache, and in that
1020 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1021 *
1022 * In either case (swapcache or inode backed), the pagecache itself holds one
1023 * reference to the page. Setting PG_private should also increment the
1024 * refcount. The each user mapping also has a reference to the page.
1025 *
1026 * The pagecache pages are stored in a per-mapping radix tree, which is
1027 * rooted at mapping->i_pages, and indexed by offset.
1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1030 *
1031 * All pagecache pages may be subject to I/O:
1032 * - inode pages may need to be read from disk,
1033 * - inode pages which have been modified and are MAP_SHARED may need
1034 *   to be written back to the inode on disk,
1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036 *   modified may need to be swapped out to swap space and (later) to be read
1037 *   back into memory.
1038 */
1039
1040/*
1041 * The zone field is never updated after free_area_init_core()
1042 * sets it, so none of the operations on it need to be atomic.
1043 */
1044
1045/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1046#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1047#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
1048#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
1049#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1050#define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1051
1052/*
1053 * Define the bit shifts to access each section.  For non-existent
1054 * sections we define the shift as 0; that plus a 0 mask ensures
1055 * the compiler will optimise away reference to them.
1056 */
1057#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
1059#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
1060#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1061#define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1062
1063/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064#ifdef NODE_NOT_IN_PAGE_FLAGS
1065#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
1066#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067                                                SECTIONS_PGOFF : ZONES_PGOFF)
1068#else
1069#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
1070#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
1071                                                NODES_PGOFF : ZONES_PGOFF)
1072#endif
1073
1074#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1075
1076#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
1077#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
1078#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
1079#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
1080#define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
1081#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
1082
1083static inline enum zone_type page_zonenum(const struct page *page)
1084{
1085        ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1086        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1087}
1088
1089#ifdef CONFIG_ZONE_DEVICE
1090static inline bool is_zone_device_page(const struct page *page)
1091{
1092        return page_zonenum(page) == ZONE_DEVICE;
1093}
1094extern void memmap_init_zone_device(struct zone *, unsigned long,
1095                                    unsigned long, struct dev_pagemap *);
1096#else
1097static inline bool is_zone_device_page(const struct page *page)
1098{
1099        return false;
1100}
1101#endif
1102
1103#ifdef CONFIG_DEV_PAGEMAP_OPS
1104void free_devmap_managed_page(struct page *page);
1105DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1106
1107static inline bool page_is_devmap_managed(struct page *page)
1108{
1109        if (!static_branch_unlikely(&devmap_managed_key))
1110                return false;
1111        if (!is_zone_device_page(page))
1112                return false;
1113        switch (page->pgmap->type) {
1114        case MEMORY_DEVICE_PRIVATE:
1115        case MEMORY_DEVICE_FS_DAX:
1116                return true;
1117        default:
1118                break;
1119        }
1120        return false;
1121}
1122
1123void put_devmap_managed_page(struct page *page);
1124
1125#else /* CONFIG_DEV_PAGEMAP_OPS */
1126static inline bool page_is_devmap_managed(struct page *page)
1127{
1128        return false;
1129}
1130
1131static inline void put_devmap_managed_page(struct page *page)
1132{
1133}
1134#endif /* CONFIG_DEV_PAGEMAP_OPS */
1135
1136static inline bool is_device_private_page(const struct page *page)
1137{
1138        return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139                IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140                is_zone_device_page(page) &&
1141                page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1142}
1143
1144static inline bool is_pci_p2pdma_page(const struct page *page)
1145{
1146        return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147                IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148                is_zone_device_page(page) &&
1149                page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1150}
1151
1152/* 127: arbitrary random number, small enough to assemble well */
1153#define page_ref_zero_or_close_to_overflow(page) \
1154        ((unsigned int) page_ref_count(page) + 127u <= 127u)
1155
1156static inline void get_page(struct page *page)
1157{
1158        page = compound_head(page);
1159        /*
1160         * Getting a normal page or the head of a compound page
1161         * requires to already have an elevated page->_refcount.
1162         */
1163        VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1164        page_ref_inc(page);
1165}
1166
1167bool __must_check try_grab_page(struct page *page, unsigned int flags);
1168
1169static inline __must_check bool try_get_page(struct page *page)
1170{
1171        page = compound_head(page);
1172        if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1173                return false;
1174        page_ref_inc(page);
1175        return true;
1176}
1177
1178static inline void put_page(struct page *page)
1179{
1180        page = compound_head(page);
1181
1182        /*
1183         * For devmap managed pages we need to catch refcount transition from
1184         * 2 to 1, when refcount reach one it means the page is free and we
1185         * need to inform the device driver through callback. See
1186         * include/linux/memremap.h and HMM for details.
1187         */
1188        if (page_is_devmap_managed(page)) {
1189                put_devmap_managed_page(page);
1190                return;
1191        }
1192
1193        if (put_page_testzero(page))
1194                __put_page(page);
1195}
1196
1197/*
1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199 * the page's refcount so that two separate items are tracked: the original page
1200 * reference count, and also a new count of how many pin_user_pages() calls were
1201 * made against the page. ("gup-pinned" is another term for the latter).
1202 *
1203 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204 * distinct from normal pages. As such, the unpin_user_page() call (and its
1205 * variants) must be used in order to release gup-pinned pages.
1206 *
1207 * Choice of value:
1208 *
1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211 * simpler, due to the fact that adding an even power of two to the page
1212 * refcount has the effect of using only the upper N bits, for the code that
1213 * counts up using the bias value. This means that the lower bits are left for
1214 * the exclusive use of the original code that increments and decrements by one
1215 * (or at least, by much smaller values than the bias value).
1216 *
1217 * Of course, once the lower bits overflow into the upper bits (and this is
1218 * OK, because subtraction recovers the original values), then visual inspection
1219 * no longer suffices to directly view the separate counts. However, for normal
1220 * applications that don't have huge page reference counts, this won't be an
1221 * issue.
1222 *
1223 * Locking: the lockless algorithm described in page_cache_get_speculative()
1224 * and page_cache_gup_pin_speculative() provides safe operation for
1225 * get_user_pages and page_mkclean and other calls that race to set up page
1226 * table entries.
1227 */
1228#define GUP_PIN_COUNTING_BIAS (1U << 10)
1229
1230void unpin_user_page(struct page *page);
1231void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1232                                 bool make_dirty);
1233void unpin_user_pages(struct page **pages, unsigned long npages);
1234
1235/**
1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1237 *
1238 * This function checks if a page has been pinned via a call to
1239 * pin_user_pages*().
1240 *
1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242 * because it means "definitely not pinned for DMA", but true means "probably
1243 * pinned for DMA, but possibly a false positive due to having at least
1244 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1245 *
1246 * False positives are OK, because: a) it's unlikely for a page to get that many
1247 * refcounts, and b) all the callers of this routine are expected to be able to
1248 * deal gracefully with a false positive.
1249 *
1250 * For huge pages, the result will be exactly correct. That's because we have
1251 * more tracking data available: the 3rd struct page in the compound page is
1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1253 * scheme).
1254 *
1255 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1256 *
1257 * @page:       pointer to page to be queried.
1258 * @Return:     True, if it is likely that the page has been "dma-pinned".
1259 *              False, if the page is definitely not dma-pinned.
1260 */
1261static inline bool page_maybe_dma_pinned(struct page *page)
1262{
1263        if (hpage_pincount_available(page))
1264                return compound_pincount(page) > 0;
1265
1266        /*
1267         * page_ref_count() is signed. If that refcount overflows, then
1268         * page_ref_count() returns a negative value, and callers will avoid
1269         * further incrementing the refcount.
1270         *
1271         * Here, for that overflow case, use the signed bit to count a little
1272         * bit higher via unsigned math, and thus still get an accurate result.
1273         */
1274        return ((unsigned int)page_ref_count(compound_head(page))) >=
1275                GUP_PIN_COUNTING_BIAS;
1276}
1277
1278#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279#define SECTION_IN_PAGE_FLAGS
1280#endif
1281
1282/*
1283 * The identification function is mainly used by the buddy allocator for
1284 * determining if two pages could be buddies. We are not really identifying
1285 * the zone since we could be using the section number id if we do not have
1286 * node id available in page flags.
1287 * We only guarantee that it will return the same value for two combinable
1288 * pages in a zone.
1289 */
1290static inline int page_zone_id(struct page *page)
1291{
1292        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1293}
1294
1295#ifdef NODE_NOT_IN_PAGE_FLAGS
1296extern int page_to_nid(const struct page *page);
1297#else
1298static inline int page_to_nid(const struct page *page)
1299{
1300        struct page *p = (struct page *)page;
1301
1302        return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1303}
1304#endif
1305
1306#ifdef CONFIG_NUMA_BALANCING
1307static inline int cpu_pid_to_cpupid(int cpu, int pid)
1308{
1309        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1310}
1311
1312static inline int cpupid_to_pid(int cpupid)
1313{
1314        return cpupid & LAST__PID_MASK;
1315}
1316
1317static inline int cpupid_to_cpu(int cpupid)
1318{
1319        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1320}
1321
1322static inline int cpupid_to_nid(int cpupid)
1323{
1324        return cpu_to_node(cpupid_to_cpu(cpupid));
1325}
1326
1327static inline bool cpupid_pid_unset(int cpupid)
1328{
1329        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1330}
1331
1332static inline bool cpupid_cpu_unset(int cpupid)
1333{
1334        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1335}
1336
1337static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1338{
1339        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1340}
1341
1342#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1343#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1344static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1345{
1346        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1347}
1348
1349static inline int page_cpupid_last(struct page *page)
1350{
1351        return page->_last_cpupid;
1352}
1353static inline void page_cpupid_reset_last(struct page *page)
1354{
1355        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1356}
1357#else
1358static inline int page_cpupid_last(struct page *page)
1359{
1360        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1361}
1362
1363extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1364
1365static inline void page_cpupid_reset_last(struct page *page)
1366{
1367        page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1368}
1369#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370#else /* !CONFIG_NUMA_BALANCING */
1371static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1372{
1373        return page_to_nid(page); /* XXX */
1374}
1375
1376static inline int page_cpupid_last(struct page *page)
1377{
1378        return page_to_nid(page); /* XXX */
1379}
1380
1381static inline int cpupid_to_nid(int cpupid)
1382{
1383        return -1;
1384}
1385
1386static inline int cpupid_to_pid(int cpupid)
1387{
1388        return -1;
1389}
1390
1391static inline int cpupid_to_cpu(int cpupid)
1392{
1393        return -1;
1394}
1395
1396static inline int cpu_pid_to_cpupid(int nid, int pid)
1397{
1398        return -1;
1399}
1400
1401static inline bool cpupid_pid_unset(int cpupid)
1402{
1403        return true;
1404}
1405
1406static inline void page_cpupid_reset_last(struct page *page)
1407{
1408}
1409
1410static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1411{
1412        return false;
1413}
1414#endif /* CONFIG_NUMA_BALANCING */
1415
1416#ifdef CONFIG_KASAN_SW_TAGS
1417static inline u8 page_kasan_tag(const struct page *page)
1418{
1419        return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1420}
1421
1422static inline void page_kasan_tag_set(struct page *page, u8 tag)
1423{
1424        page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1425        page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1426}
1427
1428static inline void page_kasan_tag_reset(struct page *page)
1429{
1430        page_kasan_tag_set(page, 0xff);
1431}
1432#else
1433static inline u8 page_kasan_tag(const struct page *page)
1434{
1435        return 0xff;
1436}
1437
1438static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1439static inline void page_kasan_tag_reset(struct page *page) { }
1440#endif
1441
1442static inline struct zone *page_zone(const struct page *page)
1443{
1444        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1445}
1446
1447static inline pg_data_t *page_pgdat(const struct page *page)
1448{
1449        return NODE_DATA(page_to_nid(page));
1450}
1451
1452#ifdef SECTION_IN_PAGE_FLAGS
1453static inline void set_page_section(struct page *page, unsigned long section)
1454{
1455        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1456        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1457}
1458
1459static inline unsigned long page_to_section(const struct page *page)
1460{
1461        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1462}
1463#endif
1464
1465static inline void set_page_zone(struct page *page, enum zone_type zone)
1466{
1467        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1468        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1469}
1470
1471static inline void set_page_node(struct page *page, unsigned long node)
1472{
1473        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1474        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1475}
1476
1477static inline void set_page_links(struct page *page, enum zone_type zone,
1478        unsigned long node, unsigned long pfn)
1479{
1480        set_page_zone(page, zone);
1481        set_page_node(page, node);
1482#ifdef SECTION_IN_PAGE_FLAGS
1483        set_page_section(page, pfn_to_section_nr(pfn));
1484#endif
1485}
1486
1487#ifdef CONFIG_MEMCG
1488static inline struct mem_cgroup *page_memcg(struct page *page)
1489{
1490        return page->mem_cgroup;
1491}
1492static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1493{
1494        WARN_ON_ONCE(!rcu_read_lock_held());
1495        return READ_ONCE(page->mem_cgroup);
1496}
1497#else
1498static inline struct mem_cgroup *page_memcg(struct page *page)
1499{
1500        return NULL;
1501}
1502static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1503{
1504        WARN_ON_ONCE(!rcu_read_lock_held());
1505        return NULL;
1506}
1507#endif
1508
1509/*
1510 * Some inline functions in vmstat.h depend on page_zone()
1511 */
1512#include <linux/vmstat.h>
1513
1514static __always_inline void *lowmem_page_address(const struct page *page)
1515{
1516        return page_to_virt(page);
1517}
1518
1519#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1520#define HASHED_PAGE_VIRTUAL
1521#endif
1522
1523#if defined(WANT_PAGE_VIRTUAL)
1524static inline void *page_address(const struct page *page)
1525{
1526        return page->virtual;
1527}
1528static inline void set_page_address(struct page *page, void *address)
1529{
1530        page->virtual = address;
1531}
1532#define page_address_init()  do { } while(0)
1533#endif
1534
1535#if defined(HASHED_PAGE_VIRTUAL)
1536void *page_address(const struct page *page);
1537void set_page_address(struct page *page, void *virtual);
1538void page_address_init(void);
1539#endif
1540
1541#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1542#define page_address(page) lowmem_page_address(page)
1543#define set_page_address(page, address)  do { } while(0)
1544#define page_address_init()  do { } while(0)
1545#endif
1546
1547extern void *page_rmapping(struct page *page);
1548extern struct anon_vma *page_anon_vma(struct page *page);
1549extern struct address_space *page_mapping(struct page *page);
1550
1551extern struct address_space *__page_file_mapping(struct page *);
1552
1553static inline
1554struct address_space *page_file_mapping(struct page *page)
1555{
1556        if (unlikely(PageSwapCache(page)))
1557                return __page_file_mapping(page);
1558
1559        return page->mapping;
1560}
1561
1562extern pgoff_t __page_file_index(struct page *page);
1563
1564/*
1565 * Return the pagecache index of the passed page.  Regular pagecache pages
1566 * use ->index whereas swapcache pages use swp_offset(->private)
1567 */
1568static inline pgoff_t page_index(struct page *page)
1569{
1570        if (unlikely(PageSwapCache(page)))
1571                return __page_file_index(page);
1572        return page->index;
1573}
1574
1575bool page_mapped(struct page *page);
1576struct address_space *page_mapping(struct page *page);
1577struct address_space *page_mapping_file(struct page *page);
1578
1579/*
1580 * Return true only if the page has been allocated with
1581 * ALLOC_NO_WATERMARKS and the low watermark was not
1582 * met implying that the system is under some pressure.
1583 */
1584static inline bool page_is_pfmemalloc(struct page *page)
1585{
1586        /*
1587         * Page index cannot be this large so this must be
1588         * a pfmemalloc page.
1589         */
1590        return page->index == -1UL;
1591}
1592
1593/*
1594 * Only to be called by the page allocator on a freshly allocated
1595 * page.
1596 */
1597static inline void set_page_pfmemalloc(struct page *page)
1598{
1599        page->index = -1UL;
1600}
1601
1602static inline void clear_page_pfmemalloc(struct page *page)
1603{
1604        page->index = 0;
1605}
1606
1607/*
1608 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1609 */
1610extern void pagefault_out_of_memory(void);
1611
1612#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1613#define offset_in_thp(page, p)  ((unsigned long)(p) & (thp_size(page) - 1))
1614
1615/*
1616 * Flags passed to show_mem() and show_free_areas() to suppress output in
1617 * various contexts.
1618 */
1619#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1620
1621extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1622
1623#ifdef CONFIG_MMU
1624extern bool can_do_mlock(void);
1625#else
1626static inline bool can_do_mlock(void) { return false; }
1627#endif
1628extern int user_shm_lock(size_t, struct user_struct *);
1629extern void user_shm_unlock(size_t, struct user_struct *);
1630
1631/*
1632 * Parameter block passed down to zap_pte_range in exceptional cases.
1633 */
1634struct zap_details {
1635        struct address_space *check_mapping;    /* Check page->mapping if set */
1636        pgoff_t first_index;                    /* Lowest page->index to unmap */
1637        pgoff_t last_index;                     /* Highest page->index to unmap */
1638};
1639
1640struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1641                             pte_t pte);
1642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1643                                pmd_t pmd);
1644
1645void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1646                  unsigned long size);
1647void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1648                    unsigned long size);
1649void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1650                unsigned long start, unsigned long end);
1651
1652struct mmu_notifier_range;
1653
1654void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1655                unsigned long end, unsigned long floor, unsigned long ceiling);
1656int
1657copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1658int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1659                   struct mmu_notifier_range *range,
1660                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1661int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1662        unsigned long *pfn);
1663int follow_phys(struct vm_area_struct *vma, unsigned long address,
1664                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1665int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1666                        void *buf, int len, int write);
1667
1668extern void truncate_pagecache(struct inode *inode, loff_t new);
1669extern void truncate_setsize(struct inode *inode, loff_t newsize);
1670void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1671void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1672int truncate_inode_page(struct address_space *mapping, struct page *page);
1673int generic_error_remove_page(struct address_space *mapping, struct page *page);
1674int invalidate_inode_page(struct page *page);
1675
1676#ifdef CONFIG_MMU
1677extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1678                                  unsigned long address, unsigned int flags,
1679                                  struct pt_regs *regs);
1680extern int fixup_user_fault(struct mm_struct *mm,
1681                            unsigned long address, unsigned int fault_flags,
1682                            bool *unlocked);
1683void unmap_mapping_pages(struct address_space *mapping,
1684                pgoff_t start, pgoff_t nr, bool even_cows);
1685void unmap_mapping_range(struct address_space *mapping,
1686                loff_t const holebegin, loff_t const holelen, int even_cows);
1687#else
1688static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1689                                         unsigned long address, unsigned int flags,
1690                                         struct pt_regs *regs)
1691{
1692        /* should never happen if there's no MMU */
1693        BUG();
1694        return VM_FAULT_SIGBUS;
1695}
1696static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1697                unsigned int fault_flags, bool *unlocked)
1698{
1699        /* should never happen if there's no MMU */
1700        BUG();
1701        return -EFAULT;
1702}
1703static inline void unmap_mapping_pages(struct address_space *mapping,
1704                pgoff_t start, pgoff_t nr, bool even_cows) { }
1705static inline void unmap_mapping_range(struct address_space *mapping,
1706                loff_t const holebegin, loff_t const holelen, int even_cows) { }
1707#endif
1708
1709static inline void unmap_shared_mapping_range(struct address_space *mapping,
1710                loff_t const holebegin, loff_t const holelen)
1711{
1712        unmap_mapping_range(mapping, holebegin, holelen, 0);
1713}
1714
1715extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1716                void *buf, int len, unsigned int gup_flags);
1717extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1718                void *buf, int len, unsigned int gup_flags);
1719extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1720                unsigned long addr, void *buf, int len, unsigned int gup_flags);
1721
1722long get_user_pages_remote(struct mm_struct *mm,
1723                            unsigned long start, unsigned long nr_pages,
1724                            unsigned int gup_flags, struct page **pages,
1725                            struct vm_area_struct **vmas, int *locked);
1726long pin_user_pages_remote(struct mm_struct *mm,
1727                           unsigned long start, unsigned long nr_pages,
1728                           unsigned int gup_flags, struct page **pages,
1729                           struct vm_area_struct **vmas, int *locked);
1730long get_user_pages(unsigned long start, unsigned long nr_pages,
1731                            unsigned int gup_flags, struct page **pages,
1732                            struct vm_area_struct **vmas);
1733long pin_user_pages(unsigned long start, unsigned long nr_pages,
1734                    unsigned int gup_flags, struct page **pages,
1735                    struct vm_area_struct **vmas);
1736long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1737                    unsigned int gup_flags, struct page **pages, int *locked);
1738long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1739                    unsigned int gup_flags, struct page **pages, int *locked);
1740long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1741                    struct page **pages, unsigned int gup_flags);
1742long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1743                    struct page **pages, unsigned int gup_flags);
1744
1745int get_user_pages_fast(unsigned long start, int nr_pages,
1746                        unsigned int gup_flags, struct page **pages);
1747int pin_user_pages_fast(unsigned long start, int nr_pages,
1748                        unsigned int gup_flags, struct page **pages);
1749
1750int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1751int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1752                        struct task_struct *task, bool bypass_rlim);
1753
1754/* Container for pinned pfns / pages */
1755struct frame_vector {
1756        unsigned int nr_allocated;      /* Number of frames we have space for */
1757        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1758        bool got_ref;           /* Did we pin pages by getting page ref? */
1759        bool is_pfns;           /* Does array contain pages or pfns? */
1760        void *ptrs[];           /* Array of pinned pfns / pages. Use
1761                                 * pfns_vector_pages() or pfns_vector_pfns()
1762                                 * for access */
1763};
1764
1765struct frame_vector *frame_vector_create(unsigned int nr_frames);
1766void frame_vector_destroy(struct frame_vector *vec);
1767int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1768                     unsigned int gup_flags, struct frame_vector *vec);
1769void put_vaddr_frames(struct frame_vector *vec);
1770int frame_vector_to_pages(struct frame_vector *vec);
1771void frame_vector_to_pfns(struct frame_vector *vec);
1772
1773static inline unsigned int frame_vector_count(struct frame_vector *vec)
1774{
1775        return vec->nr_frames;
1776}
1777
1778static inline struct page **frame_vector_pages(struct frame_vector *vec)
1779{
1780        if (vec->is_pfns) {
1781                int err = frame_vector_to_pages(vec);
1782
1783                if (err)
1784                        return ERR_PTR(err);
1785        }
1786        return (struct page **)(vec->ptrs);
1787}
1788
1789static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1790{
1791        if (!vec->is_pfns)
1792                frame_vector_to_pfns(vec);
1793        return (unsigned long *)(vec->ptrs);
1794}
1795
1796struct kvec;
1797int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1798                        struct page **pages);
1799int get_kernel_page(unsigned long start, int write, struct page **pages);
1800struct page *get_dump_page(unsigned long addr);
1801
1802extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1803extern void do_invalidatepage(struct page *page, unsigned int offset,
1804                              unsigned int length);
1805
1806void __set_page_dirty(struct page *, struct address_space *, int warn);
1807int __set_page_dirty_nobuffers(struct page *page);
1808int __set_page_dirty_no_writeback(struct page *page);
1809int redirty_page_for_writepage(struct writeback_control *wbc,
1810                                struct page *page);
1811void account_page_dirtied(struct page *page, struct address_space *mapping);
1812void account_page_cleaned(struct page *page, struct address_space *mapping,
1813                          struct bdi_writeback *wb);
1814int set_page_dirty(struct page *page);
1815int set_page_dirty_lock(struct page *page);
1816void __cancel_dirty_page(struct page *page);
1817static inline void cancel_dirty_page(struct page *page)
1818{
1819        /* Avoid atomic ops, locking, etc. when not actually needed. */
1820        if (PageDirty(page))
1821                __cancel_dirty_page(page);
1822}
1823int clear_page_dirty_for_io(struct page *page);
1824
1825int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1826
1827extern unsigned long move_page_tables(struct vm_area_struct *vma,
1828                unsigned long old_addr, struct vm_area_struct *new_vma,
1829                unsigned long new_addr, unsigned long len,
1830                bool need_rmap_locks);
1831
1832/*
1833 * Flags used by change_protection().  For now we make it a bitmap so
1834 * that we can pass in multiple flags just like parameters.  However
1835 * for now all the callers are only use one of the flags at the same
1836 * time.
1837 */
1838/* Whether we should allow dirty bit accounting */
1839#define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1840/* Whether this protection change is for NUMA hints */
1841#define  MM_CP_PROT_NUMA                   (1UL << 1)
1842/* Whether this change is for write protecting */
1843#define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1844#define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1845#define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1846                                            MM_CP_UFFD_WP_RESOLVE)
1847
1848extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1849                              unsigned long end, pgprot_t newprot,
1850                              unsigned long cp_flags);
1851extern int mprotect_fixup(struct vm_area_struct *vma,
1852                          struct vm_area_struct **pprev, unsigned long start,
1853                          unsigned long end, unsigned long newflags);
1854
1855/*
1856 * doesn't attempt to fault and will return short.
1857 */
1858int get_user_pages_fast_only(unsigned long start, int nr_pages,
1859                             unsigned int gup_flags, struct page **pages);
1860int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1861                             unsigned int gup_flags, struct page **pages);
1862
1863static inline bool get_user_page_fast_only(unsigned long addr,
1864                        unsigned int gup_flags, struct page **pagep)
1865{
1866        return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1867}
1868/*
1869 * per-process(per-mm_struct) statistics.
1870 */
1871static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1872{
1873        long val = atomic_long_read(&mm->rss_stat.count[member]);
1874
1875#ifdef SPLIT_RSS_COUNTING
1876        /*
1877         * counter is updated in asynchronous manner and may go to minus.
1878         * But it's never be expected number for users.
1879         */
1880        if (val < 0)
1881                val = 0;
1882#endif
1883        return (unsigned long)val;
1884}
1885
1886void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1887
1888static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1889{
1890        long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1891
1892        mm_trace_rss_stat(mm, member, count);
1893}
1894
1895static inline void inc_mm_counter(struct mm_struct *mm, int member)
1896{
1897        long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1898
1899        mm_trace_rss_stat(mm, member, count);
1900}
1901
1902static inline void dec_mm_counter(struct mm_struct *mm, int member)
1903{
1904        long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1905
1906        mm_trace_rss_stat(mm, member, count);
1907}
1908
1909/* Optimized variant when page is already known not to be PageAnon */
1910static inline int mm_counter_file(struct page *page)
1911{
1912        if (PageSwapBacked(page))
1913                return MM_SHMEMPAGES;
1914        return MM_FILEPAGES;
1915}
1916
1917static inline int mm_counter(struct page *page)
1918{
1919        if (PageAnon(page))
1920                return MM_ANONPAGES;
1921        return mm_counter_file(page);
1922}
1923
1924static inline unsigned long get_mm_rss(struct mm_struct *mm)
1925{
1926        return get_mm_counter(mm, MM_FILEPAGES) +
1927                get_mm_counter(mm, MM_ANONPAGES) +
1928                get_mm_counter(mm, MM_SHMEMPAGES);
1929}
1930
1931static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1932{
1933        return max(mm->hiwater_rss, get_mm_rss(mm));
1934}
1935
1936static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1937{
1938        return max(mm->hiwater_vm, mm->total_vm);
1939}
1940
1941static inline void update_hiwater_rss(struct mm_struct *mm)
1942{
1943        unsigned long _rss = get_mm_rss(mm);
1944
1945        if ((mm)->hiwater_rss < _rss)
1946                (mm)->hiwater_rss = _rss;
1947}
1948
1949static inline void update_hiwater_vm(struct mm_struct *mm)
1950{
1951        if (mm->hiwater_vm < mm->total_vm)
1952                mm->hiwater_vm = mm->total_vm;
1953}
1954
1955static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1956{
1957        mm->hiwater_rss = get_mm_rss(mm);
1958}
1959
1960static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1961                                         struct mm_struct *mm)
1962{
1963        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1964
1965        if (*maxrss < hiwater_rss)
1966                *maxrss = hiwater_rss;
1967}
1968
1969#if defined(SPLIT_RSS_COUNTING)
1970void sync_mm_rss(struct mm_struct *mm);
1971#else
1972static inline void sync_mm_rss(struct mm_struct *mm)
1973{
1974}
1975#endif
1976
1977#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1978static inline int pte_special(pte_t pte)
1979{
1980        return 0;
1981}
1982
1983static inline pte_t pte_mkspecial(pte_t pte)
1984{
1985        return pte;
1986}
1987#endif
1988
1989#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1990static inline int pte_devmap(pte_t pte)
1991{
1992        return 0;
1993}
1994#endif
1995
1996int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1997
1998extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999                               spinlock_t **ptl);
2000static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2001                                    spinlock_t **ptl)
2002{
2003        pte_t *ptep;
2004        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2005        return ptep;
2006}
2007
2008#ifdef __PAGETABLE_P4D_FOLDED
2009static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2010                                                unsigned long address)
2011{
2012        return 0;
2013}
2014#else
2015int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2016#endif
2017
2018#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2019static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2020                                                unsigned long address)
2021{
2022        return 0;
2023}
2024static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2025static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2026
2027#else
2028int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2029
2030static inline void mm_inc_nr_puds(struct mm_struct *mm)
2031{
2032        if (mm_pud_folded(mm))
2033                return;
2034        atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2035}
2036
2037static inline void mm_dec_nr_puds(struct mm_struct *mm)
2038{
2039        if (mm_pud_folded(mm))
2040                return;
2041        atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2042}
2043#endif
2044
2045#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2046static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2047                                                unsigned long address)
2048{
2049        return 0;
2050}
2051
2052static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2053static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2054
2055#else
2056int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2057
2058static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2059{
2060        if (mm_pmd_folded(mm))
2061                return;
2062        atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2063}
2064
2065static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2066{
2067        if (mm_pmd_folded(mm))
2068                return;
2069        atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2070}
2071#endif
2072
2073#ifdef CONFIG_MMU
2074static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2075{
2076        atomic_long_set(&mm->pgtables_bytes, 0);
2077}
2078
2079static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2080{
2081        return atomic_long_read(&mm->pgtables_bytes);
2082}
2083
2084static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2085{
2086        atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2087}
2088
2089static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2090{
2091        atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2092}
2093#else
2094
2095static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2096static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2097{
2098        return 0;
2099}
2100
2101static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2102static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2103#endif
2104
2105int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2106int __pte_alloc_kernel(pmd_t *pmd);
2107
2108#if defined(CONFIG_MMU)
2109
2110static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2111                unsigned long address)
2112{
2113        return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2114                NULL : p4d_offset(pgd, address);
2115}
2116
2117static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2118                unsigned long address)
2119{
2120        return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2121                NULL : pud_offset(p4d, address);
2122}
2123
2124static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2125{
2126        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2127                NULL: pmd_offset(pud, address);
2128}
2129#endif /* CONFIG_MMU */
2130
2131#if USE_SPLIT_PTE_PTLOCKS
2132#if ALLOC_SPLIT_PTLOCKS
2133void __init ptlock_cache_init(void);
2134extern bool ptlock_alloc(struct page *page);
2135extern void ptlock_free(struct page *page);
2136
2137static inline spinlock_t *ptlock_ptr(struct page *page)
2138{
2139        return page->ptl;
2140}
2141#else /* ALLOC_SPLIT_PTLOCKS */
2142static inline void ptlock_cache_init(void)
2143{
2144}
2145
2146static inline bool ptlock_alloc(struct page *page)
2147{
2148        return true;
2149}
2150
2151static inline void ptlock_free(struct page *page)
2152{
2153}
2154
2155static inline spinlock_t *ptlock_ptr(struct page *page)
2156{
2157        return &page->ptl;
2158}
2159#endif /* ALLOC_SPLIT_PTLOCKS */
2160
2161static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2162{
2163        return ptlock_ptr(pmd_page(*pmd));
2164}
2165
2166static inline bool ptlock_init(struct page *page)
2167{
2168        /*
2169         * prep_new_page() initialize page->private (and therefore page->ptl)
2170         * with 0. Make sure nobody took it in use in between.
2171         *
2172         * It can happen if arch try to use slab for page table allocation:
2173         * slab code uses page->slab_cache, which share storage with page->ptl.
2174         */
2175        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2176        if (!ptlock_alloc(page))
2177                return false;
2178        spin_lock_init(ptlock_ptr(page));
2179        return true;
2180}
2181
2182#else   /* !USE_SPLIT_PTE_PTLOCKS */
2183/*
2184 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2185 */
2186static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2187{
2188        return &mm->page_table_lock;
2189}
2190static inline void ptlock_cache_init(void) {}
2191static inline bool ptlock_init(struct page *page) { return true; }
2192static inline void ptlock_free(struct page *page) {}
2193#endif /* USE_SPLIT_PTE_PTLOCKS */
2194
2195static inline void pgtable_init(void)
2196{
2197        ptlock_cache_init();
2198        pgtable_cache_init();
2199}
2200
2201static inline bool pgtable_pte_page_ctor(struct page *page)
2202{
2203        if (!ptlock_init(page))
2204                return false;
2205        __SetPageTable(page);
2206        inc_zone_page_state(page, NR_PAGETABLE);
2207        return true;
2208}
2209
2210static inline void pgtable_pte_page_dtor(struct page *page)
2211{
2212        ptlock_free(page);
2213        __ClearPageTable(page);
2214        dec_zone_page_state(page, NR_PAGETABLE);
2215}
2216
2217#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
2218({                                                      \
2219        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
2220        pte_t *__pte = pte_offset_map(pmd, address);    \
2221        *(ptlp) = __ptl;                                \
2222        spin_lock(__ptl);                               \
2223        __pte;                                          \
2224})
2225
2226#define pte_unmap_unlock(pte, ptl)      do {            \
2227        spin_unlock(ptl);                               \
2228        pte_unmap(pte);                                 \
2229} while (0)
2230
2231#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2232
2233#define pte_alloc_map(mm, pmd, address)                 \
2234        (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2235
2236#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2237        (pte_alloc(mm, pmd) ?                   \
2238                 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2239
2240#define pte_alloc_kernel(pmd, address)                  \
2241        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2242                NULL: pte_offset_kernel(pmd, address))
2243
2244#if USE_SPLIT_PMD_PTLOCKS
2245
2246static struct page *pmd_to_page(pmd_t *pmd)
2247{
2248        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2249        return virt_to_page((void *)((unsigned long) pmd & mask));
2250}
2251
2252static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2253{
2254        return ptlock_ptr(pmd_to_page(pmd));
2255}
2256
2257static inline bool pmd_ptlock_init(struct page *page)
2258{
2259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260        page->pmd_huge_pte = NULL;
2261#endif
2262        return ptlock_init(page);
2263}
2264
2265static inline void pmd_ptlock_free(struct page *page)
2266{
2267#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2268        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2269#endif
2270        ptlock_free(page);
2271}
2272
2273#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2274
2275#else
2276
2277static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2278{
2279        return &mm->page_table_lock;
2280}
2281
2282static inline bool pmd_ptlock_init(struct page *page) { return true; }
2283static inline void pmd_ptlock_free(struct page *page) {}
2284
2285#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2286
2287#endif
2288
2289static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2290{
2291        spinlock_t *ptl = pmd_lockptr(mm, pmd);
2292        spin_lock(ptl);
2293        return ptl;
2294}
2295
2296static inline bool pgtable_pmd_page_ctor(struct page *page)
2297{
2298        if (!pmd_ptlock_init(page))
2299                return false;
2300        __SetPageTable(page);
2301        inc_zone_page_state(page, NR_PAGETABLE);
2302        return true;
2303}
2304
2305static inline void pgtable_pmd_page_dtor(struct page *page)
2306{
2307        pmd_ptlock_free(page);
2308        __ClearPageTable(page);
2309        dec_zone_page_state(page, NR_PAGETABLE);
2310}
2311
2312/*
2313 * No scalability reason to split PUD locks yet, but follow the same pattern
2314 * as the PMD locks to make it easier if we decide to.  The VM should not be
2315 * considered ready to switch to split PUD locks yet; there may be places
2316 * which need to be converted from page_table_lock.
2317 */
2318static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2319{
2320        return &mm->page_table_lock;
2321}
2322
2323static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2324{
2325        spinlock_t *ptl = pud_lockptr(mm, pud);
2326
2327        spin_lock(ptl);
2328        return ptl;
2329}
2330
2331extern void __init pagecache_init(void);
2332extern void __init free_area_init_memoryless_node(int nid);
2333extern void free_initmem(void);
2334
2335/*
2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2337 * into the buddy system. The freed pages will be poisoned with pattern
2338 * "poison" if it's within range [0, UCHAR_MAX].
2339 * Return pages freed into the buddy system.
2340 */
2341extern unsigned long free_reserved_area(void *start, void *end,
2342                                        int poison, const char *s);
2343
2344#ifdef  CONFIG_HIGHMEM
2345/*
2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2347 * and totalram_pages.
2348 */
2349extern void free_highmem_page(struct page *page);
2350#endif
2351
2352extern void adjust_managed_page_count(struct page *page, long count);
2353extern void mem_init_print_info(const char *str);
2354
2355extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2356
2357/* Free the reserved page into the buddy system, so it gets managed. */
2358static inline void __free_reserved_page(struct page *page)
2359{
2360        ClearPageReserved(page);
2361        init_page_count(page);
2362        __free_page(page);
2363}
2364
2365static inline void free_reserved_page(struct page *page)
2366{
2367        __free_reserved_page(page);
2368        adjust_managed_page_count(page, 1);
2369}
2370
2371static inline void mark_page_reserved(struct page *page)
2372{
2373        SetPageReserved(page);
2374        adjust_managed_page_count(page, -1);
2375}
2376
2377/*
2378 * Default method to free all the __init memory into the buddy system.
2379 * The freed pages will be poisoned with pattern "poison" if it's within
2380 * range [0, UCHAR_MAX].
2381 * Return pages freed into the buddy system.
2382 */
2383static inline unsigned long free_initmem_default(int poison)
2384{
2385        extern char __init_begin[], __init_end[];
2386
2387        return free_reserved_area(&__init_begin, &__init_end,
2388                                  poison, "unused kernel");
2389}
2390
2391static inline unsigned long get_num_physpages(void)
2392{
2393        int nid;
2394        unsigned long phys_pages = 0;
2395
2396        for_each_online_node(nid)
2397                phys_pages += node_present_pages(nid);
2398
2399        return phys_pages;
2400}
2401
2402/*
2403 * Using memblock node mappings, an architecture may initialise its
2404 * zones, allocate the backing mem_map and account for memory holes in an
2405 * architecture independent manner.
2406 *
2407 * An architecture is expected to register range of page frames backed by
2408 * physical memory with memblock_add[_node]() before calling
2409 * free_area_init() passing in the PFN each zone ends at. At a basic
2410 * usage, an architecture is expected to do something like
2411 *
2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2413 *                                                       max_highmem_pfn};
2414 * for_each_valid_physical_page_range()
2415 *      memblock_add_node(base, size, nid)
2416 * free_area_init(max_zone_pfns);
2417 */
2418void free_area_init(unsigned long *max_zone_pfn);
2419unsigned long node_map_pfn_alignment(void);
2420unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2421                                                unsigned long end_pfn);
2422extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2423                                                unsigned long end_pfn);
2424extern void get_pfn_range_for_nid(unsigned int nid,
2425                        unsigned long *start_pfn, unsigned long *end_pfn);
2426extern unsigned long find_min_pfn_with_active_regions(void);
2427
2428#ifndef CONFIG_NEED_MULTIPLE_NODES
2429static inline int early_pfn_to_nid(unsigned long pfn)
2430{
2431        return 0;
2432}
2433#else
2434/* please see mm/page_alloc.c */
2435extern int __meminit early_pfn_to_nid(unsigned long pfn);
2436/* there is a per-arch backend function. */
2437extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2438                                        struct mminit_pfnnid_cache *state);
2439#endif
2440
2441extern void set_dma_reserve(unsigned long new_dma_reserve);
2442extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2443                enum meminit_context, struct vmem_altmap *, int migratetype);
2444extern void setup_per_zone_wmarks(void);
2445extern int __meminit init_per_zone_wmark_min(void);
2446extern void mem_init(void);
2447extern void __init mmap_init(void);
2448extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2449extern long si_mem_available(void);
2450extern void si_meminfo(struct sysinfo * val);
2451extern void si_meminfo_node(struct sysinfo *val, int nid);
2452#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2453extern unsigned long arch_reserved_kernel_pages(void);
2454#endif
2455
2456extern __printf(3, 4)
2457void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2458
2459extern void setup_per_cpu_pageset(void);
2460
2461/* page_alloc.c */
2462extern int min_free_kbytes;
2463extern int watermark_boost_factor;
2464extern int watermark_scale_factor;
2465extern bool arch_has_descending_max_zone_pfns(void);
2466
2467/* nommu.c */
2468extern atomic_long_t mmap_pages_allocated;
2469extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2470
2471/* interval_tree.c */
2472void vma_interval_tree_insert(struct vm_area_struct *node,
2473                              struct rb_root_cached *root);
2474void vma_interval_tree_insert_after(struct vm_area_struct *node,
2475                                    struct vm_area_struct *prev,
2476                                    struct rb_root_cached *root);
2477void vma_interval_tree_remove(struct vm_area_struct *node,
2478                              struct rb_root_cached *root);
2479struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2480                                unsigned long start, unsigned long last);
2481struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2482                                unsigned long start, unsigned long last);
2483
2484#define vma_interval_tree_foreach(vma, root, start, last)               \
2485        for (vma = vma_interval_tree_iter_first(root, start, last);     \
2486             vma; vma = vma_interval_tree_iter_next(vma, start, last))
2487
2488void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2489                                   struct rb_root_cached *root);
2490void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2491                                   struct rb_root_cached *root);
2492struct anon_vma_chain *
2493anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2494                                  unsigned long start, unsigned long last);
2495struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2496        struct anon_vma_chain *node, unsigned long start, unsigned long last);
2497#ifdef CONFIG_DEBUG_VM_RB
2498void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2499#endif
2500
2501#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2502        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2503             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2504
2505/* mmap.c */
2506extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2507extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2508        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2509        struct vm_area_struct *expand);
2510static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2512{
2513        return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2514}
2515extern struct vm_area_struct *vma_merge(struct mm_struct *,
2516        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2517        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2518        struct mempolicy *, struct vm_userfaultfd_ctx);
2519extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2520extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2521        unsigned long addr, int new_below);
2522extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2523        unsigned long addr, int new_below);
2524extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2525extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2526        struct rb_node **, struct rb_node *);
2527extern void unlink_file_vma(struct vm_area_struct *);
2528extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2529        unsigned long addr, unsigned long len, pgoff_t pgoff,
2530        bool *need_rmap_locks);
2531extern void exit_mmap(struct mm_struct *);
2532
2533static inline int check_data_rlimit(unsigned long rlim,
2534                                    unsigned long new,
2535                                    unsigned long start,
2536                                    unsigned long end_data,
2537                                    unsigned long start_data)
2538{
2539        if (rlim < RLIM_INFINITY) {
2540                if (((new - start) + (end_data - start_data)) > rlim)
2541                        return -ENOSPC;
2542        }
2543
2544        return 0;
2545}
2546
2547extern int mm_take_all_locks(struct mm_struct *mm);
2548extern void mm_drop_all_locks(struct mm_struct *mm);
2549
2550extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2551extern struct file *get_mm_exe_file(struct mm_struct *mm);
2552extern struct file *get_task_exe_file(struct task_struct *task);
2553
2554extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2555extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2556
2557extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2558                                   const struct vm_special_mapping *sm);
2559extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2560                                   unsigned long addr, unsigned long len,
2561                                   unsigned long flags,
2562                                   const struct vm_special_mapping *spec);
2563/* This is an obsolete alternative to _install_special_mapping. */
2564extern int install_special_mapping(struct mm_struct *mm,
2565                                   unsigned long addr, unsigned long len,
2566                                   unsigned long flags, struct page **pages);
2567
2568unsigned long randomize_stack_top(unsigned long stack_top);
2569
2570extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2571
2572extern unsigned long mmap_region(struct file *file, unsigned long addr,
2573        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2574        struct list_head *uf);
2575extern unsigned long do_mmap(struct file *file, unsigned long addr,
2576        unsigned long len, unsigned long prot, unsigned long flags,
2577        unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2578extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2579                       struct list_head *uf, bool downgrade);
2580extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2581                     struct list_head *uf);
2582extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2583
2584#ifdef CONFIG_MMU
2585extern int __mm_populate(unsigned long addr, unsigned long len,
2586                         int ignore_errors);
2587static inline void mm_populate(unsigned long addr, unsigned long len)
2588{
2589        /* Ignore errors */
2590        (void) __mm_populate(addr, len, 1);
2591}
2592#else
2593static inline void mm_populate(unsigned long addr, unsigned long len) {}
2594#endif
2595
2596/* These take the mm semaphore themselves */
2597extern int __must_check vm_brk(unsigned long, unsigned long);
2598extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2599extern int vm_munmap(unsigned long, size_t);
2600extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2601        unsigned long, unsigned long,
2602        unsigned long, unsigned long);
2603
2604struct vm_unmapped_area_info {
2605#define VM_UNMAPPED_AREA_TOPDOWN 1
2606        unsigned long flags;
2607        unsigned long length;
2608        unsigned long low_limit;
2609        unsigned long high_limit;
2610        unsigned long align_mask;
2611        unsigned long align_offset;
2612};
2613
2614extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2615
2616/* truncate.c */
2617extern void truncate_inode_pages(struct address_space *, loff_t);
2618extern void truncate_inode_pages_range(struct address_space *,
2619                                       loff_t lstart, loff_t lend);
2620extern void truncate_inode_pages_final(struct address_space *);
2621
2622/* generic vm_area_ops exported for stackable file systems */
2623extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2624extern void filemap_map_pages(struct vm_fault *vmf,
2625                pgoff_t start_pgoff, pgoff_t end_pgoff);
2626extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2627
2628/* mm/page-writeback.c */
2629int __must_check write_one_page(struct page *page);
2630void task_dirty_inc(struct task_struct *tsk);
2631
2632extern unsigned long stack_guard_gap;
2633/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2634extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2635
2636/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2637extern int expand_downwards(struct vm_area_struct *vma,
2638                unsigned long address);
2639#if VM_GROWSUP
2640extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2641#else
2642  #define expand_upwards(vma, address) (0)
2643#endif
2644
2645/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2646extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2647extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2648                                             struct vm_area_struct **pprev);
2649
2650/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2651   NULL if none.  Assume start_addr < end_addr. */
2652static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2653{
2654        struct vm_area_struct * vma = find_vma(mm,start_addr);
2655
2656        if (vma && end_addr <= vma->vm_start)
2657                vma = NULL;
2658        return vma;
2659}
2660
2661static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2662{
2663        unsigned long vm_start = vma->vm_start;
2664
2665        if (vma->vm_flags & VM_GROWSDOWN) {
2666                vm_start -= stack_guard_gap;
2667                if (vm_start > vma->vm_start)
2668                        vm_start = 0;
2669        }
2670        return vm_start;
2671}
2672
2673static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2674{
2675        unsigned long vm_end = vma->vm_end;
2676
2677        if (vma->vm_flags & VM_GROWSUP) {
2678                vm_end += stack_guard_gap;
2679                if (vm_end < vma->vm_end)
2680                        vm_end = -PAGE_SIZE;
2681        }
2682        return vm_end;
2683}
2684
2685static inline unsigned long vma_pages(struct vm_area_struct *vma)
2686{
2687        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2688}
2689
2690/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2691static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2692                                unsigned long vm_start, unsigned long vm_end)
2693{
2694        struct vm_area_struct *vma = find_vma(mm, vm_start);
2695
2696        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2697                vma = NULL;
2698
2699        return vma;
2700}
2701
2702static inline bool range_in_vma(struct vm_area_struct *vma,
2703                                unsigned long start, unsigned long end)
2704{
2705        return (vma && vma->vm_start <= start && end <= vma->vm_end);
2706}
2707
2708#ifdef CONFIG_MMU
2709pgprot_t vm_get_page_prot(unsigned long vm_flags);
2710void vma_set_page_prot(struct vm_area_struct *vma);
2711#else
2712static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2713{
2714        return __pgprot(0);
2715}
2716static inline void vma_set_page_prot(struct vm_area_struct *vma)
2717{
2718        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2719}
2720#endif
2721
2722#ifdef CONFIG_NUMA_BALANCING
2723unsigned long change_prot_numa(struct vm_area_struct *vma,
2724                        unsigned long start, unsigned long end);
2725#endif
2726
2727struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2728int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2729                        unsigned long pfn, unsigned long size, pgprot_t);
2730int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2731int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2732                        struct page **pages, unsigned long *num);
2733int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2734                                unsigned long num);
2735int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2736                                unsigned long num);
2737vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2738                        unsigned long pfn);
2739vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2740                        unsigned long pfn, pgprot_t pgprot);
2741vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2742                        pfn_t pfn);
2743vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2744                        pfn_t pfn, pgprot_t pgprot);
2745vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2746                unsigned long addr, pfn_t pfn);
2747int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2748
2749static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2750                                unsigned long addr, struct page *page)
2751{
2752        int err = vm_insert_page(vma, addr, page);
2753
2754        if (err == -ENOMEM)
2755                return VM_FAULT_OOM;
2756        if (err < 0 && err != -EBUSY)
2757                return VM_FAULT_SIGBUS;
2758
2759        return VM_FAULT_NOPAGE;
2760}
2761
2762#ifndef io_remap_pfn_range
2763static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2764                                     unsigned long addr, unsigned long pfn,
2765                                     unsigned long size, pgprot_t prot)
2766{
2767        return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2768}
2769#endif
2770
2771static inline vm_fault_t vmf_error(int err)
2772{
2773        if (err == -ENOMEM)
2774                return VM_FAULT_OOM;
2775        return VM_FAULT_SIGBUS;
2776}
2777
2778struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2779                         unsigned int foll_flags);
2780
2781#define FOLL_WRITE      0x01    /* check pte is writable */
2782#define FOLL_TOUCH      0x02    /* mark page accessed */
2783#define FOLL_GET        0x04    /* do get_page on page */
2784#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2785#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2786#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2787                                 * and return without waiting upon it */
2788#define FOLL_POPULATE   0x40    /* fault in page */
2789#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2790#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2791#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2792#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2793#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2794#define FOLL_MLOCK      0x1000  /* lock present pages */
2795#define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2796#define FOLL_COW        0x4000  /* internal GUP flag */
2797#define FOLL_ANON       0x8000  /* don't do file mappings */
2798#define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2799#define FOLL_SPLIT_PMD  0x20000 /* split huge pmd before returning */
2800#define FOLL_PIN        0x40000 /* pages must be released via unpin_user_page */
2801#define FOLL_FAST_ONLY  0x80000 /* gup_fast: prevent fall-back to slow gup */
2802
2803/*
2804 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2805 * other. Here is what they mean, and how to use them:
2806 *
2807 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2808 * period _often_ under userspace control.  This is in contrast to
2809 * iov_iter_get_pages(), whose usages are transient.
2810 *
2811 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2812 * lifetime enforced by the filesystem and we need guarantees that longterm
2813 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2814 * the filesystem.  Ideas for this coordination include revoking the longterm
2815 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2816 * added after the problem with filesystems was found FS DAX VMAs are
2817 * specifically failed.  Filesystem pages are still subject to bugs and use of
2818 * FOLL_LONGTERM should be avoided on those pages.
2819 *
2820 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2821 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2822 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2823 * is due to an incompatibility with the FS DAX check and
2824 * FAULT_FLAG_ALLOW_RETRY.
2825 *
2826 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2827 * that region.  And so, CMA attempts to migrate the page before pinning, when
2828 * FOLL_LONGTERM is specified.
2829 *
2830 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2831 * but an additional pin counting system) will be invoked. This is intended for
2832 * anything that gets a page reference and then touches page data (for example,
2833 * Direct IO). This lets the filesystem know that some non-file-system entity is
2834 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2835 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2836 * a call to unpin_user_page().
2837 *
2838 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2839 * and separate refcounting mechanisms, however, and that means that each has
2840 * its own acquire and release mechanisms:
2841 *
2842 *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2843 *
2844 *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2845 *
2846 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2847 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2848 * calls applied to them, and that's perfectly OK. This is a constraint on the
2849 * callers, not on the pages.)
2850 *
2851 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2852 * directly by the caller. That's in order to help avoid mismatches when
2853 * releasing pages: get_user_pages*() pages must be released via put_page(),
2854 * while pin_user_pages*() pages must be released via unpin_user_page().
2855 *
2856 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2857 */
2858
2859static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2860{
2861        if (vm_fault & VM_FAULT_OOM)
2862                return -ENOMEM;
2863        if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2864                return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2865        if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2866                return -EFAULT;
2867        return 0;
2868}
2869
2870typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2871extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2872                               unsigned long size, pte_fn_t fn, void *data);
2873extern int apply_to_existing_page_range(struct mm_struct *mm,
2874                                   unsigned long address, unsigned long size,
2875                                   pte_fn_t fn, void *data);
2876
2877#ifdef CONFIG_PAGE_POISONING
2878extern bool page_poisoning_enabled(void);
2879extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2880#else
2881static inline bool page_poisoning_enabled(void) { return false; }
2882static inline void kernel_poison_pages(struct page *page, int numpages,
2883                                        int enable) { }
2884#endif
2885
2886#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2887DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2888#else
2889DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2890#endif
2891static inline bool want_init_on_alloc(gfp_t flags)
2892{
2893        if (static_branch_unlikely(&init_on_alloc) &&
2894            !page_poisoning_enabled())
2895                return true;
2896        return flags & __GFP_ZERO;
2897}
2898
2899#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2900DECLARE_STATIC_KEY_TRUE(init_on_free);
2901#else
2902DECLARE_STATIC_KEY_FALSE(init_on_free);
2903#endif
2904static inline bool want_init_on_free(void)
2905{
2906        return static_branch_unlikely(&init_on_free) &&
2907               !page_poisoning_enabled();
2908}
2909
2910#ifdef CONFIG_DEBUG_PAGEALLOC
2911extern void init_debug_pagealloc(void);
2912#else
2913static inline void init_debug_pagealloc(void) {}
2914#endif
2915extern bool _debug_pagealloc_enabled_early;
2916DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2917
2918static inline bool debug_pagealloc_enabled(void)
2919{
2920        return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2921                _debug_pagealloc_enabled_early;
2922}
2923
2924/*
2925 * For use in fast paths after init_debug_pagealloc() has run, or when a
2926 * false negative result is not harmful when called too early.
2927 */
2928static inline bool debug_pagealloc_enabled_static(void)
2929{
2930        if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2931                return false;
2932
2933        return static_branch_unlikely(&_debug_pagealloc_enabled);
2934}
2935
2936#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2937extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2938
2939/*
2940 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2941 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2942 */
2943static inline void
2944kernel_map_pages(struct page *page, int numpages, int enable)
2945{
2946        __kernel_map_pages(page, numpages, enable);
2947}
2948#ifdef CONFIG_HIBERNATION
2949extern bool kernel_page_present(struct page *page);
2950#endif  /* CONFIG_HIBERNATION */
2951#else   /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2952static inline void
2953kernel_map_pages(struct page *page, int numpages, int enable) {}
2954#ifdef CONFIG_HIBERNATION
2955static inline bool kernel_page_present(struct page *page) { return true; }
2956#endif  /* CONFIG_HIBERNATION */
2957#endif  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2958
2959#ifdef __HAVE_ARCH_GATE_AREA
2960extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2961extern int in_gate_area_no_mm(unsigned long addr);
2962extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2963#else
2964static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2965{
2966        return NULL;
2967}
2968static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2969static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2970{
2971        return 0;
2972}
2973#endif  /* __HAVE_ARCH_GATE_AREA */
2974
2975extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2976
2977#ifdef CONFIG_SYSCTL
2978extern int sysctl_drop_caches;
2979int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2980                loff_t *);
2981#endif
2982
2983void drop_slab(void);
2984void drop_slab_node(int nid);
2985
2986#ifndef CONFIG_MMU
2987#define randomize_va_space 0
2988#else
2989extern int randomize_va_space;
2990#endif
2991
2992const char * arch_vma_name(struct vm_area_struct *vma);
2993#ifdef CONFIG_MMU
2994void print_vma_addr(char *prefix, unsigned long rip);
2995#else
2996static inline void print_vma_addr(char *prefix, unsigned long rip)
2997{
2998}
2999#endif
3000
3001void *sparse_buffer_alloc(unsigned long size);
3002struct page * __populate_section_memmap(unsigned long pfn,
3003                unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3004pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3005p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3006pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3007pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3008pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3009                            struct vmem_altmap *altmap);
3010void *vmemmap_alloc_block(unsigned long size, int node);
3011struct vmem_altmap;
3012void *vmemmap_alloc_block_buf(unsigned long size, int node,
3013                              struct vmem_altmap *altmap);
3014void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3015int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3016                               int node, struct vmem_altmap *altmap);
3017int vmemmap_populate(unsigned long start, unsigned long end, int node,
3018                struct vmem_altmap *altmap);
3019void vmemmap_populate_print_last(void);
3020#ifdef CONFIG_MEMORY_HOTPLUG
3021void vmemmap_free(unsigned long start, unsigned long end,
3022                struct vmem_altmap *altmap);
3023#endif
3024void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3025                                  unsigned long nr_pages);
3026
3027enum mf_flags {
3028        MF_COUNT_INCREASED = 1 << 0,
3029        MF_ACTION_REQUIRED = 1 << 1,
3030        MF_MUST_KILL = 1 << 2,
3031        MF_SOFT_OFFLINE = 1 << 3,
3032};
3033extern int memory_failure(unsigned long pfn, int flags);
3034extern void memory_failure_queue(unsigned long pfn, int flags);
3035extern void memory_failure_queue_kick(int cpu);
3036extern int unpoison_memory(unsigned long pfn);
3037extern int sysctl_memory_failure_early_kill;
3038extern int sysctl_memory_failure_recovery;
3039extern void shake_page(struct page *p, int access);
3040extern atomic_long_t num_poisoned_pages __read_mostly;
3041extern int soft_offline_page(unsigned long pfn, int flags);
3042
3043
3044/*
3045 * Error handlers for various types of pages.
3046 */
3047enum mf_result {
3048        MF_IGNORED,     /* Error: cannot be handled */
3049        MF_FAILED,      /* Error: handling failed */
3050        MF_DELAYED,     /* Will be handled later */
3051        MF_RECOVERED,   /* Successfully recovered */
3052};
3053
3054enum mf_action_page_type {
3055        MF_MSG_KERNEL,
3056        MF_MSG_KERNEL_HIGH_ORDER,
3057        MF_MSG_SLAB,
3058        MF_MSG_DIFFERENT_COMPOUND,
3059        MF_MSG_POISONED_HUGE,
3060        MF_MSG_HUGE,
3061        MF_MSG_FREE_HUGE,
3062        MF_MSG_NON_PMD_HUGE,
3063        MF_MSG_UNMAP_FAILED,
3064        MF_MSG_DIRTY_SWAPCACHE,
3065        MF_MSG_CLEAN_SWAPCACHE,
3066        MF_MSG_DIRTY_MLOCKED_LRU,
3067        MF_MSG_CLEAN_MLOCKED_LRU,
3068        MF_MSG_DIRTY_UNEVICTABLE_LRU,
3069        MF_MSG_CLEAN_UNEVICTABLE_LRU,
3070        MF_MSG_DIRTY_LRU,
3071        MF_MSG_CLEAN_LRU,
3072        MF_MSG_TRUNCATED_LRU,
3073        MF_MSG_BUDDY,
3074        MF_MSG_BUDDY_2ND,
3075        MF_MSG_DAX,
3076        MF_MSG_UNSPLIT_THP,
3077        MF_MSG_UNKNOWN,
3078};
3079
3080#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3081extern void clear_huge_page(struct page *page,
3082                            unsigned long addr_hint,
3083                            unsigned int pages_per_huge_page);
3084extern void copy_user_huge_page(struct page *dst, struct page *src,
3085                                unsigned long addr_hint,
3086                                struct vm_area_struct *vma,
3087                                unsigned int pages_per_huge_page);
3088extern long copy_huge_page_from_user(struct page *dst_page,
3089                                const void __user *usr_src,
3090                                unsigned int pages_per_huge_page,
3091                                bool allow_pagefault);
3092
3093/**
3094 * vma_is_special_huge - Are transhuge page-table entries considered special?
3095 * @vma: Pointer to the struct vm_area_struct to consider
3096 *
3097 * Whether transhuge page-table entries are considered "special" following
3098 * the definition in vm_normal_page().
3099 *
3100 * Return: true if transhuge page-table entries should be considered special,
3101 * false otherwise.
3102 */
3103static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3104{
3105        return vma_is_dax(vma) || (vma->vm_file &&
3106                                   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3107}
3108
3109#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3110
3111#ifdef CONFIG_DEBUG_PAGEALLOC
3112extern unsigned int _debug_guardpage_minorder;
3113DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3114
3115static inline unsigned int debug_guardpage_minorder(void)
3116{
3117        return _debug_guardpage_minorder;
3118}
3119
3120static inline bool debug_guardpage_enabled(void)
3121{
3122        return static_branch_unlikely(&_debug_guardpage_enabled);
3123}
3124
3125static inline bool page_is_guard(struct page *page)
3126{
3127        if (!debug_guardpage_enabled())
3128                return false;
3129
3130        return PageGuard(page);
3131}
3132#else
3133static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3134static inline bool debug_guardpage_enabled(void) { return false; }
3135static inline bool page_is_guard(struct page *page) { return false; }
3136#endif /* CONFIG_DEBUG_PAGEALLOC */
3137
3138#if MAX_NUMNODES > 1
3139void __init setup_nr_node_ids(void);
3140#else
3141static inline void setup_nr_node_ids(void) {}
3142#endif
3143
3144extern int memcmp_pages(struct page *page1, struct page *page2);
3145
3146static inline int pages_identical(struct page *page1, struct page *page2)
3147{
3148        return !memcmp_pages(page1, page2);
3149}
3150
3151#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3152unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3153                                                pgoff_t first_index, pgoff_t nr,
3154                                                pgoff_t bitmap_pgoff,
3155                                                unsigned long *bitmap,
3156                                                pgoff_t *start,
3157                                                pgoff_t *end);
3158
3159unsigned long wp_shared_mapping_range(struct address_space *mapping,
3160                                      pgoff_t first_index, pgoff_t nr);
3161#endif
3162
3163extern int sysctl_nr_trim_pages;
3164
3165#endif /* __KERNEL__ */
3166#endif /* _LINUX_MM_H */
3167