linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
  67 * usually PageAnon or shmem pages but please note that even anonymous pages
  68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
  69 * a result of MADV_FREE).
  70 *
  71 * PG_uptodate tells whether the page's contents is valid.  When a read
  72 * completes, the page becomes uptodate, unless a disk I/O error happened.
  73 *
  74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  75 * file-backed pagecache (see mm/vmscan.c).
  76 *
  77 * PG_error is set to indicate that an I/O error occurred on this page.
  78 *
  79 * PG_arch_1 is an architecture specific page state bit.  The generic code
  80 * guarantees that this bit is cleared for a page when it first is entered into
  81 * the page cache.
  82 *
  83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  84 * data with incorrect ECC bits that triggered a machine check. Accessing is
  85 * not safe since it may cause another machine check. Don't touch!
  86 */
  87
  88/*
  89 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  90 * locked- and dirty-page accounting.
  91 *
  92 * The page flags field is split into two parts, the main flags area
  93 * which extends from the low bits upwards, and the fields area which
  94 * extends from the high bits downwards.
  95 *
  96 *  | FIELD | ... | FLAGS |
  97 *  N-1           ^       0
  98 *               (NR_PAGEFLAGS)
  99 *
 100 * The fields area is reserved for fields mapping zone, node (for NUMA) and
 101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
 102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
 103 */
 104enum pageflags {
 105        PG_locked,              /* Page is locked. Don't touch. */
 106        PG_referenced,
 107        PG_uptodate,
 108        PG_dirty,
 109        PG_lru,
 110        PG_active,
 111        PG_workingset,
 112        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 113        PG_error,
 114        PG_slab,
 115        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 116        PG_arch_1,
 117        PG_reserved,
 118        PG_private,             /* If pagecache, has fs-private data */
 119        PG_private_2,           /* If pagecache, has fs aux data */
 120        PG_writeback,           /* Page is under writeback */
 121        PG_head,                /* A head page */
 122        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 123        PG_reclaim,             /* To be reclaimed asap */
 124        PG_swapbacked,          /* Page is backed by RAM/swap */
 125        PG_unevictable,         /* Page is "unevictable"  */
 126#ifdef CONFIG_MMU
 127        PG_mlocked,             /* Page is vma mlocked */
 128#endif
 129#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 130        PG_uncached,            /* Page has been mapped as uncached */
 131#endif
 132#ifdef CONFIG_MEMORY_FAILURE
 133        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 134#endif
 135#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 136        PG_young,
 137        PG_idle,
 138#endif
 139#ifdef CONFIG_64BIT
 140        PG_arch_2,
 141#endif
 142        __NR_PAGEFLAGS,
 143
 144        /* Filesystems */
 145        PG_checked = PG_owner_priv_1,
 146
 147        /* SwapBacked */
 148        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 149
 150        /* Two page bits are conscripted by FS-Cache to maintain local caching
 151         * state.  These bits are set on pages belonging to the netfs's inodes
 152         * when those inodes are being locally cached.
 153         */
 154        PG_fscache = PG_private_2,      /* page backed by cache */
 155
 156        /* XEN */
 157        /* Pinned in Xen as a read-only pagetable page. */
 158        PG_pinned = PG_owner_priv_1,
 159        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 160        PG_savepinned = PG_dirty,
 161        /* Has a grant mapping of another (foreign) domain's page. */
 162        PG_foreign = PG_owner_priv_1,
 163        /* Remapped by swiotlb-xen. */
 164        PG_xen_remapped = PG_owner_priv_1,
 165
 166        /* SLOB */
 167        PG_slob_free = PG_private,
 168
 169        /* Compound pages. Stored in first tail page's flags */
 170        PG_double_map = PG_workingset,
 171
 172        /* non-lru isolated movable page */
 173        PG_isolated = PG_reclaim,
 174
 175        /* Only valid for buddy pages. Used to track pages that are reported */
 176        PG_reported = PG_uptodate,
 177};
 178
 179#ifndef __GENERATING_BOUNDS_H
 180
 181struct page;    /* forward declaration */
 182
 183static inline struct page *compound_head(struct page *page)
 184{
 185        unsigned long head = READ_ONCE(page->compound_head);
 186
 187        if (unlikely(head & 1))
 188                return (struct page *) (head - 1);
 189        return page;
 190}
 191
 192static __always_inline int PageTail(struct page *page)
 193{
 194        return READ_ONCE(page->compound_head) & 1;
 195}
 196
 197static __always_inline int PageCompound(struct page *page)
 198{
 199        return test_bit(PG_head, &page->flags) || PageTail(page);
 200}
 201
 202#define PAGE_POISON_PATTERN     -1l
 203static inline int PagePoisoned(const struct page *page)
 204{
 205        return page->flags == PAGE_POISON_PATTERN;
 206}
 207
 208#ifdef CONFIG_DEBUG_VM
 209void page_init_poison(struct page *page, size_t size);
 210#else
 211static inline void page_init_poison(struct page *page, size_t size)
 212{
 213}
 214#endif
 215
 216/*
 217 * Page flags policies wrt compound pages
 218 *
 219 * PF_POISONED_CHECK
 220 *     check if this struct page poisoned/uninitialized
 221 *
 222 * PF_ANY:
 223 *     the page flag is relevant for small, head and tail pages.
 224 *
 225 * PF_HEAD:
 226 *     for compound page all operations related to the page flag applied to
 227 *     head page.
 228 *
 229 * PF_ONLY_HEAD:
 230 *     for compound page, callers only ever operate on the head page.
 231 *
 232 * PF_NO_TAIL:
 233 *     modifications of the page flag must be done on small or head pages,
 234 *     checks can be done on tail pages too.
 235 *
 236 * PF_NO_COMPOUND:
 237 *     the page flag is not relevant for compound pages.
 238 *
 239 * PF_SECOND:
 240 *     the page flag is stored in the first tail page.
 241 */
 242#define PF_POISONED_CHECK(page) ({                                      \
 243                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 244                page; })
 245#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 246#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 247#define PF_ONLY_HEAD(page, enforce) ({                                  \
 248                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 249                PF_POISONED_CHECK(page); })
 250#define PF_NO_TAIL(page, enforce) ({                                    \
 251                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 252                PF_POISONED_CHECK(compound_head(page)); })
 253#define PF_NO_COMPOUND(page, enforce) ({                                \
 254                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 255                PF_POISONED_CHECK(page); })
 256#define PF_SECOND(page, enforce) ({                                     \
 257                VM_BUG_ON_PGFLAGS(!PageHead(page), page);               \
 258                PF_POISONED_CHECK(&page[1]); })
 259
 260/*
 261 * Macros to create function definitions for page flags
 262 */
 263#define TESTPAGEFLAG(uname, lname, policy)                              \
 264static __always_inline int Page##uname(struct page *page)               \
 265        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 266
 267#define SETPAGEFLAG(uname, lname, policy)                               \
 268static __always_inline void SetPage##uname(struct page *page)           \
 269        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 270
 271#define CLEARPAGEFLAG(uname, lname, policy)                             \
 272static __always_inline void ClearPage##uname(struct page *page)         \
 273        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 274
 275#define __SETPAGEFLAG(uname, lname, policy)                             \
 276static __always_inline void __SetPage##uname(struct page *page)         \
 277        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 278
 279#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 280static __always_inline void __ClearPage##uname(struct page *page)       \
 281        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 282
 283#define TESTSETFLAG(uname, lname, policy)                               \
 284static __always_inline int TestSetPage##uname(struct page *page)        \
 285        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 286
 287#define TESTCLEARFLAG(uname, lname, policy)                             \
 288static __always_inline int TestClearPage##uname(struct page *page)      \
 289        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 290
 291#define PAGEFLAG(uname, lname, policy)                                  \
 292        TESTPAGEFLAG(uname, lname, policy)                              \
 293        SETPAGEFLAG(uname, lname, policy)                               \
 294        CLEARPAGEFLAG(uname, lname, policy)
 295
 296#define __PAGEFLAG(uname, lname, policy)                                \
 297        TESTPAGEFLAG(uname, lname, policy)                              \
 298        __SETPAGEFLAG(uname, lname, policy)                             \
 299        __CLEARPAGEFLAG(uname, lname, policy)
 300
 301#define TESTSCFLAG(uname, lname, policy)                                \
 302        TESTSETFLAG(uname, lname, policy)                               \
 303        TESTCLEARFLAG(uname, lname, policy)
 304
 305#define TESTPAGEFLAG_FALSE(uname)                                       \
 306static inline int Page##uname(const struct page *page) { return 0; }
 307
 308#define SETPAGEFLAG_NOOP(uname)                                         \
 309static inline void SetPage##uname(struct page *page) {  }
 310
 311#define CLEARPAGEFLAG_NOOP(uname)                                       \
 312static inline void ClearPage##uname(struct page *page) {  }
 313
 314#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 315static inline void __ClearPage##uname(struct page *page) {  }
 316
 317#define TESTSETFLAG_FALSE(uname)                                        \
 318static inline int TestSetPage##uname(struct page *page) { return 0; }
 319
 320#define TESTCLEARFLAG_FALSE(uname)                                      \
 321static inline int TestClearPage##uname(struct page *page) { return 0; }
 322
 323#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 324        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 325
 326#define TESTSCFLAG_FALSE(uname)                                         \
 327        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 328
 329__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 330PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 331PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
 332PAGEFLAG(Referenced, referenced, PF_HEAD)
 333        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 334        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 335PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 336        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 337PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 338PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 339        TESTCLEARFLAG(Active, active, PF_HEAD)
 340PAGEFLAG(Workingset, workingset, PF_HEAD)
 341        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 342__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 343__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 344PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 345
 346/* Xen */
 347PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 348        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 349PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 350PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 351PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 352        TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 353
 354PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 355        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 356        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 357PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 358        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 359        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 360
 361/*
 362 * Private page markings that may be used by the filesystem that owns the page
 363 * for its own purposes.
 364 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 365 */
 366PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 367        __CLEARPAGEFLAG(Private, private, PF_ANY)
 368PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 369PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 370        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 371
 372/*
 373 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 374 * risky: they bypass page accounting.
 375 */
 376TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 377        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 378PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 379
 380/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 381PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 382        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 383PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 384        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 385
 386#ifdef CONFIG_HIGHMEM
 387/*
 388 * Must use a macro here due to header dependency issues. page_zone() is not
 389 * available at this point.
 390 */
 391#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 392#else
 393PAGEFLAG_FALSE(HighMem)
 394#endif
 395
 396#ifdef CONFIG_SWAP
 397static __always_inline int PageSwapCache(struct page *page)
 398{
 399#ifdef CONFIG_THP_SWAP
 400        page = compound_head(page);
 401#endif
 402        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 403
 404}
 405SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 406CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 407#else
 408PAGEFLAG_FALSE(SwapCache)
 409#endif
 410
 411PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 412        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 413        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 414
 415#ifdef CONFIG_MMU
 416PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 417        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 418        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 419#else
 420PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 421        TESTSCFLAG_FALSE(Mlocked)
 422#endif
 423
 424#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 425PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 426#else
 427PAGEFLAG_FALSE(Uncached)
 428#endif
 429
 430#ifdef CONFIG_MEMORY_FAILURE
 431PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 432TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 433#define __PG_HWPOISON (1UL << PG_hwpoison)
 434extern bool take_page_off_buddy(struct page *page);
 435#else
 436PAGEFLAG_FALSE(HWPoison)
 437#define __PG_HWPOISON 0
 438#endif
 439
 440#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 441TESTPAGEFLAG(Young, young, PF_ANY)
 442SETPAGEFLAG(Young, young, PF_ANY)
 443TESTCLEARFLAG(Young, young, PF_ANY)
 444PAGEFLAG(Idle, idle, PF_ANY)
 445#endif
 446
 447/*
 448 * PageReported() is used to track reported free pages within the Buddy
 449 * allocator. We can use the non-atomic version of the test and set
 450 * operations as both should be shielded with the zone lock to prevent
 451 * any possible races on the setting or clearing of the bit.
 452 */
 453__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
 454
 455/*
 456 * On an anonymous page mapped into a user virtual memory area,
 457 * page->mapping points to its anon_vma, not to a struct address_space;
 458 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 459 *
 460 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 461 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 462 * bit; and then page->mapping points, not to an anon_vma, but to a private
 463 * structure which KSM associates with that merged page.  See ksm.h.
 464 *
 465 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 466 * page and then page->mapping points a struct address_space.
 467 *
 468 * Please note that, confusingly, "page_mapping" refers to the inode
 469 * address_space which maps the page from disk; whereas "page_mapped"
 470 * refers to user virtual address space into which the page is mapped.
 471 */
 472#define PAGE_MAPPING_ANON       0x1
 473#define PAGE_MAPPING_MOVABLE    0x2
 474#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 475#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 476
 477static __always_inline int PageMappingFlags(struct page *page)
 478{
 479        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 480}
 481
 482static __always_inline int PageAnon(struct page *page)
 483{
 484        page = compound_head(page);
 485        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 486}
 487
 488static __always_inline int __PageMovable(struct page *page)
 489{
 490        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 491                                PAGE_MAPPING_MOVABLE;
 492}
 493
 494#ifdef CONFIG_KSM
 495/*
 496 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 497 * which KSM maps into multiple mms, wherever identical anonymous page content
 498 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 499 * anon_vma, but to that page's node of the stable tree.
 500 */
 501static __always_inline int PageKsm(struct page *page)
 502{
 503        page = compound_head(page);
 504        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 505                                PAGE_MAPPING_KSM;
 506}
 507#else
 508TESTPAGEFLAG_FALSE(Ksm)
 509#endif
 510
 511u64 stable_page_flags(struct page *page);
 512
 513static inline int PageUptodate(struct page *page)
 514{
 515        int ret;
 516        page = compound_head(page);
 517        ret = test_bit(PG_uptodate, &(page)->flags);
 518        /*
 519         * Must ensure that the data we read out of the page is loaded
 520         * _after_ we've loaded page->flags to check for PageUptodate.
 521         * We can skip the barrier if the page is not uptodate, because
 522         * we wouldn't be reading anything from it.
 523         *
 524         * See SetPageUptodate() for the other side of the story.
 525         */
 526        if (ret)
 527                smp_rmb();
 528
 529        return ret;
 530}
 531
 532static __always_inline void __SetPageUptodate(struct page *page)
 533{
 534        VM_BUG_ON_PAGE(PageTail(page), page);
 535        smp_wmb();
 536        __set_bit(PG_uptodate, &page->flags);
 537}
 538
 539static __always_inline void SetPageUptodate(struct page *page)
 540{
 541        VM_BUG_ON_PAGE(PageTail(page), page);
 542        /*
 543         * Memory barrier must be issued before setting the PG_uptodate bit,
 544         * so that all previous stores issued in order to bring the page
 545         * uptodate are actually visible before PageUptodate becomes true.
 546         */
 547        smp_wmb();
 548        set_bit(PG_uptodate, &page->flags);
 549}
 550
 551CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 552
 553int test_clear_page_writeback(struct page *page);
 554int __test_set_page_writeback(struct page *page, bool keep_write);
 555
 556#define test_set_page_writeback(page)                   \
 557        __test_set_page_writeback(page, false)
 558#define test_set_page_writeback_keepwrite(page) \
 559        __test_set_page_writeback(page, true)
 560
 561static inline void set_page_writeback(struct page *page)
 562{
 563        test_set_page_writeback(page);
 564}
 565
 566static inline void set_page_writeback_keepwrite(struct page *page)
 567{
 568        test_set_page_writeback_keepwrite(page);
 569}
 570
 571__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 572
 573static __always_inline void set_compound_head(struct page *page, struct page *head)
 574{
 575        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 576}
 577
 578static __always_inline void clear_compound_head(struct page *page)
 579{
 580        WRITE_ONCE(page->compound_head, 0);
 581}
 582
 583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 584static inline void ClearPageCompound(struct page *page)
 585{
 586        BUG_ON(!PageHead(page));
 587        ClearPageHead(page);
 588}
 589#endif
 590
 591#define PG_head_mask ((1UL << PG_head))
 592
 593#ifdef CONFIG_HUGETLB_PAGE
 594int PageHuge(struct page *page);
 595int PageHeadHuge(struct page *page);
 596bool page_huge_active(struct page *page);
 597#else
 598TESTPAGEFLAG_FALSE(Huge)
 599TESTPAGEFLAG_FALSE(HeadHuge)
 600
 601static inline bool page_huge_active(struct page *page)
 602{
 603        return 0;
 604}
 605#endif
 606
 607
 608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 609/*
 610 * PageHuge() only returns true for hugetlbfs pages, but not for
 611 * normal or transparent huge pages.
 612 *
 613 * PageTransHuge() returns true for both transparent huge and
 614 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 615 * called only in the core VM paths where hugetlbfs pages can't exist.
 616 */
 617static inline int PageTransHuge(struct page *page)
 618{
 619        VM_BUG_ON_PAGE(PageTail(page), page);
 620        return PageHead(page);
 621}
 622
 623/*
 624 * PageTransCompound returns true for both transparent huge pages
 625 * and hugetlbfs pages, so it should only be called when it's known
 626 * that hugetlbfs pages aren't involved.
 627 */
 628static inline int PageTransCompound(struct page *page)
 629{
 630        return PageCompound(page);
 631}
 632
 633/*
 634 * PageTransCompoundMap is the same as PageTransCompound, but it also
 635 * guarantees the primary MMU has the entire compound page mapped
 636 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 637 * can also map the entire compound page. This allows the secondary
 638 * MMUs to call get_user_pages() only once for each compound page and
 639 * to immediately map the entire compound page with a single secondary
 640 * MMU fault. If there will be a pmd split later, the secondary MMUs
 641 * will get an update through the MMU notifier invalidation through
 642 * split_huge_pmd().
 643 *
 644 * Unlike PageTransCompound, this is safe to be called only while
 645 * split_huge_pmd() cannot run from under us, like if protected by the
 646 * MMU notifier, otherwise it may result in page->_mapcount check false
 647 * positives.
 648 *
 649 * We have to treat page cache THP differently since every subpage of it
 650 * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
 651 * mapped in the current process so comparing subpage's _mapcount to
 652 * compound_mapcount to filter out PTE mapped case.
 653 */
 654static inline int PageTransCompoundMap(struct page *page)
 655{
 656        struct page *head;
 657
 658        if (!PageTransCompound(page))
 659                return 0;
 660
 661        if (PageAnon(page))
 662                return atomic_read(&page->_mapcount) < 0;
 663
 664        head = compound_head(page);
 665        /* File THP is PMD mapped and not PTE mapped */
 666        return atomic_read(&page->_mapcount) ==
 667               atomic_read(compound_mapcount_ptr(head));
 668}
 669
 670/*
 671 * PageTransTail returns true for both transparent huge pages
 672 * and hugetlbfs pages, so it should only be called when it's known
 673 * that hugetlbfs pages aren't involved.
 674 */
 675static inline int PageTransTail(struct page *page)
 676{
 677        return PageTail(page);
 678}
 679
 680/*
 681 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 682 * as PMDs.
 683 *
 684 * This is required for optimization of rmap operations for THP: we can postpone
 685 * per small page mapcount accounting (and its overhead from atomic operations)
 686 * until the first PMD split.
 687 *
 688 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 689 * by one. This reference will go away with last compound_mapcount.
 690 *
 691 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 692 */
 693PAGEFLAG(DoubleMap, double_map, PF_SECOND)
 694        TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
 695#else
 696TESTPAGEFLAG_FALSE(TransHuge)
 697TESTPAGEFLAG_FALSE(TransCompound)
 698TESTPAGEFLAG_FALSE(TransCompoundMap)
 699TESTPAGEFLAG_FALSE(TransTail)
 700PAGEFLAG_FALSE(DoubleMap)
 701        TESTSCFLAG_FALSE(DoubleMap)
 702#endif
 703
 704/*
 705 * For pages that are never mapped to userspace (and aren't PageSlab),
 706 * page_type may be used.  Because it is initialised to -1, we invert the
 707 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 708 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 709 * low bits so that an underflow or overflow of page_mapcount() won't be
 710 * mistaken for a page type value.
 711 */
 712
 713#define PAGE_TYPE_BASE  0xf0000000
 714/* Reserve              0x0000007f to catch underflows of page_mapcount */
 715#define PAGE_MAPCOUNT_RESERVE   -128
 716#define PG_buddy        0x00000080
 717#define PG_offline      0x00000100
 718#define PG_kmemcg       0x00000200
 719#define PG_table        0x00000400
 720#define PG_guard        0x00000800
 721
 722#define PageType(page, flag)                                            \
 723        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 724
 725static inline int page_has_type(struct page *page)
 726{
 727        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 728}
 729
 730#define PAGE_TYPE_OPS(uname, lname)                                     \
 731static __always_inline int Page##uname(struct page *page)               \
 732{                                                                       \
 733        return PageType(page, PG_##lname);                              \
 734}                                                                       \
 735static __always_inline void __SetPage##uname(struct page *page)         \
 736{                                                                       \
 737        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 738        page->page_type &= ~PG_##lname;                                 \
 739}                                                                       \
 740static __always_inline void __ClearPage##uname(struct page *page)       \
 741{                                                                       \
 742        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 743        page->page_type |= PG_##lname;                                  \
 744}
 745
 746/*
 747 * PageBuddy() indicates that the page is free and in the buddy system
 748 * (see mm/page_alloc.c).
 749 */
 750PAGE_TYPE_OPS(Buddy, buddy)
 751
 752/*
 753 * PageOffline() indicates that the page is logically offline although the
 754 * containing section is online. (e.g. inflated in a balloon driver or
 755 * not onlined when onlining the section).
 756 * The content of these pages is effectively stale. Such pages should not
 757 * be touched (read/write/dump/save) except by their owner.
 758 *
 759 * If a driver wants to allow to offline unmovable PageOffline() pages without
 760 * putting them back to the buddy, it can do so via the memory notifier by
 761 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
 762 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
 763 * pages (now with a reference count of zero) are treated like free pages,
 764 * allowing the containing memory block to get offlined. A driver that
 765 * relies on this feature is aware that re-onlining the memory block will
 766 * require to re-set the pages PageOffline() and not giving them to the
 767 * buddy via online_page_callback_t.
 768 */
 769PAGE_TYPE_OPS(Offline, offline)
 770
 771/*
 772 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 773 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 774 */
 775PAGE_TYPE_OPS(Kmemcg, kmemcg)
 776
 777/*
 778 * Marks pages in use as page tables.
 779 */
 780PAGE_TYPE_OPS(Table, table)
 781
 782/*
 783 * Marks guardpages used with debug_pagealloc.
 784 */
 785PAGE_TYPE_OPS(Guard, guard)
 786
 787extern bool is_free_buddy_page(struct page *page);
 788
 789__PAGEFLAG(Isolated, isolated, PF_ANY);
 790
 791/*
 792 * If network-based swap is enabled, sl*b must keep track of whether pages
 793 * were allocated from pfmemalloc reserves.
 794 */
 795static inline int PageSlabPfmemalloc(struct page *page)
 796{
 797        VM_BUG_ON_PAGE(!PageSlab(page), page);
 798        return PageActive(page);
 799}
 800
 801static inline void SetPageSlabPfmemalloc(struct page *page)
 802{
 803        VM_BUG_ON_PAGE(!PageSlab(page), page);
 804        SetPageActive(page);
 805}
 806
 807static inline void __ClearPageSlabPfmemalloc(struct page *page)
 808{
 809        VM_BUG_ON_PAGE(!PageSlab(page), page);
 810        __ClearPageActive(page);
 811}
 812
 813static inline void ClearPageSlabPfmemalloc(struct page *page)
 814{
 815        VM_BUG_ON_PAGE(!PageSlab(page), page);
 816        ClearPageActive(page);
 817}
 818
 819#ifdef CONFIG_MMU
 820#define __PG_MLOCKED            (1UL << PG_mlocked)
 821#else
 822#define __PG_MLOCKED            0
 823#endif
 824
 825/*
 826 * Flags checked when a page is freed.  Pages being freed should not have
 827 * these flags set.  It they are, there is a problem.
 828 */
 829#define PAGE_FLAGS_CHECK_AT_FREE                                \
 830        (1UL << PG_lru          | 1UL << PG_locked      |       \
 831         1UL << PG_private      | 1UL << PG_private_2   |       \
 832         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 833         1UL << PG_slab         | 1UL << PG_active      |       \
 834         1UL << PG_unevictable  | __PG_MLOCKED)
 835
 836/*
 837 * Flags checked when a page is prepped for return by the page allocator.
 838 * Pages being prepped should not have these flags set.  It they are set,
 839 * there has been a kernel bug or struct page corruption.
 840 *
 841 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 842 * alloc-free cycle to prevent from reusing the page.
 843 */
 844#define PAGE_FLAGS_CHECK_AT_PREP        \
 845        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 846
 847#define PAGE_FLAGS_PRIVATE                              \
 848        (1UL << PG_private | 1UL << PG_private_2)
 849/**
 850 * page_has_private - Determine if page has private stuff
 851 * @page: The page to be checked
 852 *
 853 * Determine if a page has private stuff, indicating that release routines
 854 * should be invoked upon it.
 855 */
 856static inline int page_has_private(struct page *page)
 857{
 858        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 859}
 860
 861#undef PF_ANY
 862#undef PF_HEAD
 863#undef PF_ONLY_HEAD
 864#undef PF_NO_TAIL
 865#undef PF_NO_COMPOUND
 866#undef PF_SECOND
 867#endif /* !__GENERATING_BOUNDS_H */
 868
 869#endif  /* PAGE_FLAGS_H */
 870