linux/include/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _LINUX_PERF_EVENT_H
  15#define _LINUX_PERF_EVENT_H
  16
  17#include <uapi/linux/perf_event.h>
  18#include <uapi/linux/bpf_perf_event.h>
  19
  20/*
  21 * Kernel-internal data types and definitions:
  22 */
  23
  24#ifdef CONFIG_PERF_EVENTS
  25# include <asm/perf_event.h>
  26# include <asm/local64.h>
  27#endif
  28
  29struct perf_guest_info_callbacks {
  30        int                             (*is_in_guest)(void);
  31        int                             (*is_user_mode)(void);
  32        unsigned long                   (*get_guest_ip)(void);
  33        void                            (*handle_intel_pt_intr)(void);
  34};
  35
  36#ifdef CONFIG_HAVE_HW_BREAKPOINT
  37#include <asm/hw_breakpoint.h>
  38#endif
  39
  40#include <linux/list.h>
  41#include <linux/mutex.h>
  42#include <linux/rculist.h>
  43#include <linux/rcupdate.h>
  44#include <linux/spinlock.h>
  45#include <linux/hrtimer.h>
  46#include <linux/fs.h>
  47#include <linux/pid_namespace.h>
  48#include <linux/workqueue.h>
  49#include <linux/ftrace.h>
  50#include <linux/cpu.h>
  51#include <linux/irq_work.h>
  52#include <linux/static_key.h>
  53#include <linux/jump_label_ratelimit.h>
  54#include <linux/atomic.h>
  55#include <linux/sysfs.h>
  56#include <linux/perf_regs.h>
  57#include <linux/cgroup.h>
  58#include <linux/refcount.h>
  59#include <linux/security.h>
  60#include <asm/local.h>
  61
  62struct perf_callchain_entry {
  63        __u64                           nr;
  64        __u64                           ip[]; /* /proc/sys/kernel/perf_event_max_stack */
  65};
  66
  67struct perf_callchain_entry_ctx {
  68        struct perf_callchain_entry *entry;
  69        u32                         max_stack;
  70        u32                         nr;
  71        short                       contexts;
  72        bool                        contexts_maxed;
  73};
  74
  75typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
  76                                     unsigned long off, unsigned long len);
  77
  78struct perf_raw_frag {
  79        union {
  80                struct perf_raw_frag    *next;
  81                unsigned long           pad;
  82        };
  83        perf_copy_f                     copy;
  84        void                            *data;
  85        u32                             size;
  86} __packed;
  87
  88struct perf_raw_record {
  89        struct perf_raw_frag            frag;
  90        u32                             size;
  91};
  92
  93/*
  94 * branch stack layout:
  95 *  nr: number of taken branches stored in entries[]
  96 *  hw_idx: The low level index of raw branch records
  97 *          for the most recent branch.
  98 *          -1ULL means invalid/unknown.
  99 *
 100 * Note that nr can vary from sample to sample
 101 * branches (to, from) are stored from most recent
 102 * to least recent, i.e., entries[0] contains the most
 103 * recent branch.
 104 * The entries[] is an abstraction of raw branch records,
 105 * which may not be stored in age order in HW, e.g. Intel LBR.
 106 * The hw_idx is to expose the low level index of raw
 107 * branch record for the most recent branch aka entries[0].
 108 * The hw_idx index is between -1 (unknown) and max depth,
 109 * which can be retrieved in /sys/devices/cpu/caps/branches.
 110 * For the architectures whose raw branch records are
 111 * already stored in age order, the hw_idx should be 0.
 112 */
 113struct perf_branch_stack {
 114        __u64                           nr;
 115        __u64                           hw_idx;
 116        struct perf_branch_entry        entries[];
 117};
 118
 119struct task_struct;
 120
 121/*
 122 * extra PMU register associated with an event
 123 */
 124struct hw_perf_event_extra {
 125        u64             config; /* register value */
 126        unsigned int    reg;    /* register address or index */
 127        int             alloc;  /* extra register already allocated */
 128        int             idx;    /* index in shared_regs->regs[] */
 129};
 130
 131/**
 132 * struct hw_perf_event - performance event hardware details:
 133 */
 134struct hw_perf_event {
 135#ifdef CONFIG_PERF_EVENTS
 136        union {
 137                struct { /* hardware */
 138                        u64             config;
 139                        u64             last_tag;
 140                        unsigned long   config_base;
 141                        unsigned long   event_base;
 142                        int             event_base_rdpmc;
 143                        int             idx;
 144                        int             last_cpu;
 145                        int             flags;
 146
 147                        struct hw_perf_event_extra extra_reg;
 148                        struct hw_perf_event_extra branch_reg;
 149                };
 150                struct { /* software */
 151                        struct hrtimer  hrtimer;
 152                };
 153                struct { /* tracepoint */
 154                        /* for tp_event->class */
 155                        struct list_head        tp_list;
 156                };
 157                struct { /* amd_power */
 158                        u64     pwr_acc;
 159                        u64     ptsc;
 160                };
 161#ifdef CONFIG_HAVE_HW_BREAKPOINT
 162                struct { /* breakpoint */
 163                        /*
 164                         * Crufty hack to avoid the chicken and egg
 165                         * problem hw_breakpoint has with context
 166                         * creation and event initalization.
 167                         */
 168                        struct arch_hw_breakpoint       info;
 169                        struct list_head                bp_list;
 170                };
 171#endif
 172                struct { /* amd_iommu */
 173                        u8      iommu_bank;
 174                        u8      iommu_cntr;
 175                        u16     padding;
 176                        u64     conf;
 177                        u64     conf1;
 178                };
 179        };
 180        /*
 181         * If the event is a per task event, this will point to the task in
 182         * question. See the comment in perf_event_alloc().
 183         */
 184        struct task_struct              *target;
 185
 186        /*
 187         * PMU would store hardware filter configuration
 188         * here.
 189         */
 190        void                            *addr_filters;
 191
 192        /* Last sync'ed generation of filters */
 193        unsigned long                   addr_filters_gen;
 194
 195/*
 196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
 197 */
 198#define PERF_HES_STOPPED        0x01 /* the counter is stopped */
 199#define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
 200#define PERF_HES_ARCH           0x04
 201
 202        int                             state;
 203
 204        /*
 205         * The last observed hardware counter value, updated with a
 206         * local64_cmpxchg() such that pmu::read() can be called nested.
 207         */
 208        local64_t                       prev_count;
 209
 210        /*
 211         * The period to start the next sample with.
 212         */
 213        u64                             sample_period;
 214
 215        union {
 216                struct { /* Sampling */
 217                        /*
 218                         * The period we started this sample with.
 219                         */
 220                        u64                             last_period;
 221
 222                        /*
 223                         * However much is left of the current period;
 224                         * note that this is a full 64bit value and
 225                         * allows for generation of periods longer
 226                         * than hardware might allow.
 227                         */
 228                        local64_t                       period_left;
 229                };
 230                struct { /* Topdown events counting for context switch */
 231                        u64                             saved_metric;
 232                        u64                             saved_slots;
 233                };
 234        };
 235
 236        /*
 237         * State for throttling the event, see __perf_event_overflow() and
 238         * perf_adjust_freq_unthr_context().
 239         */
 240        u64                             interrupts_seq;
 241        u64                             interrupts;
 242
 243        /*
 244         * State for freq target events, see __perf_event_overflow() and
 245         * perf_adjust_freq_unthr_context().
 246         */
 247        u64                             freq_time_stamp;
 248        u64                             freq_count_stamp;
 249#endif
 250};
 251
 252struct perf_event;
 253
 254/*
 255 * Common implementation detail of pmu::{start,commit,cancel}_txn
 256 */
 257#define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
 258#define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
 259
 260/**
 261 * pmu::capabilities flags
 262 */
 263#define PERF_PMU_CAP_NO_INTERRUPT               0x01
 264#define PERF_PMU_CAP_NO_NMI                     0x02
 265#define PERF_PMU_CAP_AUX_NO_SG                  0x04
 266#define PERF_PMU_CAP_EXTENDED_REGS              0x08
 267#define PERF_PMU_CAP_EXCLUSIVE                  0x10
 268#define PERF_PMU_CAP_ITRACE                     0x20
 269#define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x40
 270#define PERF_PMU_CAP_NO_EXCLUDE                 0x80
 271#define PERF_PMU_CAP_AUX_OUTPUT                 0x100
 272
 273struct perf_output_handle;
 274
 275/**
 276 * struct pmu - generic performance monitoring unit
 277 */
 278struct pmu {
 279        struct list_head                entry;
 280
 281        struct module                   *module;
 282        struct device                   *dev;
 283        const struct attribute_group    **attr_groups;
 284        const struct attribute_group    **attr_update;
 285        const char                      *name;
 286        int                             type;
 287
 288        /*
 289         * various common per-pmu feature flags
 290         */
 291        int                             capabilities;
 292
 293        int __percpu                    *pmu_disable_count;
 294        struct perf_cpu_context __percpu *pmu_cpu_context;
 295        atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
 296        int                             task_ctx_nr;
 297        int                             hrtimer_interval_ms;
 298
 299        /* number of address filters this PMU can do */
 300        unsigned int                    nr_addr_filters;
 301
 302        /*
 303         * Fully disable/enable this PMU, can be used to protect from the PMI
 304         * as well as for lazy/batch writing of the MSRs.
 305         */
 306        void (*pmu_enable)              (struct pmu *pmu); /* optional */
 307        void (*pmu_disable)             (struct pmu *pmu); /* optional */
 308
 309        /*
 310         * Try and initialize the event for this PMU.
 311         *
 312         * Returns:
 313         *  -ENOENT     -- @event is not for this PMU
 314         *
 315         *  -ENODEV     -- @event is for this PMU but PMU not present
 316         *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
 317         *  -EINVAL     -- @event is for this PMU but @event is not valid
 318         *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
 319         *  -EACCES     -- @event is for this PMU, @event is valid, but no privileges
 320         *
 321         *  0           -- @event is for this PMU and valid
 322         *
 323         * Other error return values are allowed.
 324         */
 325        int (*event_init)               (struct perf_event *event);
 326
 327        /*
 328         * Notification that the event was mapped or unmapped.  Called
 329         * in the context of the mapping task.
 330         */
 331        void (*event_mapped)            (struct perf_event *event, struct mm_struct *mm); /* optional */
 332        void (*event_unmapped)          (struct perf_event *event, struct mm_struct *mm); /* optional */
 333
 334        /*
 335         * Flags for ->add()/->del()/ ->start()/->stop(). There are
 336         * matching hw_perf_event::state flags.
 337         */
 338#define PERF_EF_START   0x01            /* start the counter when adding    */
 339#define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
 340#define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
 341
 342        /*
 343         * Adds/Removes a counter to/from the PMU, can be done inside a
 344         * transaction, see the ->*_txn() methods.
 345         *
 346         * The add/del callbacks will reserve all hardware resources required
 347         * to service the event, this includes any counter constraint
 348         * scheduling etc.
 349         *
 350         * Called with IRQs disabled and the PMU disabled on the CPU the event
 351         * is on.
 352         *
 353         * ->add() called without PERF_EF_START should result in the same state
 354         *  as ->add() followed by ->stop().
 355         *
 356         * ->del() must always PERF_EF_UPDATE stop an event. If it calls
 357         *  ->stop() that must deal with already being stopped without
 358         *  PERF_EF_UPDATE.
 359         */
 360        int  (*add)                     (struct perf_event *event, int flags);
 361        void (*del)                     (struct perf_event *event, int flags);
 362
 363        /*
 364         * Starts/Stops a counter present on the PMU.
 365         *
 366         * The PMI handler should stop the counter when perf_event_overflow()
 367         * returns !0. ->start() will be used to continue.
 368         *
 369         * Also used to change the sample period.
 370         *
 371         * Called with IRQs disabled and the PMU disabled on the CPU the event
 372         * is on -- will be called from NMI context with the PMU generates
 373         * NMIs.
 374         *
 375         * ->stop() with PERF_EF_UPDATE will read the counter and update
 376         *  period/count values like ->read() would.
 377         *
 378         * ->start() with PERF_EF_RELOAD will reprogram the counter
 379         *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
 380         */
 381        void (*start)                   (struct perf_event *event, int flags);
 382        void (*stop)                    (struct perf_event *event, int flags);
 383
 384        /*
 385         * Updates the counter value of the event.
 386         *
 387         * For sampling capable PMUs this will also update the software period
 388         * hw_perf_event::period_left field.
 389         */
 390        void (*read)                    (struct perf_event *event);
 391
 392        /*
 393         * Group events scheduling is treated as a transaction, add
 394         * group events as a whole and perform one schedulability test.
 395         * If the test fails, roll back the whole group
 396         *
 397         * Start the transaction, after this ->add() doesn't need to
 398         * do schedulability tests.
 399         *
 400         * Optional.
 401         */
 402        void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
 403        /*
 404         * If ->start_txn() disabled the ->add() schedulability test
 405         * then ->commit_txn() is required to perform one. On success
 406         * the transaction is closed. On error the transaction is kept
 407         * open until ->cancel_txn() is called.
 408         *
 409         * Optional.
 410         */
 411        int  (*commit_txn)              (struct pmu *pmu);
 412        /*
 413         * Will cancel the transaction, assumes ->del() is called
 414         * for each successful ->add() during the transaction.
 415         *
 416         * Optional.
 417         */
 418        void (*cancel_txn)              (struct pmu *pmu);
 419
 420        /*
 421         * Will return the value for perf_event_mmap_page::index for this event,
 422         * if no implementation is provided it will default to: event->hw.idx + 1.
 423         */
 424        int (*event_idx)                (struct perf_event *event); /*optional */
 425
 426        /*
 427         * context-switches callback
 428         */
 429        void (*sched_task)              (struct perf_event_context *ctx,
 430                                        bool sched_in);
 431
 432        /*
 433         * Kmem cache of PMU specific data
 434         */
 435        struct kmem_cache               *task_ctx_cache;
 436
 437        /*
 438         * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
 439         * can be synchronized using this function. See Intel LBR callstack support
 440         * implementation and Perf core context switch handling callbacks for usage
 441         * examples.
 442         */
 443        void (*swap_task_ctx)           (struct perf_event_context *prev,
 444                                         struct perf_event_context *next);
 445                                        /* optional */
 446
 447        /*
 448         * Set up pmu-private data structures for an AUX area
 449         */
 450        void *(*setup_aux)              (struct perf_event *event, void **pages,
 451                                         int nr_pages, bool overwrite);
 452                                        /* optional */
 453
 454        /*
 455         * Free pmu-private AUX data structures
 456         */
 457        void (*free_aux)                (void *aux); /* optional */
 458
 459        /*
 460         * Take a snapshot of the AUX buffer without touching the event
 461         * state, so that preempting ->start()/->stop() callbacks does
 462         * not interfere with their logic. Called in PMI context.
 463         *
 464         * Returns the size of AUX data copied to the output handle.
 465         *
 466         * Optional.
 467         */
 468        long (*snapshot_aux)            (struct perf_event *event,
 469                                         struct perf_output_handle *handle,
 470                                         unsigned long size);
 471
 472        /*
 473         * Validate address range filters: make sure the HW supports the
 474         * requested configuration and number of filters; return 0 if the
 475         * supplied filters are valid, -errno otherwise.
 476         *
 477         * Runs in the context of the ioctl()ing process and is not serialized
 478         * with the rest of the PMU callbacks.
 479         */
 480        int (*addr_filters_validate)    (struct list_head *filters);
 481                                        /* optional */
 482
 483        /*
 484         * Synchronize address range filter configuration:
 485         * translate hw-agnostic filters into hardware configuration in
 486         * event::hw::addr_filters.
 487         *
 488         * Runs as a part of filter sync sequence that is done in ->start()
 489         * callback by calling perf_event_addr_filters_sync().
 490         *
 491         * May (and should) traverse event::addr_filters::list, for which its
 492         * caller provides necessary serialization.
 493         */
 494        void (*addr_filters_sync)       (struct perf_event *event);
 495                                        /* optional */
 496
 497        /*
 498         * Check if event can be used for aux_output purposes for
 499         * events of this PMU.
 500         *
 501         * Runs from perf_event_open(). Should return 0 for "no match"
 502         * or non-zero for "match".
 503         */
 504        int (*aux_output_match)         (struct perf_event *event);
 505                                        /* optional */
 506
 507        /*
 508         * Filter events for PMU-specific reasons.
 509         */
 510        int (*filter_match)             (struct perf_event *event); /* optional */
 511
 512        /*
 513         * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
 514         */
 515        int (*check_period)             (struct perf_event *event, u64 value); /* optional */
 516};
 517
 518enum perf_addr_filter_action_t {
 519        PERF_ADDR_FILTER_ACTION_STOP = 0,
 520        PERF_ADDR_FILTER_ACTION_START,
 521        PERF_ADDR_FILTER_ACTION_FILTER,
 522};
 523
 524/**
 525 * struct perf_addr_filter - address range filter definition
 526 * @entry:      event's filter list linkage
 527 * @path:       object file's path for file-based filters
 528 * @offset:     filter range offset
 529 * @size:       filter range size (size==0 means single address trigger)
 530 * @action:     filter/start/stop
 531 *
 532 * This is a hardware-agnostic filter configuration as specified by the user.
 533 */
 534struct perf_addr_filter {
 535        struct list_head        entry;
 536        struct path             path;
 537        unsigned long           offset;
 538        unsigned long           size;
 539        enum perf_addr_filter_action_t  action;
 540};
 541
 542/**
 543 * struct perf_addr_filters_head - container for address range filters
 544 * @list:       list of filters for this event
 545 * @lock:       spinlock that serializes accesses to the @list and event's
 546 *              (and its children's) filter generations.
 547 * @nr_file_filters:    number of file-based filters
 548 *
 549 * A child event will use parent's @list (and therefore @lock), so they are
 550 * bundled together; see perf_event_addr_filters().
 551 */
 552struct perf_addr_filters_head {
 553        struct list_head        list;
 554        raw_spinlock_t          lock;
 555        unsigned int            nr_file_filters;
 556};
 557
 558struct perf_addr_filter_range {
 559        unsigned long           start;
 560        unsigned long           size;
 561};
 562
 563/**
 564 * enum perf_event_state - the states of an event:
 565 */
 566enum perf_event_state {
 567        PERF_EVENT_STATE_DEAD           = -4,
 568        PERF_EVENT_STATE_EXIT           = -3,
 569        PERF_EVENT_STATE_ERROR          = -2,
 570        PERF_EVENT_STATE_OFF            = -1,
 571        PERF_EVENT_STATE_INACTIVE       =  0,
 572        PERF_EVENT_STATE_ACTIVE         =  1,
 573};
 574
 575struct file;
 576struct perf_sample_data;
 577
 578typedef void (*perf_overflow_handler_t)(struct perf_event *,
 579                                        struct perf_sample_data *,
 580                                        struct pt_regs *regs);
 581
 582/*
 583 * Event capabilities. For event_caps and groups caps.
 584 *
 585 * PERF_EV_CAP_SOFTWARE: Is a software event.
 586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
 587 * from any CPU in the package where it is active.
 588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
 589 * cannot be a group leader. If an event with this flag is detached from the
 590 * group it is scheduled out and moved into an unrecoverable ERROR state.
 591 */
 592#define PERF_EV_CAP_SOFTWARE            BIT(0)
 593#define PERF_EV_CAP_READ_ACTIVE_PKG     BIT(1)
 594#define PERF_EV_CAP_SIBLING             BIT(2)
 595
 596#define SWEVENT_HLIST_BITS              8
 597#define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
 598
 599struct swevent_hlist {
 600        struct hlist_head               heads[SWEVENT_HLIST_SIZE];
 601        struct rcu_head                 rcu_head;
 602};
 603
 604#define PERF_ATTACH_CONTEXT     0x01
 605#define PERF_ATTACH_GROUP       0x02
 606#define PERF_ATTACH_TASK        0x04
 607#define PERF_ATTACH_TASK_DATA   0x08
 608#define PERF_ATTACH_ITRACE      0x10
 609
 610struct perf_cgroup;
 611struct perf_buffer;
 612
 613struct pmu_event_list {
 614        raw_spinlock_t          lock;
 615        struct list_head        list;
 616};
 617
 618#define for_each_sibling_event(sibling, event)                  \
 619        if ((event)->group_leader == (event))                   \
 620                list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
 621
 622/**
 623 * struct perf_event - performance event kernel representation:
 624 */
 625struct perf_event {
 626#ifdef CONFIG_PERF_EVENTS
 627        /*
 628         * entry onto perf_event_context::event_list;
 629         *   modifications require ctx->lock
 630         *   RCU safe iterations.
 631         */
 632        struct list_head                event_entry;
 633
 634        /*
 635         * Locked for modification by both ctx->mutex and ctx->lock; holding
 636         * either sufficies for read.
 637         */
 638        struct list_head                sibling_list;
 639        struct list_head                active_list;
 640        /*
 641         * Node on the pinned or flexible tree located at the event context;
 642         */
 643        struct rb_node                  group_node;
 644        u64                             group_index;
 645        /*
 646         * We need storage to track the entries in perf_pmu_migrate_context; we
 647         * cannot use the event_entry because of RCU and we want to keep the
 648         * group in tact which avoids us using the other two entries.
 649         */
 650        struct list_head                migrate_entry;
 651
 652        struct hlist_node               hlist_entry;
 653        struct list_head                active_entry;
 654        int                             nr_siblings;
 655
 656        /* Not serialized. Only written during event initialization. */
 657        int                             event_caps;
 658        /* The cumulative AND of all event_caps for events in this group. */
 659        int                             group_caps;
 660
 661        struct perf_event               *group_leader;
 662        struct pmu                      *pmu;
 663        void                            *pmu_private;
 664
 665        enum perf_event_state           state;
 666        unsigned int                    attach_state;
 667        local64_t                       count;
 668        atomic64_t                      child_count;
 669
 670        /*
 671         * These are the total time in nanoseconds that the event
 672         * has been enabled (i.e. eligible to run, and the task has
 673         * been scheduled in, if this is a per-task event)
 674         * and running (scheduled onto the CPU), respectively.
 675         */
 676        u64                             total_time_enabled;
 677        u64                             total_time_running;
 678        u64                             tstamp;
 679
 680        /*
 681         * timestamp shadows the actual context timing but it can
 682         * be safely used in NMI interrupt context. It reflects the
 683         * context time as it was when the event was last scheduled in.
 684         *
 685         * ctx_time already accounts for ctx->timestamp. Therefore to
 686         * compute ctx_time for a sample, simply add perf_clock().
 687         */
 688        u64                             shadow_ctx_time;
 689
 690        struct perf_event_attr          attr;
 691        u16                             header_size;
 692        u16                             id_header_size;
 693        u16                             read_size;
 694        struct hw_perf_event            hw;
 695
 696        struct perf_event_context       *ctx;
 697        atomic_long_t                   refcount;
 698
 699        /*
 700         * These accumulate total time (in nanoseconds) that children
 701         * events have been enabled and running, respectively.
 702         */
 703        atomic64_t                      child_total_time_enabled;
 704        atomic64_t                      child_total_time_running;
 705
 706        /*
 707         * Protect attach/detach and child_list:
 708         */
 709        struct mutex                    child_mutex;
 710        struct list_head                child_list;
 711        struct perf_event               *parent;
 712
 713        int                             oncpu;
 714        int                             cpu;
 715
 716        struct list_head                owner_entry;
 717        struct task_struct              *owner;
 718
 719        /* mmap bits */
 720        struct mutex                    mmap_mutex;
 721        atomic_t                        mmap_count;
 722
 723        struct perf_buffer              *rb;
 724        struct list_head                rb_entry;
 725        unsigned long                   rcu_batches;
 726        int                             rcu_pending;
 727
 728        /* poll related */
 729        wait_queue_head_t               waitq;
 730        struct fasync_struct            *fasync;
 731
 732        /* delayed work for NMIs and such */
 733        int                             pending_wakeup;
 734        int                             pending_kill;
 735        int                             pending_disable;
 736        struct irq_work                 pending;
 737
 738        atomic_t                        event_limit;
 739
 740        /* address range filters */
 741        struct perf_addr_filters_head   addr_filters;
 742        /* vma address array for file-based filders */
 743        struct perf_addr_filter_range   *addr_filter_ranges;
 744        unsigned long                   addr_filters_gen;
 745
 746        /* for aux_output events */
 747        struct perf_event               *aux_event;
 748
 749        void (*destroy)(struct perf_event *);
 750        struct rcu_head                 rcu_head;
 751
 752        struct pid_namespace            *ns;
 753        u64                             id;
 754
 755        u64                             (*clock)(void);
 756        perf_overflow_handler_t         overflow_handler;
 757        void                            *overflow_handler_context;
 758#ifdef CONFIG_BPF_SYSCALL
 759        perf_overflow_handler_t         orig_overflow_handler;
 760        struct bpf_prog                 *prog;
 761#endif
 762
 763#ifdef CONFIG_EVENT_TRACING
 764        struct trace_event_call         *tp_event;
 765        struct event_filter             *filter;
 766#ifdef CONFIG_FUNCTION_TRACER
 767        struct ftrace_ops               ftrace_ops;
 768#endif
 769#endif
 770
 771#ifdef CONFIG_CGROUP_PERF
 772        struct perf_cgroup              *cgrp; /* cgroup event is attach to */
 773#endif
 774
 775#ifdef CONFIG_SECURITY
 776        void *security;
 777#endif
 778        struct list_head                sb_list;
 779#endif /* CONFIG_PERF_EVENTS */
 780};
 781
 782
 783struct perf_event_groups {
 784        struct rb_root  tree;
 785        u64             index;
 786};
 787
 788/**
 789 * struct perf_event_context - event context structure
 790 *
 791 * Used as a container for task events and CPU events as well:
 792 */
 793struct perf_event_context {
 794        struct pmu                      *pmu;
 795        /*
 796         * Protect the states of the events in the list,
 797         * nr_active, and the list:
 798         */
 799        raw_spinlock_t                  lock;
 800        /*
 801         * Protect the list of events.  Locking either mutex or lock
 802         * is sufficient to ensure the list doesn't change; to change
 803         * the list you need to lock both the mutex and the spinlock.
 804         */
 805        struct mutex                    mutex;
 806
 807        struct list_head                active_ctx_list;
 808        struct perf_event_groups        pinned_groups;
 809        struct perf_event_groups        flexible_groups;
 810        struct list_head                event_list;
 811
 812        struct list_head                pinned_active;
 813        struct list_head                flexible_active;
 814
 815        int                             nr_events;
 816        int                             nr_active;
 817        int                             is_active;
 818        int                             nr_stat;
 819        int                             nr_freq;
 820        int                             rotate_disable;
 821        /*
 822         * Set when nr_events != nr_active, except tolerant to events not
 823         * necessary to be active due to scheduling constraints, such as cgroups.
 824         */
 825        int                             rotate_necessary;
 826        refcount_t                      refcount;
 827        struct task_struct              *task;
 828
 829        /*
 830         * Context clock, runs when context enabled.
 831         */
 832        u64                             time;
 833        u64                             timestamp;
 834
 835        /*
 836         * These fields let us detect when two contexts have both
 837         * been cloned (inherited) from a common ancestor.
 838         */
 839        struct perf_event_context       *parent_ctx;
 840        u64                             parent_gen;
 841        u64                             generation;
 842        int                             pin_count;
 843#ifdef CONFIG_CGROUP_PERF
 844        int                             nr_cgroups;      /* cgroup evts */
 845#endif
 846        void                            *task_ctx_data; /* pmu specific data */
 847        struct rcu_head                 rcu_head;
 848};
 849
 850/*
 851 * Number of contexts where an event can trigger:
 852 *      task, softirq, hardirq, nmi.
 853 */
 854#define PERF_NR_CONTEXTS        4
 855
 856/**
 857 * struct perf_event_cpu_context - per cpu event context structure
 858 */
 859struct perf_cpu_context {
 860        struct perf_event_context       ctx;
 861        struct perf_event_context       *task_ctx;
 862        int                             active_oncpu;
 863        int                             exclusive;
 864
 865        raw_spinlock_t                  hrtimer_lock;
 866        struct hrtimer                  hrtimer;
 867        ktime_t                         hrtimer_interval;
 868        unsigned int                    hrtimer_active;
 869
 870#ifdef CONFIG_CGROUP_PERF
 871        struct perf_cgroup              *cgrp;
 872        struct list_head                cgrp_cpuctx_entry;
 873#endif
 874
 875        int                             sched_cb_usage;
 876
 877        int                             online;
 878        /*
 879         * Per-CPU storage for iterators used in visit_groups_merge. The default
 880         * storage is of size 2 to hold the CPU and any CPU event iterators.
 881         */
 882        int                             heap_size;
 883        struct perf_event               **heap;
 884        struct perf_event               *heap_default[2];
 885};
 886
 887struct perf_output_handle {
 888        struct perf_event               *event;
 889        struct perf_buffer              *rb;
 890        unsigned long                   wakeup;
 891        unsigned long                   size;
 892        u64                             aux_flags;
 893        union {
 894                void                    *addr;
 895                unsigned long           head;
 896        };
 897        int                             page;
 898};
 899
 900struct bpf_perf_event_data_kern {
 901        bpf_user_pt_regs_t *regs;
 902        struct perf_sample_data *data;
 903        struct perf_event *event;
 904};
 905
 906#ifdef CONFIG_CGROUP_PERF
 907
 908/*
 909 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 910 * This is a per-cpu dynamically allocated data structure.
 911 */
 912struct perf_cgroup_info {
 913        u64                             time;
 914        u64                             timestamp;
 915};
 916
 917struct perf_cgroup {
 918        struct cgroup_subsys_state      css;
 919        struct perf_cgroup_info __percpu *info;
 920};
 921
 922/*
 923 * Must ensure cgroup is pinned (css_get) before calling
 924 * this function. In other words, we cannot call this function
 925 * if there is no cgroup event for the current CPU context.
 926 */
 927static inline struct perf_cgroup *
 928perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
 929{
 930        return container_of(task_css_check(task, perf_event_cgrp_id,
 931                                           ctx ? lockdep_is_held(&ctx->lock)
 932                                               : true),
 933                            struct perf_cgroup, css);
 934}
 935#endif /* CONFIG_CGROUP_PERF */
 936
 937#ifdef CONFIG_PERF_EVENTS
 938
 939extern void *perf_aux_output_begin(struct perf_output_handle *handle,
 940                                   struct perf_event *event);
 941extern void perf_aux_output_end(struct perf_output_handle *handle,
 942                                unsigned long size);
 943extern int perf_aux_output_skip(struct perf_output_handle *handle,
 944                                unsigned long size);
 945extern void *perf_get_aux(struct perf_output_handle *handle);
 946extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
 947extern void perf_event_itrace_started(struct perf_event *event);
 948
 949extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
 950extern void perf_pmu_unregister(struct pmu *pmu);
 951
 952extern int perf_num_counters(void);
 953extern const char *perf_pmu_name(void);
 954extern void __perf_event_task_sched_in(struct task_struct *prev,
 955                                       struct task_struct *task);
 956extern void __perf_event_task_sched_out(struct task_struct *prev,
 957                                        struct task_struct *next);
 958extern int perf_event_init_task(struct task_struct *child);
 959extern void perf_event_exit_task(struct task_struct *child);
 960extern void perf_event_free_task(struct task_struct *task);
 961extern void perf_event_delayed_put(struct task_struct *task);
 962extern struct file *perf_event_get(unsigned int fd);
 963extern const struct perf_event *perf_get_event(struct file *file);
 964extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
 965extern void perf_event_print_debug(void);
 966extern void perf_pmu_disable(struct pmu *pmu);
 967extern void perf_pmu_enable(struct pmu *pmu);
 968extern void perf_sched_cb_dec(struct pmu *pmu);
 969extern void perf_sched_cb_inc(struct pmu *pmu);
 970extern int perf_event_task_disable(void);
 971extern int perf_event_task_enable(void);
 972
 973extern void perf_pmu_resched(struct pmu *pmu);
 974
 975extern int perf_event_refresh(struct perf_event *event, int refresh);
 976extern void perf_event_update_userpage(struct perf_event *event);
 977extern int perf_event_release_kernel(struct perf_event *event);
 978extern struct perf_event *
 979perf_event_create_kernel_counter(struct perf_event_attr *attr,
 980                                int cpu,
 981                                struct task_struct *task,
 982                                perf_overflow_handler_t callback,
 983                                void *context);
 984extern void perf_pmu_migrate_context(struct pmu *pmu,
 985                                int src_cpu, int dst_cpu);
 986int perf_event_read_local(struct perf_event *event, u64 *value,
 987                          u64 *enabled, u64 *running);
 988extern u64 perf_event_read_value(struct perf_event *event,
 989                                 u64 *enabled, u64 *running);
 990
 991
 992struct perf_sample_data {
 993        /*
 994         * Fields set by perf_sample_data_init(), group so as to
 995         * minimize the cachelines touched.
 996         */
 997        u64                             addr;
 998        struct perf_raw_record          *raw;
 999        struct perf_branch_stack        *br_stack;
1000        u64                             period;
1001        u64                             weight;
1002        u64                             txn;
1003        union  perf_mem_data_src        data_src;
1004
1005        /*
1006         * The other fields, optionally {set,used} by
1007         * perf_{prepare,output}_sample().
1008         */
1009        u64                             type;
1010        u64                             ip;
1011        struct {
1012                u32     pid;
1013                u32     tid;
1014        }                               tid_entry;
1015        u64                             time;
1016        u64                             id;
1017        u64                             stream_id;
1018        struct {
1019                u32     cpu;
1020                u32     reserved;
1021        }                               cpu_entry;
1022        struct perf_callchain_entry     *callchain;
1023        u64                             aux_size;
1024
1025        struct perf_regs                regs_user;
1026        struct perf_regs                regs_intr;
1027        u64                             stack_user_size;
1028
1029        u64                             phys_addr;
1030        u64                             cgroup;
1031} ____cacheline_aligned;
1032
1033/* default value for data source */
1034#define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1035                    PERF_MEM_S(LVL, NA)   |\
1036                    PERF_MEM_S(SNOOP, NA) |\
1037                    PERF_MEM_S(LOCK, NA)  |\
1038                    PERF_MEM_S(TLB, NA))
1039
1040static inline void perf_sample_data_init(struct perf_sample_data *data,
1041                                         u64 addr, u64 period)
1042{
1043        /* remaining struct members initialized in perf_prepare_sample() */
1044        data->addr = addr;
1045        data->raw  = NULL;
1046        data->br_stack = NULL;
1047        data->period = period;
1048        data->weight = 0;
1049        data->data_src.val = PERF_MEM_NA;
1050        data->txn = 0;
1051}
1052
1053extern void perf_output_sample(struct perf_output_handle *handle,
1054                               struct perf_event_header *header,
1055                               struct perf_sample_data *data,
1056                               struct perf_event *event);
1057extern void perf_prepare_sample(struct perf_event_header *header,
1058                                struct perf_sample_data *data,
1059                                struct perf_event *event,
1060                                struct pt_regs *regs);
1061
1062extern int perf_event_overflow(struct perf_event *event,
1063                                 struct perf_sample_data *data,
1064                                 struct pt_regs *regs);
1065
1066extern void perf_event_output_forward(struct perf_event *event,
1067                                     struct perf_sample_data *data,
1068                                     struct pt_regs *regs);
1069extern void perf_event_output_backward(struct perf_event *event,
1070                                       struct perf_sample_data *data,
1071                                       struct pt_regs *regs);
1072extern int perf_event_output(struct perf_event *event,
1073                             struct perf_sample_data *data,
1074                             struct pt_regs *regs);
1075
1076static inline bool
1077is_default_overflow_handler(struct perf_event *event)
1078{
1079        if (likely(event->overflow_handler == perf_event_output_forward))
1080                return true;
1081        if (unlikely(event->overflow_handler == perf_event_output_backward))
1082                return true;
1083        return false;
1084}
1085
1086extern void
1087perf_event_header__init_id(struct perf_event_header *header,
1088                           struct perf_sample_data *data,
1089                           struct perf_event *event);
1090extern void
1091perf_event__output_id_sample(struct perf_event *event,
1092                             struct perf_output_handle *handle,
1093                             struct perf_sample_data *sample);
1094
1095extern void
1096perf_log_lost_samples(struct perf_event *event, u64 lost);
1097
1098static inline bool event_has_any_exclude_flag(struct perf_event *event)
1099{
1100        struct perf_event_attr *attr = &event->attr;
1101
1102        return attr->exclude_idle || attr->exclude_user ||
1103               attr->exclude_kernel || attr->exclude_hv ||
1104               attr->exclude_guest || attr->exclude_host;
1105}
1106
1107static inline bool is_sampling_event(struct perf_event *event)
1108{
1109        return event->attr.sample_period != 0;
1110}
1111
1112/*
1113 * Return 1 for a software event, 0 for a hardware event
1114 */
1115static inline int is_software_event(struct perf_event *event)
1116{
1117        return event->event_caps & PERF_EV_CAP_SOFTWARE;
1118}
1119
1120/*
1121 * Return 1 for event in sw context, 0 for event in hw context
1122 */
1123static inline int in_software_context(struct perf_event *event)
1124{
1125        return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1126}
1127
1128static inline int is_exclusive_pmu(struct pmu *pmu)
1129{
1130        return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1131}
1132
1133extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1134
1135extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1136extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1137
1138#ifndef perf_arch_fetch_caller_regs
1139static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1140#endif
1141
1142/*
1143 * When generating a perf sample in-line, instead of from an interrupt /
1144 * exception, we lack a pt_regs. This is typically used from software events
1145 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1146 *
1147 * We typically don't need a full set, but (for x86) do require:
1148 * - ip for PERF_SAMPLE_IP
1149 * - cs for user_mode() tests
1150 * - sp for PERF_SAMPLE_CALLCHAIN
1151 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1152 *
1153 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1154 * things like PERF_SAMPLE_REGS_INTR.
1155 */
1156static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1157{
1158        perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1159}
1160
1161static __always_inline void
1162perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1163{
1164        if (static_key_false(&perf_swevent_enabled[event_id]))
1165                __perf_sw_event(event_id, nr, regs, addr);
1166}
1167
1168DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1169
1170/*
1171 * 'Special' version for the scheduler, it hard assumes no recursion,
1172 * which is guaranteed by us not actually scheduling inside other swevents
1173 * because those disable preemption.
1174 */
1175static __always_inline void
1176perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1177{
1178        if (static_key_false(&perf_swevent_enabled[event_id])) {
1179                struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1180
1181                perf_fetch_caller_regs(regs);
1182                ___perf_sw_event(event_id, nr, regs, addr);
1183        }
1184}
1185
1186extern struct static_key_false perf_sched_events;
1187
1188static __always_inline bool
1189perf_sw_migrate_enabled(void)
1190{
1191        if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1192                return true;
1193        return false;
1194}
1195
1196static inline void perf_event_task_migrate(struct task_struct *task)
1197{
1198        if (perf_sw_migrate_enabled())
1199                task->sched_migrated = 1;
1200}
1201
1202static inline void perf_event_task_sched_in(struct task_struct *prev,
1203                                            struct task_struct *task)
1204{
1205        if (static_branch_unlikely(&perf_sched_events))
1206                __perf_event_task_sched_in(prev, task);
1207
1208        if (perf_sw_migrate_enabled() && task->sched_migrated) {
1209                struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1210
1211                perf_fetch_caller_regs(regs);
1212                ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1213                task->sched_migrated = 0;
1214        }
1215}
1216
1217static inline void perf_event_task_sched_out(struct task_struct *prev,
1218                                             struct task_struct *next)
1219{
1220        perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1221
1222        if (static_branch_unlikely(&perf_sched_events))
1223                __perf_event_task_sched_out(prev, next);
1224}
1225
1226extern void perf_event_mmap(struct vm_area_struct *vma);
1227
1228extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1229                               bool unregister, const char *sym);
1230extern void perf_event_bpf_event(struct bpf_prog *prog,
1231                                 enum perf_bpf_event_type type,
1232                                 u16 flags);
1233
1234extern struct perf_guest_info_callbacks *perf_guest_cbs;
1235extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1236extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1237
1238extern void perf_event_exec(void);
1239extern void perf_event_comm(struct task_struct *tsk, bool exec);
1240extern void perf_event_namespaces(struct task_struct *tsk);
1241extern void perf_event_fork(struct task_struct *tsk);
1242extern void perf_event_text_poke(const void *addr,
1243                                 const void *old_bytes, size_t old_len,
1244                                 const void *new_bytes, size_t new_len);
1245
1246/* Callchains */
1247DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1248
1249extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1250extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1251extern struct perf_callchain_entry *
1252get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1253                   u32 max_stack, bool crosstask, bool add_mark);
1254extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1255extern int get_callchain_buffers(int max_stack);
1256extern void put_callchain_buffers(void);
1257extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1258extern void put_callchain_entry(int rctx);
1259
1260extern int sysctl_perf_event_max_stack;
1261extern int sysctl_perf_event_max_contexts_per_stack;
1262
1263static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1264{
1265        if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1266                struct perf_callchain_entry *entry = ctx->entry;
1267                entry->ip[entry->nr++] = ip;
1268                ++ctx->contexts;
1269                return 0;
1270        } else {
1271                ctx->contexts_maxed = true;
1272                return -1; /* no more room, stop walking the stack */
1273        }
1274}
1275
1276static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1277{
1278        if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1279                struct perf_callchain_entry *entry = ctx->entry;
1280                entry->ip[entry->nr++] = ip;
1281                ++ctx->nr;
1282                return 0;
1283        } else {
1284                return -1; /* no more room, stop walking the stack */
1285        }
1286}
1287
1288extern int sysctl_perf_event_paranoid;
1289extern int sysctl_perf_event_mlock;
1290extern int sysctl_perf_event_sample_rate;
1291extern int sysctl_perf_cpu_time_max_percent;
1292
1293extern void perf_sample_event_took(u64 sample_len_ns);
1294
1295int perf_proc_update_handler(struct ctl_table *table, int write,
1296                void *buffer, size_t *lenp, loff_t *ppos);
1297int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1298                void *buffer, size_t *lenp, loff_t *ppos);
1299int perf_event_max_stack_handler(struct ctl_table *table, int write,
1300                void *buffer, size_t *lenp, loff_t *ppos);
1301
1302/* Access to perf_event_open(2) syscall. */
1303#define PERF_SECURITY_OPEN              0
1304
1305/* Finer grained perf_event_open(2) access control. */
1306#define PERF_SECURITY_CPU               1
1307#define PERF_SECURITY_KERNEL            2
1308#define PERF_SECURITY_TRACEPOINT        3
1309
1310static inline int perf_is_paranoid(void)
1311{
1312        return sysctl_perf_event_paranoid > -1;
1313}
1314
1315static inline int perf_allow_kernel(struct perf_event_attr *attr)
1316{
1317        if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1318                return -EACCES;
1319
1320        return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1321}
1322
1323static inline int perf_allow_cpu(struct perf_event_attr *attr)
1324{
1325        if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1326                return -EACCES;
1327
1328        return security_perf_event_open(attr, PERF_SECURITY_CPU);
1329}
1330
1331static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1332{
1333        if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1334                return -EPERM;
1335
1336        return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1337}
1338
1339extern void perf_event_init(void);
1340extern void perf_tp_event(u16 event_type, u64 count, void *record,
1341                          int entry_size, struct pt_regs *regs,
1342                          struct hlist_head *head, int rctx,
1343                          struct task_struct *task);
1344extern void perf_bp_event(struct perf_event *event, void *data);
1345
1346#ifndef perf_misc_flags
1347# define perf_misc_flags(regs) \
1348                (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1349# define perf_instruction_pointer(regs) instruction_pointer(regs)
1350#endif
1351#ifndef perf_arch_bpf_user_pt_regs
1352# define perf_arch_bpf_user_pt_regs(regs) regs
1353#endif
1354
1355static inline bool has_branch_stack(struct perf_event *event)
1356{
1357        return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1358}
1359
1360static inline bool needs_branch_stack(struct perf_event *event)
1361{
1362        return event->attr.branch_sample_type != 0;
1363}
1364
1365static inline bool has_aux(struct perf_event *event)
1366{
1367        return event->pmu->setup_aux;
1368}
1369
1370static inline bool is_write_backward(struct perf_event *event)
1371{
1372        return !!event->attr.write_backward;
1373}
1374
1375static inline bool has_addr_filter(struct perf_event *event)
1376{
1377        return event->pmu->nr_addr_filters;
1378}
1379
1380/*
1381 * An inherited event uses parent's filters
1382 */
1383static inline struct perf_addr_filters_head *
1384perf_event_addr_filters(struct perf_event *event)
1385{
1386        struct perf_addr_filters_head *ifh = &event->addr_filters;
1387
1388        if (event->parent)
1389                ifh = &event->parent->addr_filters;
1390
1391        return ifh;
1392}
1393
1394extern void perf_event_addr_filters_sync(struct perf_event *event);
1395
1396extern int perf_output_begin(struct perf_output_handle *handle,
1397                             struct perf_sample_data *data,
1398                             struct perf_event *event, unsigned int size);
1399extern int perf_output_begin_forward(struct perf_output_handle *handle,
1400                                     struct perf_sample_data *data,
1401                                     struct perf_event *event,
1402                                     unsigned int size);
1403extern int perf_output_begin_backward(struct perf_output_handle *handle,
1404                                      struct perf_sample_data *data,
1405                                      struct perf_event *event,
1406                                      unsigned int size);
1407
1408extern void perf_output_end(struct perf_output_handle *handle);
1409extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1410                             const void *buf, unsigned int len);
1411extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1412                                     unsigned int len);
1413extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1414                                 struct perf_output_handle *handle,
1415                                 unsigned long from, unsigned long to);
1416extern int perf_swevent_get_recursion_context(void);
1417extern void perf_swevent_put_recursion_context(int rctx);
1418extern u64 perf_swevent_set_period(struct perf_event *event);
1419extern void perf_event_enable(struct perf_event *event);
1420extern void perf_event_disable(struct perf_event *event);
1421extern void perf_event_disable_local(struct perf_event *event);
1422extern void perf_event_disable_inatomic(struct perf_event *event);
1423extern void perf_event_task_tick(void);
1424extern int perf_event_account_interrupt(struct perf_event *event);
1425extern int perf_event_period(struct perf_event *event, u64 value);
1426extern u64 perf_event_pause(struct perf_event *event, bool reset);
1427#else /* !CONFIG_PERF_EVENTS: */
1428static inline void *
1429perf_aux_output_begin(struct perf_output_handle *handle,
1430                      struct perf_event *event)                         { return NULL; }
1431static inline void
1432perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1433                                                                        { }
1434static inline int
1435perf_aux_output_skip(struct perf_output_handle *handle,
1436                     unsigned long size)                                { return -EINVAL; }
1437static inline void *
1438perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1439static inline void
1440perf_event_task_migrate(struct task_struct *task)                       { }
1441static inline void
1442perf_event_task_sched_in(struct task_struct *prev,
1443                         struct task_struct *task)                      { }
1444static inline void
1445perf_event_task_sched_out(struct task_struct *prev,
1446                          struct task_struct *next)                     { }
1447static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1448static inline void perf_event_exit_task(struct task_struct *child)      { }
1449static inline void perf_event_free_task(struct task_struct *task)       { }
1450static inline void perf_event_delayed_put(struct task_struct *task)     { }
1451static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1452static inline const struct perf_event *perf_get_event(struct file *file)
1453{
1454        return ERR_PTR(-EINVAL);
1455}
1456static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1457{
1458        return ERR_PTR(-EINVAL);
1459}
1460static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1461                                        u64 *enabled, u64 *running)
1462{
1463        return -EINVAL;
1464}
1465static inline void perf_event_print_debug(void)                         { }
1466static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1467static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1468static inline int perf_event_refresh(struct perf_event *event, int refresh)
1469{
1470        return -EINVAL;
1471}
1472
1473static inline void
1474perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1475static inline void
1476perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
1477static inline void
1478perf_bp_event(struct perf_event *event, void *data)                     { }
1479
1480static inline int perf_register_guest_info_callbacks
1481(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1482static inline int perf_unregister_guest_info_callbacks
1483(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1484
1485static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1486
1487typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1488static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1489                                      bool unregister, const char *sym) { }
1490static inline void perf_event_bpf_event(struct bpf_prog *prog,
1491                                        enum perf_bpf_event_type type,
1492                                        u16 flags)                      { }
1493static inline void perf_event_exec(void)                                { }
1494static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1495static inline void perf_event_namespaces(struct task_struct *tsk)       { }
1496static inline void perf_event_fork(struct task_struct *tsk)             { }
1497static inline void perf_event_text_poke(const void *addr,
1498                                        const void *old_bytes,
1499                                        size_t old_len,
1500                                        const void *new_bytes,
1501                                        size_t new_len)                 { }
1502static inline void perf_event_init(void)                                { }
1503static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1504static inline void perf_swevent_put_recursion_context(int rctx)         { }
1505static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1506static inline void perf_event_enable(struct perf_event *event)          { }
1507static inline void perf_event_disable(struct perf_event *event)         { }
1508static inline int __perf_event_disable(void *info)                      { return -1; }
1509static inline void perf_event_task_tick(void)                           { }
1510static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1511static inline int perf_event_period(struct perf_event *event, u64 value)
1512{
1513        return -EINVAL;
1514}
1515static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1516{
1517        return 0;
1518}
1519#endif
1520
1521#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1522extern void perf_restore_debug_store(void);
1523#else
1524static inline void perf_restore_debug_store(void)                       { }
1525#endif
1526
1527static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1528{
1529        return frag->pad < sizeof(u64);
1530}
1531
1532#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1533
1534struct perf_pmu_events_attr {
1535        struct device_attribute attr;
1536        u64 id;
1537        const char *event_str;
1538};
1539
1540struct perf_pmu_events_ht_attr {
1541        struct device_attribute                 attr;
1542        u64                                     id;
1543        const char                              *event_str_ht;
1544        const char                              *event_str_noht;
1545};
1546
1547ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1548                              char *page);
1549
1550#define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1551static struct perf_pmu_events_attr _var = {                             \
1552        .attr = __ATTR(_name, 0444, _show, NULL),                       \
1553        .id   =  _id,                                                   \
1554};
1555
1556#define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1557static struct perf_pmu_events_attr _var = {                                 \
1558        .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1559        .id             = 0,                                                \
1560        .event_str      = _str,                                             \
1561};
1562
1563#define PMU_FORMAT_ATTR(_name, _format)                                 \
1564static ssize_t                                                          \
1565_name##_show(struct device *dev,                                        \
1566                               struct device_attribute *attr,           \
1567                               char *page)                              \
1568{                                                                       \
1569        BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1570        return sprintf(page, _format "\n");                             \
1571}                                                                       \
1572                                                                        \
1573static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1574
1575/* Performance counter hotplug functions */
1576#ifdef CONFIG_PERF_EVENTS
1577int perf_event_init_cpu(unsigned int cpu);
1578int perf_event_exit_cpu(unsigned int cpu);
1579#else
1580#define perf_event_init_cpu     NULL
1581#define perf_event_exit_cpu     NULL
1582#endif
1583
1584extern void __weak arch_perf_update_userpage(struct perf_event *event,
1585                                             struct perf_event_mmap_page *userpg,
1586                                             u64 now);
1587
1588#endif /* _LINUX_PERF_EVENT_H */
1589