linux/include/linux/platform_data/cros_ec_commands.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Host communication command constants for ChromeOS EC
   4 *
   5 * Copyright (C) 2012 Google, Inc
   6 *
   7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
   8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
   9 */
  10
  11/* Host communication command constants for Chrome EC */
  12
  13#ifndef __CROS_EC_COMMANDS_H
  14#define __CROS_EC_COMMANDS_H
  15
  16
  17
  18
  19#define BUILD_ASSERT(_cond)
  20
  21/*
  22 * Current version of this protocol
  23 *
  24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
  25 * determined in other ways.  Remove this once the kernel code no longer
  26 * depends on it.
  27 */
  28#define EC_PROTO_VERSION          0x00000002
  29
  30/* Command version mask */
  31#define EC_VER_MASK(version) BIT(version)
  32
  33/* I/O addresses for ACPI commands */
  34#define EC_LPC_ADDR_ACPI_DATA  0x62
  35#define EC_LPC_ADDR_ACPI_CMD   0x66
  36
  37/* I/O addresses for host command */
  38#define EC_LPC_ADDR_HOST_DATA  0x200
  39#define EC_LPC_ADDR_HOST_CMD   0x204
  40
  41/* I/O addresses for host command args and params */
  42/* Protocol version 2 */
  43#define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
  44#define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
  45                                         * EC_PROTO2_MAX_PARAM_SIZE
  46                                         */
  47/* Protocol version 3 */
  48#define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
  49#define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
  50
  51/*
  52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
  53 * and they tell the kernel that so we have to think of it as two parts.
  54 */
  55#define EC_HOST_CMD_REGION0    0x800
  56#define EC_HOST_CMD_REGION1    0x880
  57#define EC_HOST_CMD_REGION_SIZE 0x80
  58
  59/* EC command register bit functions */
  60#define EC_LPC_CMDR_DATA        BIT(0)  /* Data ready for host to read */
  61#define EC_LPC_CMDR_PENDING     BIT(1)  /* Write pending to EC */
  62#define EC_LPC_CMDR_BUSY        BIT(2)  /* EC is busy processing a command */
  63#define EC_LPC_CMDR_CMD         BIT(3)  /* Last host write was a command */
  64#define EC_LPC_CMDR_ACPI_BRST   BIT(4)  /* Burst mode (not used) */
  65#define EC_LPC_CMDR_SCI         BIT(5)  /* SCI event is pending */
  66#define EC_LPC_CMDR_SMI         BIT(6)  /* SMI event is pending */
  67
  68#define EC_LPC_ADDR_MEMMAP       0x900
  69#define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
  70#define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
  71
  72/* The offset address of each type of data in mapped memory. */
  73#define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
  74#define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
  75#define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
  76#define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
  77#define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
  78#define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
  79#define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
  80#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
  81#define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
  82#define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
  83/* Unused 0x28 - 0x2f */
  84#define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
  85/* Unused 0x31 - 0x33 */
  86#define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
  87/* Battery values are all 32 bits, unless otherwise noted. */
  88#define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
  89#define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
  90#define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
  91#define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
  92#define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
  93#define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
  94/* Unused 0x4f */
  95#define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
  96#define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
  97#define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
  98#define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
  99/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
 100#define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
 101#define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
 102#define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
 103#define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
 104#define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
 105/* Unused 0x84 - 0x8f */
 106#define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
 107/* Unused 0x91 */
 108#define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
 109/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
 110/* 0x94 - 0x99: 1st Accelerometer */
 111/* 0x9a - 0x9f: 2nd Accelerometer */
 112#define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
 113/* Unused 0xa6 - 0xdf */
 114
 115/*
 116 * ACPI is unable to access memory mapped data at or above this offset due to
 117 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
 118 * which might be needed by ACPI.
 119 */
 120#define EC_MEMMAP_NO_ACPI 0xe0
 121
 122/* Define the format of the accelerometer mapped memory status byte. */
 123#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
 124#define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
 125#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
 126
 127/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
 128#define EC_TEMP_SENSOR_ENTRIES     16
 129/*
 130 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
 131 *
 132 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
 133 */
 134#define EC_TEMP_SENSOR_B_ENTRIES      8
 135
 136/* Special values for mapped temperature sensors */
 137#define EC_TEMP_SENSOR_NOT_PRESENT    0xff
 138#define EC_TEMP_SENSOR_ERROR          0xfe
 139#define EC_TEMP_SENSOR_NOT_POWERED    0xfd
 140#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
 141/*
 142 * The offset of temperature value stored in mapped memory.  This allows
 143 * reporting a temperature range of 200K to 454K = -73C to 181C.
 144 */
 145#define EC_TEMP_SENSOR_OFFSET      200
 146
 147/*
 148 * Number of ALS readings at EC_MEMMAP_ALS
 149 */
 150#define EC_ALS_ENTRIES             2
 151
 152/*
 153 * The default value a temperature sensor will return when it is present but
 154 * has not been read this boot.  This is a reasonable number to avoid
 155 * triggering alarms on the host.
 156 */
 157#define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
 158
 159#define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
 160#define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
 161#define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
 162
 163/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
 164#define EC_BATT_FLAG_AC_PRESENT   0x01
 165#define EC_BATT_FLAG_BATT_PRESENT 0x02
 166#define EC_BATT_FLAG_DISCHARGING  0x04
 167#define EC_BATT_FLAG_CHARGING     0x08
 168#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
 169/* Set if some of the static/dynamic data is invalid (or outdated). */
 170#define EC_BATT_FLAG_INVALID_DATA 0x20
 171
 172/* Switch flags at EC_MEMMAP_SWITCHES */
 173#define EC_SWITCH_LID_OPEN               0x01
 174#define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
 175#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
 176/* Was recovery requested via keyboard; now unused. */
 177#define EC_SWITCH_IGNORE1                0x08
 178/* Recovery requested via dedicated signal (from servo board) */
 179#define EC_SWITCH_DEDICATED_RECOVERY     0x10
 180/* Was fake developer mode switch; now unused.  Remove in next refactor. */
 181#define EC_SWITCH_IGNORE0                0x20
 182
 183/* Host command interface flags */
 184/* Host command interface supports LPC args (LPC interface only) */
 185#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
 186/* Host command interface supports version 3 protocol */
 187#define EC_HOST_CMD_FLAG_VERSION_3   0x02
 188
 189/* Wireless switch flags */
 190#define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
 191#define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
 192#define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
 193#define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
 194#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
 195
 196/*****************************************************************************/
 197/*
 198 * ACPI commands
 199 *
 200 * These are valid ONLY on the ACPI command/data port.
 201 */
 202
 203/*
 204 * ACPI Read Embedded Controller
 205 *
 206 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 207 *
 208 * Use the following sequence:
 209 *
 210 *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
 211 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 212 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 213 *    - Wait for EC_LPC_CMDR_DATA bit to set
 214 *    - Read value from EC_LPC_ADDR_ACPI_DATA
 215 */
 216#define EC_CMD_ACPI_READ 0x0080
 217
 218/*
 219 * ACPI Write Embedded Controller
 220 *
 221 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
 222 *
 223 * Use the following sequence:
 224 *
 225 *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
 226 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 227 *    - Write address to EC_LPC_ADDR_ACPI_DATA
 228 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
 229 *    - Write value to EC_LPC_ADDR_ACPI_DATA
 230 */
 231#define EC_CMD_ACPI_WRITE 0x0081
 232
 233/*
 234 * ACPI Burst Enable Embedded Controller
 235 *
 236 * This enables burst mode on the EC to allow the host to issue several
 237 * commands back-to-back. While in this mode, writes to mapped multi-byte
 238 * data are locked out to ensure data consistency.
 239 */
 240#define EC_CMD_ACPI_BURST_ENABLE 0x0082
 241
 242/*
 243 * ACPI Burst Disable Embedded Controller
 244 *
 245 * This disables burst mode on the EC and stops preventing EC writes to mapped
 246 * multi-byte data.
 247 */
 248#define EC_CMD_ACPI_BURST_DISABLE 0x0083
 249
 250/*
 251 * ACPI Query Embedded Controller
 252 *
 253 * This clears the lowest-order bit in the currently pending host events, and
 254 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
 255 * event 0x80000000 = 32), or 0 if no event was pending.
 256 */
 257#define EC_CMD_ACPI_QUERY_EVENT 0x0084
 258
 259/* Valid addresses in ACPI memory space, for read/write commands */
 260
 261/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
 262#define EC_ACPI_MEM_VERSION            0x00
 263/*
 264 * Test location; writing value here updates test compliment byte to (0xff -
 265 * value).
 266 */
 267#define EC_ACPI_MEM_TEST               0x01
 268/* Test compliment; writes here are ignored. */
 269#define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
 270
 271/* Keyboard backlight brightness percent (0 - 100) */
 272#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
 273/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
 274#define EC_ACPI_MEM_FAN_DUTY           0x04
 275
 276/*
 277 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
 278 * independent thresholds attached to them. The current value of the ID
 279 * register determines which sensor is affected by the THRESHOLD and COMMIT
 280 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
 281 * as the memory-mapped sensors. The COMMIT register applies those settings.
 282 *
 283 * The spec does not mandate any way to read back the threshold settings
 284 * themselves, but when a threshold is crossed the AP needs a way to determine
 285 * which sensor(s) are responsible. Each reading of the ID register clears and
 286 * returns one sensor ID that has crossed one of its threshold (in either
 287 * direction) since the last read. A value of 0xFF means "no new thresholds
 288 * have tripped". Setting or enabling the thresholds for a sensor will clear
 289 * the unread event count for that sensor.
 290 */
 291#define EC_ACPI_MEM_TEMP_ID            0x05
 292#define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
 293#define EC_ACPI_MEM_TEMP_COMMIT        0x07
 294/*
 295 * Here are the bits for the COMMIT register:
 296 *   bit 0 selects the threshold index for the chosen sensor (0/1)
 297 *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
 298 * Each write to the commit register affects one threshold.
 299 */
 300#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
 301#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
 302/*
 303 * Example:
 304 *
 305 * Set the thresholds for sensor 2 to 50 C and 60 C:
 306 *   write 2 to [0x05]      --  select temp sensor 2
 307 *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
 308 *   write 0x2 to [0x07]    --  enable threshold 0 with this value
 309 *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
 310 *   write 0x3 to [0x07]    --  enable threshold 1 with this value
 311 *
 312 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
 313 *   write 2 to [0x05]      --  select temp sensor 2
 314 *   write 0x1 to [0x07]    --  disable threshold 1
 315 */
 316
 317/* DPTF battery charging current limit */
 318#define EC_ACPI_MEM_CHARGING_LIMIT     0x08
 319
 320/* Charging limit is specified in 64 mA steps */
 321#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
 322/* Value to disable DPTF battery charging limit */
 323#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
 324
 325/*
 326 * Report device orientation
 327 *  Bits       Definition
 328 *  3:1        Device DPTF Profile Number (DDPN)
 329 *               0   = Reserved for backward compatibility (indicates no valid
 330 *                     profile number. Host should fall back to using TBMD).
 331 *              1..7 = DPTF Profile number to indicate to host which table needs
 332 *                     to be loaded.
 333 *   0         Tablet Mode Device Indicator (TBMD)
 334 */
 335#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
 336#define EC_ACPI_MEM_TBMD_SHIFT         0
 337#define EC_ACPI_MEM_TBMD_MASK          0x1
 338#define EC_ACPI_MEM_DDPN_SHIFT         1
 339#define EC_ACPI_MEM_DDPN_MASK          0x7
 340
 341/*
 342 * Report device features. Uses the same format as the host command, except:
 343 *
 344 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
 345 * of features", which is of limited interest when the system is already
 346 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
 347 * these are supported, it defaults to 0.
 348 * This allows detecting the presence of this field since older versions of
 349 * the EC codebase would simply return 0xff to that unknown address. Check
 350 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
 351 * are valid.
 352 */
 353#define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
 354#define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
 355#define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
 356#define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
 357#define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
 358#define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
 359#define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
 360#define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
 361
 362#define EC_ACPI_MEM_BATTERY_INDEX    0x12
 363
 364/*
 365 * USB Port Power. Each bit indicates whether the corresponding USB ports' power
 366 * is enabled (1) or disabled (0).
 367 *   bit 0 USB port ID 0
 368 *   ...
 369 *   bit 7 USB port ID 7
 370 */
 371#define EC_ACPI_MEM_USB_PORT_POWER 0x13
 372
 373/*
 374 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
 375 * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
 376 */
 377#define EC_ACPI_MEM_MAPPED_BEGIN   0x20
 378#define EC_ACPI_MEM_MAPPED_SIZE    0xe0
 379
 380/* Current version of ACPI memory address space */
 381#define EC_ACPI_MEM_VERSION_CURRENT 2
 382
 383
 384/*
 385 * This header file is used in coreboot both in C and ACPI code.  The ACPI code
 386 * is pre-processed to handle constants but the ASL compiler is unable to
 387 * handle actual C code so keep it separate.
 388 */
 389
 390
 391/*
 392 * Attributes for EC request and response packets.  Just defining __packed
 393 * results in inefficient assembly code on ARM, if the structure is actually
 394 * 32-bit aligned, as it should be for all buffers.
 395 *
 396 * Be very careful when adding these to existing structures.  They will round
 397 * up the structure size to the specified boundary.
 398 *
 399 * Also be very careful to make that if a structure is included in some other
 400 * parent structure that the alignment will still be true given the packing of
 401 * the parent structure.  This is particularly important if the sub-structure
 402 * will be passed as a pointer to another function, since that function will
 403 * not know about the misaligment caused by the parent structure's packing.
 404 *
 405 * Also be very careful using __packed - particularly when nesting non-packed
 406 * structures inside packed ones.  In fact, DO NOT use __packed directly;
 407 * always use one of these attributes.
 408 *
 409 * Once everything is annotated properly, the following search strings should
 410 * not return ANY matches in this file other than right here:
 411 *
 412 * "__packed" - generates inefficient code; all sub-structs must also be packed
 413 *
 414 * "struct [^_]" - all structs should be annotated, except for structs that are
 415 * members of other structs/unions (and their original declarations should be
 416 * annotated).
 417 */
 418
 419/*
 420 * Packed structures make no assumption about alignment, so they do inefficient
 421 * byte-wise reads.
 422 */
 423#define __ec_align1 __packed
 424#define __ec_align2 __packed
 425#define __ec_align4 __packed
 426#define __ec_align_size1 __packed
 427#define __ec_align_offset1 __packed
 428#define __ec_align_offset2 __packed
 429#define __ec_todo_packed __packed
 430#define __ec_todo_unpacked
 431
 432
 433/* LPC command status byte masks */
 434/* EC has written a byte in the data register and host hasn't read it yet */
 435#define EC_LPC_STATUS_TO_HOST     0x01
 436/* Host has written a command/data byte and the EC hasn't read it yet */
 437#define EC_LPC_STATUS_FROM_HOST   0x02
 438/* EC is processing a command */
 439#define EC_LPC_STATUS_PROCESSING  0x04
 440/* Last write to EC was a command, not data */
 441#define EC_LPC_STATUS_LAST_CMD    0x08
 442/* EC is in burst mode */
 443#define EC_LPC_STATUS_BURST_MODE  0x10
 444/* SCI event is pending (requesting SCI query) */
 445#define EC_LPC_STATUS_SCI_PENDING 0x20
 446/* SMI event is pending (requesting SMI query) */
 447#define EC_LPC_STATUS_SMI_PENDING 0x40
 448/* (reserved) */
 449#define EC_LPC_STATUS_RESERVED    0x80
 450
 451/*
 452 * EC is busy.  This covers both the EC processing a command, and the host has
 453 * written a new command but the EC hasn't picked it up yet.
 454 */
 455#define EC_LPC_STATUS_BUSY_MASK \
 456        (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
 457
 458/*
 459 * Host command response codes (16-bit).  Note that response codes should be
 460 * stored in a uint16_t rather than directly in a value of this type.
 461 */
 462enum ec_status {
 463        EC_RES_SUCCESS = 0,
 464        EC_RES_INVALID_COMMAND = 1,
 465        EC_RES_ERROR = 2,
 466        EC_RES_INVALID_PARAM = 3,
 467        EC_RES_ACCESS_DENIED = 4,
 468        EC_RES_INVALID_RESPONSE = 5,
 469        EC_RES_INVALID_VERSION = 6,
 470        EC_RES_INVALID_CHECKSUM = 7,
 471        EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
 472        EC_RES_UNAVAILABLE = 9,         /* No response available */
 473        EC_RES_TIMEOUT = 10,            /* We got a timeout */
 474        EC_RES_OVERFLOW = 11,           /* Table / data overflow */
 475        EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
 476        EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
 477        EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
 478        EC_RES_BUS_ERROR = 15,          /* Communications bus error */
 479        EC_RES_BUSY = 16,               /* Up but too busy.  Should retry */
 480        EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
 481        EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
 482        EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
 483        EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
 484};
 485
 486/*
 487 * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
 488 * EC command uses code 0 to mean "no event pending".  We explicitly specify
 489 * each value in the enum listing so they won't change if we delete/insert an
 490 * item or rearrange the list (it needs to be stable across platforms, not
 491 * just within a single compiled instance).
 492 */
 493enum host_event_code {
 494        EC_HOST_EVENT_LID_CLOSED = 1,
 495        EC_HOST_EVENT_LID_OPEN = 2,
 496        EC_HOST_EVENT_POWER_BUTTON = 3,
 497        EC_HOST_EVENT_AC_CONNECTED = 4,
 498        EC_HOST_EVENT_AC_DISCONNECTED = 5,
 499        EC_HOST_EVENT_BATTERY_LOW = 6,
 500        EC_HOST_EVENT_BATTERY_CRITICAL = 7,
 501        EC_HOST_EVENT_BATTERY = 8,
 502        EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
 503        /* Event generated by a device attached to the EC */
 504        EC_HOST_EVENT_DEVICE = 10,
 505        EC_HOST_EVENT_THERMAL = 11,
 506        EC_HOST_EVENT_USB_CHARGER = 12,
 507        EC_HOST_EVENT_KEY_PRESSED = 13,
 508        /*
 509         * EC has finished initializing the host interface.  The host can check
 510         * for this event following sending a EC_CMD_REBOOT_EC command to
 511         * determine when the EC is ready to accept subsequent commands.
 512         */
 513        EC_HOST_EVENT_INTERFACE_READY = 14,
 514        /* Keyboard recovery combo has been pressed */
 515        EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
 516
 517        /* Shutdown due to thermal overload */
 518        EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
 519        /* Shutdown due to battery level too low */
 520        EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
 521
 522        /* Suggest that the AP throttle itself */
 523        EC_HOST_EVENT_THROTTLE_START = 18,
 524        /* Suggest that the AP resume normal speed */
 525        EC_HOST_EVENT_THROTTLE_STOP = 19,
 526
 527        /* Hang detect logic detected a hang and host event timeout expired */
 528        EC_HOST_EVENT_HANG_DETECT = 20,
 529        /* Hang detect logic detected a hang and warm rebooted the AP */
 530        EC_HOST_EVENT_HANG_REBOOT = 21,
 531
 532        /* PD MCU triggering host event */
 533        EC_HOST_EVENT_PD_MCU = 22,
 534
 535        /* Battery Status flags have changed */
 536        EC_HOST_EVENT_BATTERY_STATUS = 23,
 537
 538        /* EC encountered a panic, triggering a reset */
 539        EC_HOST_EVENT_PANIC = 24,
 540
 541        /* Keyboard fastboot combo has been pressed */
 542        EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
 543
 544        /* EC RTC event occurred */
 545        EC_HOST_EVENT_RTC = 26,
 546
 547        /* Emulate MKBP event */
 548        EC_HOST_EVENT_MKBP = 27,
 549
 550        /* EC desires to change state of host-controlled USB mux */
 551        EC_HOST_EVENT_USB_MUX = 28,
 552
 553        /* TABLET/LAPTOP mode or detachable base attach/detach event */
 554        EC_HOST_EVENT_MODE_CHANGE = 29,
 555
 556        /* Keyboard recovery combo with hardware reinitialization */
 557        EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
 558
 559        /* WoV */
 560        EC_HOST_EVENT_WOV = 31,
 561
 562        /*
 563         * The high bit of the event mask is not used as a host event code.  If
 564         * it reads back as set, then the entire event mask should be
 565         * considered invalid by the host.  This can happen when reading the
 566         * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
 567         * not initialized on the EC, or improperly configured on the host.
 568         */
 569        EC_HOST_EVENT_INVALID = 32
 570};
 571/* Host event mask */
 572#define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
 573
 574/**
 575 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
 576 * @flags: The host argument flags.
 577 * @command_version: Command version.
 578 * @data_size: The length of data.
 579 * @checksum: Checksum; sum of command + flags + command_version + data_size +
 580 *            all params/response data bytes.
 581 */
 582struct ec_lpc_host_args {
 583        uint8_t flags;
 584        uint8_t command_version;
 585        uint8_t data_size;
 586        uint8_t checksum;
 587} __ec_align4;
 588
 589/* Flags for ec_lpc_host_args.flags */
 590/*
 591 * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
 592 * params.
 593 *
 594 * If EC gets a command and this flag is not set, this is an old-style command.
 595 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
 596 * unknown length.  EC must respond with an old-style response (that is,
 597 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
 598 */
 599#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
 600/*
 601 * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
 602 *
 603 * If EC responds to a command and this flag is not set, this is an old-style
 604 * response.  Command version is 0 and response data from EC is at
 605 * EC_LPC_ADDR_OLD_PARAM with unknown length.
 606 */
 607#define EC_HOST_ARGS_FLAG_TO_HOST   0x02
 608
 609/*****************************************************************************/
 610/*
 611 * Byte codes returned by EC over SPI interface.
 612 *
 613 * These can be used by the AP to debug the EC interface, and to determine
 614 * when the EC is not in a state where it will ever get around to responding
 615 * to the AP.
 616 *
 617 * Example of sequence of bytes read from EC for a current good transfer:
 618 *   1. -                  - AP asserts chip select (CS#)
 619 *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
 620 *   3. -                  - EC starts handling CS# interrupt
 621 *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
 622 *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
 623 *                           bytes looking for EC_SPI_FRAME_START
 624 *   6. -                  - EC finishes processing and sets up response
 625 *   7. EC_SPI_FRAME_START - AP reads frame byte
 626 *   8. (response packet)  - AP reads response packet
 627 *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
 628 *   10 -                  - AP deasserts chip select
 629 *   11 -                  - EC processes CS# interrupt and sets up DMA for
 630 *                           next request
 631 *
 632 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
 633 * the following byte values:
 634 *   EC_SPI_OLD_READY
 635 *   EC_SPI_RX_READY
 636 *   EC_SPI_RECEIVING
 637 *   EC_SPI_PROCESSING
 638 *
 639 * Then the EC found an error in the request, or was not ready for the request
 640 * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
 641 * because the EC is unable to tell when the AP is done sending its request.
 642 */
 643
 644/*
 645 * Framing byte which precedes a response packet from the EC.  After sending a
 646 * request, the AP will clock in bytes until it sees the framing byte, then
 647 * clock in the response packet.
 648 */
 649#define EC_SPI_FRAME_START    0xec
 650
 651/*
 652 * Padding bytes which are clocked out after the end of a response packet.
 653 */
 654#define EC_SPI_PAST_END       0xed
 655
 656/*
 657 * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
 658 * that the AP will send a valid packet header (starting with
 659 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
 660 */
 661#define EC_SPI_RX_READY       0xf8
 662
 663/*
 664 * EC has started receiving the request from the AP, but hasn't started
 665 * processing it yet.
 666 */
 667#define EC_SPI_RECEIVING      0xf9
 668
 669/* EC has received the entire request from the AP and is processing it. */
 670#define EC_SPI_PROCESSING     0xfa
 671
 672/*
 673 * EC received bad data from the AP, such as a packet header with an invalid
 674 * length.  EC will ignore all data until chip select deasserts.
 675 */
 676#define EC_SPI_RX_BAD_DATA    0xfb
 677
 678/*
 679 * EC received data from the AP before it was ready.  That is, the AP asserted
 680 * chip select and started clocking data before the EC was ready to receive it.
 681 * EC will ignore all data until chip select deasserts.
 682 */
 683#define EC_SPI_NOT_READY      0xfc
 684
 685/*
 686 * EC was ready to receive a request from the AP.  EC has treated the byte sent
 687 * by the AP as part of a request packet, or (for old-style ECs) is processing
 688 * a fully received packet but is not ready to respond yet.
 689 */
 690#define EC_SPI_OLD_READY      0xfd
 691
 692/*****************************************************************************/
 693
 694/*
 695 * Protocol version 2 for I2C and SPI send a request this way:
 696 *
 697 *      0       EC_CMD_VERSION0 + (command version)
 698 *      1       Command number
 699 *      2       Length of params = N
 700 *      3..N+2  Params, if any
 701 *      N+3     8-bit checksum of bytes 0..N+2
 702 *
 703 * The corresponding response is:
 704 *
 705 *      0       Result code (EC_RES_*)
 706 *      1       Length of params = M
 707 *      2..M+1  Params, if any
 708 *      M+2     8-bit checksum of bytes 0..M+1
 709 */
 710#define EC_PROTO2_REQUEST_HEADER_BYTES 3
 711#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
 712#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
 713                                    EC_PROTO2_REQUEST_TRAILER_BYTES)
 714
 715#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
 716#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
 717#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
 718                                     EC_PROTO2_RESPONSE_TRAILER_BYTES)
 719
 720/* Parameter length was limited by the LPC interface */
 721#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
 722
 723/* Maximum request and response packet sizes for protocol version 2 */
 724#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
 725                                    EC_PROTO2_MAX_PARAM_SIZE)
 726#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
 727                                     EC_PROTO2_MAX_PARAM_SIZE)
 728
 729/*****************************************************************************/
 730
 731/*
 732 * Value written to legacy command port / prefix byte to indicate protocol
 733 * 3+ structs are being used.  Usage is bus-dependent.
 734 */
 735#define EC_COMMAND_PROTOCOL_3 0xda
 736
 737#define EC_HOST_REQUEST_VERSION 3
 738
 739/**
 740 * struct ec_host_request - Version 3 request from host.
 741 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
 742 *                  receives a header with a version it doesn't know how to
 743 *                  parse.
 744 * @checksum: Checksum of request and data; sum of all bytes including checksum
 745 *            should total to 0.
 746 * @command: Command to send (EC_CMD_...)
 747 * @command_version: Command version.
 748 * @reserved: Unused byte in current protocol version; set to 0.
 749 * @data_len: Length of data which follows this header.
 750 */
 751struct ec_host_request {
 752        uint8_t struct_version;
 753        uint8_t checksum;
 754        uint16_t command;
 755        uint8_t command_version;
 756        uint8_t reserved;
 757        uint16_t data_len;
 758} __ec_align4;
 759
 760#define EC_HOST_RESPONSE_VERSION 3
 761
 762/**
 763 * struct ec_host_response - Version 3 response from EC.
 764 * @struct_version: Struct version (=3).
 765 * @checksum: Checksum of response and data; sum of all bytes including
 766 *            checksum should total to 0.
 767 * @result: EC's response to the command (separate from communication failure)
 768 * @data_len: Length of data which follows this header.
 769 * @reserved: Unused bytes in current protocol version; set to 0.
 770 */
 771struct ec_host_response {
 772        uint8_t struct_version;
 773        uint8_t checksum;
 774        uint16_t result;
 775        uint16_t data_len;
 776        uint16_t reserved;
 777} __ec_align4;
 778
 779/*****************************************************************************/
 780
 781/*
 782 * Host command protocol V4.
 783 *
 784 * Packets always start with a request or response header.  They are followed
 785 * by data_len bytes of data.  If the data_crc_present flag is set, the data
 786 * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
 787 * polynomial.
 788 *
 789 * Host algorithm when sending a request q:
 790 *
 791 * 101) tries_left=(some value, e.g. 3);
 792 * 102) q.seq_num++
 793 * 103) q.seq_dup=0
 794 * 104) Calculate q.header_crc.
 795 * 105) Send request q to EC.
 796 * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
 797 *
 798 * 201) If r.struct_version != 4, go to 301.
 799 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
 800 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
 801 * 204) If r.seq_num != q.seq_num, go to 301.
 802 * 205) If r.seq_dup == q.seq_dup, return success.
 803 * 207) If r.seq_dup == 1, go to 301.
 804 * 208) Return error.
 805 *
 806 * 301) If --tries_left <= 0, return error.
 807 * 302) If q.seq_dup == 1, go to 105.
 808 * 303) q.seq_dup = 1
 809 * 304) Go to 104.
 810 *
 811 * EC algorithm when receiving a request q.
 812 * EC has response buffer r, error buffer e.
 813 *
 814 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
 815 *      and go to 301
 816 * 102) If q.header_crc mismatches calculated CRC, set e.result =
 817 *      EC_RES_INVALID_HEADER_CRC and go to 301
 818 * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
 819 *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
 820 *      and go to 301.
 821 * 104) If q.seq_dup == 0, go to 201.
 822 * 105) If q.seq_num != r.seq_num, go to 201.
 823 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
 824 *
 825 * 201) Process request q into response r.
 826 * 202) r.seq_num = q.seq_num
 827 * 203) r.seq_dup = q.seq_dup
 828 * 204) Calculate r.header_crc
 829 * 205) If r.data_len > 0 and data is no longer available, set e.result =
 830 *      EC_RES_DUP_UNAVAILABLE and go to 301.
 831 * 206) Send response r.
 832 *
 833 * 301) e.seq_num = q.seq_num
 834 * 302) e.seq_dup = q.seq_dup
 835 * 303) Calculate e.header_crc.
 836 * 304) Send error response e.
 837 */
 838
 839/* Version 4 request from host */
 840struct ec_host_request4 {
 841        /*
 842         * bits 0-3: struct_version: Structure version (=4)
 843         * bit    4: is_response: Is response (=0)
 844         * bits 5-6: seq_num: Sequence number
 845         * bit    7: seq_dup: Sequence duplicate flag
 846         */
 847        uint8_t fields0;
 848
 849        /*
 850         * bits 0-4: command_version: Command version
 851         * bits 5-6: Reserved (set 0, ignore on read)
 852         * bit    7: data_crc_present: Is data CRC present after data
 853         */
 854        uint8_t fields1;
 855
 856        /* Command code (EC_CMD_*) */
 857        uint16_t command;
 858
 859        /* Length of data which follows this header (not including data CRC) */
 860        uint16_t data_len;
 861
 862        /* Reserved (set 0, ignore on read) */
 863        uint8_t reserved;
 864
 865        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 866        uint8_t header_crc;
 867} __ec_align4;
 868
 869/* Version 4 response from EC */
 870struct ec_host_response4 {
 871        /*
 872         * bits 0-3: struct_version: Structure version (=4)
 873         * bit    4: is_response: Is response (=1)
 874         * bits 5-6: seq_num: Sequence number
 875         * bit    7: seq_dup: Sequence duplicate flag
 876         */
 877        uint8_t fields0;
 878
 879        /*
 880         * bits 0-6: Reserved (set 0, ignore on read)
 881         * bit    7: data_crc_present: Is data CRC present after data
 882         */
 883        uint8_t fields1;
 884
 885        /* Result code (EC_RES_*) */
 886        uint16_t result;
 887
 888        /* Length of data which follows this header (not including data CRC) */
 889        uint16_t data_len;
 890
 891        /* Reserved (set 0, ignore on read) */
 892        uint8_t reserved;
 893
 894        /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
 895        uint8_t header_crc;
 896} __ec_align4;
 897
 898/* Fields in fields0 byte */
 899#define EC_PACKET4_0_STRUCT_VERSION_MASK        0x0f
 900#define EC_PACKET4_0_IS_RESPONSE_MASK           0x10
 901#define EC_PACKET4_0_SEQ_NUM_SHIFT              5
 902#define EC_PACKET4_0_SEQ_NUM_MASK               0x60
 903#define EC_PACKET4_0_SEQ_DUP_MASK               0x80
 904
 905/* Fields in fields1 byte */
 906#define EC_PACKET4_1_COMMAND_VERSION_MASK       0x1f  /* (request only) */
 907#define EC_PACKET4_1_DATA_CRC_PRESENT_MASK      0x80
 908
 909/*****************************************************************************/
 910/*
 911 * Notes on commands:
 912 *
 913 * Each command is an 16-bit command value.  Commands which take params or
 914 * return response data specify structures for that data.  If no structure is
 915 * specified, the command does not input or output data, respectively.
 916 * Parameter/response length is implicit in the structs.  Some underlying
 917 * communication protocols (I2C, SPI) may add length or checksum headers, but
 918 * those are implementation-dependent and not defined here.
 919 *
 920 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
 921 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
 922 */
 923
 924/*****************************************************************************/
 925/* General / test commands */
 926
 927/*
 928 * Get protocol version, used to deal with non-backward compatible protocol
 929 * changes.
 930 */
 931#define EC_CMD_PROTO_VERSION 0x0000
 932
 933/**
 934 * struct ec_response_proto_version - Response to the proto version command.
 935 * @version: The protocol version.
 936 */
 937struct ec_response_proto_version {
 938        uint32_t version;
 939} __ec_align4;
 940
 941/*
 942 * Hello.  This is a simple command to test the EC is responsive to
 943 * commands.
 944 */
 945#define EC_CMD_HELLO 0x0001
 946
 947/**
 948 * struct ec_params_hello - Parameters to the hello command.
 949 * @in_data: Pass anything here.
 950 */
 951struct ec_params_hello {
 952        uint32_t in_data;
 953} __ec_align4;
 954
 955/**
 956 * struct ec_response_hello - Response to the hello command.
 957 * @out_data: Output will be in_data + 0x01020304.
 958 */
 959struct ec_response_hello {
 960        uint32_t out_data;
 961} __ec_align4;
 962
 963/* Get version number */
 964#define EC_CMD_GET_VERSION 0x0002
 965
 966enum ec_current_image {
 967        EC_IMAGE_UNKNOWN = 0,
 968        EC_IMAGE_RO,
 969        EC_IMAGE_RW
 970};
 971
 972/**
 973 * struct ec_response_get_version - Response to the get version command.
 974 * @version_string_ro: Null-terminated RO firmware version string.
 975 * @version_string_rw: Null-terminated RW firmware version string.
 976 * @reserved: Unused bytes; was previously RW-B firmware version string.
 977 * @current_image: One of ec_current_image.
 978 */
 979struct ec_response_get_version {
 980        char version_string_ro[32];
 981        char version_string_rw[32];
 982        char reserved[32];
 983        uint32_t current_image;
 984} __ec_align4;
 985
 986/* Read test */
 987#define EC_CMD_READ_TEST 0x0003
 988
 989/**
 990 * struct ec_params_read_test - Parameters for the read test command.
 991 * @offset: Starting value for read buffer.
 992 * @size: Size to read in bytes.
 993 */
 994struct ec_params_read_test {
 995        uint32_t offset;
 996        uint32_t size;
 997} __ec_align4;
 998
 999/**
1000 * struct ec_response_read_test - Response to the read test command.
1001 * @data: Data returned by the read test command.
1002 */
1003struct ec_response_read_test {
1004        uint32_t data[32];
1005} __ec_align4;
1006
1007/*
1008 * Get build information
1009 *
1010 * Response is null-terminated string.
1011 */
1012#define EC_CMD_GET_BUILD_INFO 0x0004
1013
1014/* Get chip info */
1015#define EC_CMD_GET_CHIP_INFO 0x0005
1016
1017/**
1018 * struct ec_response_get_chip_info - Response to the get chip info command.
1019 * @vendor: Null-terminated string for chip vendor.
1020 * @name: Null-terminated string for chip name.
1021 * @revision: Null-terminated string for chip mask version.
1022 */
1023struct ec_response_get_chip_info {
1024        char vendor[32];
1025        char name[32];
1026        char revision[32];
1027} __ec_align4;
1028
1029/* Get board HW version */
1030#define EC_CMD_GET_BOARD_VERSION 0x0006
1031
1032/**
1033 * struct ec_response_board_version - Response to the board version command.
1034 * @board_version: A monotonously incrementing number.
1035 */
1036struct ec_response_board_version {
1037        uint16_t board_version;
1038} __ec_align2;
1039
1040/*
1041 * Read memory-mapped data.
1042 *
1043 * This is an alternate interface to memory-mapped data for bus protocols
1044 * which don't support direct-mapped memory - I2C, SPI, etc.
1045 *
1046 * Response is params.size bytes of data.
1047 */
1048#define EC_CMD_READ_MEMMAP 0x0007
1049
1050/**
1051 * struct ec_params_read_memmap - Parameters for the read memory map command.
1052 * @offset: Offset in memmap (EC_MEMMAP_*).
1053 * @size: Size to read in bytes.
1054 */
1055struct ec_params_read_memmap {
1056        uint8_t offset;
1057        uint8_t size;
1058} __ec_align1;
1059
1060/* Read versions supported for a command */
1061#define EC_CMD_GET_CMD_VERSIONS 0x0008
1062
1063/**
1064 * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1065 * @cmd: Command to check.
1066 */
1067struct ec_params_get_cmd_versions {
1068        uint8_t cmd;
1069} __ec_align1;
1070
1071/**
1072 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1073 *         versions (v1)
1074 * @cmd: Command to check.
1075 */
1076struct ec_params_get_cmd_versions_v1 {
1077        uint16_t cmd;
1078} __ec_align2;
1079
1080/**
1081 * struct ec_response_get_cmd_version - Response to the get command versions.
1082 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1083 *                a desired version.
1084 */
1085struct ec_response_get_cmd_versions {
1086        uint32_t version_mask;
1087} __ec_align4;
1088
1089/*
1090 * Check EC communications status (busy). This is needed on i2c/spi but not
1091 * on lpc since it has its own out-of-band busy indicator.
1092 *
1093 * lpc must read the status from the command register. Attempting this on
1094 * lpc will overwrite the args/parameter space and corrupt its data.
1095 */
1096#define EC_CMD_GET_COMMS_STATUS         0x0009
1097
1098/* Avoid using ec_status which is for return values */
1099enum ec_comms_status {
1100        EC_COMMS_STATUS_PROCESSING      = BIT(0),       /* Processing cmd */
1101};
1102
1103/**
1104 * struct ec_response_get_comms_status - Response to the get comms status
1105 *         command.
1106 * @flags: Mask of enum ec_comms_status.
1107 */
1108struct ec_response_get_comms_status {
1109        uint32_t flags;         /* Mask of enum ec_comms_status */
1110} __ec_align4;
1111
1112/* Fake a variety of responses, purely for testing purposes. */
1113#define EC_CMD_TEST_PROTOCOL            0x000A
1114
1115/* Tell the EC what to send back to us. */
1116struct ec_params_test_protocol {
1117        uint32_t ec_result;
1118        uint32_t ret_len;
1119        uint8_t buf[32];
1120} __ec_align4;
1121
1122/* Here it comes... */
1123struct ec_response_test_protocol {
1124        uint8_t buf[32];
1125} __ec_align4;
1126
1127/* Get protocol information */
1128#define EC_CMD_GET_PROTOCOL_INFO        0x000B
1129
1130/* Flags for ec_response_get_protocol_info.flags */
1131/* EC_RES_IN_PROGRESS may be returned if a command is slow */
1132#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1133
1134/**
1135 * struct ec_response_get_protocol_info - Response to the get protocol info.
1136 * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1137 *                     version n).
1138 * @max_request_packet_size: Maximum request packet size in bytes.
1139 * @max_response_packet_size: Maximum response packet size in bytes.
1140 * @flags: see EC_PROTOCOL_INFO_*
1141 */
1142struct ec_response_get_protocol_info {
1143        /* Fields which exist if at least protocol version 3 supported */
1144        uint32_t protocol_versions;
1145        uint16_t max_request_packet_size;
1146        uint16_t max_response_packet_size;
1147        uint32_t flags;
1148} __ec_align4;
1149
1150
1151/*****************************************************************************/
1152/* Get/Set miscellaneous values */
1153
1154/* The upper byte of .flags tells what to do (nothing means "get") */
1155#define EC_GSV_SET        0x80000000
1156
1157/*
1158 * The lower three bytes of .flags identifies the parameter, if that has
1159 * meaning for an individual command.
1160 */
1161#define EC_GSV_PARAM_MASK 0x00ffffff
1162
1163struct ec_params_get_set_value {
1164        uint32_t flags;
1165        uint32_t value;
1166} __ec_align4;
1167
1168struct ec_response_get_set_value {
1169        uint32_t flags;
1170        uint32_t value;
1171} __ec_align4;
1172
1173/* More than one command can use these structs to get/set parameters. */
1174#define EC_CMD_GSV_PAUSE_IN_S5  0x000C
1175
1176/*****************************************************************************/
1177/* List the features supported by the firmware */
1178#define EC_CMD_GET_FEATURES  0x000D
1179
1180/* Supported features */
1181enum ec_feature_code {
1182        /*
1183         * This image contains a limited set of features. Another image
1184         * in RW partition may support more features.
1185         */
1186        EC_FEATURE_LIMITED = 0,
1187        /*
1188         * Commands for probing/reading/writing/erasing the flash in the
1189         * EC are present.
1190         */
1191        EC_FEATURE_FLASH = 1,
1192        /*
1193         * Can control the fan speed directly.
1194         */
1195        EC_FEATURE_PWM_FAN = 2,
1196        /*
1197         * Can control the intensity of the keyboard backlight.
1198         */
1199        EC_FEATURE_PWM_KEYB = 3,
1200        /*
1201         * Support Google lightbar, introduced on Pixel.
1202         */
1203        EC_FEATURE_LIGHTBAR = 4,
1204        /* Control of LEDs  */
1205        EC_FEATURE_LED = 5,
1206        /* Exposes an interface to control gyro and sensors.
1207         * The host goes through the EC to access these sensors.
1208         * In addition, the EC may provide composite sensors, like lid angle.
1209         */
1210        EC_FEATURE_MOTION_SENSE = 6,
1211        /* The keyboard is controlled by the EC */
1212        EC_FEATURE_KEYB = 7,
1213        /* The AP can use part of the EC flash as persistent storage. */
1214        EC_FEATURE_PSTORE = 8,
1215        /* The EC monitors BIOS port 80h, and can return POST codes. */
1216        EC_FEATURE_PORT80 = 9,
1217        /*
1218         * Thermal management: include TMP specific commands.
1219         * Higher level than direct fan control.
1220         */
1221        EC_FEATURE_THERMAL = 10,
1222        /* Can switch the screen backlight on/off */
1223        EC_FEATURE_BKLIGHT_SWITCH = 11,
1224        /* Can switch the wifi module on/off */
1225        EC_FEATURE_WIFI_SWITCH = 12,
1226        /* Monitor host events, through for example SMI or SCI */
1227        EC_FEATURE_HOST_EVENTS = 13,
1228        /* The EC exposes GPIO commands to control/monitor connected devices. */
1229        EC_FEATURE_GPIO = 14,
1230        /* The EC can send i2c messages to downstream devices. */
1231        EC_FEATURE_I2C = 15,
1232        /* Command to control charger are included */
1233        EC_FEATURE_CHARGER = 16,
1234        /* Simple battery support. */
1235        EC_FEATURE_BATTERY = 17,
1236        /*
1237         * Support Smart battery protocol
1238         * (Common Smart Battery System Interface Specification)
1239         */
1240        EC_FEATURE_SMART_BATTERY = 18,
1241        /* EC can detect when the host hangs. */
1242        EC_FEATURE_HANG_DETECT = 19,
1243        /* Report power information, for pit only */
1244        EC_FEATURE_PMU = 20,
1245        /* Another Cros EC device is present downstream of this one */
1246        EC_FEATURE_SUB_MCU = 21,
1247        /* Support USB Power delivery (PD) commands */
1248        EC_FEATURE_USB_PD = 22,
1249        /* Control USB multiplexer, for audio through USB port for instance. */
1250        EC_FEATURE_USB_MUX = 23,
1251        /* Motion Sensor code has an internal software FIFO */
1252        EC_FEATURE_MOTION_SENSE_FIFO = 24,
1253        /* Support temporary secure vstore */
1254        EC_FEATURE_VSTORE = 25,
1255        /* EC decides on USB-C SS mux state, muxes configured by host */
1256        EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1257        /* EC has RTC feature that can be controlled by host commands */
1258        EC_FEATURE_RTC = 27,
1259        /* The MCU exposes a Fingerprint sensor */
1260        EC_FEATURE_FINGERPRINT = 28,
1261        /* The MCU exposes a Touchpad */
1262        EC_FEATURE_TOUCHPAD = 29,
1263        /* The MCU has RWSIG task enabled */
1264        EC_FEATURE_RWSIG = 30,
1265        /* EC has device events support */
1266        EC_FEATURE_DEVICE_EVENT = 31,
1267        /* EC supports the unified wake masks for LPC/eSPI systems */
1268        EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1269        /* EC supports 64-bit host events */
1270        EC_FEATURE_HOST_EVENT64 = 33,
1271        /* EC runs code in RAM (not in place, a.k.a. XIP) */
1272        EC_FEATURE_EXEC_IN_RAM = 34,
1273        /* EC supports CEC commands */
1274        EC_FEATURE_CEC = 35,
1275        /* EC supports tight sensor timestamping. */
1276        EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1277        /*
1278         * EC supports tablet mode detection aligned to Chrome and allows
1279         * setting of threshold by host command using
1280         * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1281         */
1282        EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1283        /* The MCU is a System Companion Processor (SCP). */
1284        EC_FEATURE_SCP = 39,
1285        /* The MCU is an Integrated Sensor Hub */
1286        EC_FEATURE_ISH = 40,
1287};
1288
1289#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1290#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1291
1292struct ec_response_get_features {
1293        uint32_t flags[2];
1294} __ec_align4;
1295
1296/*****************************************************************************/
1297/* Get the board's SKU ID from EC */
1298#define EC_CMD_GET_SKU_ID 0x000E
1299
1300/* Set SKU ID from AP */
1301#define EC_CMD_SET_SKU_ID 0x000F
1302
1303struct ec_sku_id_info {
1304        uint32_t sku_id;
1305} __ec_align4;
1306
1307/*****************************************************************************/
1308/* Flash commands */
1309
1310/* Get flash info */
1311#define EC_CMD_FLASH_INFO 0x0010
1312#define EC_VER_FLASH_INFO 2
1313
1314/**
1315 * struct ec_response_flash_info - Response to the flash info command.
1316 * @flash_size: Usable flash size in bytes.
1317 * @write_block_size: Write block size. Write offset and size must be a
1318 *                    multiple of this.
1319 * @erase_block_size: Erase block size. Erase offset and size must be a
1320 *                    multiple of this.
1321 * @protect_block_size: Protection block size. Protection offset and size
1322 *                      must be a multiple of this.
1323 *
1324 * Version 0 returns these fields.
1325 */
1326struct ec_response_flash_info {
1327        uint32_t flash_size;
1328        uint32_t write_block_size;
1329        uint32_t erase_block_size;
1330        uint32_t protect_block_size;
1331} __ec_align4;
1332
1333/*
1334 * Flags for version 1+ flash info command
1335 * EC flash erases bits to 0 instead of 1.
1336 */
1337#define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1338
1339/*
1340 * Flash must be selected for read/write/erase operations to succeed.  This may
1341 * be necessary on a chip where write/erase can be corrupted by other board
1342 * activity, or where the chip needs to enable some sort of programming voltage,
1343 * or where the read/write/erase operations require cleanly suspending other
1344 * chip functionality.
1345 */
1346#define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1347
1348/**
1349 * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1350 * @flash_size: Usable flash size in bytes.
1351 * @write_block_size: Write block size. Write offset and size must be a
1352 *                    multiple of this.
1353 * @erase_block_size: Erase block size. Erase offset and size must be a
1354 *                    multiple of this.
1355 * @protect_block_size: Protection block size. Protection offset and size
1356 *                      must be a multiple of this.
1357 * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1358 *                    size is exactly this and offset is a multiple of this.
1359 *                    For example, an EC may have a write buffer which can do
1360 *                    half-page operations if data is aligned, and a slower
1361 *                    word-at-a-time write mode.
1362 * @flags: Flags; see EC_FLASH_INFO_*
1363 *
1364 * Version 1 returns the same initial fields as version 0, with additional
1365 * fields following.
1366 *
1367 * gcc anonymous structs don't seem to get along with the __packed directive;
1368 * if they did we'd define the version 0 structure as a sub-structure of this
1369 * one.
1370 *
1371 * Version 2 supports flash banks of different sizes:
1372 * The caller specified the number of banks it has preallocated
1373 * (num_banks_desc)
1374 * The EC returns the number of banks describing the flash memory.
1375 * It adds banks descriptions up to num_banks_desc.
1376 */
1377struct ec_response_flash_info_1 {
1378        /* Version 0 fields; see above for description */
1379        uint32_t flash_size;
1380        uint32_t write_block_size;
1381        uint32_t erase_block_size;
1382        uint32_t protect_block_size;
1383
1384        /* Version 1 adds these fields: */
1385        uint32_t write_ideal_size;
1386        uint32_t flags;
1387} __ec_align4;
1388
1389struct ec_params_flash_info_2 {
1390        /* Number of banks to describe */
1391        uint16_t num_banks_desc;
1392        /* Reserved; set 0; ignore on read */
1393        uint8_t reserved[2];
1394} __ec_align4;
1395
1396struct ec_flash_bank {
1397        /* Number of sector is in this bank. */
1398        uint16_t count;
1399        /* Size in power of 2 of each sector (8 --> 256 bytes) */
1400        uint8_t size_exp;
1401        /* Minimal write size for the sectors in this bank */
1402        uint8_t write_size_exp;
1403        /* Erase size for the sectors in this bank */
1404        uint8_t erase_size_exp;
1405        /* Size for write protection, usually identical to erase size. */
1406        uint8_t protect_size_exp;
1407        /* Reserved; set 0; ignore on read */
1408        uint8_t reserved[2];
1409};
1410
1411struct ec_response_flash_info_2 {
1412        /* Total flash in the EC. */
1413        uint32_t flash_size;
1414        /* Flags; see EC_FLASH_INFO_* */
1415        uint32_t flags;
1416        /* Maximum size to use to send data to write to the EC. */
1417        uint32_t write_ideal_size;
1418        /* Number of banks present in the EC. */
1419        uint16_t num_banks_total;
1420        /* Number of banks described in banks array. */
1421        uint16_t num_banks_desc;
1422        struct ec_flash_bank banks[];
1423} __ec_align4;
1424
1425/*
1426 * Read flash
1427 *
1428 * Response is params.size bytes of data.
1429 */
1430#define EC_CMD_FLASH_READ 0x0011
1431
1432/**
1433 * struct ec_params_flash_read - Parameters for the flash read command.
1434 * @offset: Byte offset to read.
1435 * @size: Size to read in bytes.
1436 */
1437struct ec_params_flash_read {
1438        uint32_t offset;
1439        uint32_t size;
1440} __ec_align4;
1441
1442/* Write flash */
1443#define EC_CMD_FLASH_WRITE 0x0012
1444#define EC_VER_FLASH_WRITE 1
1445
1446/* Version 0 of the flash command supported only 64 bytes of data */
1447#define EC_FLASH_WRITE_VER0_SIZE 64
1448
1449/**
1450 * struct ec_params_flash_write - Parameters for the flash write command.
1451 * @offset: Byte offset to write.
1452 * @size: Size to write in bytes.
1453 */
1454struct ec_params_flash_write {
1455        uint32_t offset;
1456        uint32_t size;
1457        /* Followed by data to write */
1458} __ec_align4;
1459
1460/* Erase flash */
1461#define EC_CMD_FLASH_ERASE 0x0013
1462
1463/**
1464 * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1465 * @offset: Byte offset to erase.
1466 * @size: Size to erase in bytes.
1467 */
1468struct ec_params_flash_erase {
1469        uint32_t offset;
1470        uint32_t size;
1471} __ec_align4;
1472
1473/*
1474 * v1 add async erase:
1475 * subcommands can returns:
1476 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1477 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1478 * EC_RES_ERROR : other errors.
1479 * EC_RES_BUSY : an existing erase operation is in progress.
1480 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1481 *
1482 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1483 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1484 * the proper result.
1485 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1486 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1487 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1488 * permitted while erasing. (For instance, STM32F4).
1489 */
1490enum ec_flash_erase_cmd {
1491        FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1492        FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1493        FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1494};
1495
1496/**
1497 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1498 * @cmd: One of ec_flash_erase_cmd.
1499 * @reserved: Pad byte; currently always contains 0.
1500 * @flag: No flags defined yet; set to 0.
1501 * @params: Same as v0 parameters.
1502 */
1503struct ec_params_flash_erase_v1 {
1504        uint8_t  cmd;
1505        uint8_t  reserved;
1506        uint16_t flag;
1507        struct ec_params_flash_erase params;
1508} __ec_align4;
1509
1510/*
1511 * Get/set flash protection.
1512 *
1513 * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1514 * firmware write protect GPIO, not all flags will take effect immediately;
1515 * some flags require a subsequent hard reset to take effect.  Check the
1516 * returned flags bits to see what actually happened.
1517 *
1518 * If mask=0, simply returns the current flags state.
1519 */
1520#define EC_CMD_FLASH_PROTECT 0x0015
1521#define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1522
1523/* Flags for flash protection */
1524/* RO flash code protected when the EC boots */
1525#define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1526/*
1527 * RO flash code protected now.  If this bit is set, at-boot status cannot
1528 * be changed.
1529 */
1530#define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1531/* Entire flash code protected now, until reboot. */
1532#define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1533/* Flash write protect GPIO is asserted now */
1534#define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1535/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1536#define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1537/*
1538 * Error - flash protection is in inconsistent state.  At least one bank of
1539 * flash which should be protected is not protected.  Usually fixed by
1540 * re-requesting the desired flags, or by a hard reset if that fails.
1541 */
1542#define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1543/* Entire flash code protected when the EC boots */
1544#define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1545/* RW flash code protected when the EC boots */
1546#define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1547/* RW flash code protected now. */
1548#define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1549/* Rollback information flash region protected when the EC boots */
1550#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1551/* Rollback information flash region protected now */
1552#define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1553
1554
1555/**
1556 * struct ec_params_flash_protect - Parameters for the flash protect command.
1557 * @mask: Bits in flags to apply.
1558 * @flags: New flags to apply.
1559 */
1560struct ec_params_flash_protect {
1561        uint32_t mask;
1562        uint32_t flags;
1563} __ec_align4;
1564
1565/**
1566 * struct ec_response_flash_protect - Response to the flash protect command.
1567 * @flags: Current value of flash protect flags.
1568 * @valid_flags: Flags which are valid on this platform. This allows the
1569 *               caller to distinguish between flags which aren't set vs. flags
1570 *               which can't be set on this platform.
1571 * @writable_flags: Flags which can be changed given the current protection
1572 *                  state.
1573 */
1574struct ec_response_flash_protect {
1575        uint32_t flags;
1576        uint32_t valid_flags;
1577        uint32_t writable_flags;
1578} __ec_align4;
1579
1580/*
1581 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1582 * write protect.  These commands may be reused with version > 0.
1583 */
1584
1585/* Get the region offset/size */
1586#define EC_CMD_FLASH_REGION_INFO 0x0016
1587#define EC_VER_FLASH_REGION_INFO 1
1588
1589enum ec_flash_region {
1590        /* Region which holds read-only EC image */
1591        EC_FLASH_REGION_RO = 0,
1592        /*
1593         * Region which holds active RW image. 'Active' is different from
1594         * 'running'. Active means 'scheduled-to-run'. Since RO image always
1595         * scheduled to run, active/non-active applies only to RW images (for
1596         * the same reason 'update' applies only to RW images. It's a state of
1597         * an image on a flash. Running image can be RO, RW_A, RW_B but active
1598         * image can only be RW_A or RW_B. In recovery mode, an active RW image
1599         * doesn't enter 'running' state but it's still active on a flash.
1600         */
1601        EC_FLASH_REGION_ACTIVE,
1602        /*
1603         * Region which should be write-protected in the factory (a superset of
1604         * EC_FLASH_REGION_RO)
1605         */
1606        EC_FLASH_REGION_WP_RO,
1607        /* Region which holds updatable (non-active) RW image */
1608        EC_FLASH_REGION_UPDATE,
1609        /* Number of regions */
1610        EC_FLASH_REGION_COUNT,
1611};
1612/*
1613 * 'RW' is vague if there are multiple RW images; we mean the active one,
1614 * so the old constant is deprecated.
1615 */
1616#define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1617
1618/**
1619 * struct ec_params_flash_region_info - Parameters for the flash region info
1620 *         command.
1621 * @region: Flash region; see EC_FLASH_REGION_*
1622 */
1623struct ec_params_flash_region_info {
1624        uint32_t region;
1625} __ec_align4;
1626
1627struct ec_response_flash_region_info {
1628        uint32_t offset;
1629        uint32_t size;
1630} __ec_align4;
1631
1632/* Read/write VbNvContext */
1633#define EC_CMD_VBNV_CONTEXT 0x0017
1634#define EC_VER_VBNV_CONTEXT 1
1635#define EC_VBNV_BLOCK_SIZE 16
1636
1637enum ec_vbnvcontext_op {
1638        EC_VBNV_CONTEXT_OP_READ,
1639        EC_VBNV_CONTEXT_OP_WRITE,
1640};
1641
1642struct ec_params_vbnvcontext {
1643        uint32_t op;
1644        uint8_t block[EC_VBNV_BLOCK_SIZE];
1645} __ec_align4;
1646
1647struct ec_response_vbnvcontext {
1648        uint8_t block[EC_VBNV_BLOCK_SIZE];
1649} __ec_align4;
1650
1651
1652/* Get SPI flash information */
1653#define EC_CMD_FLASH_SPI_INFO 0x0018
1654
1655struct ec_response_flash_spi_info {
1656        /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1657        uint8_t jedec[3];
1658
1659        /* Pad byte; currently always contains 0 */
1660        uint8_t reserved0;
1661
1662        /* Manufacturer / device ID from command 0x90 */
1663        uint8_t mfr_dev_id[2];
1664
1665        /* Status registers from command 0x05 and 0x35 */
1666        uint8_t sr1, sr2;
1667} __ec_align1;
1668
1669
1670/* Select flash during flash operations */
1671#define EC_CMD_FLASH_SELECT 0x0019
1672
1673/**
1674 * struct ec_params_flash_select - Parameters for the flash select command.
1675 * @select: 1 to select flash, 0 to deselect flash
1676 */
1677struct ec_params_flash_select {
1678        uint8_t select;
1679} __ec_align4;
1680
1681
1682/*****************************************************************************/
1683/* PWM commands */
1684
1685/* Get fan target RPM */
1686#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1687
1688struct ec_response_pwm_get_fan_rpm {
1689        uint32_t rpm;
1690} __ec_align4;
1691
1692/* Set target fan RPM */
1693#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1694
1695/* Version 0 of input params */
1696struct ec_params_pwm_set_fan_target_rpm_v0 {
1697        uint32_t rpm;
1698} __ec_align4;
1699
1700/* Version 1 of input params */
1701struct ec_params_pwm_set_fan_target_rpm_v1 {
1702        uint32_t rpm;
1703        uint8_t fan_idx;
1704} __ec_align_size1;
1705
1706/* Get keyboard backlight */
1707/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1708#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1709
1710struct ec_response_pwm_get_keyboard_backlight {
1711        uint8_t percent;
1712        uint8_t enabled;
1713} __ec_align1;
1714
1715/* Set keyboard backlight */
1716/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1717#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1718
1719struct ec_params_pwm_set_keyboard_backlight {
1720        uint8_t percent;
1721} __ec_align1;
1722
1723/* Set target fan PWM duty cycle */
1724#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1725
1726/* Version 0 of input params */
1727struct ec_params_pwm_set_fan_duty_v0 {
1728        uint32_t percent;
1729} __ec_align4;
1730
1731/* Version 1 of input params */
1732struct ec_params_pwm_set_fan_duty_v1 {
1733        uint32_t percent;
1734        uint8_t fan_idx;
1735} __ec_align_size1;
1736
1737#define EC_CMD_PWM_SET_DUTY 0x0025
1738/* 16 bit duty cycle, 0xffff = 100% */
1739#define EC_PWM_MAX_DUTY 0xffff
1740
1741enum ec_pwm_type {
1742        /* All types, indexed by board-specific enum pwm_channel */
1743        EC_PWM_TYPE_GENERIC = 0,
1744        /* Keyboard backlight */
1745        EC_PWM_TYPE_KB_LIGHT,
1746        /* Display backlight */
1747        EC_PWM_TYPE_DISPLAY_LIGHT,
1748        EC_PWM_TYPE_COUNT,
1749};
1750
1751struct ec_params_pwm_set_duty {
1752        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1753        uint8_t pwm_type;  /* ec_pwm_type */
1754        uint8_t index;     /* Type-specific index, or 0 if unique */
1755} __ec_align4;
1756
1757#define EC_CMD_PWM_GET_DUTY 0x0026
1758
1759struct ec_params_pwm_get_duty {
1760        uint8_t pwm_type;  /* ec_pwm_type */
1761        uint8_t index;     /* Type-specific index, or 0 if unique */
1762} __ec_align1;
1763
1764struct ec_response_pwm_get_duty {
1765        uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1766} __ec_align2;
1767
1768/*****************************************************************************/
1769/*
1770 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1771 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1772 * into a subcommand. We'll make separate structs for subcommands with
1773 * different input args, so that we know how much to expect.
1774 */
1775#define EC_CMD_LIGHTBAR_CMD 0x0028
1776
1777struct rgb_s {
1778        uint8_t r, g, b;
1779} __ec_todo_unpacked;
1780
1781#define LB_BATTERY_LEVELS 4
1782
1783/*
1784 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1785 * host command, but the alignment is the same regardless. Keep it that way.
1786 */
1787struct lightbar_params_v0 {
1788        /* Timing */
1789        int32_t google_ramp_up;
1790        int32_t google_ramp_down;
1791        int32_t s3s0_ramp_up;
1792        int32_t s0_tick_delay[2];               /* AC=0/1 */
1793        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1794        int32_t s0s3_ramp_down;
1795        int32_t s3_sleep_for;
1796        int32_t s3_ramp_up;
1797        int32_t s3_ramp_down;
1798
1799        /* Oscillation */
1800        uint8_t new_s0;
1801        uint8_t osc_min[2];                     /* AC=0/1 */
1802        uint8_t osc_max[2];                     /* AC=0/1 */
1803        uint8_t w_ofs[2];                       /* AC=0/1 */
1804
1805        /* Brightness limits based on the backlight and AC. */
1806        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1807        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1808        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1809
1810        /* Battery level thresholds */
1811        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1812
1813        /* Map [AC][battery_level] to color index */
1814        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1815        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1816
1817        /* Color palette */
1818        struct rgb_s color[8];                  /* 0-3 are Google colors */
1819} __ec_todo_packed;
1820
1821struct lightbar_params_v1 {
1822        /* Timing */
1823        int32_t google_ramp_up;
1824        int32_t google_ramp_down;
1825        int32_t s3s0_ramp_up;
1826        int32_t s0_tick_delay[2];               /* AC=0/1 */
1827        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1828        int32_t s0s3_ramp_down;
1829        int32_t s3_sleep_for;
1830        int32_t s3_ramp_up;
1831        int32_t s3_ramp_down;
1832        int32_t s5_ramp_up;
1833        int32_t s5_ramp_down;
1834        int32_t tap_tick_delay;
1835        int32_t tap_gate_delay;
1836        int32_t tap_display_time;
1837
1838        /* Tap-for-battery params */
1839        uint8_t tap_pct_red;
1840        uint8_t tap_pct_green;
1841        uint8_t tap_seg_min_on;
1842        uint8_t tap_seg_max_on;
1843        uint8_t tap_seg_osc;
1844        uint8_t tap_idx[3];
1845
1846        /* Oscillation */
1847        uint8_t osc_min[2];                     /* AC=0/1 */
1848        uint8_t osc_max[2];                     /* AC=0/1 */
1849        uint8_t w_ofs[2];                       /* AC=0/1 */
1850
1851        /* Brightness limits based on the backlight and AC. */
1852        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1853        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1854        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1855
1856        /* Battery level thresholds */
1857        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1858
1859        /* Map [AC][battery_level] to color index */
1860        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1861        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1862
1863        /* s5: single color pulse on inhibited power-up */
1864        uint8_t s5_idx;
1865
1866        /* Color palette */
1867        struct rgb_s color[8];                  /* 0-3 are Google colors */
1868} __ec_todo_packed;
1869
1870/* Lightbar command params v2
1871 * crbug.com/467716
1872 *
1873 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1874 * logical groups to make it more manageable ( < 120 bytes).
1875 *
1876 * NOTE: Each of these groups must be less than 120 bytes.
1877 */
1878
1879struct lightbar_params_v2_timing {
1880        /* Timing */
1881        int32_t google_ramp_up;
1882        int32_t google_ramp_down;
1883        int32_t s3s0_ramp_up;
1884        int32_t s0_tick_delay[2];               /* AC=0/1 */
1885        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1886        int32_t s0s3_ramp_down;
1887        int32_t s3_sleep_for;
1888        int32_t s3_ramp_up;
1889        int32_t s3_ramp_down;
1890        int32_t s5_ramp_up;
1891        int32_t s5_ramp_down;
1892        int32_t tap_tick_delay;
1893        int32_t tap_gate_delay;
1894        int32_t tap_display_time;
1895} __ec_todo_packed;
1896
1897struct lightbar_params_v2_tap {
1898        /* Tap-for-battery params */
1899        uint8_t tap_pct_red;
1900        uint8_t tap_pct_green;
1901        uint8_t tap_seg_min_on;
1902        uint8_t tap_seg_max_on;
1903        uint8_t tap_seg_osc;
1904        uint8_t tap_idx[3];
1905} __ec_todo_packed;
1906
1907struct lightbar_params_v2_oscillation {
1908        /* Oscillation */
1909        uint8_t osc_min[2];                     /* AC=0/1 */
1910        uint8_t osc_max[2];                     /* AC=0/1 */
1911        uint8_t w_ofs[2];                       /* AC=0/1 */
1912} __ec_todo_packed;
1913
1914struct lightbar_params_v2_brightness {
1915        /* Brightness limits based on the backlight and AC. */
1916        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1917        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1918        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1919} __ec_todo_packed;
1920
1921struct lightbar_params_v2_thresholds {
1922        /* Battery level thresholds */
1923        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1924} __ec_todo_packed;
1925
1926struct lightbar_params_v2_colors {
1927        /* Map [AC][battery_level] to color index */
1928        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1929        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1930
1931        /* s5: single color pulse on inhibited power-up */
1932        uint8_t s5_idx;
1933
1934        /* Color palette */
1935        struct rgb_s color[8];                  /* 0-3 are Google colors */
1936} __ec_todo_packed;
1937
1938/* Lightbar program. */
1939#define EC_LB_PROG_LEN 192
1940struct lightbar_program {
1941        uint8_t size;
1942        uint8_t data[EC_LB_PROG_LEN];
1943} __ec_todo_unpacked;
1944
1945struct ec_params_lightbar {
1946        uint8_t cmd;                  /* Command (see enum lightbar_command) */
1947        union {
1948                /*
1949                 * The following commands have no args:
1950                 *
1951                 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1952                 * version, get_brightness, get_demo, suspend, resume,
1953                 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1954                 * get_params_v2_bright, get_params_v2_thlds,
1955                 * get_params_v2_colors
1956                 *
1957                 * Don't use an empty struct, because C++ hates that.
1958                 */
1959
1960                struct __ec_todo_unpacked {
1961                        uint8_t num;
1962                } set_brightness, seq, demo;
1963
1964                struct __ec_todo_unpacked {
1965                        uint8_t ctrl, reg, value;
1966                } reg;
1967
1968                struct __ec_todo_unpacked {
1969                        uint8_t led, red, green, blue;
1970                } set_rgb;
1971
1972                struct __ec_todo_unpacked {
1973                        uint8_t led;
1974                } get_rgb;
1975
1976                struct __ec_todo_unpacked {
1977                        uint8_t enable;
1978                } manual_suspend_ctrl;
1979
1980                struct lightbar_params_v0 set_params_v0;
1981                struct lightbar_params_v1 set_params_v1;
1982
1983                struct lightbar_params_v2_timing set_v2par_timing;
1984                struct lightbar_params_v2_tap set_v2par_tap;
1985                struct lightbar_params_v2_oscillation set_v2par_osc;
1986                struct lightbar_params_v2_brightness set_v2par_bright;
1987                struct lightbar_params_v2_thresholds set_v2par_thlds;
1988                struct lightbar_params_v2_colors set_v2par_colors;
1989
1990                struct lightbar_program set_program;
1991        };
1992} __ec_todo_packed;
1993
1994struct ec_response_lightbar {
1995        union {
1996                struct __ec_todo_unpacked {
1997                        struct __ec_todo_unpacked {
1998                                uint8_t reg;
1999                                uint8_t ic0;
2000                                uint8_t ic1;
2001                        } vals[23];
2002                } dump;
2003
2004                struct __ec_todo_unpacked {
2005                        uint8_t num;
2006                } get_seq, get_brightness, get_demo;
2007
2008                struct lightbar_params_v0 get_params_v0;
2009                struct lightbar_params_v1 get_params_v1;
2010
2011
2012                struct lightbar_params_v2_timing get_params_v2_timing;
2013                struct lightbar_params_v2_tap get_params_v2_tap;
2014                struct lightbar_params_v2_oscillation get_params_v2_osc;
2015                struct lightbar_params_v2_brightness get_params_v2_bright;
2016                struct lightbar_params_v2_thresholds get_params_v2_thlds;
2017                struct lightbar_params_v2_colors get_params_v2_colors;
2018
2019                struct __ec_todo_unpacked {
2020                        uint32_t num;
2021                        uint32_t flags;
2022                } version;
2023
2024                struct __ec_todo_unpacked {
2025                        uint8_t red, green, blue;
2026                } get_rgb;
2027
2028                /*
2029                 * The following commands have no response:
2030                 *
2031                 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2032                 * set_params_v0, set_params_v1, set_program,
2033                 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2034                 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2035                 * set_v2par_thlds, set_v2par_colors
2036                 */
2037        };
2038} __ec_todo_packed;
2039
2040/* Lightbar commands */
2041enum lightbar_command {
2042        LIGHTBAR_CMD_DUMP = 0,
2043        LIGHTBAR_CMD_OFF = 1,
2044        LIGHTBAR_CMD_ON = 2,
2045        LIGHTBAR_CMD_INIT = 3,
2046        LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2047        LIGHTBAR_CMD_SEQ = 5,
2048        LIGHTBAR_CMD_REG = 6,
2049        LIGHTBAR_CMD_SET_RGB = 7,
2050        LIGHTBAR_CMD_GET_SEQ = 8,
2051        LIGHTBAR_CMD_DEMO = 9,
2052        LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2053        LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2054        LIGHTBAR_CMD_VERSION = 12,
2055        LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2056        LIGHTBAR_CMD_GET_RGB = 14,
2057        LIGHTBAR_CMD_GET_DEMO = 15,
2058        LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2059        LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2060        LIGHTBAR_CMD_SET_PROGRAM = 18,
2061        LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2062        LIGHTBAR_CMD_SUSPEND = 20,
2063        LIGHTBAR_CMD_RESUME = 21,
2064        LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2065        LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2066        LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2067        LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2068        LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2069        LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2070        LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2071        LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2072        LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2073        LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2074        LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2075        LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2076        LIGHTBAR_NUM_CMDS
2077};
2078
2079/*****************************************************************************/
2080/* LED control commands */
2081
2082#define EC_CMD_LED_CONTROL 0x0029
2083
2084enum ec_led_id {
2085        /* LED to indicate battery state of charge */
2086        EC_LED_ID_BATTERY_LED = 0,
2087        /*
2088         * LED to indicate system power state (on or in suspend).
2089         * May be on power button or on C-panel.
2090         */
2091        EC_LED_ID_POWER_LED,
2092        /* LED on power adapter or its plug */
2093        EC_LED_ID_ADAPTER_LED,
2094        /* LED to indicate left side */
2095        EC_LED_ID_LEFT_LED,
2096        /* LED to indicate right side */
2097        EC_LED_ID_RIGHT_LED,
2098        /* LED to indicate recovery mode with HW_REINIT */
2099        EC_LED_ID_RECOVERY_HW_REINIT_LED,
2100        /* LED to indicate sysrq debug mode. */
2101        EC_LED_ID_SYSRQ_DEBUG_LED,
2102
2103        EC_LED_ID_COUNT
2104};
2105
2106/* LED control flags */
2107#define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2108#define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2109
2110enum ec_led_colors {
2111        EC_LED_COLOR_RED = 0,
2112        EC_LED_COLOR_GREEN,
2113        EC_LED_COLOR_BLUE,
2114        EC_LED_COLOR_YELLOW,
2115        EC_LED_COLOR_WHITE,
2116        EC_LED_COLOR_AMBER,
2117
2118        EC_LED_COLOR_COUNT
2119};
2120
2121struct ec_params_led_control {
2122        uint8_t led_id;     /* Which LED to control */
2123        uint8_t flags;      /* Control flags */
2124
2125        uint8_t brightness[EC_LED_COLOR_COUNT];
2126} __ec_align1;
2127
2128struct ec_response_led_control {
2129        /*
2130         * Available brightness value range.
2131         *
2132         * Range 0 means color channel not present.
2133         * Range 1 means on/off control.
2134         * Other values means the LED is control by PWM.
2135         */
2136        uint8_t brightness_range[EC_LED_COLOR_COUNT];
2137} __ec_align1;
2138
2139/*****************************************************************************/
2140/* Verified boot commands */
2141
2142/*
2143 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2144 * reused for other purposes with version > 0.
2145 */
2146
2147/* Verified boot hash command */
2148#define EC_CMD_VBOOT_HASH 0x002A
2149
2150struct ec_params_vboot_hash {
2151        uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2152        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2153        uint8_t nonce_size;      /* Nonce size; may be 0 */
2154        uint8_t reserved0;       /* Reserved; set 0 */
2155        uint32_t offset;         /* Offset in flash to hash */
2156        uint32_t size;           /* Number of bytes to hash */
2157        uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2158} __ec_align4;
2159
2160struct ec_response_vboot_hash {
2161        uint8_t status;          /* enum ec_vboot_hash_status */
2162        uint8_t hash_type;       /* enum ec_vboot_hash_type */
2163        uint8_t digest_size;     /* Size of hash digest in bytes */
2164        uint8_t reserved0;       /* Ignore; will be 0 */
2165        uint32_t offset;         /* Offset in flash which was hashed */
2166        uint32_t size;           /* Number of bytes hashed */
2167        uint8_t hash_digest[64]; /* Hash digest data */
2168} __ec_align4;
2169
2170enum ec_vboot_hash_cmd {
2171        EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2172        EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2173        EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2174        EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2175};
2176
2177enum ec_vboot_hash_type {
2178        EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2179};
2180
2181enum ec_vboot_hash_status {
2182        EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2183        EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2184        EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2185};
2186
2187/*
2188 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2189 * If one of these is specified, the EC will automatically update offset and
2190 * size to the correct values for the specified image (RO or RW).
2191 */
2192#define EC_VBOOT_HASH_OFFSET_RO         0xfffffffe
2193#define EC_VBOOT_HASH_OFFSET_ACTIVE     0xfffffffd
2194#define EC_VBOOT_HASH_OFFSET_UPDATE     0xfffffffc
2195
2196/*
2197 * 'RW' is vague if there are multiple RW images; we mean the active one,
2198 * so the old constant is deprecated.
2199 */
2200#define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2201
2202/*****************************************************************************/
2203/*
2204 * Motion sense commands. We'll make separate structs for sub-commands with
2205 * different input args, so that we know how much to expect.
2206 */
2207#define EC_CMD_MOTION_SENSE_CMD 0x002B
2208
2209/* Motion sense commands */
2210enum motionsense_command {
2211        /*
2212         * Dump command returns all motion sensor data including motion sense
2213         * module flags and individual sensor flags.
2214         */
2215        MOTIONSENSE_CMD_DUMP = 0,
2216
2217        /*
2218         * Info command returns data describing the details of a given sensor,
2219         * including enum motionsensor_type, enum motionsensor_location, and
2220         * enum motionsensor_chip.
2221         */
2222        MOTIONSENSE_CMD_INFO = 1,
2223
2224        /*
2225         * EC Rate command is a setter/getter command for the EC sampling rate
2226         * in milliseconds.
2227         * It is per sensor, the EC run sample task  at the minimum of all
2228         * sensors EC_RATE.
2229         * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2230         * to collect all the sensor samples.
2231         * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2232         * to process of all motion sensors in milliseconds.
2233         */
2234        MOTIONSENSE_CMD_EC_RATE = 2,
2235
2236        /*
2237         * Sensor ODR command is a setter/getter command for the output data
2238         * rate of a specific motion sensor in millihertz.
2239         */
2240        MOTIONSENSE_CMD_SENSOR_ODR = 3,
2241
2242        /*
2243         * Sensor range command is a setter/getter command for the range of
2244         * a specified motion sensor in +/-G's or +/- deg/s.
2245         */
2246        MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2247
2248        /*
2249         * Setter/getter command for the keyboard wake angle. When the lid
2250         * angle is greater than this value, keyboard wake is disabled in S3,
2251         * and when the lid angle goes less than this value, keyboard wake is
2252         * enabled. Note, the lid angle measurement is an approximate,
2253         * un-calibrated value, hence the wake angle isn't exact.
2254         */
2255        MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2256
2257        /*
2258         * Returns a single sensor data.
2259         */
2260        MOTIONSENSE_CMD_DATA = 6,
2261
2262        /*
2263         * Return sensor fifo info.
2264         */
2265        MOTIONSENSE_CMD_FIFO_INFO = 7,
2266
2267        /*
2268         * Insert a flush element in the fifo and return sensor fifo info.
2269         * The host can use that element to synchronize its operation.
2270         */
2271        MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2272
2273        /*
2274         * Return a portion of the fifo.
2275         */
2276        MOTIONSENSE_CMD_FIFO_READ = 9,
2277
2278        /*
2279         * Perform low level calibration.
2280         * On sensors that support it, ask to do offset calibration.
2281         */
2282        MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2283
2284        /*
2285         * Sensor Offset command is a setter/getter command for the offset
2286         * used for calibration.
2287         * The offsets can be calculated by the host, or via
2288         * PERFORM_CALIB command.
2289         */
2290        MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2291
2292        /*
2293         * List available activities for a MOTION sensor.
2294         * Indicates if they are enabled or disabled.
2295         */
2296        MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2297
2298        /*
2299         * Activity management
2300         * Enable/Disable activity recognition.
2301         */
2302        MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2303
2304        /*
2305         * Lid Angle
2306         */
2307        MOTIONSENSE_CMD_LID_ANGLE = 14,
2308
2309        /*
2310         * Allow the FIFO to trigger interrupt via MKBP events.
2311         * By default the FIFO does not send interrupt to process the FIFO
2312         * until the AP is ready or it is coming from a wakeup sensor.
2313         */
2314        MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2315
2316        /*
2317         * Spoof the readings of the sensors.  The spoofed readings can be set
2318         * to arbitrary values, or will lock to the last read actual values.
2319         */
2320        MOTIONSENSE_CMD_SPOOF = 16,
2321
2322        /* Set lid angle for tablet mode detection. */
2323        MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2324
2325        /*
2326         * Sensor Scale command is a setter/getter command for the calibration
2327         * scale.
2328         */
2329        MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2330
2331        /* Number of motionsense sub-commands. */
2332        MOTIONSENSE_NUM_CMDS
2333};
2334
2335/* List of motion sensor types. */
2336enum motionsensor_type {
2337        MOTIONSENSE_TYPE_ACCEL = 0,
2338        MOTIONSENSE_TYPE_GYRO = 1,
2339        MOTIONSENSE_TYPE_MAG = 2,
2340        MOTIONSENSE_TYPE_PROX = 3,
2341        MOTIONSENSE_TYPE_LIGHT = 4,
2342        MOTIONSENSE_TYPE_ACTIVITY = 5,
2343        MOTIONSENSE_TYPE_BARO = 6,
2344        MOTIONSENSE_TYPE_SYNC = 7,
2345        MOTIONSENSE_TYPE_MAX,
2346};
2347
2348/* List of motion sensor locations. */
2349enum motionsensor_location {
2350        MOTIONSENSE_LOC_BASE = 0,
2351        MOTIONSENSE_LOC_LID = 1,
2352        MOTIONSENSE_LOC_CAMERA = 2,
2353        MOTIONSENSE_LOC_MAX,
2354};
2355
2356/* List of motion sensor chips. */
2357enum motionsensor_chip {
2358        MOTIONSENSE_CHIP_KXCJ9 = 0,
2359        MOTIONSENSE_CHIP_LSM6DS0 = 1,
2360        MOTIONSENSE_CHIP_BMI160 = 2,
2361        MOTIONSENSE_CHIP_SI1141 = 3,
2362        MOTIONSENSE_CHIP_SI1142 = 4,
2363        MOTIONSENSE_CHIP_SI1143 = 5,
2364        MOTIONSENSE_CHIP_KX022 = 6,
2365        MOTIONSENSE_CHIP_L3GD20H = 7,
2366        MOTIONSENSE_CHIP_BMA255 = 8,
2367        MOTIONSENSE_CHIP_BMP280 = 9,
2368        MOTIONSENSE_CHIP_OPT3001 = 10,
2369        MOTIONSENSE_CHIP_BH1730 = 11,
2370        MOTIONSENSE_CHIP_GPIO = 12,
2371        MOTIONSENSE_CHIP_LIS2DH = 13,
2372        MOTIONSENSE_CHIP_LSM6DSM = 14,
2373        MOTIONSENSE_CHIP_LIS2DE = 15,
2374        MOTIONSENSE_CHIP_LIS2MDL = 16,
2375        MOTIONSENSE_CHIP_LSM6DS3 = 17,
2376        MOTIONSENSE_CHIP_LSM6DSO = 18,
2377        MOTIONSENSE_CHIP_LNG2DM = 19,
2378        MOTIONSENSE_CHIP_MAX,
2379};
2380
2381/* List of orientation positions */
2382enum motionsensor_orientation {
2383        MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2384        MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2385        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2386        MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2387        MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2388};
2389
2390struct ec_response_motion_sensor_data {
2391        /* Flags for each sensor. */
2392        uint8_t flags;
2393        /* Sensor number the data comes from. */
2394        uint8_t sensor_num;
2395        /* Each sensor is up to 3-axis. */
2396        union {
2397                int16_t             data[3];
2398                struct __ec_todo_packed {
2399                        uint16_t    reserved;
2400                        uint32_t    timestamp;
2401                };
2402                struct __ec_todo_unpacked {
2403                        uint8_t     activity; /* motionsensor_activity */
2404                        uint8_t     state;
2405                        int16_t     add_info[2];
2406                };
2407        };
2408} __ec_todo_packed;
2409
2410/* Note: used in ec_response_get_next_data */
2411struct ec_response_motion_sense_fifo_info {
2412        /* Size of the fifo */
2413        uint16_t size;
2414        /* Amount of space used in the fifo */
2415        uint16_t count;
2416        /* Timestamp recorded in us.
2417         * aka accurate timestamp when host event was triggered.
2418         */
2419        uint32_t timestamp;
2420        /* Total amount of vector lost */
2421        uint16_t total_lost;
2422        /* Lost events since the last fifo_info, per sensors */
2423        uint16_t lost[];
2424} __ec_todo_packed;
2425
2426struct ec_response_motion_sense_fifo_data {
2427        uint32_t number_data;
2428        struct ec_response_motion_sensor_data data[];
2429} __ec_todo_packed;
2430
2431/* List supported activity recognition */
2432enum motionsensor_activity {
2433        MOTIONSENSE_ACTIVITY_RESERVED = 0,
2434        MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2435        MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2436        MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2437};
2438
2439struct ec_motion_sense_activity {
2440        uint8_t sensor_num;
2441        uint8_t activity; /* one of enum motionsensor_activity */
2442        uint8_t enable;   /* 1: enable, 0: disable */
2443        uint8_t reserved;
2444        uint16_t parameters[3]; /* activity dependent parameters */
2445} __ec_todo_unpacked;
2446
2447/* Module flag masks used for the dump sub-command. */
2448#define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2449
2450/* Sensor flag masks used for the dump sub-command. */
2451#define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2452
2453/*
2454 * Flush entry for synchronization.
2455 * data contains time stamp
2456 */
2457#define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2458#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2459#define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2460#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2461#define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2462
2463/*
2464 * Send this value for the data element to only perform a read. If you
2465 * send any other value, the EC will interpret it as data to set and will
2466 * return the actual value set.
2467 */
2468#define EC_MOTION_SENSE_NO_VALUE -1
2469
2470#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2471
2472/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2473/* Set Calibration information */
2474#define MOTION_SENSE_SET_OFFSET BIT(0)
2475
2476/* Default Scale value, factor 1. */
2477#define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2478
2479#define LID_ANGLE_UNRELIABLE 500
2480
2481enum motionsense_spoof_mode {
2482        /* Disable spoof mode. */
2483        MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2484
2485        /* Enable spoof mode, but use provided component values. */
2486        MOTIONSENSE_SPOOF_MODE_CUSTOM,
2487
2488        /* Enable spoof mode, but use the current sensor values. */
2489        MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2490
2491        /* Query the current spoof mode status for the sensor. */
2492        MOTIONSENSE_SPOOF_MODE_QUERY,
2493};
2494
2495struct ec_params_motion_sense {
2496        uint8_t cmd;
2497        union {
2498                /* Used for MOTIONSENSE_CMD_DUMP. */
2499                struct __ec_todo_unpacked {
2500                        /*
2501                         * Maximal number of sensor the host is expecting.
2502                         * 0 means the host is only interested in the number
2503                         * of sensors controlled by the EC.
2504                         */
2505                        uint8_t max_sensor_count;
2506                } dump;
2507
2508                /*
2509                 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2510                 */
2511                struct __ec_todo_unpacked {
2512                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2513                         * kb_wake_angle: angle to wakup AP.
2514                         */
2515                        int16_t data;
2516                } kb_wake_angle;
2517
2518                /*
2519                 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2520                 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2521                 */
2522                struct __ec_todo_unpacked {
2523                        uint8_t sensor_num;
2524                } info, info_3, data, fifo_flush, perform_calib,
2525                                list_activities;
2526
2527                /*
2528                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2529                 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2530                 */
2531                struct __ec_todo_unpacked {
2532                        uint8_t sensor_num;
2533
2534                        /* Rounding flag, true for round-up, false for down. */
2535                        uint8_t roundup;
2536
2537                        uint16_t reserved;
2538
2539                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2540                        int32_t data;
2541                } ec_rate, sensor_odr, sensor_range;
2542
2543                /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2544                struct __ec_todo_packed {
2545                        uint8_t sensor_num;
2546
2547                        /*
2548                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2549                         * the calibration information in the EC.
2550                         * If unset, just retrieve calibration information.
2551                         */
2552                        uint16_t flags;
2553
2554                        /*
2555                         * Temperature at calibration, in units of 0.01 C
2556                         * 0x8000: invalid / unknown.
2557                         * 0x0: 0C
2558                         * 0x7fff: +327.67C
2559                         */
2560                        int16_t temp;
2561
2562                        /*
2563                         * Offset for calibration.
2564                         * Unit:
2565                         * Accelerometer: 1/1024 g
2566                         * Gyro:          1/1024 deg/s
2567                         * Compass:       1/16 uT
2568                         */
2569                        int16_t offset[3];
2570                } sensor_offset;
2571
2572                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2573                struct __ec_todo_packed {
2574                        uint8_t sensor_num;
2575
2576                        /*
2577                         * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2578                         * the calibration information in the EC.
2579                         * If unset, just retrieve calibration information.
2580                         */
2581                        uint16_t flags;
2582
2583                        /*
2584                         * Temperature at calibration, in units of 0.01 C
2585                         * 0x8000: invalid / unknown.
2586                         * 0x0: 0C
2587                         * 0x7fff: +327.67C
2588                         */
2589                        int16_t temp;
2590
2591                        /*
2592                         * Scale for calibration:
2593                         * By default scale is 1, it is encoded on 16bits:
2594                         * 1 = BIT(15)
2595                         * ~2 = 0xFFFF
2596                         * ~0 = 0.
2597                         */
2598                        uint16_t scale[3];
2599                } sensor_scale;
2600
2601
2602                /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2603                /* (no params) */
2604
2605                /* Used for MOTIONSENSE_CMD_FIFO_READ */
2606                struct __ec_todo_unpacked {
2607                        /*
2608                         * Number of expected vector to return.
2609                         * EC may return less or 0 if none available.
2610                         */
2611                        uint32_t max_data_vector;
2612                } fifo_read;
2613
2614                struct ec_motion_sense_activity set_activity;
2615
2616                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2617                /* (no params) */
2618
2619                /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2620                struct __ec_todo_unpacked {
2621                        /*
2622                         * 1: enable, 0 disable fifo,
2623                         * EC_MOTION_SENSE_NO_VALUE return value.
2624                         */
2625                        int8_t enable;
2626                } fifo_int_enable;
2627
2628                /* Used for MOTIONSENSE_CMD_SPOOF */
2629                struct __ec_todo_packed {
2630                        uint8_t sensor_id;
2631
2632                        /* See enum motionsense_spoof_mode. */
2633                        uint8_t spoof_enable;
2634
2635                        /* Ignored, used for alignment. */
2636                        uint8_t reserved;
2637
2638                        /* Individual component values to spoof. */
2639                        int16_t components[3];
2640                } spoof;
2641
2642                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2643                struct __ec_todo_unpacked {
2644                        /*
2645                         * Lid angle threshold for switching between tablet and
2646                         * clamshell mode.
2647                         */
2648                        int16_t lid_angle;
2649
2650                        /*
2651                         * Hysteresis degree to prevent fluctuations between
2652                         * clamshell and tablet mode if lid angle keeps
2653                         * changing around the threshold. Lid motion driver will
2654                         * use lid_angle + hys_degree to trigger tablet mode and
2655                         * lid_angle - hys_degree to trigger clamshell mode.
2656                         */
2657                        int16_t hys_degree;
2658                } tablet_mode_threshold;
2659        };
2660} __ec_todo_packed;
2661
2662struct ec_response_motion_sense {
2663        union {
2664                /* Used for MOTIONSENSE_CMD_DUMP */
2665                struct __ec_todo_unpacked {
2666                        /* Flags representing the motion sensor module. */
2667                        uint8_t module_flags;
2668
2669                        /* Number of sensors managed directly by the EC. */
2670                        uint8_t sensor_count;
2671
2672                        /*
2673                         * Sensor data is truncated if response_max is too small
2674                         * for holding all the data.
2675                         */
2676                        struct ec_response_motion_sensor_data sensor[0];
2677                } dump;
2678
2679                /* Used for MOTIONSENSE_CMD_INFO. */
2680                struct __ec_todo_unpacked {
2681                        /* Should be element of enum motionsensor_type. */
2682                        uint8_t type;
2683
2684                        /* Should be element of enum motionsensor_location. */
2685                        uint8_t location;
2686
2687                        /* Should be element of enum motionsensor_chip. */
2688                        uint8_t chip;
2689                } info;
2690
2691                /* Used for MOTIONSENSE_CMD_INFO version 3 */
2692                struct __ec_todo_unpacked {
2693                        /* Should be element of enum motionsensor_type. */
2694                        uint8_t type;
2695
2696                        /* Should be element of enum motionsensor_location. */
2697                        uint8_t location;
2698
2699                        /* Should be element of enum motionsensor_chip. */
2700                        uint8_t chip;
2701
2702                        /* Minimum sensor sampling frequency */
2703                        uint32_t min_frequency;
2704
2705                        /* Maximum sensor sampling frequency */
2706                        uint32_t max_frequency;
2707
2708                        /* Max number of sensor events that could be in fifo */
2709                        uint32_t fifo_max_event_count;
2710                } info_3;
2711
2712                /* Used for MOTIONSENSE_CMD_DATA */
2713                struct ec_response_motion_sensor_data data;
2714
2715                /*
2716                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2717                 * MOTIONSENSE_CMD_SENSOR_RANGE,
2718                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2719                 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2720                 * MOTIONSENSE_CMD_SPOOF.
2721                 */
2722                struct __ec_todo_unpacked {
2723                        /* Current value of the parameter queried. */
2724                        int32_t ret;
2725                } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2726                  fifo_int_enable, spoof;
2727
2728                /*
2729                 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2730                 * PERFORM_CALIB.
2731                 */
2732                struct __ec_todo_unpacked  {
2733                        int16_t temp;
2734                        int16_t offset[3];
2735                } sensor_offset, perform_calib;
2736
2737                /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2738                struct __ec_todo_unpacked  {
2739                        int16_t temp;
2740                        uint16_t scale[3];
2741                } sensor_scale;
2742
2743                struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2744
2745                struct ec_response_motion_sense_fifo_data fifo_read;
2746
2747                struct __ec_todo_packed {
2748                        uint16_t reserved;
2749                        uint32_t enabled;
2750                        uint32_t disabled;
2751                } list_activities;
2752
2753                /* No params for set activity */
2754
2755                /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2756                struct __ec_todo_unpacked {
2757                        /*
2758                         * Angle between 0 and 360 degree if available,
2759                         * LID_ANGLE_UNRELIABLE otherwise.
2760                         */
2761                        uint16_t value;
2762                } lid_angle;
2763
2764                /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2765                struct __ec_todo_unpacked {
2766                        /*
2767                         * Lid angle threshold for switching between tablet and
2768                         * clamshell mode.
2769                         */
2770                        uint16_t lid_angle;
2771
2772                        /* Hysteresis degree. */
2773                        uint16_t hys_degree;
2774                } tablet_mode_threshold;
2775
2776        };
2777} __ec_todo_packed;
2778
2779/*****************************************************************************/
2780/* Force lid open command */
2781
2782/* Make lid event always open */
2783#define EC_CMD_FORCE_LID_OPEN 0x002C
2784
2785struct ec_params_force_lid_open {
2786        uint8_t enabled;
2787} __ec_align1;
2788
2789/*****************************************************************************/
2790/* Configure the behavior of the power button */
2791#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2792
2793enum ec_config_power_button_flags {
2794        /* Enable/Disable power button pulses for x86 devices */
2795        EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2796};
2797
2798struct ec_params_config_power_button {
2799        /* See enum ec_config_power_button_flags */
2800        uint8_t flags;
2801} __ec_align1;
2802
2803/*****************************************************************************/
2804/* USB charging control commands */
2805
2806/* Set USB port charging mode */
2807#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2808
2809struct ec_params_usb_charge_set_mode {
2810        uint8_t usb_port_id;
2811        uint8_t mode:7;
2812        uint8_t inhibit_charge:1;
2813} __ec_align1;
2814
2815/*****************************************************************************/
2816/* Persistent storage for host */
2817
2818/* Maximum bytes that can be read/written in a single command */
2819#define EC_PSTORE_SIZE_MAX 64
2820
2821/* Get persistent storage info */
2822#define EC_CMD_PSTORE_INFO 0x0040
2823
2824struct ec_response_pstore_info {
2825        /* Persistent storage size, in bytes */
2826        uint32_t pstore_size;
2827        /* Access size; read/write offset and size must be a multiple of this */
2828        uint32_t access_size;
2829} __ec_align4;
2830
2831/*
2832 * Read persistent storage
2833 *
2834 * Response is params.size bytes of data.
2835 */
2836#define EC_CMD_PSTORE_READ 0x0041
2837
2838struct ec_params_pstore_read {
2839        uint32_t offset;   /* Byte offset to read */
2840        uint32_t size;     /* Size to read in bytes */
2841} __ec_align4;
2842
2843/* Write persistent storage */
2844#define EC_CMD_PSTORE_WRITE 0x0042
2845
2846struct ec_params_pstore_write {
2847        uint32_t offset;   /* Byte offset to write */
2848        uint32_t size;     /* Size to write in bytes */
2849        uint8_t data[EC_PSTORE_SIZE_MAX];
2850} __ec_align4;
2851
2852/*****************************************************************************/
2853/* Real-time clock */
2854
2855/* RTC params and response structures */
2856struct ec_params_rtc {
2857        uint32_t time;
2858} __ec_align4;
2859
2860struct ec_response_rtc {
2861        uint32_t time;
2862} __ec_align4;
2863
2864/* These use ec_response_rtc */
2865#define EC_CMD_RTC_GET_VALUE 0x0044
2866#define EC_CMD_RTC_GET_ALARM 0x0045
2867
2868/* These all use ec_params_rtc */
2869#define EC_CMD_RTC_SET_VALUE 0x0046
2870#define EC_CMD_RTC_SET_ALARM 0x0047
2871
2872/* Pass as time param to SET_ALARM to clear the current alarm */
2873#define EC_RTC_ALARM_CLEAR 0
2874
2875/*****************************************************************************/
2876/* Port80 log access */
2877
2878/* Maximum entries that can be read/written in a single command */
2879#define EC_PORT80_SIZE_MAX 32
2880
2881/* Get last port80 code from previous boot */
2882#define EC_CMD_PORT80_LAST_BOOT 0x0048
2883#define EC_CMD_PORT80_READ 0x0048
2884
2885enum ec_port80_subcmd {
2886        EC_PORT80_GET_INFO = 0,
2887        EC_PORT80_READ_BUFFER,
2888};
2889
2890struct ec_params_port80_read {
2891        uint16_t subcmd;
2892        union {
2893                struct __ec_todo_unpacked {
2894                        uint32_t offset;
2895                        uint32_t num_entries;
2896                } read_buffer;
2897        };
2898} __ec_todo_packed;
2899
2900struct ec_response_port80_read {
2901        union {
2902                struct __ec_todo_unpacked {
2903                        uint32_t writes;
2904                        uint32_t history_size;
2905                        uint32_t last_boot;
2906                } get_info;
2907                struct __ec_todo_unpacked {
2908                        uint16_t codes[EC_PORT80_SIZE_MAX];
2909                } data;
2910        };
2911} __ec_todo_packed;
2912
2913struct ec_response_port80_last_boot {
2914        uint16_t code;
2915} __ec_align2;
2916
2917/*****************************************************************************/
2918/* Temporary secure storage for host verified boot use */
2919
2920/* Number of bytes in a vstore slot */
2921#define EC_VSTORE_SLOT_SIZE 64
2922
2923/* Maximum number of vstore slots */
2924#define EC_VSTORE_SLOT_MAX 32
2925
2926/* Get persistent storage info */
2927#define EC_CMD_VSTORE_INFO 0x0049
2928struct ec_response_vstore_info {
2929        /* Indicates which slots are locked */
2930        uint32_t slot_locked;
2931        /* Total number of slots available */
2932        uint8_t slot_count;
2933} __ec_align_size1;
2934
2935/*
2936 * Read temporary secure storage
2937 *
2938 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2939 */
2940#define EC_CMD_VSTORE_READ 0x004A
2941
2942struct ec_params_vstore_read {
2943        uint8_t slot; /* Slot to read from */
2944} __ec_align1;
2945
2946struct ec_response_vstore_read {
2947        uint8_t data[EC_VSTORE_SLOT_SIZE];
2948} __ec_align1;
2949
2950/*
2951 * Write temporary secure storage and lock it.
2952 */
2953#define EC_CMD_VSTORE_WRITE 0x004B
2954
2955struct ec_params_vstore_write {
2956        uint8_t slot; /* Slot to write to */
2957        uint8_t data[EC_VSTORE_SLOT_SIZE];
2958} __ec_align1;
2959
2960/*****************************************************************************/
2961/* Thermal engine commands. Note that there are two implementations. We'll
2962 * reuse the command number, but the data and behavior is incompatible.
2963 * Version 0 is what originally shipped on Link.
2964 * Version 1 separates the CPU thermal limits from the fan control.
2965 */
2966
2967#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2968#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2969
2970/* The version 0 structs are opaque. You have to know what they are for
2971 * the get/set commands to make any sense.
2972 */
2973
2974/* Version 0 - set */
2975struct ec_params_thermal_set_threshold {
2976        uint8_t sensor_type;
2977        uint8_t threshold_id;
2978        uint16_t value;
2979} __ec_align2;
2980
2981/* Version 0 - get */
2982struct ec_params_thermal_get_threshold {
2983        uint8_t sensor_type;
2984        uint8_t threshold_id;
2985} __ec_align1;
2986
2987struct ec_response_thermal_get_threshold {
2988        uint16_t value;
2989} __ec_align2;
2990
2991
2992/* The version 1 structs are visible. */
2993enum ec_temp_thresholds {
2994        EC_TEMP_THRESH_WARN = 0,
2995        EC_TEMP_THRESH_HIGH,
2996        EC_TEMP_THRESH_HALT,
2997
2998        EC_TEMP_THRESH_COUNT
2999};
3000
3001/*
3002 * Thermal configuration for one temperature sensor. Temps are in degrees K.
3003 * Zero values will be silently ignored by the thermal task.
3004 *
3005 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3006 * hysteresis.
3007 * For example,
3008 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3009 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3010 * EC will throttle ap when temperature >= 301 K, and release throttling when
3011 * temperature <= 299 K.
3012 *
3013 * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3014 * For example,
3015 *      temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3016 *      temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3017 * EC will throttle ap when temperature >= 301 K, and release throttling when
3018 * temperature <= 294 K.
3019 *
3020 * Note that this structure is a sub-structure of
3021 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3022 */
3023struct ec_thermal_config {
3024        uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3025        uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3026        uint32_t temp_fan_off;          /* no active cooling needed */
3027        uint32_t temp_fan_max;          /* max active cooling needed */
3028} __ec_align4;
3029
3030/* Version 1 - get config for one sensor. */
3031struct ec_params_thermal_get_threshold_v1 {
3032        uint32_t sensor_num;
3033} __ec_align4;
3034/* This returns a struct ec_thermal_config */
3035
3036/*
3037 * Version 1 - set config for one sensor.
3038 * Use read-modify-write for best results!
3039 */
3040struct ec_params_thermal_set_threshold_v1 {
3041        uint32_t sensor_num;
3042        struct ec_thermal_config cfg;
3043} __ec_align4;
3044/* This returns no data */
3045
3046/****************************************************************************/
3047
3048/* Toggle automatic fan control */
3049#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3050
3051/* Version 1 of input params */
3052struct ec_params_auto_fan_ctrl_v1 {
3053        uint8_t fan_idx;
3054} __ec_align1;
3055
3056/* Get/Set TMP006 calibration data */
3057#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3058#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3059
3060/*
3061 * The original TMP006 calibration only needed four params, but now we need
3062 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3063 * the params opaque. The v1 "get" response will include the algorithm number
3064 * and how many params it requires. That way we can change the EC code without
3065 * needing to update this file. We can also use a different algorithm on each
3066 * sensor.
3067 */
3068
3069/* This is the same struct for both v0 and v1. */
3070struct ec_params_tmp006_get_calibration {
3071        uint8_t index;
3072} __ec_align1;
3073
3074/* Version 0 */
3075struct ec_response_tmp006_get_calibration_v0 {
3076        float s0;
3077        float b0;
3078        float b1;
3079        float b2;
3080} __ec_align4;
3081
3082struct ec_params_tmp006_set_calibration_v0 {
3083        uint8_t index;
3084        uint8_t reserved[3];
3085        float s0;
3086        float b0;
3087        float b1;
3088        float b2;
3089} __ec_align4;
3090
3091/* Version 1 */
3092struct ec_response_tmp006_get_calibration_v1 {
3093        uint8_t algorithm;
3094        uint8_t num_params;
3095        uint8_t reserved[2];
3096        float val[];
3097} __ec_align4;
3098
3099struct ec_params_tmp006_set_calibration_v1 {
3100        uint8_t index;
3101        uint8_t algorithm;
3102        uint8_t num_params;
3103        uint8_t reserved;
3104        float val[];
3105} __ec_align4;
3106
3107
3108/* Read raw TMP006 data */
3109#define EC_CMD_TMP006_GET_RAW 0x0055
3110
3111struct ec_params_tmp006_get_raw {
3112        uint8_t index;
3113} __ec_align1;
3114
3115struct ec_response_tmp006_get_raw {
3116        int32_t t;  /* In 1/100 K */
3117        int32_t v;  /* In nV */
3118} __ec_align4;
3119
3120/*****************************************************************************/
3121/* MKBP - Matrix KeyBoard Protocol */
3122
3123/*
3124 * Read key state
3125 *
3126 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3127 * expected response size.
3128 *
3129 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3130 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3131 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3132 */
3133#define EC_CMD_MKBP_STATE 0x0060
3134
3135/*
3136 * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3137 */
3138#define EC_CMD_MKBP_INFO 0x0061
3139
3140struct ec_response_mkbp_info {
3141        uint32_t rows;
3142        uint32_t cols;
3143        /* Formerly "switches", which was 0. */
3144        uint8_t reserved;
3145} __ec_align_size1;
3146
3147struct ec_params_mkbp_info {
3148        uint8_t info_type;
3149        uint8_t event_type;
3150} __ec_align1;
3151
3152enum ec_mkbp_info_type {
3153        /*
3154         * Info about the keyboard matrix: number of rows and columns.
3155         *
3156         * Returns struct ec_response_mkbp_info.
3157         */
3158        EC_MKBP_INFO_KBD = 0,
3159
3160        /*
3161         * For buttons and switches, info about which specifically are
3162         * supported.  event_type must be set to one of the values in enum
3163         * ec_mkbp_event.
3164         *
3165         * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3166         * bitmask indicating which buttons or switches are present.  See the
3167         * bit inidices below.
3168         */
3169        EC_MKBP_INFO_SUPPORTED = 1,
3170
3171        /*
3172         * Instantaneous state of buttons and switches.
3173         *
3174         * event_type must be set to one of the values in enum ec_mkbp_event.
3175         *
3176         * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3177         * indicating the current state of the keyboard matrix.
3178         *
3179         * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3180         * event state.
3181         *
3182         * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3183         * state of supported buttons.
3184         *
3185         * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3186         * state of supported switches.
3187         */
3188        EC_MKBP_INFO_CURRENT = 2,
3189};
3190
3191/* Simulate key press */
3192#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3193
3194struct ec_params_mkbp_simulate_key {
3195        uint8_t col;
3196        uint8_t row;
3197        uint8_t pressed;
3198} __ec_align1;
3199
3200#define EC_CMD_GET_KEYBOARD_ID 0x0063
3201
3202struct ec_response_keyboard_id {
3203        uint32_t keyboard_id;
3204} __ec_align4;
3205
3206enum keyboard_id {
3207        KEYBOARD_ID_UNSUPPORTED = 0,
3208        KEYBOARD_ID_UNREADABLE = 0xffffffff,
3209};
3210
3211/* Configure keyboard scanning */
3212#define EC_CMD_MKBP_SET_CONFIG 0x0064
3213#define EC_CMD_MKBP_GET_CONFIG 0x0065
3214
3215/* flags */
3216enum mkbp_config_flags {
3217        EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
3218};
3219
3220enum mkbp_config_valid {
3221        EC_MKBP_VALID_SCAN_PERIOD               = BIT(0),
3222        EC_MKBP_VALID_POLL_TIMEOUT              = BIT(1),
3223        EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = BIT(3),
3224        EC_MKBP_VALID_OUTPUT_SETTLE             = BIT(4),
3225        EC_MKBP_VALID_DEBOUNCE_DOWN             = BIT(5),
3226        EC_MKBP_VALID_DEBOUNCE_UP               = BIT(6),
3227        EC_MKBP_VALID_FIFO_MAX_DEPTH            = BIT(7),
3228};
3229
3230/*
3231 * Configuration for our key scanning algorithm.
3232 *
3233 * Note that this is used as a sub-structure of
3234 * ec_{params/response}_mkbp_get_config.
3235 */
3236struct ec_mkbp_config {
3237        uint32_t valid_mask;            /* valid fields */
3238        uint8_t flags;          /* some flags (enum mkbp_config_flags) */
3239        uint8_t valid_flags;            /* which flags are valid */
3240        uint16_t scan_period_us;        /* period between start of scans */
3241        /* revert to interrupt mode after no activity for this long */
3242        uint32_t poll_timeout_us;
3243        /*
3244         * minimum post-scan relax time. Once we finish a scan we check
3245         * the time until we are due to start the next one. If this time is
3246         * shorter this field, we use this instead.
3247         */
3248        uint16_t min_post_scan_delay_us;
3249        /* delay between setting up output and waiting for it to settle */
3250        uint16_t output_settle_us;
3251        uint16_t debounce_down_us;      /* time for debounce on key down */
3252        uint16_t debounce_up_us;        /* time for debounce on key up */
3253        /* maximum depth to allow for fifo (0 = no keyscan output) */
3254        uint8_t fifo_max_depth;
3255} __ec_align_size1;
3256
3257struct ec_params_mkbp_set_config {
3258        struct ec_mkbp_config config;
3259} __ec_align_size1;
3260
3261struct ec_response_mkbp_get_config {
3262        struct ec_mkbp_config config;
3263} __ec_align_size1;
3264
3265/* Run the key scan emulation */
3266#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3267
3268enum ec_keyscan_seq_cmd {
3269        EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
3270        EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
3271        EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
3272        EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
3273        EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
3274};
3275
3276enum ec_collect_flags {
3277        /*
3278         * Indicates this scan was processed by the EC. Due to timing, some
3279         * scans may be skipped.
3280         */
3281        EC_KEYSCAN_SEQ_FLAG_DONE        = BIT(0),
3282};
3283
3284struct ec_collect_item {
3285        uint8_t flags;          /* some flags (enum ec_collect_flags) */
3286} __ec_align1;
3287
3288struct ec_params_keyscan_seq_ctrl {
3289        uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
3290        union {
3291                struct __ec_align1 {
3292                        uint8_t active;         /* still active */
3293                        uint8_t num_items;      /* number of items */
3294                        /* Current item being presented */
3295                        uint8_t cur_item;
3296                } status;
3297                struct __ec_todo_unpacked {
3298                        /*
3299                         * Absolute time for this scan, measured from the
3300                         * start of the sequence.
3301                         */
3302                        uint32_t time_us;
3303                        uint8_t scan[0];        /* keyscan data */
3304                } add;
3305                struct __ec_align1 {
3306                        uint8_t start_item;     /* First item to return */
3307                        uint8_t num_items;      /* Number of items to return */
3308                } collect;
3309        };
3310} __ec_todo_packed;
3311
3312struct ec_result_keyscan_seq_ctrl {
3313        union {
3314                struct __ec_todo_unpacked {
3315                        uint8_t num_items;      /* Number of items */
3316                        /* Data for each item */
3317                        struct ec_collect_item item[0];
3318                } collect;
3319        };
3320} __ec_todo_packed;
3321
3322/*
3323 * Get the next pending MKBP event.
3324 *
3325 * Returns EC_RES_UNAVAILABLE if there is no event pending.
3326 */
3327#define EC_CMD_GET_NEXT_EVENT 0x0067
3328
3329#define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3330
3331/*
3332 * We use the most significant bit of the event type to indicate to the host
3333 * that the EC has more MKBP events available to provide.
3334 */
3335#define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3336
3337/* The mask to apply to get the raw event type */
3338#define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3339
3340enum ec_mkbp_event {
3341        /* Keyboard matrix changed. The event data is the new matrix state. */
3342        EC_MKBP_EVENT_KEY_MATRIX = 0,
3343
3344        /* New host event. The event data is 4 bytes of host event flags. */
3345        EC_MKBP_EVENT_HOST_EVENT = 1,
3346
3347        /* New Sensor FIFO data. The event data is fifo_info structure. */
3348        EC_MKBP_EVENT_SENSOR_FIFO = 2,
3349
3350        /* The state of the non-matrixed buttons have changed. */
3351        EC_MKBP_EVENT_BUTTON = 3,
3352
3353        /* The state of the switches have changed. */
3354        EC_MKBP_EVENT_SWITCH = 4,
3355
3356        /* New Fingerprint sensor event, the event data is fp_events bitmap. */
3357        EC_MKBP_EVENT_FINGERPRINT = 5,
3358
3359        /*
3360         * Sysrq event: send emulated sysrq. The event data is sysrq,
3361         * corresponding to the key to be pressed.
3362         */
3363        EC_MKBP_EVENT_SYSRQ = 6,
3364
3365        /*
3366         * New 64-bit host event.
3367         * The event data is 8 bytes of host event flags.
3368         */
3369        EC_MKBP_EVENT_HOST_EVENT64 = 7,
3370
3371        /* Notify the AP that something happened on CEC */
3372        EC_MKBP_EVENT_CEC_EVENT = 8,
3373
3374        /* Send an incoming CEC message to the AP */
3375        EC_MKBP_EVENT_CEC_MESSAGE = 9,
3376
3377        /* Number of MKBP events */
3378        EC_MKBP_EVENT_COUNT,
3379};
3380BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3381
3382union __ec_align_offset1 ec_response_get_next_data {
3383        uint8_t key_matrix[13];
3384
3385        /* Unaligned */
3386        uint32_t host_event;
3387        uint64_t host_event64;
3388
3389        struct __ec_todo_unpacked {
3390                /* For aligning the fifo_info */
3391                uint8_t reserved[3];
3392                struct ec_response_motion_sense_fifo_info info;
3393        } sensor_fifo;
3394
3395        uint32_t buttons;
3396
3397        uint32_t switches;
3398
3399        uint32_t fp_events;
3400
3401        uint32_t sysrq;
3402
3403        /* CEC events from enum mkbp_cec_event */
3404        uint32_t cec_events;
3405};
3406
3407union __ec_align_offset1 ec_response_get_next_data_v1 {
3408        uint8_t key_matrix[16];
3409
3410        /* Unaligned */
3411        uint32_t host_event;
3412        uint64_t host_event64;
3413
3414        struct __ec_todo_unpacked {
3415                /* For aligning the fifo_info */
3416                uint8_t reserved[3];
3417                struct ec_response_motion_sense_fifo_info info;
3418        } sensor_fifo;
3419
3420        uint32_t buttons;
3421
3422        uint32_t switches;
3423
3424        uint32_t fp_events;
3425
3426        uint32_t sysrq;
3427
3428        /* CEC events from enum mkbp_cec_event */
3429        uint32_t cec_events;
3430
3431        uint8_t cec_message[16];
3432};
3433BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3434
3435struct ec_response_get_next_event {
3436        uint8_t event_type;
3437        /* Followed by event data if any */
3438        union ec_response_get_next_data data;
3439} __ec_align1;
3440
3441struct ec_response_get_next_event_v1 {
3442        uint8_t event_type;
3443        /* Followed by event data if any */
3444        union ec_response_get_next_data_v1 data;
3445} __ec_align1;
3446
3447/* Bit indices for buttons and switches.*/
3448/* Buttons */
3449#define EC_MKBP_POWER_BUTTON    0
3450#define EC_MKBP_VOL_UP          1
3451#define EC_MKBP_VOL_DOWN        2
3452#define EC_MKBP_RECOVERY        3
3453
3454/* Switches */
3455#define EC_MKBP_LID_OPEN        0
3456#define EC_MKBP_TABLET_MODE     1
3457#define EC_MKBP_BASE_ATTACHED   2
3458
3459/* Run keyboard factory test scanning */
3460#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3461
3462struct ec_response_keyboard_factory_test {
3463        uint16_t shorted;       /* Keyboard pins are shorted */
3464} __ec_align2;
3465
3466/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3467#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3468#define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3469#define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3470#define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3471                                         >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3472#define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3473#define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3474#define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3475                                         >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3476#define EC_MKBP_FP_ENROLL               BIT(27)
3477#define EC_MKBP_FP_MATCH                BIT(28)
3478#define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3479#define EC_MKBP_FP_FINGER_UP            BIT(30)
3480#define EC_MKBP_FP_IMAGE_READY          BIT(31)
3481/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3482#define EC_MKBP_FP_ERR_ENROLL_OK               0
3483#define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3484#define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3485#define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3486#define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3487/* Can be used to detect if image was usable for enrollment or not. */
3488#define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3489/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3490#define EC_MKBP_FP_ERR_MATCH_NO                0
3491#define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3492#define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3493#define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3494#define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3495#define EC_MKBP_FP_ERR_MATCH_YES               1
3496#define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3497#define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3498
3499
3500/*****************************************************************************/
3501/* Temperature sensor commands */
3502
3503/* Read temperature sensor info */
3504#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3505
3506struct ec_params_temp_sensor_get_info {
3507        uint8_t id;
3508} __ec_align1;
3509
3510struct ec_response_temp_sensor_get_info {
3511        char sensor_name[32];
3512        uint8_t sensor_type;
3513} __ec_align1;
3514
3515/*****************************************************************************/
3516
3517/*
3518 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3519 * commands accidentally sent to the wrong interface.  See the ACPI section
3520 * below.
3521 */
3522
3523/*****************************************************************************/
3524/* Host event commands */
3525
3526
3527/* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3528/*
3529 * Host event mask params and response structures, shared by all of the host
3530 * event commands below.
3531 */
3532struct ec_params_host_event_mask {
3533        uint32_t mask;
3534} __ec_align4;
3535
3536struct ec_response_host_event_mask {
3537        uint32_t mask;
3538} __ec_align4;
3539
3540/* These all use ec_response_host_event_mask */
3541#define EC_CMD_HOST_EVENT_GET_B         0x0087
3542#define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3543#define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3544#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3545
3546/* These all use ec_params_host_event_mask */
3547#define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3548#define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3549#define EC_CMD_HOST_EVENT_CLEAR         0x008C
3550#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3551#define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3552
3553/*
3554 * Unified host event programming interface - Should be used by newer versions
3555 * of BIOS/OS to program host events and masks
3556 */
3557
3558struct ec_params_host_event {
3559
3560        /* Action requested by host - one of enum ec_host_event_action. */
3561        uint8_t action;
3562
3563        /*
3564         * Mask type that the host requested the action on - one of
3565         * enum ec_host_event_mask_type.
3566         */
3567        uint8_t mask_type;
3568
3569        /* Set to 0, ignore on read */
3570        uint16_t reserved;
3571
3572        /* Value to be used in case of set operations. */
3573        uint64_t value;
3574} __ec_align4;
3575
3576/*
3577 * Response structure returned by EC_CMD_HOST_EVENT.
3578 * Update the value on a GET request. Set to 0 on GET/CLEAR
3579 */
3580
3581struct ec_response_host_event {
3582
3583        /* Mask value in case of get operation */
3584        uint64_t value;
3585} __ec_align4;
3586
3587enum ec_host_event_action {
3588        /*
3589         * params.value is ignored. Value of mask_type populated
3590         * in response.value
3591         */
3592        EC_HOST_EVENT_GET,
3593
3594        /* Bits in params.value are set */
3595        EC_HOST_EVENT_SET,
3596
3597        /* Bits in params.value are cleared */
3598        EC_HOST_EVENT_CLEAR,
3599};
3600
3601enum ec_host_event_mask_type {
3602
3603        /* Main host event copy */
3604        EC_HOST_EVENT_MAIN,
3605
3606        /* Copy B of host events */
3607        EC_HOST_EVENT_B,
3608
3609        /* SCI Mask */
3610        EC_HOST_EVENT_SCI_MASK,
3611
3612        /* SMI Mask */
3613        EC_HOST_EVENT_SMI_MASK,
3614
3615        /* Mask of events that should be always reported in hostevents */
3616        EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3617
3618        /* Active wake mask */
3619        EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3620
3621        /* Lazy wake mask for S0ix */
3622        EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3623
3624        /* Lazy wake mask for S3 */
3625        EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3626
3627        /* Lazy wake mask for S5 */
3628        EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3629};
3630
3631#define EC_CMD_HOST_EVENT       0x00A4
3632
3633/*****************************************************************************/
3634/* Switch commands */
3635
3636/* Enable/disable LCD backlight */
3637#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3638
3639struct ec_params_switch_enable_backlight {
3640        uint8_t enabled;
3641} __ec_align1;
3642
3643/* Enable/disable WLAN/Bluetooth */
3644#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3645#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3646
3647/* Version 0 params; no response */
3648struct ec_params_switch_enable_wireless_v0 {
3649        uint8_t enabled;
3650} __ec_align1;
3651
3652/* Version 1 params */
3653struct ec_params_switch_enable_wireless_v1 {
3654        /* Flags to enable now */
3655        uint8_t now_flags;
3656
3657        /* Which flags to copy from now_flags */
3658        uint8_t now_mask;
3659
3660        /*
3661         * Flags to leave enabled in S3, if they're on at the S0->S3
3662         * transition.  (Other flags will be disabled by the S0->S3
3663         * transition.)
3664         */
3665        uint8_t suspend_flags;
3666
3667        /* Which flags to copy from suspend_flags */
3668        uint8_t suspend_mask;
3669} __ec_align1;
3670
3671/* Version 1 response */
3672struct ec_response_switch_enable_wireless_v1 {
3673        /* Flags to enable now */
3674        uint8_t now_flags;
3675
3676        /* Flags to leave enabled in S3 */
3677        uint8_t suspend_flags;
3678} __ec_align1;
3679
3680/*****************************************************************************/
3681/* GPIO commands. Only available on EC if write protect has been disabled. */
3682
3683/* Set GPIO output value */
3684#define EC_CMD_GPIO_SET 0x0092
3685
3686struct ec_params_gpio_set {
3687        char name[32];
3688        uint8_t val;
3689} __ec_align1;
3690
3691/* Get GPIO value */
3692#define EC_CMD_GPIO_GET 0x0093
3693
3694/* Version 0 of input params and response */
3695struct ec_params_gpio_get {
3696        char name[32];
3697} __ec_align1;
3698
3699struct ec_response_gpio_get {
3700        uint8_t val;
3701} __ec_align1;
3702
3703/* Version 1 of input params and response */
3704struct ec_params_gpio_get_v1 {
3705        uint8_t subcmd;
3706        union {
3707                struct __ec_align1 {
3708                        char name[32];
3709                } get_value_by_name;
3710                struct __ec_align1 {
3711                        uint8_t index;
3712                } get_info;
3713        };
3714} __ec_align1;
3715
3716struct ec_response_gpio_get_v1 {
3717        union {
3718                struct __ec_align1 {
3719                        uint8_t val;
3720                } get_value_by_name, get_count;
3721                struct __ec_todo_unpacked {
3722                        uint8_t val;
3723                        char name[32];
3724                        uint32_t flags;
3725                } get_info;
3726        };
3727} __ec_todo_packed;
3728
3729enum gpio_get_subcmd {
3730        EC_GPIO_GET_BY_NAME = 0,
3731        EC_GPIO_GET_COUNT = 1,
3732        EC_GPIO_GET_INFO = 2,
3733};
3734
3735/*****************************************************************************/
3736/* I2C commands. Only available when flash write protect is unlocked. */
3737
3738/*
3739 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3740 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3741 *
3742 * Use EC_CMD_I2C_PASSTHRU instead.
3743 */
3744
3745/* Read I2C bus */
3746#define EC_CMD_I2C_READ 0x0094
3747
3748struct ec_params_i2c_read {
3749        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3750        uint8_t read_size; /* Either 8 or 16. */
3751        uint8_t port;
3752        uint8_t offset;
3753} __ec_align_size1;
3754
3755struct ec_response_i2c_read {
3756        uint16_t data;
3757} __ec_align2;
3758
3759/* Write I2C bus */
3760#define EC_CMD_I2C_WRITE 0x0095
3761
3762struct ec_params_i2c_write {
3763        uint16_t data;
3764        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3765        uint8_t write_size; /* Either 8 or 16. */
3766        uint8_t port;
3767        uint8_t offset;
3768} __ec_align_size1;
3769
3770/*****************************************************************************/
3771/* Charge state commands. Only available when flash write protect unlocked. */
3772
3773/* Force charge state machine to stop charging the battery or force it to
3774 * discharge the battery.
3775 */
3776#define EC_CMD_CHARGE_CONTROL 0x0096
3777#define EC_VER_CHARGE_CONTROL 1
3778
3779enum ec_charge_control_mode {
3780        CHARGE_CONTROL_NORMAL = 0,
3781        CHARGE_CONTROL_IDLE,
3782        CHARGE_CONTROL_DISCHARGE,
3783};
3784
3785struct ec_params_charge_control {
3786        uint32_t mode;  /* enum charge_control_mode */
3787} __ec_align4;
3788
3789/*****************************************************************************/
3790
3791/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3792#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3793
3794/*
3795 * Read data from the saved snapshot. If the subcmd parameter is
3796 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3797 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3798 * end of the previous snapshot.
3799 *
3800 * The params are only looked at in version >= 1 of this command. Prior
3801 * versions will just default to CONSOLE_READ_NEXT behavior.
3802 *
3803 * Response is null-terminated string.  Empty string, if there is no more
3804 * remaining output.
3805 */
3806#define EC_CMD_CONSOLE_READ 0x0098
3807
3808enum ec_console_read_subcmd {
3809        CONSOLE_READ_NEXT = 0,
3810        CONSOLE_READ_RECENT
3811};
3812
3813struct ec_params_console_read_v1 {
3814        uint8_t subcmd; /* enum ec_console_read_subcmd */
3815} __ec_align1;
3816
3817/*****************************************************************************/
3818
3819/*
3820 * Cut off battery power immediately or after the host has shut down.
3821 *
3822 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3823 *        EC_RES_SUCCESS if the command was successful.
3824 *        EC_RES_ERROR if the cut off command failed.
3825 */
3826#define EC_CMD_BATTERY_CUT_OFF 0x0099
3827
3828#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      BIT(0)
3829
3830struct ec_params_battery_cutoff {
3831        uint8_t flags;
3832} __ec_align1;
3833
3834/*****************************************************************************/
3835/* USB port mux control. */
3836
3837/*
3838 * Switch USB mux or return to automatic switching.
3839 */
3840#define EC_CMD_USB_MUX 0x009A
3841
3842struct ec_params_usb_mux {
3843        uint8_t mux;
3844} __ec_align1;
3845
3846/*****************************************************************************/
3847/* LDOs / FETs control. */
3848
3849enum ec_ldo_state {
3850        EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
3851        EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
3852};
3853
3854/*
3855 * Switch on/off a LDO.
3856 */
3857#define EC_CMD_LDO_SET 0x009B
3858
3859struct ec_params_ldo_set {
3860        uint8_t index;
3861        uint8_t state;
3862} __ec_align1;
3863
3864/*
3865 * Get LDO state.
3866 */
3867#define EC_CMD_LDO_GET 0x009C
3868
3869struct ec_params_ldo_get {
3870        uint8_t index;
3871} __ec_align1;
3872
3873struct ec_response_ldo_get {
3874        uint8_t state;
3875} __ec_align1;
3876
3877/*****************************************************************************/
3878/* Power info. */
3879
3880/*
3881 * Get power info.
3882 */
3883#define EC_CMD_POWER_INFO 0x009D
3884
3885struct ec_response_power_info {
3886        uint32_t usb_dev_type;
3887        uint16_t voltage_ac;
3888        uint16_t voltage_system;
3889        uint16_t current_system;
3890        uint16_t usb_current_limit;
3891} __ec_align4;
3892
3893/*****************************************************************************/
3894/* I2C passthru command */
3895
3896#define EC_CMD_I2C_PASSTHRU 0x009E
3897
3898/* Read data; if not present, message is a write */
3899#define EC_I2C_FLAG_READ        BIT(15)
3900
3901/* Mask for address */
3902#define EC_I2C_ADDR_MASK        0x3ff
3903
3904#define EC_I2C_STATUS_NAK       BIT(0) /* Transfer was not acknowledged */
3905#define EC_I2C_STATUS_TIMEOUT   BIT(1) /* Timeout during transfer */
3906
3907/* Any error */
3908#define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3909
3910struct ec_params_i2c_passthru_msg {
3911        uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
3912        uint16_t len;           /* Number of bytes to read or write */
3913} __ec_align2;
3914
3915struct ec_params_i2c_passthru {
3916        uint8_t port;           /* I2C port number */
3917        uint8_t num_msgs;       /* Number of messages */
3918        struct ec_params_i2c_passthru_msg msg[];
3919        /* Data to write for all messages is concatenated here */
3920} __ec_align2;
3921
3922struct ec_response_i2c_passthru {
3923        uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
3924        uint8_t num_msgs;       /* Number of messages processed */
3925        uint8_t data[];         /* Data read by messages concatenated here */
3926} __ec_align1;
3927
3928/*****************************************************************************/
3929/* Power button hang detect */
3930
3931#define EC_CMD_HANG_DETECT 0x009F
3932
3933/* Reasons to start hang detection timer */
3934/* Power button pressed */
3935#define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3936
3937/* Lid closed */
3938#define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3939
3940 /* Lid opened */
3941#define EC_HANG_START_ON_LID_OPEN     BIT(2)
3942
3943/* Start of AP S3->S0 transition (booting or resuming from suspend) */
3944#define EC_HANG_START_ON_RESUME       BIT(3)
3945
3946/* Reasons to cancel hang detection */
3947
3948/* Power button released */
3949#define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3950
3951/* Any host command from AP received */
3952#define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3953
3954/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3955#define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3956
3957/*
3958 * If this flag is set, all the other fields are ignored, and the hang detect
3959 * timer is started.  This provides the AP a way to start the hang timer
3960 * without reconfiguring any of the other hang detect settings.  Note that
3961 * you must previously have configured the timeouts.
3962 */
3963#define EC_HANG_START_NOW             BIT(30)
3964
3965/*
3966 * If this flag is set, all the other fields are ignored (including
3967 * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3968 * without reconfiguring any of the other hang detect settings.
3969 */
3970#define EC_HANG_STOP_NOW              BIT(31)
3971
3972struct ec_params_hang_detect {
3973        /* Flags; see EC_HANG_* */
3974        uint32_t flags;
3975
3976        /* Timeout in msec before generating host event, if enabled */
3977        uint16_t host_event_timeout_msec;
3978
3979        /* Timeout in msec before generating warm reboot, if enabled */
3980        uint16_t warm_reboot_timeout_msec;
3981} __ec_align4;
3982
3983/*****************************************************************************/
3984/* Commands for battery charging */
3985
3986/*
3987 * This is the single catch-all host command to exchange data regarding the
3988 * charge state machine (v2 and up).
3989 */
3990#define EC_CMD_CHARGE_STATE 0x00A0
3991
3992/* Subcommands for this host command */
3993enum charge_state_command {
3994        CHARGE_STATE_CMD_GET_STATE,
3995        CHARGE_STATE_CMD_GET_PARAM,
3996        CHARGE_STATE_CMD_SET_PARAM,
3997        CHARGE_STATE_NUM_CMDS
3998};
3999
4000/*
4001 * Known param numbers are defined here. Ranges are reserved for board-specific
4002 * params, which are handled by the particular implementations.
4003 */
4004enum charge_state_params {
4005        CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
4006        CS_PARAM_CHG_CURRENT,         /* charger current limit */
4007        CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4008        CS_PARAM_CHG_STATUS,          /* charger-specific status */
4009        CS_PARAM_CHG_OPTION,          /* charger-specific options */
4010        CS_PARAM_LIMIT_POWER,         /*
4011                                       * Check if power is limited due to
4012                                       * low battery and / or a weak external
4013                                       * charger. READ ONLY.
4014                                       */
4015        /* How many so far? */
4016        CS_NUM_BASE_PARAMS,
4017
4018        /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4019        CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4020        CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4021
4022        /* Range for CONFIG_CHARGE_STATE_DEBUG params */
4023        CS_PARAM_DEBUG_MIN = 0x20000,
4024        CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4025        CS_PARAM_DEBUG_MANUAL_MODE,
4026        CS_PARAM_DEBUG_SEEMS_DEAD,
4027        CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4028        CS_PARAM_DEBUG_BATT_REMOVED,
4029        CS_PARAM_DEBUG_MANUAL_CURRENT,
4030        CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4031        CS_PARAM_DEBUG_MAX = 0x2ffff,
4032
4033        /* Other custom param ranges go here... */
4034};
4035
4036struct ec_params_charge_state {
4037        uint8_t cmd;                            /* enum charge_state_command */
4038        union {
4039                /* get_state has no args */
4040
4041                struct __ec_todo_unpacked {
4042                        uint32_t param;         /* enum charge_state_param */
4043                } get_param;
4044
4045                struct __ec_todo_unpacked {
4046                        uint32_t param;         /* param to set */
4047                        uint32_t value;         /* value to set */
4048                } set_param;
4049        };
4050} __ec_todo_packed;
4051
4052struct ec_response_charge_state {
4053        union {
4054                struct __ec_align4 {
4055                        int ac;
4056                        int chg_voltage;
4057                        int chg_current;
4058                        int chg_input_current;
4059                        int batt_state_of_charge;
4060                } get_state;
4061
4062                struct __ec_align4 {
4063                        uint32_t value;
4064                } get_param;
4065
4066                /* set_param returns no args */
4067        };
4068} __ec_align4;
4069
4070
4071/*
4072 * Set maximum battery charging current.
4073 */
4074#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4075
4076struct ec_params_current_limit {
4077        uint32_t limit; /* in mA */
4078} __ec_align4;
4079
4080/*
4081 * Set maximum external voltage / current.
4082 */
4083#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4084
4085/* Command v0 is used only on Spring and is obsolete + unsupported */
4086struct ec_params_external_power_limit_v1 {
4087        uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4088        uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4089} __ec_align2;
4090
4091#define EC_POWER_LIMIT_NONE 0xffff
4092
4093/*
4094 * Set maximum voltage & current of a dedicated charge port
4095 */
4096#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4097
4098struct ec_params_dedicated_charger_limit {
4099        uint16_t current_lim; /* in mA */
4100        uint16_t voltage_lim; /* in mV */
4101} __ec_align2;
4102
4103/*****************************************************************************/
4104/* Hibernate/Deep Sleep Commands */
4105
4106/* Set the delay before going into hibernation. */
4107#define EC_CMD_HIBERNATION_DELAY 0x00A8
4108
4109struct ec_params_hibernation_delay {
4110        /*
4111         * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4112         * current settings without changing them.
4113         */
4114        uint32_t seconds;
4115} __ec_align4;
4116
4117struct ec_response_hibernation_delay {
4118        /*
4119         * The current time in seconds in which the system has been in the G3
4120         * state.  This value is reset if the EC transitions out of G3.
4121         */
4122        uint32_t time_g3;
4123
4124        /*
4125         * The current time remaining in seconds until the EC should hibernate.
4126         * This value is also reset if the EC transitions out of G3.
4127         */
4128        uint32_t time_remaining;
4129
4130        /*
4131         * The current time in seconds that the EC should wait in G3 before
4132         * hibernating.
4133         */
4134        uint32_t hibernate_delay;
4135} __ec_align4;
4136
4137/* Inform the EC when entering a sleep state */
4138#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4139
4140enum host_sleep_event {
4141        HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4142        HOST_SLEEP_EVENT_S3_RESUME    = 2,
4143        HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4144        HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4145        /* S3 suspend with additional enabled wake sources */
4146        HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4147};
4148
4149struct ec_params_host_sleep_event {
4150        uint8_t sleep_event;
4151} __ec_align1;
4152
4153/*
4154 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4155 * transition failures
4156 */
4157#define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4158
4159/* Disable timeout detection for this sleep transition */
4160#define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4161
4162struct ec_params_host_sleep_event_v1 {
4163        /* The type of sleep being entered or exited. */
4164        uint8_t sleep_event;
4165
4166        /* Padding */
4167        uint8_t reserved;
4168        union {
4169                /* Parameters that apply for suspend messages. */
4170                struct {
4171                        /*
4172                         * The timeout in milliseconds between when this message
4173                         * is received and when the EC will declare sleep
4174                         * transition failure if the sleep signal is not
4175                         * asserted.
4176                         */
4177                        uint16_t sleep_timeout_ms;
4178                } suspend_params;
4179
4180                /* No parameters for non-suspend messages. */
4181        };
4182} __ec_align2;
4183
4184/* A timeout occurred when this bit is set */
4185#define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4186
4187/*
4188 * The mask defining which bits correspond to the number of sleep transitions,
4189 * as well as the maximum number of suspend line transitions that will be
4190 * reported back to the host.
4191 */
4192#define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4193
4194struct ec_response_host_sleep_event_v1 {
4195        union {
4196                /* Response fields that apply for resume messages. */
4197                struct {
4198                        /*
4199                         * The number of sleep power signal transitions that
4200                         * occurred since the suspend message. The high bit
4201                         * indicates a timeout occurred.
4202                         */
4203                        uint32_t sleep_transitions;
4204                } resume_response;
4205
4206                /* No response fields for non-resume messages. */
4207        };
4208} __ec_align4;
4209
4210/*****************************************************************************/
4211/* Device events */
4212#define EC_CMD_DEVICE_EVENT 0x00AA
4213
4214enum ec_device_event {
4215        EC_DEVICE_EVENT_TRACKPAD,
4216        EC_DEVICE_EVENT_DSP,
4217        EC_DEVICE_EVENT_WIFI,
4218};
4219
4220enum ec_device_event_param {
4221        /* Get and clear pending device events */
4222        EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4223        /* Get device event mask */
4224        EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4225        /* Set device event mask */
4226        EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4227};
4228
4229#define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4230
4231struct ec_params_device_event {
4232        uint32_t event_mask;
4233        uint8_t param;
4234} __ec_align_size1;
4235
4236struct ec_response_device_event {
4237        uint32_t event_mask;
4238} __ec_align4;
4239
4240/*****************************************************************************/
4241/* Smart battery pass-through */
4242
4243/* Get / Set 16-bit smart battery registers */
4244#define EC_CMD_SB_READ_WORD   0x00B0
4245#define EC_CMD_SB_WRITE_WORD  0x00B1
4246
4247/* Get / Set string smart battery parameters
4248 * formatted as SMBUS "block".
4249 */
4250#define EC_CMD_SB_READ_BLOCK  0x00B2
4251#define EC_CMD_SB_WRITE_BLOCK 0x00B3
4252
4253struct ec_params_sb_rd {
4254        uint8_t reg;
4255} __ec_align1;
4256
4257struct ec_response_sb_rd_word {
4258        uint16_t value;
4259} __ec_align2;
4260
4261struct ec_params_sb_wr_word {
4262        uint8_t reg;
4263        uint16_t value;
4264} __ec_align1;
4265
4266struct ec_response_sb_rd_block {
4267        uint8_t data[32];
4268} __ec_align1;
4269
4270struct ec_params_sb_wr_block {
4271        uint8_t reg;
4272        uint16_t data[32];
4273} __ec_align1;
4274
4275/*****************************************************************************/
4276/* Battery vendor parameters
4277 *
4278 * Get or set vendor-specific parameters in the battery. Implementations may
4279 * differ between boards or batteries. On a set operation, the response
4280 * contains the actual value set, which may be rounded or clipped from the
4281 * requested value.
4282 */
4283
4284#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4285
4286enum ec_battery_vendor_param_mode {
4287        BATTERY_VENDOR_PARAM_MODE_GET = 0,
4288        BATTERY_VENDOR_PARAM_MODE_SET,
4289};
4290
4291struct ec_params_battery_vendor_param {
4292        uint32_t param;
4293        uint32_t value;
4294        uint8_t mode;
4295} __ec_align_size1;
4296
4297struct ec_response_battery_vendor_param {
4298        uint32_t value;
4299} __ec_align4;
4300
4301/*****************************************************************************/
4302/*
4303 * Smart Battery Firmware Update Commands
4304 */
4305#define EC_CMD_SB_FW_UPDATE 0x00B5
4306
4307enum ec_sb_fw_update_subcmd {
4308        EC_SB_FW_UPDATE_PREPARE  = 0x0,
4309        EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4310        EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4311        EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4312        EC_SB_FW_UPDATE_END      = 0x4,
4313        EC_SB_FW_UPDATE_STATUS   = 0x5,
4314        EC_SB_FW_UPDATE_PROTECT  = 0x6,
4315        EC_SB_FW_UPDATE_MAX      = 0x7,
4316};
4317
4318#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4319#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4320#define SB_FW_UPDATE_CMD_INFO_SIZE 8
4321
4322struct ec_sb_fw_update_header {
4323        uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4324        uint16_t fw_id;   /* firmware id */
4325} __ec_align4;
4326
4327struct ec_params_sb_fw_update {
4328        struct ec_sb_fw_update_header hdr;
4329        union {
4330                /* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4331                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4332                /* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4333                /* EC_SB_FW_UPDATE_END      = 0x4 */
4334                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4335                /* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4336                /* Those have no args */
4337
4338                /* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4339                struct __ec_align4 {
4340                        uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4341                } write;
4342        };
4343} __ec_align4;
4344
4345struct ec_response_sb_fw_update {
4346        union {
4347                /* EC_SB_FW_UPDATE_INFO     = 0x1 */
4348                struct __ec_align1 {
4349                        uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4350                } info;
4351
4352                /* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4353                struct __ec_align1 {
4354                        uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4355                } status;
4356        };
4357} __ec_align1;
4358
4359/*
4360 * Entering Verified Boot Mode Command
4361 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4362 * Valid Modes are: normal, developer, and recovery.
4363 */
4364#define EC_CMD_ENTERING_MODE 0x00B6
4365
4366struct ec_params_entering_mode {
4367        int vboot_mode;
4368} __ec_align4;
4369
4370#define VBOOT_MODE_NORMAL    0
4371#define VBOOT_MODE_DEVELOPER 1
4372#define VBOOT_MODE_RECOVERY  2
4373
4374/*****************************************************************************/
4375/*
4376 * I2C passthru protection command: Protects I2C tunnels against access on
4377 * certain addresses (board-specific).
4378 */
4379#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4380
4381enum ec_i2c_passthru_protect_subcmd {
4382        EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4383        EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4384};
4385
4386struct ec_params_i2c_passthru_protect {
4387        uint8_t subcmd;
4388        uint8_t port;           /* I2C port number */
4389} __ec_align1;
4390
4391struct ec_response_i2c_passthru_protect {
4392        uint8_t status;         /* Status flags (0: unlocked, 1: locked) */
4393} __ec_align1;
4394
4395
4396/*****************************************************************************/
4397/*
4398 * HDMI CEC commands
4399 *
4400 * These commands are for sending and receiving message via HDMI CEC
4401 */
4402
4403#define MAX_CEC_MSG_LEN 16
4404
4405/* CEC message from the AP to be written on the CEC bus */
4406#define EC_CMD_CEC_WRITE_MSG 0x00B8
4407
4408/**
4409 * struct ec_params_cec_write - Message to write to the CEC bus
4410 * @msg: message content to write to the CEC bus
4411 */
4412struct ec_params_cec_write {
4413        uint8_t msg[MAX_CEC_MSG_LEN];
4414} __ec_align1;
4415
4416/* Set various CEC parameters */
4417#define EC_CMD_CEC_SET 0x00BA
4418
4419/**
4420 * struct ec_params_cec_set - CEC parameters set
4421 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4422 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4423 *      or 1 to enable CEC functionality, in case cmd is
4424 *      CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4425 *      address between 0 and 15 or 0xff to unregister
4426 */
4427struct ec_params_cec_set {
4428        uint8_t cmd; /* enum cec_command */
4429        uint8_t val;
4430} __ec_align1;
4431
4432/* Read various CEC parameters */
4433#define EC_CMD_CEC_GET 0x00BB
4434
4435/**
4436 * struct ec_params_cec_get - CEC parameters get
4437 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4438 */
4439struct ec_params_cec_get {
4440        uint8_t cmd; /* enum cec_command */
4441} __ec_align1;
4442
4443/**
4444 * struct ec_response_cec_get - CEC parameters get response
4445 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4446 *      disabled or 1 if CEC functionality is enabled,
4447 *      in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4448 *      configured logical address between 0 and 15 or 0xff if unregistered
4449 */
4450struct ec_response_cec_get {
4451        uint8_t val;
4452} __ec_align1;
4453
4454/* CEC parameters command */
4455enum cec_command {
4456        /* CEC reading, writing and events enable */
4457        CEC_CMD_ENABLE,
4458        /* CEC logical address  */
4459        CEC_CMD_LOGICAL_ADDRESS,
4460};
4461
4462/* Events from CEC to AP */
4463enum mkbp_cec_event {
4464        /* Outgoing message was acknowledged by a follower */
4465        EC_MKBP_CEC_SEND_OK                     = BIT(0),
4466        /* Outgoing message was not acknowledged */
4467        EC_MKBP_CEC_SEND_FAILED                 = BIT(1),
4468};
4469
4470/*****************************************************************************/
4471
4472/* Commands for audio codec. */
4473#define EC_CMD_EC_CODEC 0x00BC
4474
4475enum ec_codec_subcmd {
4476        EC_CODEC_GET_CAPABILITIES = 0x0,
4477        EC_CODEC_GET_SHM_ADDR = 0x1,
4478        EC_CODEC_SET_SHM_ADDR = 0x2,
4479        EC_CODEC_SUBCMD_COUNT,
4480};
4481
4482enum ec_codec_cap {
4483        EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4484        EC_CODEC_CAP_WOV_LANG_SHM = 1,
4485        EC_CODEC_CAP_LAST = 32,
4486};
4487
4488enum ec_codec_shm_id {
4489        EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4490        EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4491        EC_CODEC_SHM_ID_LAST,
4492};
4493
4494enum ec_codec_shm_type {
4495        EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4496        EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4497};
4498
4499struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4500        uint8_t shm_id;
4501        uint8_t reserved[3];
4502};
4503
4504struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4505        uint64_t phys_addr;
4506        uint32_t len;
4507        uint8_t shm_id;
4508        uint8_t reserved[3];
4509};
4510
4511struct __ec_align4 ec_param_ec_codec {
4512        uint8_t cmd; /* enum ec_codec_subcmd */
4513        uint8_t reserved[3];
4514
4515        union {
4516                struct ec_param_ec_codec_get_shm_addr
4517                                get_shm_addr_param;
4518                struct ec_param_ec_codec_set_shm_addr
4519                                set_shm_addr_param;
4520        };
4521};
4522
4523struct __ec_align4 ec_response_ec_codec_get_capabilities {
4524        uint32_t capabilities;
4525};
4526
4527struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4528        uint64_t phys_addr;
4529        uint32_t len;
4530        uint8_t type;
4531        uint8_t reserved[3];
4532};
4533
4534/*****************************************************************************/
4535
4536/* Commands for DMIC on audio codec. */
4537#define EC_CMD_EC_CODEC_DMIC 0x00BD
4538
4539enum ec_codec_dmic_subcmd {
4540        EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4541        EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4542        EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4543        EC_CODEC_DMIC_SUBCMD_COUNT,
4544};
4545
4546enum ec_codec_dmic_channel {
4547        EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4548        EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4549        EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4550        EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4551        EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4552        EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4553        EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4554        EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4555        EC_CODEC_DMIC_CHANNEL_COUNT,
4556};
4557
4558struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4559        uint8_t channel; /* enum ec_codec_dmic_channel */
4560        uint8_t gain;
4561        uint8_t reserved[2];
4562};
4563
4564struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4565        uint8_t channel; /* enum ec_codec_dmic_channel */
4566        uint8_t reserved[3];
4567};
4568
4569struct __ec_align4 ec_param_ec_codec_dmic {
4570        uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4571        uint8_t reserved[3];
4572
4573        union {
4574                struct ec_param_ec_codec_dmic_set_gain_idx
4575                                set_gain_idx_param;
4576                struct ec_param_ec_codec_dmic_get_gain_idx
4577                                get_gain_idx_param;
4578        };
4579};
4580
4581struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4582        uint8_t max_gain;
4583};
4584
4585struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4586        uint8_t gain;
4587};
4588
4589/*****************************************************************************/
4590
4591/* Commands for I2S RX on audio codec. */
4592
4593#define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4594
4595enum ec_codec_i2s_rx_subcmd {
4596        EC_CODEC_I2S_RX_ENABLE = 0x0,
4597        EC_CODEC_I2S_RX_DISABLE = 0x1,
4598        EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4599        EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4600        EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4601        EC_CODEC_I2S_RX_SUBCMD_COUNT,
4602};
4603
4604enum ec_codec_i2s_rx_sample_depth {
4605        EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4606        EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4607        EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4608};
4609
4610enum ec_codec_i2s_rx_daifmt {
4611        EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4612        EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4613        EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4614        EC_CODEC_I2S_RX_DAIFMT_COUNT,
4615};
4616
4617struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4618        uint8_t depth;
4619        uint8_t reserved[3];
4620};
4621
4622struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4623        uint8_t left;
4624        uint8_t right;
4625        uint8_t reserved[2];
4626};
4627
4628struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4629        uint8_t daifmt;
4630        uint8_t reserved[3];
4631};
4632
4633struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4634        uint32_t bclk;
4635};
4636
4637struct __ec_align4 ec_param_ec_codec_i2s_rx {
4638        uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4639        uint8_t reserved[3];
4640
4641        union {
4642                struct ec_param_ec_codec_i2s_rx_set_sample_depth
4643                                set_sample_depth_param;
4644                struct ec_param_ec_codec_i2s_rx_set_daifmt
4645                                set_daifmt_param;
4646                struct ec_param_ec_codec_i2s_rx_set_bclk
4647                                set_bclk_param;
4648        };
4649};
4650
4651/*****************************************************************************/
4652/* Commands for WoV on audio codec. */
4653
4654#define EC_CMD_EC_CODEC_WOV 0x00BF
4655
4656enum ec_codec_wov_subcmd {
4657        EC_CODEC_WOV_SET_LANG = 0x0,
4658        EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4659        EC_CODEC_WOV_GET_LANG = 0x2,
4660        EC_CODEC_WOV_ENABLE = 0x3,
4661        EC_CODEC_WOV_DISABLE = 0x4,
4662        EC_CODEC_WOV_READ_AUDIO = 0x5,
4663        EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4664        EC_CODEC_WOV_SUBCMD_COUNT,
4665};
4666
4667/*
4668 * @hash is SHA256 of the whole language model.
4669 * @total_len indicates the length of whole language model.
4670 * @offset is the cursor from the beginning of the model.
4671 * @buf is the packet buffer.
4672 * @len denotes how many bytes in the buf.
4673 */
4674struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4675        uint8_t hash[32];
4676        uint32_t total_len;
4677        uint32_t offset;
4678        uint8_t buf[128];
4679        uint32_t len;
4680};
4681
4682struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4683        uint8_t hash[32];
4684        uint32_t total_len;
4685};
4686
4687struct __ec_align4 ec_param_ec_codec_wov {
4688        uint8_t cmd; /* enum ec_codec_wov_subcmd */
4689        uint8_t reserved[3];
4690
4691        union {
4692                struct ec_param_ec_codec_wov_set_lang
4693                                set_lang_param;
4694                struct ec_param_ec_codec_wov_set_lang_shm
4695                                set_lang_shm_param;
4696        };
4697};
4698
4699struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4700        uint8_t hash[32];
4701};
4702
4703struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4704        uint8_t buf[128];
4705        uint32_t len;
4706};
4707
4708struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4709        uint32_t offset;
4710        uint32_t len;
4711};
4712
4713/*****************************************************************************/
4714/* System commands */
4715
4716/*
4717 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4718 * necessarily reboot the EC.  Rename to "image" or something similar?
4719 */
4720#define EC_CMD_REBOOT_EC 0x00D2
4721
4722/* Command */
4723enum ec_reboot_cmd {
4724        EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4725        EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4726        EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4727        /* (command 3 was jump to RW-B) */
4728        EC_REBOOT_COLD = 4,          /* Cold-reboot */
4729        EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4730        EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4731        EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4732};
4733
4734/* Flags for ec_params_reboot_ec.reboot_flags */
4735#define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4736#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4737#define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4738
4739struct ec_params_reboot_ec {
4740        uint8_t cmd;           /* enum ec_reboot_cmd */
4741        uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4742} __ec_align1;
4743
4744/*
4745 * Get information on last EC panic.
4746 *
4747 * Returns variable-length platform-dependent panic information.  See panic.h
4748 * for details.
4749 */
4750#define EC_CMD_GET_PANIC_INFO 0x00D3
4751
4752/*****************************************************************************/
4753/*
4754 * Special commands
4755 *
4756 * These do not follow the normal rules for commands.  See each command for
4757 * details.
4758 */
4759
4760/*
4761 * Reboot NOW
4762 *
4763 * This command will work even when the EC LPC interface is busy, because the
4764 * reboot command is processed at interrupt level.  Note that when the EC
4765 * reboots, the host will reboot too, so there is no response to this command.
4766 *
4767 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4768 */
4769#define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4770
4771/*
4772 * Resend last response (not supported on LPC).
4773 *
4774 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4775 * there was no previous command, or the previous command's response was too
4776 * big to save.
4777 */
4778#define EC_CMD_RESEND_RESPONSE 0x00DB
4779
4780/*
4781 * This header byte on a command indicate version 0. Any header byte less
4782 * than this means that we are talking to an old EC which doesn't support
4783 * versioning. In that case, we assume version 0.
4784 *
4785 * Header bytes greater than this indicate a later version. For example,
4786 * EC_CMD_VERSION0 + 1 means we are using version 1.
4787 *
4788 * The old EC interface must not use commands 0xdc or higher.
4789 */
4790#define EC_CMD_VERSION0 0x00DC
4791
4792/*****************************************************************************/
4793/*
4794 * PD commands
4795 *
4796 * These commands are for PD MCU communication.
4797 */
4798
4799/* EC to PD MCU exchange status command */
4800#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4801#define EC_VER_PD_EXCHANGE_STATUS 2
4802
4803enum pd_charge_state {
4804        PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4805        PD_CHARGE_NONE,          /* No charging allowed */
4806        PD_CHARGE_5V,            /* 5V charging only */
4807        PD_CHARGE_MAX            /* Charge at max voltage */
4808};
4809
4810/* Status of EC being sent to PD */
4811#define EC_STATUS_HIBERNATING   BIT(0)
4812
4813struct ec_params_pd_status {
4814        uint8_t status;       /* EC status */
4815        int8_t batt_soc;      /* battery state of charge */
4816        uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4817} __ec_align1;
4818
4819/* Status of PD being sent back to EC */
4820#define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4821#define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4822#define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4823#define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4824#define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4825#define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4826#define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4827#define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4828                                      PD_STATUS_TCPC_ALERT_1 | \
4829                                      PD_STATUS_HOST_EVENT)
4830struct ec_response_pd_status {
4831        uint32_t curr_lim_ma;       /* input current limit */
4832        uint16_t status;            /* PD MCU status */
4833        int8_t active_charge_port;  /* active charging port */
4834} __ec_align_size1;
4835
4836/* AP to PD MCU host event status command, cleared on read */
4837#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4838
4839/* PD MCU host event status bits */
4840#define PD_EVENT_UPDATE_DEVICE     BIT(0)
4841#define PD_EVENT_POWER_CHANGE      BIT(1)
4842#define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4843#define PD_EVENT_DATA_SWAP         BIT(3)
4844struct ec_response_host_event_status {
4845        uint32_t status;      /* PD MCU host event status */
4846} __ec_align4;
4847
4848/* Set USB type-C port role and muxes */
4849#define EC_CMD_USB_PD_CONTROL 0x0101
4850
4851enum usb_pd_control_role {
4852        USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4853        USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4854        USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4855        USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4856        USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4857        USB_PD_CTRL_ROLE_FREEZE = 5,
4858        USB_PD_CTRL_ROLE_COUNT
4859};
4860
4861enum usb_pd_control_mux {
4862        USB_PD_CTRL_MUX_NO_CHANGE = 0,
4863        USB_PD_CTRL_MUX_NONE = 1,
4864        USB_PD_CTRL_MUX_USB = 2,
4865        USB_PD_CTRL_MUX_DP = 3,
4866        USB_PD_CTRL_MUX_DOCK = 4,
4867        USB_PD_CTRL_MUX_AUTO = 5,
4868        USB_PD_CTRL_MUX_COUNT
4869};
4870
4871enum usb_pd_control_swap {
4872        USB_PD_CTRL_SWAP_NONE = 0,
4873        USB_PD_CTRL_SWAP_DATA = 1,
4874        USB_PD_CTRL_SWAP_POWER = 2,
4875        USB_PD_CTRL_SWAP_VCONN = 3,
4876        USB_PD_CTRL_SWAP_COUNT
4877};
4878
4879struct ec_params_usb_pd_control {
4880        uint8_t port;
4881        uint8_t role;
4882        uint8_t mux;
4883        uint8_t swap;
4884} __ec_align1;
4885
4886#define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4887#define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4888#define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4889
4890#define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4891#define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4892#define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4893#define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4894#define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4895#define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4896#define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4897
4898struct ec_response_usb_pd_control {
4899        uint8_t enabled;
4900        uint8_t role;
4901        uint8_t polarity;
4902        uint8_t state;
4903} __ec_align1;
4904
4905struct ec_response_usb_pd_control_v1 {
4906        uint8_t enabled;
4907        uint8_t role;
4908        uint8_t polarity;
4909        char state[32];
4910} __ec_align1;
4911
4912/* Values representing usbc PD CC state */
4913#define USBC_PD_CC_NONE         0 /* No accessory connected */
4914#define USBC_PD_CC_NO_UFP       1 /* No UFP accessory connected */
4915#define USBC_PD_CC_AUDIO_ACC    2 /* Audio accessory connected */
4916#define USBC_PD_CC_DEBUG_ACC    3 /* Debug accessory connected */
4917#define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */
4918#define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */
4919
4920/* Active/Passive Cable */
4921#define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4922/* Optical/Non-optical cable */
4923#define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4924/* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4925#define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4926/* Active Link Uni-Direction */
4927#define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4928
4929struct ec_response_usb_pd_control_v2 {
4930        uint8_t enabled;
4931        uint8_t role;
4932        uint8_t polarity;
4933        char state[32];
4934        uint8_t cc_state;       /* enum pd_cc_states representing cc state */
4935        uint8_t dp_mode;        /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4936        uint8_t reserved;       /* Reserved for future use */
4937        uint8_t control_flags;  /* USB_PD_CTRL_*flags */
4938        uint8_t cable_speed;    /* TBT_SS_* cable speed */
4939        uint8_t cable_gen;      /* TBT_GEN3_* cable rounded support */
4940} __ec_align1;
4941
4942#define EC_CMD_USB_PD_PORTS 0x0102
4943
4944/* Maximum number of PD ports on a device, num_ports will be <= this */
4945#define EC_USB_PD_MAX_PORTS 8
4946
4947struct ec_response_usb_pd_ports {
4948        uint8_t num_ports;
4949} __ec_align1;
4950
4951#define EC_CMD_USB_PD_POWER_INFO 0x0103
4952
4953#define PD_POWER_CHARGING_PORT 0xff
4954struct ec_params_usb_pd_power_info {
4955        uint8_t port;
4956} __ec_align1;
4957
4958enum usb_chg_type {
4959        USB_CHG_TYPE_NONE,
4960        USB_CHG_TYPE_PD,
4961        USB_CHG_TYPE_C,
4962        USB_CHG_TYPE_PROPRIETARY,
4963        USB_CHG_TYPE_BC12_DCP,
4964        USB_CHG_TYPE_BC12_CDP,
4965        USB_CHG_TYPE_BC12_SDP,
4966        USB_CHG_TYPE_OTHER,
4967        USB_CHG_TYPE_VBUS,
4968        USB_CHG_TYPE_UNKNOWN,
4969        USB_CHG_TYPE_DEDICATED,
4970};
4971enum usb_power_roles {
4972        USB_PD_PORT_POWER_DISCONNECTED,
4973        USB_PD_PORT_POWER_SOURCE,
4974        USB_PD_PORT_POWER_SINK,
4975        USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4976};
4977
4978struct usb_chg_measures {
4979        uint16_t voltage_max;
4980        uint16_t voltage_now;
4981        uint16_t current_max;
4982        uint16_t current_lim;
4983} __ec_align2;
4984
4985struct ec_response_usb_pd_power_info {
4986        uint8_t role;
4987        uint8_t type;
4988        uint8_t dualrole;
4989        uint8_t reserved1;
4990        struct usb_chg_measures meas;
4991        uint32_t max_power;
4992} __ec_align4;
4993
4994
4995/*
4996 * This command will return the number of USB PD charge port + the number
4997 * of dedicated port present.
4998 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
4999 */
5000#define EC_CMD_CHARGE_PORT_COUNT 0x0105
5001struct ec_response_charge_port_count {
5002        uint8_t port_count;
5003} __ec_align1;
5004
5005/* Write USB-PD device FW */
5006#define EC_CMD_USB_PD_FW_UPDATE 0x0110
5007
5008enum usb_pd_fw_update_cmds {
5009        USB_PD_FW_REBOOT,
5010        USB_PD_FW_FLASH_ERASE,
5011        USB_PD_FW_FLASH_WRITE,
5012        USB_PD_FW_ERASE_SIG,
5013};
5014
5015struct ec_params_usb_pd_fw_update {
5016        uint16_t dev_id;
5017        uint8_t cmd;
5018        uint8_t port;
5019        uint32_t size;     /* Size to write in bytes */
5020        /* Followed by data to write */
5021} __ec_align4;
5022
5023/* Write USB-PD Accessory RW_HASH table entry */
5024#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5025/* RW hash is first 20 bytes of SHA-256 of RW section */
5026#define PD_RW_HASH_SIZE 20
5027struct ec_params_usb_pd_rw_hash_entry {
5028        uint16_t dev_id;
5029        uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5030        uint8_t reserved;        /*
5031                                  * For alignment of current_image
5032                                  * TODO(rspangler) but it's not aligned!
5033                                  * Should have been reserved[2].
5034                                  */
5035        uint32_t current_image;  /* One of ec_current_image */
5036} __ec_align1;
5037
5038/* Read USB-PD Accessory info */
5039#define EC_CMD_USB_PD_DEV_INFO 0x0112
5040
5041struct ec_params_usb_pd_info_request {
5042        uint8_t port;
5043} __ec_align1;
5044
5045/* Read USB-PD Device discovery info */
5046#define EC_CMD_USB_PD_DISCOVERY 0x0113
5047struct ec_params_usb_pd_discovery_entry {
5048        uint16_t vid;  /* USB-IF VID */
5049        uint16_t pid;  /* USB-IF PID */
5050        uint8_t ptype; /* product type (hub,periph,cable,ama) */
5051} __ec_align_size1;
5052
5053/* Override default charge behavior */
5054#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5055
5056/* Negative port parameters have special meaning */
5057enum usb_pd_override_ports {
5058        OVERRIDE_DONT_CHARGE = -2,
5059        OVERRIDE_OFF = -1,
5060        /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5061};
5062
5063struct ec_params_charge_port_override {
5064        int16_t override_port; /* Override port# */
5065} __ec_align2;
5066
5067/*
5068 * Read (and delete) one entry of PD event log.
5069 * TODO(crbug.com/751742): Make this host command more generic to accommodate
5070 * future non-PD logs that use the same internal EC event_log.
5071 */
5072#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5073
5074struct ec_response_pd_log {
5075        uint32_t timestamp; /* relative timestamp in milliseconds */
5076        uint8_t type;       /* event type : see PD_EVENT_xx below */
5077        uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5078        uint16_t data;      /* type-defined data payload */
5079        uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5080} __ec_align4;
5081
5082/* The timestamp is the microsecond counter shifted to get about a ms. */
5083#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5084
5085#define PD_LOG_SIZE_MASK  0x1f
5086#define PD_LOG_PORT_MASK  0xe0
5087#define PD_LOG_PORT_SHIFT    5
5088#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5089                                      ((size) & PD_LOG_SIZE_MASK))
5090#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5091#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5092
5093/* PD event log : entry types */
5094/* PD MCU events */
5095#define PD_EVENT_MCU_BASE       0x00
5096#define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5097#define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5098/* Reserved for custom board event */
5099#define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5100/* PD generic accessory events */
5101#define PD_EVENT_ACC_BASE       0x20
5102#define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5103#define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5104/* PD power supply events */
5105#define PD_EVENT_PS_BASE        0x40
5106#define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5107/* PD video dongles events */
5108#define PD_EVENT_VIDEO_BASE     0x60
5109#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5110#define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5111/* Returned in the "type" field, when there is no entry available */
5112#define PD_EVENT_NO_ENTRY       0xff
5113
5114/*
5115 * PD_EVENT_MCU_CHARGE event definition :
5116 * the payload is "struct usb_chg_measures"
5117 * the data field contains the port state flags as defined below :
5118 */
5119/* Port partner is a dual role device */
5120#define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5121/* Port is the pending override port */
5122#define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5123/* Port is the override port */
5124#define CHARGE_FLAGS_OVERRIDE          BIT(13)
5125/* Charger type */
5126#define CHARGE_FLAGS_TYPE_SHIFT               3
5127#define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5128/* Power delivery role */
5129#define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5130
5131/*
5132 * PD_EVENT_PS_FAULT data field flags definition :
5133 */
5134#define PS_FAULT_OCP                          1
5135#define PS_FAULT_FAST_OCP                     2
5136#define PS_FAULT_OVP                          3
5137#define PS_FAULT_DISCH                        4
5138
5139/*
5140 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5141 */
5142struct mcdp_version {
5143        uint8_t major;
5144        uint8_t minor;
5145        uint16_t build;
5146} __ec_align4;
5147
5148struct mcdp_info {
5149        uint8_t family[2];
5150        uint8_t chipid[2];
5151        struct mcdp_version irom;
5152        struct mcdp_version fw;
5153} __ec_align4;
5154
5155/* struct mcdp_info field decoding */
5156#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5157#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5158
5159/* Get/Set USB-PD Alternate mode info */
5160#define EC_CMD_USB_PD_GET_AMODE 0x0116
5161struct ec_params_usb_pd_get_mode_request {
5162        uint16_t svid_idx; /* SVID index to get */
5163        uint8_t port;      /* port */
5164} __ec_align_size1;
5165
5166struct ec_params_usb_pd_get_mode_response {
5167        uint16_t svid;   /* SVID */
5168        uint16_t opos;    /* Object Position */
5169        uint32_t vdo[6]; /* Mode VDOs */
5170} __ec_align4;
5171
5172#define EC_CMD_USB_PD_SET_AMODE 0x0117
5173
5174enum pd_mode_cmd {
5175        PD_EXIT_MODE = 0,
5176        PD_ENTER_MODE = 1,
5177        /* Not a command.  Do NOT remove. */
5178        PD_MODE_CMD_COUNT,
5179};
5180
5181struct ec_params_usb_pd_set_mode_request {
5182        uint32_t cmd;  /* enum pd_mode_cmd */
5183        uint16_t svid; /* SVID to set */
5184        uint8_t opos;  /* Object Position */
5185        uint8_t port;  /* port */
5186} __ec_align4;
5187
5188/* Ask the PD MCU to record a log of a requested type */
5189#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5190
5191struct ec_params_pd_write_log_entry {
5192        uint8_t type; /* event type : see PD_EVENT_xx above */
5193        uint8_t port; /* port#, or 0 for events unrelated to a given port */
5194} __ec_align1;
5195
5196
5197/* Control USB-PD chip */
5198#define EC_CMD_PD_CONTROL 0x0119
5199
5200enum ec_pd_control_cmd {
5201        PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5202        PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5203        PD_RESET,            /* Force reset the PD chip */
5204        PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5205        PD_CHIP_ON,          /* Power on the PD chip */
5206};
5207
5208struct ec_params_pd_control {
5209        uint8_t chip;         /* chip id */
5210        uint8_t subcmd;
5211} __ec_align1;
5212
5213/* Get info about USB-C SS muxes */
5214#define EC_CMD_USB_PD_MUX_INFO 0x011A
5215
5216struct ec_params_usb_pd_mux_info {
5217        uint8_t port; /* USB-C port number */
5218} __ec_align1;
5219
5220/* Flags representing mux state */
5221#define USB_PD_MUX_NONE               0      /* Open switch */
5222#define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5223#define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5224#define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5225#define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5226#define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5227#define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5228#define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5229#define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5230
5231struct ec_response_usb_pd_mux_info {
5232        uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5233} __ec_align1;
5234
5235#define EC_CMD_PD_CHIP_INFO             0x011B
5236
5237struct ec_params_pd_chip_info {
5238        uint8_t port;   /* USB-C port number */
5239        uint8_t renew;  /* Force renewal */
5240} __ec_align1;
5241
5242struct ec_response_pd_chip_info {
5243        uint16_t vendor_id;
5244        uint16_t product_id;
5245        uint16_t device_id;
5246        union {
5247                uint8_t fw_version_string[8];
5248                uint64_t fw_version_number;
5249        };
5250} __ec_align2;
5251
5252struct ec_response_pd_chip_info_v1 {
5253        uint16_t vendor_id;
5254        uint16_t product_id;
5255        uint16_t device_id;
5256        union {
5257                uint8_t fw_version_string[8];
5258                uint64_t fw_version_number;
5259        };
5260        union {
5261                uint8_t min_req_fw_version_string[8];
5262                uint64_t min_req_fw_version_number;
5263        };
5264} __ec_align2;
5265
5266/* Run RW signature verification and get status */
5267#define EC_CMD_RWSIG_CHECK_STATUS       0x011C
5268
5269struct ec_response_rwsig_check_status {
5270        uint32_t status;
5271} __ec_align4;
5272
5273/* For controlling RWSIG task */
5274#define EC_CMD_RWSIG_ACTION     0x011D
5275
5276enum rwsig_action {
5277        RWSIG_ACTION_ABORT = 0,         /* Abort RWSIG and prevent jumping */
5278        RWSIG_ACTION_CONTINUE = 1,      /* Jump to RW immediately */
5279};
5280
5281struct ec_params_rwsig_action {
5282        uint32_t action;
5283} __ec_align4;
5284
5285/* Run verification on a slot */
5286#define EC_CMD_EFS_VERIFY       0x011E
5287
5288struct ec_params_efs_verify {
5289        uint8_t region;         /* enum ec_flash_region */
5290} __ec_align1;
5291
5292/*
5293 * Retrieve info from Cros Board Info store. Response is based on the data
5294 * type. Integers return a uint32. Strings return a string, using the response
5295 * size to determine how big it is.
5296 */
5297#define EC_CMD_GET_CROS_BOARD_INFO      0x011F
5298/*
5299 * Write info into Cros Board Info on EEPROM. Write fails if the board has
5300 * hardware write-protect enabled.
5301 */
5302#define EC_CMD_SET_CROS_BOARD_INFO      0x0120
5303
5304enum cbi_data_tag {
5305        CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5306        CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5307        CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5308        CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5309        CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5310        CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5311        CBI_TAG_COUNT,
5312};
5313
5314/*
5315 * Flags to control read operation
5316 *
5317 * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5318 *          write was successful without reboot.
5319 */
5320#define CBI_GET_RELOAD          BIT(0)
5321
5322struct ec_params_get_cbi {
5323        uint32_t tag;           /* enum cbi_data_tag */
5324        uint32_t flag;          /* CBI_GET_* */
5325} __ec_align4;
5326
5327/*
5328 * Flags to control write behavior.
5329 *
5330 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5331 *          useful when writing multiple fields in a row.
5332 * INIT:    Need to be set when creating a new CBI from scratch. All fields
5333 *          will be initialized to zero first.
5334 */
5335#define CBI_SET_NO_SYNC         BIT(0)
5336#define CBI_SET_INIT            BIT(1)
5337
5338struct ec_params_set_cbi {
5339        uint32_t tag;           /* enum cbi_data_tag */
5340        uint32_t flag;          /* CBI_SET_* */
5341        uint32_t size;          /* Data size */
5342        uint8_t data[];         /* For string and raw data */
5343} __ec_align1;
5344
5345/*
5346 * Information about resets of the AP by the EC and the EC's own uptime.
5347 */
5348#define EC_CMD_GET_UPTIME_INFO 0x0121
5349
5350struct ec_response_uptime_info {
5351        /*
5352         * Number of milliseconds since the last EC boot. Sysjump resets
5353         * typically do not restart the EC's time_since_boot epoch.
5354         *
5355         * WARNING: The EC's sense of time is much less accurate than the AP's
5356         * sense of time, in both phase and frequency.  This timebase is similar
5357         * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5358         */
5359        uint32_t time_since_ec_boot_ms;
5360
5361        /*
5362         * Number of times the AP was reset by the EC since the last EC boot.
5363         * Note that the AP may be held in reset by the EC during the initial
5364         * boot sequence, such that the very first AP boot may count as more
5365         * than one here.
5366         */
5367        uint32_t ap_resets_since_ec_boot;
5368
5369        /*
5370         * The set of flags which describe the EC's most recent reset.  See
5371         * include/system.h RESET_FLAG_* for details.
5372         */
5373        uint32_t ec_reset_flags;
5374
5375        /* Empty log entries have both the cause and timestamp set to zero. */
5376        struct ap_reset_log_entry {
5377                /*
5378                 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5379                 * for details.
5380                 */
5381                uint16_t reset_cause;
5382
5383                /* Reserved for protocol growth. */
5384                uint16_t reserved;
5385
5386                /*
5387                 * The time of the reset's assertion, in milliseconds since the
5388                 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5389                 * Set to zero if the log entry is empty.
5390                 */
5391                uint32_t reset_time_ms;
5392        } recent_ap_reset[4];
5393} __ec_align4;
5394
5395/*
5396 * Add entropy to the device secret (stored in the rollback region).
5397 *
5398 * Depending on the chip, the operation may take a long time (e.g. to erase
5399 * flash), so the commands are asynchronous.
5400 */
5401#define EC_CMD_ADD_ENTROPY      0x0122
5402
5403enum add_entropy_action {
5404        /* Add entropy to the current secret. */
5405        ADD_ENTROPY_ASYNC = 0,
5406        /*
5407         * Add entropy, and also make sure that the previous secret is erased.
5408         * (this can be implemented by adding entropy multiple times until
5409         * all rolback blocks have been overwritten).
5410         */
5411        ADD_ENTROPY_RESET_ASYNC = 1,
5412        /* Read back result from the previous operation. */
5413        ADD_ENTROPY_GET_RESULT = 2,
5414};
5415
5416struct ec_params_rollback_add_entropy {
5417        uint8_t action;
5418} __ec_align1;
5419
5420/*
5421 * Perform a single read of a given ADC channel.
5422 */
5423#define EC_CMD_ADC_READ         0x0123
5424
5425struct ec_params_adc_read {
5426        uint8_t adc_channel;
5427} __ec_align1;
5428
5429struct ec_response_adc_read {
5430        int32_t adc_value;
5431} __ec_align4;
5432
5433/*
5434 * Read back rollback info
5435 */
5436#define EC_CMD_ROLLBACK_INFO            0x0124
5437
5438struct ec_response_rollback_info {
5439        int32_t id; /* Incrementing number to indicate which region to use. */
5440        int32_t rollback_min_version;
5441        int32_t rw_rollback_version;
5442} __ec_align4;
5443
5444
5445/* Issue AP reset */
5446#define EC_CMD_AP_RESET 0x0125
5447
5448/*****************************************************************************/
5449/* Voltage regulator controls */
5450
5451/*
5452 * Get basic info of voltage regulator for given index.
5453 *
5454 * Returns the regulator name and supported voltage list in mV.
5455 */
5456#define EC_CMD_REGULATOR_GET_INFO 0x012C
5457
5458/* Maximum length of regulator name */
5459#define EC_REGULATOR_NAME_MAX_LEN 16
5460
5461/* Maximum length of the supported voltage list. */
5462#define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5463
5464struct ec_params_regulator_get_info {
5465        uint32_t index;
5466} __ec_align4;
5467
5468struct ec_response_regulator_get_info {
5469        char name[EC_REGULATOR_NAME_MAX_LEN];
5470        uint16_t num_voltages;
5471        uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5472} __ec_align2;
5473
5474/*
5475 * Configure the regulator as enabled / disabled.
5476 */
5477#define EC_CMD_REGULATOR_ENABLE 0x012D
5478
5479struct ec_params_regulator_enable {
5480        uint32_t index;
5481        uint8_t enable;
5482} __ec_align4;
5483
5484/*
5485 * Query if the regulator is enabled.
5486 *
5487 * Returns 1 if the regulator is enabled, 0 if not.
5488 */
5489#define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5490
5491struct ec_params_regulator_is_enabled {
5492        uint32_t index;
5493} __ec_align4;
5494
5495struct ec_response_regulator_is_enabled {
5496        uint8_t enabled;
5497} __ec_align1;
5498
5499/*
5500 * Set voltage for the voltage regulator within the range specified.
5501 *
5502 * The driver should select the voltage in range closest to min_mv.
5503 *
5504 * Also note that this might be called before the regulator is enabled, and the
5505 * setting should be in effect after the regulator is enabled.
5506 */
5507#define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5508
5509struct ec_params_regulator_set_voltage {
5510        uint32_t index;
5511        uint32_t min_mv;
5512        uint32_t max_mv;
5513} __ec_align4;
5514
5515/*
5516 * Get the currently configured voltage for the voltage regulator.
5517 *
5518 * Note that this might be called before the regulator is enabled, and this
5519 * should return the configured output voltage if the regulator is enabled.
5520 */
5521#define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5522
5523struct ec_params_regulator_get_voltage {
5524        uint32_t index;
5525} __ec_align4;
5526
5527struct ec_response_regulator_get_voltage {
5528        uint32_t voltage_mv;
5529} __ec_align4;
5530
5531/*****************************************************************************/
5532/* The command range 0x200-0x2FF is reserved for Rotor. */
5533
5534/*****************************************************************************/
5535/*
5536 * Reserve a range of host commands for the CR51 firmware.
5537 */
5538#define EC_CMD_CR51_BASE 0x0300
5539#define EC_CMD_CR51_LAST 0x03FF
5540
5541/*****************************************************************************/
5542/* Fingerprint MCU commands: range 0x0400-0x040x */
5543
5544/* Fingerprint SPI sensor passthru command: prototyping ONLY */
5545#define EC_CMD_FP_PASSTHRU 0x0400
5546
5547#define EC_FP_FLAG_NOT_COMPLETE 0x1
5548
5549struct ec_params_fp_passthru {
5550        uint16_t len;           /* Number of bytes to write then read */
5551        uint16_t flags;         /* EC_FP_FLAG_xxx */
5552        uint8_t data[];         /* Data to send */
5553} __ec_align2;
5554
5555/* Configure the Fingerprint MCU behavior */
5556#define EC_CMD_FP_MODE 0x0402
5557
5558/* Put the sensor in its lowest power mode */
5559#define FP_MODE_DEEPSLEEP      BIT(0)
5560/* Wait to see a finger on the sensor */
5561#define FP_MODE_FINGER_DOWN    BIT(1)
5562/* Poll until the finger has left the sensor */
5563#define FP_MODE_FINGER_UP      BIT(2)
5564/* Capture the current finger image */
5565#define FP_MODE_CAPTURE        BIT(3)
5566/* Finger enrollment session on-going */
5567#define FP_MODE_ENROLL_SESSION BIT(4)
5568/* Enroll the current finger image */
5569#define FP_MODE_ENROLL_IMAGE   BIT(5)
5570/* Try to match the current finger image */
5571#define FP_MODE_MATCH          BIT(6)
5572/* Reset and re-initialize the sensor. */
5573#define FP_MODE_RESET_SENSOR   BIT(7)
5574/* special value: don't change anything just read back current mode */
5575#define FP_MODE_DONT_CHANGE    BIT(31)
5576
5577#define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5578                        FP_MODE_FINGER_DOWN    | \
5579                        FP_MODE_FINGER_UP      | \
5580                        FP_MODE_CAPTURE        | \
5581                        FP_MODE_ENROLL_SESSION | \
5582                        FP_MODE_ENROLL_IMAGE   | \
5583                        FP_MODE_MATCH          | \
5584                        FP_MODE_RESET_SENSOR   | \
5585                        FP_MODE_DONT_CHANGE)
5586
5587/* Capture types defined in bits [30..28] */
5588#define FP_MODE_CAPTURE_TYPE_SHIFT 28
5589#define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5590/*
5591 * This enum must remain ordered, if you add new values you must ensure that
5592 * FP_CAPTURE_TYPE_MAX is still the last one.
5593 */
5594enum fp_capture_type {
5595        /* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5596        FP_CAPTURE_VENDOR_FORMAT = 0,
5597        /* Simple raw image capture (produces width x height x bpp bits) */
5598        FP_CAPTURE_SIMPLE_IMAGE = 1,
5599        /* Self test pattern (e.g. checkerboard) */
5600        FP_CAPTURE_PATTERN0 = 2,
5601        /* Self test pattern (e.g. inverted checkerboard) */
5602        FP_CAPTURE_PATTERN1 = 3,
5603        /* Capture for Quality test with fixed contrast */
5604        FP_CAPTURE_QUALITY_TEST = 4,
5605        /* Capture for pixel reset value test */
5606        FP_CAPTURE_RESET_TEST = 5,
5607        FP_CAPTURE_TYPE_MAX,
5608};
5609/* Extracts the capture type from the sensor 'mode' word */
5610#define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5611                                       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5612
5613struct ec_params_fp_mode {
5614        uint32_t mode; /* as defined by FP_MODE_ constants */
5615} __ec_align4;
5616
5617struct ec_response_fp_mode {
5618        uint32_t mode; /* as defined by FP_MODE_ constants */
5619} __ec_align4;
5620
5621/* Retrieve Fingerprint sensor information */
5622#define EC_CMD_FP_INFO 0x0403
5623
5624/* Number of dead pixels detected on the last maintenance */
5625#define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5626/* Unknown number of dead pixels detected on the last maintenance */
5627#define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5628/* No interrupt from the sensor */
5629#define FP_ERROR_NO_IRQ    BIT(12)
5630/* SPI communication error */
5631#define FP_ERROR_SPI_COMM  BIT(13)
5632/* Invalid sensor Hardware ID */
5633#define FP_ERROR_BAD_HWID  BIT(14)
5634/* Sensor initialization failed */
5635#define FP_ERROR_INIT_FAIL BIT(15)
5636
5637struct ec_response_fp_info_v0 {
5638        /* Sensor identification */
5639        uint32_t vendor_id;
5640        uint32_t product_id;
5641        uint32_t model_id;
5642        uint32_t version;
5643        /* Image frame characteristics */
5644        uint32_t frame_size;
5645        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5646        uint16_t width;
5647        uint16_t height;
5648        uint16_t bpp;
5649        uint16_t errors; /* see FP_ERROR_ flags above */
5650} __ec_align4;
5651
5652struct ec_response_fp_info {
5653        /* Sensor identification */
5654        uint32_t vendor_id;
5655        uint32_t product_id;
5656        uint32_t model_id;
5657        uint32_t version;
5658        /* Image frame characteristics */
5659        uint32_t frame_size;
5660        uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5661        uint16_t width;
5662        uint16_t height;
5663        uint16_t bpp;
5664        uint16_t errors; /* see FP_ERROR_ flags above */
5665        /* Template/finger current information */
5666        uint32_t template_size;  /* max template size in bytes */
5667        uint16_t template_max;   /* maximum number of fingers/templates */
5668        uint16_t template_valid; /* number of valid fingers/templates */
5669        uint32_t template_dirty; /* bitmap of templates with MCU side changes */
5670        uint32_t template_version; /* version of the template format */
5671} __ec_align4;
5672
5673/* Get the last captured finger frame or a template content */
5674#define EC_CMD_FP_FRAME 0x0404
5675
5676/* constants defining the 'offset' field which also contains the frame index */
5677#define FP_FRAME_INDEX_SHIFT       28
5678/* Frame buffer where the captured image is stored */
5679#define FP_FRAME_INDEX_RAW_IMAGE    0
5680/* First frame buffer holding a template */
5681#define FP_FRAME_INDEX_TEMPLATE     1
5682#define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
5683#define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
5684
5685/* Version of the format of the encrypted templates. */
5686#define FP_TEMPLATE_FORMAT_VERSION 3
5687
5688/* Constants for encryption parameters */
5689#define FP_CONTEXT_NONCE_BYTES 12
5690#define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
5691#define FP_CONTEXT_TAG_BYTES 16
5692#define FP_CONTEXT_SALT_BYTES 16
5693#define FP_CONTEXT_TPM_BYTES 32
5694
5695struct ec_fp_template_encryption_metadata {
5696        /*
5697         * Version of the structure format (N=3).
5698         */
5699        uint16_t struct_version;
5700        /* Reserved bytes, set to 0. */
5701        uint16_t reserved;
5702        /*
5703         * The salt is *only* ever used for key derivation. The nonce is unique,
5704         * a different one is used for every message.
5705         */
5706        uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
5707        uint8_t salt[FP_CONTEXT_SALT_BYTES];
5708        uint8_t tag[FP_CONTEXT_TAG_BYTES];
5709};
5710
5711struct ec_params_fp_frame {
5712        /*
5713         * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
5714         * in the high nibble, and the real offset within the frame in
5715         * FP_FRAME_OFFSET_MASK.
5716         */
5717        uint32_t offset;
5718        uint32_t size;
5719} __ec_align4;
5720
5721/* Load a template into the MCU */
5722#define EC_CMD_FP_TEMPLATE 0x0405
5723
5724/* Flag in the 'size' field indicating that the full template has been sent */
5725#define FP_TEMPLATE_COMMIT 0x80000000
5726
5727struct ec_params_fp_template {
5728        uint32_t offset;
5729        uint32_t size;
5730        uint8_t data[];
5731} __ec_align4;
5732
5733/* Clear the current fingerprint user context and set a new one */
5734#define EC_CMD_FP_CONTEXT 0x0406
5735
5736struct ec_params_fp_context {
5737        uint32_t userid[FP_CONTEXT_USERID_WORDS];
5738} __ec_align4;
5739
5740#define EC_CMD_FP_STATS 0x0407
5741
5742#define FPSTATS_CAPTURE_INV  BIT(0)
5743#define FPSTATS_MATCHING_INV BIT(1)
5744
5745struct ec_response_fp_stats {
5746        uint32_t capture_time_us;
5747        uint32_t matching_time_us;
5748        uint32_t overall_time_us;
5749        struct {
5750                uint32_t lo;
5751                uint32_t hi;
5752        } overall_t0;
5753        uint8_t timestamps_invalid;
5754        int8_t template_matched;
5755} __ec_align2;
5756
5757#define EC_CMD_FP_SEED 0x0408
5758struct ec_params_fp_seed {
5759        /*
5760         * Version of the structure format (N=3).
5761         */
5762        uint16_t struct_version;
5763        /* Reserved bytes, set to 0. */
5764        uint16_t reserved;
5765        /* Seed from the TPM. */
5766        uint8_t seed[FP_CONTEXT_TPM_BYTES];
5767} __ec_align4;
5768
5769#define EC_CMD_FP_ENC_STATUS 0x0409
5770
5771/* FP TPM seed has been set or not */
5772#define FP_ENC_STATUS_SEED_SET BIT(0)
5773
5774struct ec_response_fp_encryption_status {
5775        /* Used bits in encryption engine status */
5776        uint32_t valid_flags;
5777        /* Encryption engine status */
5778        uint32_t status;
5779} __ec_align4;
5780
5781/*****************************************************************************/
5782/* Touchpad MCU commands: range 0x0500-0x05FF */
5783
5784/* Perform touchpad self test */
5785#define EC_CMD_TP_SELF_TEST 0x0500
5786
5787/* Get number of frame types, and the size of each type */
5788#define EC_CMD_TP_FRAME_INFO 0x0501
5789
5790struct ec_response_tp_frame_info {
5791        uint32_t n_frames;
5792        uint32_t frame_sizes[];
5793} __ec_align4;
5794
5795/* Create a snapshot of current frame readings */
5796#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
5797
5798/* Read the frame */
5799#define EC_CMD_TP_FRAME_GET 0x0503
5800
5801struct ec_params_tp_frame_get {
5802        uint32_t frame_index;
5803        uint32_t offset;
5804        uint32_t size;
5805} __ec_align4;
5806
5807/*****************************************************************************/
5808/* EC-EC communication commands: range 0x0600-0x06FF */
5809
5810#define EC_COMM_TEXT_MAX 8
5811
5812/*
5813 * Get battery static information, i.e. information that never changes, or
5814 * very infrequently.
5815 */
5816#define EC_CMD_BATTERY_GET_STATIC 0x0600
5817
5818/**
5819 * struct ec_params_battery_static_info - Battery static info parameters
5820 * @index: Battery index.
5821 */
5822struct ec_params_battery_static_info {
5823        uint8_t index;
5824} __ec_align_size1;
5825
5826/**
5827 * struct ec_response_battery_static_info - Battery static info response
5828 * @design_capacity: Battery Design Capacity (mAh)
5829 * @design_voltage: Battery Design Voltage (mV)
5830 * @manufacturer: Battery Manufacturer String
5831 * @model: Battery Model Number String
5832 * @serial: Battery Serial Number String
5833 * @type: Battery Type String
5834 * @cycle_count: Battery Cycle Count
5835 */
5836struct ec_response_battery_static_info {
5837        uint16_t design_capacity;
5838        uint16_t design_voltage;
5839        char manufacturer[EC_COMM_TEXT_MAX];
5840        char model[EC_COMM_TEXT_MAX];
5841        char serial[EC_COMM_TEXT_MAX];
5842        char type[EC_COMM_TEXT_MAX];
5843        /* TODO(crbug.com/795991): Consider moving to dynamic structure. */
5844        uint32_t cycle_count;
5845} __ec_align4;
5846
5847/*
5848 * Get battery dynamic information, i.e. information that is likely to change
5849 * every time it is read.
5850 */
5851#define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
5852
5853/**
5854 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
5855 * @index: Battery index.
5856 */
5857struct ec_params_battery_dynamic_info {
5858        uint8_t index;
5859} __ec_align_size1;
5860
5861/**
5862 * struct ec_response_battery_dynamic_info - Battery dynamic info response
5863 * @actual_voltage: Battery voltage (mV)
5864 * @actual_current: Battery current (mA); negative=discharging
5865 * @remaining_capacity: Remaining capacity (mAh)
5866 * @full_capacity: Capacity (mAh, might change occasionally)
5867 * @flags: Flags, see EC_BATT_FLAG_*
5868 * @desired_voltage: Charging voltage desired by battery (mV)
5869 * @desired_current: Charging current desired by battery (mA)
5870 */
5871struct ec_response_battery_dynamic_info {
5872        int16_t actual_voltage;
5873        int16_t actual_current;
5874        int16_t remaining_capacity;
5875        int16_t full_capacity;
5876        int16_t flags;
5877        int16_t desired_voltage;
5878        int16_t desired_current;
5879} __ec_align2;
5880
5881/*
5882 * Control charger chip. Used to control charger chip on the slave.
5883 */
5884#define EC_CMD_CHARGER_CONTROL 0x0602
5885
5886/**
5887 * struct ec_params_charger_control - Charger control parameters
5888 * @max_current: Charger current (mA). Positive to allow base to draw up to
5889 *     max_current and (possibly) charge battery, negative to request current
5890 *     from base (OTG).
5891 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
5892 *     >= 0.
5893 * @allow_charging: Allow base battery charging (only makes sense if
5894 *     max_current > 0).
5895 */
5896struct ec_params_charger_control {
5897        int16_t max_current;
5898        uint16_t otg_voltage;
5899        uint8_t allow_charging;
5900} __ec_align_size1;
5901
5902/*****************************************************************************/
5903/*
5904 * Reserve a range of host commands for board-specific, experimental, or
5905 * special purpose features. These can be (re)used without updating this file.
5906 *
5907 * CAUTION: Don't go nuts with this. Shipping products should document ALL
5908 * their EC commands for easier development, testing, debugging, and support.
5909 *
5910 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
5911 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
5912 *
5913 * In your experimental code, you may want to do something like this:
5914 *
5915 *   #define EC_CMD_MAGIC_FOO 0x0000
5916 *   #define EC_CMD_MAGIC_BAR 0x0001
5917 *   #define EC_CMD_MAGIC_HEY 0x0002
5918 *
5919 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
5920 *      EC_VER_MASK(0);
5921 *
5922 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
5923 *      EC_VER_MASK(0);
5924 *
5925 *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
5926 *      EC_VER_MASK(0);
5927 */
5928#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
5929#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
5930
5931/*
5932 * Given the private host command offset, calculate the true private host
5933 * command value.
5934 */
5935#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
5936        (EC_CMD_BOARD_SPECIFIC_BASE + (command))
5937
5938/*****************************************************************************/
5939/*
5940 * Passthru commands
5941 *
5942 * Some platforms have sub-processors chained to each other.  For example.
5943 *
5944 *     AP <--> EC <--> PD MCU
5945 *
5946 * The top 2 bits of the command number are used to indicate which device the
5947 * command is intended for.  Device 0 is always the device receiving the
5948 * command; other device mapping is board-specific.
5949 *
5950 * When a device receives a command to be passed to a sub-processor, it passes
5951 * it on with the device number set back to 0.  This allows the sub-processor
5952 * to remain blissfully unaware of whether the command originated on the next
5953 * device up the chain, or was passed through from the AP.
5954 *
5955 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
5956 *     AP sends command 0x4002 to the EC
5957 *     EC sends command 0x0002 to the PD MCU
5958 *     EC forwards PD MCU response back to the AP
5959 */
5960
5961/* Offset and max command number for sub-device n */
5962#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
5963#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
5964
5965/*****************************************************************************/
5966/*
5967 * Deprecated constants. These constants have been renamed for clarity. The
5968 * meaning and size has not changed. Programs that use the old names should
5969 * switch to the new names soon, as the old names may not be carried forward
5970 * forever.
5971 */
5972#define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
5973#define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
5974#define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
5975
5976
5977
5978#endif  /* __CROS_EC_COMMANDS_H */
5979