linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/* the default hierarchy */
 157struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 158EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 159
 160/*
 161 * The default hierarchy always exists but is hidden until mounted for the
 162 * first time.  This is for backward compatibility.
 163 */
 164static bool cgrp_dfl_visible;
 165
 166/* some controllers are not supported in the default hierarchy */
 167static u16 cgrp_dfl_inhibit_ss_mask;
 168
 169/* some controllers are implicitly enabled on the default hierarchy */
 170static u16 cgrp_dfl_implicit_ss_mask;
 171
 172/* some controllers can be threaded on the default hierarchy */
 173static u16 cgrp_dfl_threaded_ss_mask;
 174
 175/* The list of hierarchy roots */
 176LIST_HEAD(cgroup_roots);
 177static int cgroup_root_count;
 178
 179/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 180static DEFINE_IDR(cgroup_hierarchy_idr);
 181
 182/*
 183 * Assign a monotonically increasing serial number to csses.  It guarantees
 184 * cgroups with bigger numbers are newer than those with smaller numbers.
 185 * Also, as csses are always appended to the parent's ->children list, it
 186 * guarantees that sibling csses are always sorted in the ascending serial
 187 * number order on the list.  Protected by cgroup_mutex.
 188 */
 189static u64 css_serial_nr_next = 1;
 190
 191/*
 192 * These bitmasks identify subsystems with specific features to avoid
 193 * having to do iterative checks repeatedly.
 194 */
 195static u16 have_fork_callback __read_mostly;
 196static u16 have_exit_callback __read_mostly;
 197static u16 have_release_callback __read_mostly;
 198static u16 have_canfork_callback __read_mostly;
 199
 200/* cgroup namespace for init task */
 201struct cgroup_namespace init_cgroup_ns = {
 202        .count          = REFCOUNT_INIT(2),
 203        .user_ns        = &init_user_ns,
 204        .ns.ops         = &cgroupns_operations,
 205        .ns.inum        = PROC_CGROUP_INIT_INO,
 206        .root_cset      = &init_css_set,
 207};
 208
 209static struct file_system_type cgroup2_fs_type;
 210static struct cftype cgroup_base_files[];
 211
 212static int cgroup_apply_control(struct cgroup *cgrp);
 213static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 214static void css_task_iter_skip(struct css_task_iter *it,
 215                               struct task_struct *task);
 216static int cgroup_destroy_locked(struct cgroup *cgrp);
 217static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 218                                              struct cgroup_subsys *ss);
 219static void css_release(struct percpu_ref *ref);
 220static void kill_css(struct cgroup_subsys_state *css);
 221static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 222                              struct cgroup *cgrp, struct cftype cfts[],
 223                              bool is_add);
 224
 225/**
 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 227 * @ssid: subsys ID of interest
 228 *
 229 * cgroup_subsys_enabled() can only be used with literal subsys names which
 230 * is fine for individual subsystems but unsuitable for cgroup core.  This
 231 * is slower static_key_enabled() based test indexed by @ssid.
 232 */
 233bool cgroup_ssid_enabled(int ssid)
 234{
 235        if (CGROUP_SUBSYS_COUNT == 0)
 236                return false;
 237
 238        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 239}
 240
 241/**
 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 243 * @cgrp: the cgroup of interest
 244 *
 245 * The default hierarchy is the v2 interface of cgroup and this function
 246 * can be used to test whether a cgroup is on the default hierarchy for
 247 * cases where a subsystem should behave differnetly depending on the
 248 * interface version.
 249 *
 250 * List of changed behaviors:
 251 *
 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 253 *   and "name" are disallowed.
 254 *
 255 * - When mounting an existing superblock, mount options should match.
 256 *
 257 * - Remount is disallowed.
 258 *
 259 * - rename(2) is disallowed.
 260 *
 261 * - "tasks" is removed.  Everything should be at process granularity.  Use
 262 *   "cgroup.procs" instead.
 263 *
 264 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 265 *   recycled inbetween reads.
 266 *
 267 * - "release_agent" and "notify_on_release" are removed.  Replacement
 268 *   notification mechanism will be implemented.
 269 *
 270 * - "cgroup.clone_children" is removed.
 271 *
 272 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 273 *   and its descendants contain no task; otherwise, 1.  The file also
 274 *   generates kernfs notification which can be monitored through poll and
 275 *   [di]notify when the value of the file changes.
 276 *
 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 278 *   take masks of ancestors with non-empty cpus/mems, instead of being
 279 *   moved to an ancestor.
 280 *
 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 282 *   masks of ancestors.
 283 *
 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 285 *   is not created.
 286 *
 287 * - blkcg: blk-throttle becomes properly hierarchical.
 288 *
 289 * - debug: disallowed on the default hierarchy.
 290 */
 291bool cgroup_on_dfl(const struct cgroup *cgrp)
 292{
 293        return cgrp->root == &cgrp_dfl_root;
 294}
 295
 296/* IDR wrappers which synchronize using cgroup_idr_lock */
 297static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 298                            gfp_t gfp_mask)
 299{
 300        int ret;
 301
 302        idr_preload(gfp_mask);
 303        spin_lock_bh(&cgroup_idr_lock);
 304        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 305        spin_unlock_bh(&cgroup_idr_lock);
 306        idr_preload_end();
 307        return ret;
 308}
 309
 310static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 311{
 312        void *ret;
 313
 314        spin_lock_bh(&cgroup_idr_lock);
 315        ret = idr_replace(idr, ptr, id);
 316        spin_unlock_bh(&cgroup_idr_lock);
 317        return ret;
 318}
 319
 320static void cgroup_idr_remove(struct idr *idr, int id)
 321{
 322        spin_lock_bh(&cgroup_idr_lock);
 323        idr_remove(idr, id);
 324        spin_unlock_bh(&cgroup_idr_lock);
 325}
 326
 327static bool cgroup_has_tasks(struct cgroup *cgrp)
 328{
 329        return cgrp->nr_populated_csets;
 330}
 331
 332bool cgroup_is_threaded(struct cgroup *cgrp)
 333{
 334        return cgrp->dom_cgrp != cgrp;
 335}
 336
 337/* can @cgrp host both domain and threaded children? */
 338static bool cgroup_is_mixable(struct cgroup *cgrp)
 339{
 340        /*
 341         * Root isn't under domain level resource control exempting it from
 342         * the no-internal-process constraint, so it can serve as a thread
 343         * root and a parent of resource domains at the same time.
 344         */
 345        return !cgroup_parent(cgrp);
 346}
 347
 348/* can @cgrp become a thread root? should always be true for a thread root */
 349static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 350{
 351        /* mixables don't care */
 352        if (cgroup_is_mixable(cgrp))
 353                return true;
 354
 355        /* domain roots can't be nested under threaded */
 356        if (cgroup_is_threaded(cgrp))
 357                return false;
 358
 359        /* can only have either domain or threaded children */
 360        if (cgrp->nr_populated_domain_children)
 361                return false;
 362
 363        /* and no domain controllers can be enabled */
 364        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 365                return false;
 366
 367        return true;
 368}
 369
 370/* is @cgrp root of a threaded subtree? */
 371bool cgroup_is_thread_root(struct cgroup *cgrp)
 372{
 373        /* thread root should be a domain */
 374        if (cgroup_is_threaded(cgrp))
 375                return false;
 376
 377        /* a domain w/ threaded children is a thread root */
 378        if (cgrp->nr_threaded_children)
 379                return true;
 380
 381        /*
 382         * A domain which has tasks and explicit threaded controllers
 383         * enabled is a thread root.
 384         */
 385        if (cgroup_has_tasks(cgrp) &&
 386            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 387                return true;
 388
 389        return false;
 390}
 391
 392/* a domain which isn't connected to the root w/o brekage can't be used */
 393static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 394{
 395        /* the cgroup itself can be a thread root */
 396        if (cgroup_is_threaded(cgrp))
 397                return false;
 398
 399        /* but the ancestors can't be unless mixable */
 400        while ((cgrp = cgroup_parent(cgrp))) {
 401                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 402                        return false;
 403                if (cgroup_is_threaded(cgrp))
 404                        return false;
 405        }
 406
 407        return true;
 408}
 409
 410/* subsystems visibly enabled on a cgroup */
 411static u16 cgroup_control(struct cgroup *cgrp)
 412{
 413        struct cgroup *parent = cgroup_parent(cgrp);
 414        u16 root_ss_mask = cgrp->root->subsys_mask;
 415
 416        if (parent) {
 417                u16 ss_mask = parent->subtree_control;
 418
 419                /* threaded cgroups can only have threaded controllers */
 420                if (cgroup_is_threaded(cgrp))
 421                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 422                return ss_mask;
 423        }
 424
 425        if (cgroup_on_dfl(cgrp))
 426                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 427                                  cgrp_dfl_implicit_ss_mask);
 428        return root_ss_mask;
 429}
 430
 431/* subsystems enabled on a cgroup */
 432static u16 cgroup_ss_mask(struct cgroup *cgrp)
 433{
 434        struct cgroup *parent = cgroup_parent(cgrp);
 435
 436        if (parent) {
 437                u16 ss_mask = parent->subtree_ss_mask;
 438
 439                /* threaded cgroups can only have threaded controllers */
 440                if (cgroup_is_threaded(cgrp))
 441                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 442                return ss_mask;
 443        }
 444
 445        return cgrp->root->subsys_mask;
 446}
 447
 448/**
 449 * cgroup_css - obtain a cgroup's css for the specified subsystem
 450 * @cgrp: the cgroup of interest
 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 452 *
 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 454 * function must be called either under cgroup_mutex or rcu_read_lock() and
 455 * the caller is responsible for pinning the returned css if it wants to
 456 * keep accessing it outside the said locks.  This function may return
 457 * %NULL if @cgrp doesn't have @subsys_id enabled.
 458 */
 459static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 460                                              struct cgroup_subsys *ss)
 461{
 462        if (ss)
 463                return rcu_dereference_check(cgrp->subsys[ss->id],
 464                                        lockdep_is_held(&cgroup_mutex));
 465        else
 466                return &cgrp->self;
 467}
 468
 469/**
 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 471 * @cgrp: the cgroup of interest
 472 * @ss: the subsystem of interest
 473 *
 474 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 475 * or is offline, %NULL is returned.
 476 */
 477static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 478                                                     struct cgroup_subsys *ss)
 479{
 480        struct cgroup_subsys_state *css;
 481
 482        rcu_read_lock();
 483        css = cgroup_css(cgrp, ss);
 484        if (css && !css_tryget_online(css))
 485                css = NULL;
 486        rcu_read_unlock();
 487
 488        return css;
 489}
 490
 491/**
 492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 493 * @cgrp: the cgroup of interest
 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 495 *
 496 * Similar to cgroup_css() but returns the effective css, which is defined
 497 * as the matching css of the nearest ancestor including self which has @ss
 498 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 499 * function is guaranteed to return non-NULL css.
 500 */
 501static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 502                                                        struct cgroup_subsys *ss)
 503{
 504        lockdep_assert_held(&cgroup_mutex);
 505
 506        if (!ss)
 507                return &cgrp->self;
 508
 509        /*
 510         * This function is used while updating css associations and thus
 511         * can't test the csses directly.  Test ss_mask.
 512         */
 513        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 514                cgrp = cgroup_parent(cgrp);
 515                if (!cgrp)
 516                        return NULL;
 517        }
 518
 519        return cgroup_css(cgrp, ss);
 520}
 521
 522/**
 523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 524 * @cgrp: the cgroup of interest
 525 * @ss: the subsystem of interest
 526 *
 527 * Find and get the effective css of @cgrp for @ss.  The effective css is
 528 * defined as the matching css of the nearest ancestor including self which
 529 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 530 * the root css is returned, so this function always returns a valid css.
 531 *
 532 * The returned css is not guaranteed to be online, and therefore it is the
 533 * callers responsiblity to tryget a reference for it.
 534 */
 535struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 536                                         struct cgroup_subsys *ss)
 537{
 538        struct cgroup_subsys_state *css;
 539
 540        do {
 541                css = cgroup_css(cgrp, ss);
 542
 543                if (css)
 544                        return css;
 545                cgrp = cgroup_parent(cgrp);
 546        } while (cgrp);
 547
 548        return init_css_set.subsys[ss->id];
 549}
 550
 551/**
 552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 553 * @cgrp: the cgroup of interest
 554 * @ss: the subsystem of interest
 555 *
 556 * Find and get the effective css of @cgrp for @ss.  The effective css is
 557 * defined as the matching css of the nearest ancestor including self which
 558 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 559 * the root css is returned, so this function always returns a valid css.
 560 * The returned css must be put using css_put().
 561 */
 562struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 563                                             struct cgroup_subsys *ss)
 564{
 565        struct cgroup_subsys_state *css;
 566
 567        rcu_read_lock();
 568
 569        do {
 570                css = cgroup_css(cgrp, ss);
 571
 572                if (css && css_tryget_online(css))
 573                        goto out_unlock;
 574                cgrp = cgroup_parent(cgrp);
 575        } while (cgrp);
 576
 577        css = init_css_set.subsys[ss->id];
 578        css_get(css);
 579out_unlock:
 580        rcu_read_unlock();
 581        return css;
 582}
 583
 584static void cgroup_get_live(struct cgroup *cgrp)
 585{
 586        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 587        css_get(&cgrp->self);
 588}
 589
 590/**
 591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 592 * is responsible for taking the css_set_lock.
 593 * @cgrp: the cgroup in question
 594 */
 595int __cgroup_task_count(const struct cgroup *cgrp)
 596{
 597        int count = 0;
 598        struct cgrp_cset_link *link;
 599
 600        lockdep_assert_held(&css_set_lock);
 601
 602        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 603                count += link->cset->nr_tasks;
 604
 605        return count;
 606}
 607
 608/**
 609 * cgroup_task_count - count the number of tasks in a cgroup.
 610 * @cgrp: the cgroup in question
 611 */
 612int cgroup_task_count(const struct cgroup *cgrp)
 613{
 614        int count;
 615
 616        spin_lock_irq(&css_set_lock);
 617        count = __cgroup_task_count(cgrp);
 618        spin_unlock_irq(&css_set_lock);
 619
 620        return count;
 621}
 622
 623struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 624{
 625        struct cgroup *cgrp = of->kn->parent->priv;
 626        struct cftype *cft = of_cft(of);
 627
 628        /*
 629         * This is open and unprotected implementation of cgroup_css().
 630         * seq_css() is only called from a kernfs file operation which has
 631         * an active reference on the file.  Because all the subsystem
 632         * files are drained before a css is disassociated with a cgroup,
 633         * the matching css from the cgroup's subsys table is guaranteed to
 634         * be and stay valid until the enclosing operation is complete.
 635         */
 636        if (cft->ss)
 637                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 638        else
 639                return &cgrp->self;
 640}
 641EXPORT_SYMBOL_GPL(of_css);
 642
 643/**
 644 * for_each_css - iterate all css's of a cgroup
 645 * @css: the iteration cursor
 646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 647 * @cgrp: the target cgroup to iterate css's of
 648 *
 649 * Should be called under cgroup_[tree_]mutex.
 650 */
 651#define for_each_css(css, ssid, cgrp)                                   \
 652        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 653                if (!((css) = rcu_dereference_check(                    \
 654                                (cgrp)->subsys[(ssid)],                 \
 655                                lockdep_is_held(&cgroup_mutex)))) { }   \
 656                else
 657
 658/**
 659 * for_each_e_css - iterate all effective css's of a cgroup
 660 * @css: the iteration cursor
 661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 662 * @cgrp: the target cgroup to iterate css's of
 663 *
 664 * Should be called under cgroup_[tree_]mutex.
 665 */
 666#define for_each_e_css(css, ssid, cgrp)                                     \
 667        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 668                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 669                                                   cgroup_subsys[(ssid)]))) \
 670                        ;                                                   \
 671                else
 672
 673/**
 674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 675 * @ss: the iteration cursor
 676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 677 * @ss_mask: the bitmask
 678 *
 679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 680 * @ss_mask is set.
 681 */
 682#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 683        unsigned long __ss_mask = (ss_mask);                            \
 684        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 685                (ssid) = 0;                                             \
 686                break;                                                  \
 687        }                                                               \
 688        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 689                (ss) = cgroup_subsys[ssid];                             \
 690                {
 691
 692#define while_each_subsys_mask()                                        \
 693                }                                                       \
 694        }                                                               \
 695} while (false)
 696
 697/* iterate over child cgrps, lock should be held throughout iteration */
 698#define cgroup_for_each_live_child(child, cgrp)                         \
 699        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 700                if (({ lockdep_assert_held(&cgroup_mutex);              \
 701                       cgroup_is_dead(child); }))                       \
 702                        ;                                               \
 703                else
 704
 705/* walk live descendants in preorder */
 706#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 707        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 708                if (({ lockdep_assert_held(&cgroup_mutex);              \
 709                       (dsct) = (d_css)->cgroup;                        \
 710                       cgroup_is_dead(dsct); }))                        \
 711                        ;                                               \
 712                else
 713
 714/* walk live descendants in postorder */
 715#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 716        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 717                if (({ lockdep_assert_held(&cgroup_mutex);              \
 718                       (dsct) = (d_css)->cgroup;                        \
 719                       cgroup_is_dead(dsct); }))                        \
 720                        ;                                               \
 721                else
 722
 723/*
 724 * The default css_set - used by init and its children prior to any
 725 * hierarchies being mounted. It contains a pointer to the root state
 726 * for each subsystem. Also used to anchor the list of css_sets. Not
 727 * reference-counted, to improve performance when child cgroups
 728 * haven't been created.
 729 */
 730struct css_set init_css_set = {
 731        .refcount               = REFCOUNT_INIT(1),
 732        .dom_cset               = &init_css_set,
 733        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 734        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 735        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 736        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 737        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 738        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 739        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 740        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 741
 742        /*
 743         * The following field is re-initialized when this cset gets linked
 744         * in cgroup_init().  However, let's initialize the field
 745         * statically too so that the default cgroup can be accessed safely
 746         * early during boot.
 747         */
 748        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 749};
 750
 751static int css_set_count        = 1;    /* 1 for init_css_set */
 752
 753static bool css_set_threaded(struct css_set *cset)
 754{
 755        return cset->dom_cset != cset;
 756}
 757
 758/**
 759 * css_set_populated - does a css_set contain any tasks?
 760 * @cset: target css_set
 761 *
 762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 763 * state. However, css_set_populated() can be called while a task is being
 764 * added to or removed from the linked list before the nr_tasks is
 765 * properly updated. Hence, we can't just look at ->nr_tasks here.
 766 */
 767static bool css_set_populated(struct css_set *cset)
 768{
 769        lockdep_assert_held(&css_set_lock);
 770
 771        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 772}
 773
 774/**
 775 * cgroup_update_populated - update the populated count of a cgroup
 776 * @cgrp: the target cgroup
 777 * @populated: inc or dec populated count
 778 *
 779 * One of the css_sets associated with @cgrp is either getting its first
 780 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 781 * count is propagated towards root so that a given cgroup's
 782 * nr_populated_children is zero iff none of its descendants contain any
 783 * tasks.
 784 *
 785 * @cgrp's interface file "cgroup.populated" is zero if both
 786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 787 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 788 * that the content of the interface file has changed.  This can be used to
 789 * detect when @cgrp and its descendants become populated or empty.
 790 */
 791static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 792{
 793        struct cgroup *child = NULL;
 794        int adj = populated ? 1 : -1;
 795
 796        lockdep_assert_held(&css_set_lock);
 797
 798        do {
 799                bool was_populated = cgroup_is_populated(cgrp);
 800
 801                if (!child) {
 802                        cgrp->nr_populated_csets += adj;
 803                } else {
 804                        if (cgroup_is_threaded(child))
 805                                cgrp->nr_populated_threaded_children += adj;
 806                        else
 807                                cgrp->nr_populated_domain_children += adj;
 808                }
 809
 810                if (was_populated == cgroup_is_populated(cgrp))
 811                        break;
 812
 813                cgroup1_check_for_release(cgrp);
 814                TRACE_CGROUP_PATH(notify_populated, cgrp,
 815                                  cgroup_is_populated(cgrp));
 816                cgroup_file_notify(&cgrp->events_file);
 817
 818                child = cgrp;
 819                cgrp = cgroup_parent(cgrp);
 820        } while (cgrp);
 821}
 822
 823/**
 824 * css_set_update_populated - update populated state of a css_set
 825 * @cset: target css_set
 826 * @populated: whether @cset is populated or depopulated
 827 *
 828 * @cset is either getting the first task or losing the last.  Update the
 829 * populated counters of all associated cgroups accordingly.
 830 */
 831static void css_set_update_populated(struct css_set *cset, bool populated)
 832{
 833        struct cgrp_cset_link *link;
 834
 835        lockdep_assert_held(&css_set_lock);
 836
 837        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 838                cgroup_update_populated(link->cgrp, populated);
 839}
 840
 841/*
 842 * @task is leaving, advance task iterators which are pointing to it so
 843 * that they can resume at the next position.  Advancing an iterator might
 844 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 845 * details.
 846 */
 847static void css_set_skip_task_iters(struct css_set *cset,
 848                                    struct task_struct *task)
 849{
 850        struct css_task_iter *it, *pos;
 851
 852        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 853                css_task_iter_skip(it, task);
 854}
 855
 856/**
 857 * css_set_move_task - move a task from one css_set to another
 858 * @task: task being moved
 859 * @from_cset: css_set @task currently belongs to (may be NULL)
 860 * @to_cset: new css_set @task is being moved to (may be NULL)
 861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 862 *
 863 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 864 * css_set, @from_cset can be NULL.  If @task is being disassociated
 865 * instead of moved, @to_cset can be NULL.
 866 *
 867 * This function automatically handles populated counter updates and
 868 * css_task_iter adjustments but the caller is responsible for managing
 869 * @from_cset and @to_cset's reference counts.
 870 */
 871static void css_set_move_task(struct task_struct *task,
 872                              struct css_set *from_cset, struct css_set *to_cset,
 873                              bool use_mg_tasks)
 874{
 875        lockdep_assert_held(&css_set_lock);
 876
 877        if (to_cset && !css_set_populated(to_cset))
 878                css_set_update_populated(to_cset, true);
 879
 880        if (from_cset) {
 881                WARN_ON_ONCE(list_empty(&task->cg_list));
 882
 883                css_set_skip_task_iters(from_cset, task);
 884                list_del_init(&task->cg_list);
 885                if (!css_set_populated(from_cset))
 886                        css_set_update_populated(from_cset, false);
 887        } else {
 888                WARN_ON_ONCE(!list_empty(&task->cg_list));
 889        }
 890
 891        if (to_cset) {
 892                /*
 893                 * We are synchronized through cgroup_threadgroup_rwsem
 894                 * against PF_EXITING setting such that we can't race
 895                 * against cgroup_exit()/cgroup_free() dropping the css_set.
 896                 */
 897                WARN_ON_ONCE(task->flags & PF_EXITING);
 898
 899                cgroup_move_task(task, to_cset);
 900                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 901                                                             &to_cset->tasks);
 902        }
 903}
 904
 905/*
 906 * hash table for cgroup groups. This improves the performance to find
 907 * an existing css_set. This hash doesn't (currently) take into
 908 * account cgroups in empty hierarchies.
 909 */
 910#define CSS_SET_HASH_BITS       7
 911static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 912
 913static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 914{
 915        unsigned long key = 0UL;
 916        struct cgroup_subsys *ss;
 917        int i;
 918
 919        for_each_subsys(ss, i)
 920                key += (unsigned long)css[i];
 921        key = (key >> 16) ^ key;
 922
 923        return key;
 924}
 925
 926void put_css_set_locked(struct css_set *cset)
 927{
 928        struct cgrp_cset_link *link, *tmp_link;
 929        struct cgroup_subsys *ss;
 930        int ssid;
 931
 932        lockdep_assert_held(&css_set_lock);
 933
 934        if (!refcount_dec_and_test(&cset->refcount))
 935                return;
 936
 937        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 938
 939        /* This css_set is dead. unlink it and release cgroup and css refs */
 940        for_each_subsys(ss, ssid) {
 941                list_del(&cset->e_cset_node[ssid]);
 942                css_put(cset->subsys[ssid]);
 943        }
 944        hash_del(&cset->hlist);
 945        css_set_count--;
 946
 947        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 948                list_del(&link->cset_link);
 949                list_del(&link->cgrp_link);
 950                if (cgroup_parent(link->cgrp))
 951                        cgroup_put(link->cgrp);
 952                kfree(link);
 953        }
 954
 955        if (css_set_threaded(cset)) {
 956                list_del(&cset->threaded_csets_node);
 957                put_css_set_locked(cset->dom_cset);
 958        }
 959
 960        kfree_rcu(cset, rcu_head);
 961}
 962
 963/**
 964 * compare_css_sets - helper function for find_existing_css_set().
 965 * @cset: candidate css_set being tested
 966 * @old_cset: existing css_set for a task
 967 * @new_cgrp: cgroup that's being entered by the task
 968 * @template: desired set of css pointers in css_set (pre-calculated)
 969 *
 970 * Returns true if "cset" matches "old_cset" except for the hierarchy
 971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 972 */
 973static bool compare_css_sets(struct css_set *cset,
 974                             struct css_set *old_cset,
 975                             struct cgroup *new_cgrp,
 976                             struct cgroup_subsys_state *template[])
 977{
 978        struct cgroup *new_dfl_cgrp;
 979        struct list_head *l1, *l2;
 980
 981        /*
 982         * On the default hierarchy, there can be csets which are
 983         * associated with the same set of cgroups but different csses.
 984         * Let's first ensure that csses match.
 985         */
 986        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 987                return false;
 988
 989
 990        /* @cset's domain should match the default cgroup's */
 991        if (cgroup_on_dfl(new_cgrp))
 992                new_dfl_cgrp = new_cgrp;
 993        else
 994                new_dfl_cgrp = old_cset->dfl_cgrp;
 995
 996        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 997                return false;
 998
 999        /*
1000         * Compare cgroup pointers in order to distinguish between
1001         * different cgroups in hierarchies.  As different cgroups may
1002         * share the same effective css, this comparison is always
1003         * necessary.
1004         */
1005        l1 = &cset->cgrp_links;
1006        l2 = &old_cset->cgrp_links;
1007        while (1) {
1008                struct cgrp_cset_link *link1, *link2;
1009                struct cgroup *cgrp1, *cgrp2;
1010
1011                l1 = l1->next;
1012                l2 = l2->next;
1013                /* See if we reached the end - both lists are equal length. */
1014                if (l1 == &cset->cgrp_links) {
1015                        BUG_ON(l2 != &old_cset->cgrp_links);
1016                        break;
1017                } else {
1018                        BUG_ON(l2 == &old_cset->cgrp_links);
1019                }
1020                /* Locate the cgroups associated with these links. */
1021                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023                cgrp1 = link1->cgrp;
1024                cgrp2 = link2->cgrp;
1025                /* Hierarchies should be linked in the same order. */
1026                BUG_ON(cgrp1->root != cgrp2->root);
1027
1028                /*
1029                 * If this hierarchy is the hierarchy of the cgroup
1030                 * that's changing, then we need to check that this
1031                 * css_set points to the new cgroup; if it's any other
1032                 * hierarchy, then this css_set should point to the
1033                 * same cgroup as the old css_set.
1034                 */
1035                if (cgrp1->root == new_cgrp->root) {
1036                        if (cgrp1 != new_cgrp)
1037                                return false;
1038                } else {
1039                        if (cgrp1 != cgrp2)
1040                                return false;
1041                }
1042        }
1043        return true;
1044}
1045
1046/**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
1052static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053                                        struct cgroup *cgrp,
1054                                        struct cgroup_subsys_state *template[])
1055{
1056        struct cgroup_root *root = cgrp->root;
1057        struct cgroup_subsys *ss;
1058        struct css_set *cset;
1059        unsigned long key;
1060        int i;
1061
1062        /*
1063         * Build the set of subsystem state objects that we want to see in the
1064         * new css_set. while subsystems can change globally, the entries here
1065         * won't change, so no need for locking.
1066         */
1067        for_each_subsys(ss, i) {
1068                if (root->subsys_mask & (1UL << i)) {
1069                        /*
1070                         * @ss is in this hierarchy, so we want the
1071                         * effective css from @cgrp.
1072                         */
1073                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074                } else {
1075                        /*
1076                         * @ss is not in this hierarchy, so we don't want
1077                         * to change the css.
1078                         */
1079                        template[i] = old_cset->subsys[i];
1080                }
1081        }
1082
1083        key = css_set_hash(template);
1084        hash_for_each_possible(css_set_table, cset, hlist, key) {
1085                if (!compare_css_sets(cset, old_cset, cgrp, template))
1086                        continue;
1087
1088                /* This css_set matches what we need */
1089                return cset;
1090        }
1091
1092        /* No existing cgroup group matched */
1093        return NULL;
1094}
1095
1096static void free_cgrp_cset_links(struct list_head *links_to_free)
1097{
1098        struct cgrp_cset_link *link, *tmp_link;
1099
1100        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101                list_del(&link->cset_link);
1102                kfree(link);
1103        }
1104}
1105
1106/**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link.  Returns 0 on success or -errno.
1113 */
1114static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115{
1116        struct cgrp_cset_link *link;
1117        int i;
1118
1119        INIT_LIST_HEAD(tmp_links);
1120
1121        for (i = 0; i < count; i++) {
1122                link = kzalloc(sizeof(*link), GFP_KERNEL);
1123                if (!link) {
1124                        free_cgrp_cset_links(tmp_links);
1125                        return -ENOMEM;
1126                }
1127                list_add(&link->cset_link, tmp_links);
1128        }
1129        return 0;
1130}
1131
1132/**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
1138static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139                         struct cgroup *cgrp)
1140{
1141        struct cgrp_cset_link *link;
1142
1143        BUG_ON(list_empty(tmp_links));
1144
1145        if (cgroup_on_dfl(cgrp))
1146                cset->dfl_cgrp = cgrp;
1147
1148        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149        link->cset = cset;
1150        link->cgrp = cgrp;
1151
1152        /*
1153         * Always add links to the tail of the lists so that the lists are
1154         * in choronological order.
1155         */
1156        list_move_tail(&link->cset_link, &cgrp->cset_links);
1157        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159        if (cgroup_parent(cgrp))
1160                cgroup_get_live(cgrp);
1161}
1162
1163/**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
1171static struct css_set *find_css_set(struct css_set *old_cset,
1172                                    struct cgroup *cgrp)
1173{
1174        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175        struct css_set *cset;
1176        struct list_head tmp_links;
1177        struct cgrp_cset_link *link;
1178        struct cgroup_subsys *ss;
1179        unsigned long key;
1180        int ssid;
1181
1182        lockdep_assert_held(&cgroup_mutex);
1183
1184        /* First see if we already have a cgroup group that matches
1185         * the desired set */
1186        spin_lock_irq(&css_set_lock);
1187        cset = find_existing_css_set(old_cset, cgrp, template);
1188        if (cset)
1189                get_css_set(cset);
1190        spin_unlock_irq(&css_set_lock);
1191
1192        if (cset)
1193                return cset;
1194
1195        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196        if (!cset)
1197                return NULL;
1198
1199        /* Allocate all the cgrp_cset_link objects that we'll need */
1200        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201                kfree(cset);
1202                return NULL;
1203        }
1204
1205        refcount_set(&cset->refcount, 1);
1206        cset->dom_cset = cset;
1207        INIT_LIST_HEAD(&cset->tasks);
1208        INIT_LIST_HEAD(&cset->mg_tasks);
1209        INIT_LIST_HEAD(&cset->dying_tasks);
1210        INIT_LIST_HEAD(&cset->task_iters);
1211        INIT_LIST_HEAD(&cset->threaded_csets);
1212        INIT_HLIST_NODE(&cset->hlist);
1213        INIT_LIST_HEAD(&cset->cgrp_links);
1214        INIT_LIST_HEAD(&cset->mg_preload_node);
1215        INIT_LIST_HEAD(&cset->mg_node);
1216
1217        /* Copy the set of subsystem state objects generated in
1218         * find_existing_css_set() */
1219        memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221        spin_lock_irq(&css_set_lock);
1222        /* Add reference counts and links from the new css_set. */
1223        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224                struct cgroup *c = link->cgrp;
1225
1226                if (c->root == cgrp->root)
1227                        c = cgrp;
1228                link_css_set(&tmp_links, cset, c);
1229        }
1230
1231        BUG_ON(!list_empty(&tmp_links));
1232
1233        css_set_count++;
1234
1235        /* Add @cset to the hash table */
1236        key = css_set_hash(cset->subsys);
1237        hash_add(css_set_table, &cset->hlist, key);
1238
1239        for_each_subsys(ss, ssid) {
1240                struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242                list_add_tail(&cset->e_cset_node[ssid],
1243                              &css->cgroup->e_csets[ssid]);
1244                css_get(css);
1245        }
1246
1247        spin_unlock_irq(&css_set_lock);
1248
1249        /*
1250         * If @cset should be threaded, look up the matching dom_cset and
1251         * link them up.  We first fully initialize @cset then look for the
1252         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253         * to stay empty until we return.
1254         */
1255        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256                struct css_set *dcset;
1257
1258                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259                if (!dcset) {
1260                        put_css_set(cset);
1261                        return NULL;
1262                }
1263
1264                spin_lock_irq(&css_set_lock);
1265                cset->dom_cset = dcset;
1266                list_add_tail(&cset->threaded_csets_node,
1267                              &dcset->threaded_csets);
1268                spin_unlock_irq(&css_set_lock);
1269        }
1270
1271        return cset;
1272}
1273
1274struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275{
1276        struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278        return root_cgrp->root;
1279}
1280
1281static int cgroup_init_root_id(struct cgroup_root *root)
1282{
1283        int id;
1284
1285        lockdep_assert_held(&cgroup_mutex);
1286
1287        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288        if (id < 0)
1289                return id;
1290
1291        root->hierarchy_id = id;
1292        return 0;
1293}
1294
1295static void cgroup_exit_root_id(struct cgroup_root *root)
1296{
1297        lockdep_assert_held(&cgroup_mutex);
1298
1299        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300}
1301
1302void cgroup_free_root(struct cgroup_root *root)
1303{
1304        kfree(root);
1305}
1306
1307static void cgroup_destroy_root(struct cgroup_root *root)
1308{
1309        struct cgroup *cgrp = &root->cgrp;
1310        struct cgrp_cset_link *link, *tmp_link;
1311
1312        trace_cgroup_destroy_root(root);
1313
1314        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316        BUG_ON(atomic_read(&root->nr_cgrps));
1317        BUG_ON(!list_empty(&cgrp->self.children));
1318
1319        /* Rebind all subsystems back to the default hierarchy */
1320        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322        /*
1323         * Release all the links from cset_links to this hierarchy's
1324         * root cgroup
1325         */
1326        spin_lock_irq(&css_set_lock);
1327
1328        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329                list_del(&link->cset_link);
1330                list_del(&link->cgrp_link);
1331                kfree(link);
1332        }
1333
1334        spin_unlock_irq(&css_set_lock);
1335
1336        if (!list_empty(&root->root_list)) {
1337                list_del(&root->root_list);
1338                cgroup_root_count--;
1339        }
1340
1341        cgroup_exit_root_id(root);
1342
1343        mutex_unlock(&cgroup_mutex);
1344
1345        kernfs_destroy_root(root->kf_root);
1346        cgroup_free_root(root);
1347}
1348
1349/*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353static struct cgroup *
1354current_cgns_cgroup_from_root(struct cgroup_root *root)
1355{
1356        struct cgroup *res = NULL;
1357        struct css_set *cset;
1358
1359        lockdep_assert_held(&css_set_lock);
1360
1361        rcu_read_lock();
1362
1363        cset = current->nsproxy->cgroup_ns->root_cset;
1364        if (cset == &init_css_set) {
1365                res = &root->cgrp;
1366        } else if (root == &cgrp_dfl_root) {
1367                res = cset->dfl_cgrp;
1368        } else {
1369                struct cgrp_cset_link *link;
1370
1371                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372                        struct cgroup *c = link->cgrp;
1373
1374                        if (c->root == root) {
1375                                res = c;
1376                                break;
1377                        }
1378                }
1379        }
1380        rcu_read_unlock();
1381
1382        BUG_ON(!res);
1383        return res;
1384}
1385
1386/* look up cgroup associated with given css_set on the specified hierarchy */
1387static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388                                            struct cgroup_root *root)
1389{
1390        struct cgroup *res = NULL;
1391
1392        lockdep_assert_held(&cgroup_mutex);
1393        lockdep_assert_held(&css_set_lock);
1394
1395        if (cset == &init_css_set) {
1396                res = &root->cgrp;
1397        } else if (root == &cgrp_dfl_root) {
1398                res = cset->dfl_cgrp;
1399        } else {
1400                struct cgrp_cset_link *link;
1401
1402                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403                        struct cgroup *c = link->cgrp;
1404
1405                        if (c->root == root) {
1406                                res = c;
1407                                break;
1408                        }
1409                }
1410        }
1411
1412        BUG_ON(!res);
1413        return res;
1414}
1415
1416/*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
1420struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421                                     struct cgroup_root *root)
1422{
1423        /*
1424         * No need to lock the task - since we hold css_set_lock the
1425         * task can't change groups.
1426         */
1427        return cset_cgroup_from_root(task_css_set(task), root);
1428}
1429
1430/*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing.  However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again.  Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count).  So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty.  Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks.  So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S.  One more locking exception.  RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
1458static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459                              char *buf)
1460{
1461        struct cgroup_subsys *ss = cft->ss;
1462
1463        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469                         cft->name);
1470        } else {
1471                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472        }
1473        return buf;
1474}
1475
1476/**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
1482static umode_t cgroup_file_mode(const struct cftype *cft)
1483{
1484        umode_t mode = 0;
1485
1486        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487                mode |= S_IRUGO;
1488
1489        if (cft->write_u64 || cft->write_s64 || cft->write) {
1490                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491                        mode |= S_IWUGO;
1492                else
1493                        mode |= S_IWUSR;
1494        }
1495
1496        return mode;
1497}
1498
1499/**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask.  In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
1511static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512{
1513        u16 cur_ss_mask = subtree_control;
1514        struct cgroup_subsys *ss;
1515        int ssid;
1516
1517        lockdep_assert_held(&cgroup_mutex);
1518
1519        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521        while (true) {
1522                u16 new_ss_mask = cur_ss_mask;
1523
1524                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525                        new_ss_mask |= ss->depends_on;
1526                } while_each_subsys_mask();
1527
1528                /*
1529                 * Mask out subsystems which aren't available.  This can
1530                 * happen only if some depended-upon subsystems were bound
1531                 * to non-default hierarchies.
1532                 */
1533                new_ss_mask &= this_ss_mask;
1534
1535                if (new_ss_mask == cur_ss_mask)
1536                        break;
1537                cur_ss_mask = new_ss_mask;
1538        }
1539
1540        return cur_ss_mask;
1541}
1542
1543/**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded.  Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time.  If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
1553void cgroup_kn_unlock(struct kernfs_node *kn)
1554{
1555        struct cgroup *cgrp;
1556
1557        if (kernfs_type(kn) == KERNFS_DIR)
1558                cgrp = kn->priv;
1559        else
1560                cgrp = kn->parent->priv;
1561
1562        mutex_unlock(&cgroup_mutex);
1563
1564        kernfs_unbreak_active_protection(kn);
1565        cgroup_put(cgrp);
1566}
1567
1568/**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn.  It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive.  Returns the cgroup if
1576 * alive; otherwise, %NULL.  A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper.  It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
1585struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586{
1587        struct cgroup *cgrp;
1588
1589        if (kernfs_type(kn) == KERNFS_DIR)
1590                cgrp = kn->priv;
1591        else
1592                cgrp = kn->parent->priv;
1593
1594        /*
1595         * We're gonna grab cgroup_mutex which nests outside kernfs
1596         * active_ref.  cgroup liveliness check alone provides enough
1597         * protection against removal.  Ensure @cgrp stays accessible and
1598         * break the active_ref protection.
1599         */
1600        if (!cgroup_tryget(cgrp))
1601                return NULL;
1602        kernfs_break_active_protection(kn);
1603
1604        if (drain_offline)
1605                cgroup_lock_and_drain_offline(cgrp);
1606        else
1607                mutex_lock(&cgroup_mutex);
1608
1609        if (!cgroup_is_dead(cgrp))
1610                return cgrp;
1611
1612        cgroup_kn_unlock(kn);
1613        return NULL;
1614}
1615
1616static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617{
1618        char name[CGROUP_FILE_NAME_MAX];
1619
1620        lockdep_assert_held(&cgroup_mutex);
1621
1622        if (cft->file_offset) {
1623                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626                spin_lock_irq(&cgroup_file_kn_lock);
1627                cfile->kn = NULL;
1628                spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630                del_timer_sync(&cfile->notify_timer);
1631        }
1632
1633        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634}
1635
1636/**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
1640static void css_clear_dir(struct cgroup_subsys_state *css)
1641{
1642        struct cgroup *cgrp = css->cgroup;
1643        struct cftype *cfts;
1644
1645        if (!(css->flags & CSS_VISIBLE))
1646                return;
1647
1648        css->flags &= ~CSS_VISIBLE;
1649
1650        if (!css->ss) {
1651                if (cgroup_on_dfl(cgrp))
1652                        cfts = cgroup_base_files;
1653                else
1654                        cfts = cgroup1_base_files;
1655
1656                cgroup_addrm_files(css, cgrp, cfts, false);
1657        } else {
1658                list_for_each_entry(cfts, &css->ss->cfts, node)
1659                        cgroup_addrm_files(css, cgrp, cfts, false);
1660        }
1661}
1662
1663/**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
1669static int css_populate_dir(struct cgroup_subsys_state *css)
1670{
1671        struct cgroup *cgrp = css->cgroup;
1672        struct cftype *cfts, *failed_cfts;
1673        int ret;
1674
1675        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676                return 0;
1677
1678        if (!css->ss) {
1679                if (cgroup_on_dfl(cgrp))
1680                        cfts = cgroup_base_files;
1681                else
1682                        cfts = cgroup1_base_files;
1683
1684                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685                if (ret < 0)
1686                        return ret;
1687        } else {
1688                list_for_each_entry(cfts, &css->ss->cfts, node) {
1689                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690                        if (ret < 0) {
1691                                failed_cfts = cfts;
1692                                goto err;
1693                        }
1694                }
1695        }
1696
1697        css->flags |= CSS_VISIBLE;
1698
1699        return 0;
1700err:
1701        list_for_each_entry(cfts, &css->ss->cfts, node) {
1702                if (cfts == failed_cfts)
1703                        break;
1704                cgroup_addrm_files(css, cgrp, cfts, false);
1705        }
1706        return ret;
1707}
1708
1709int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710{
1711        struct cgroup *dcgrp = &dst_root->cgrp;
1712        struct cgroup_subsys *ss;
1713        int ssid, i, ret;
1714
1715        lockdep_assert_held(&cgroup_mutex);
1716
1717        do_each_subsys_mask(ss, ssid, ss_mask) {
1718                /*
1719                 * If @ss has non-root csses attached to it, can't move.
1720                 * If @ss is an implicit controller, it is exempt from this
1721                 * rule and can be stolen.
1722                 */
1723                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724                    !ss->implicit_on_dfl)
1725                        return -EBUSY;
1726
1727                /* can't move between two non-dummy roots either */
1728                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729                        return -EBUSY;
1730        } while_each_subsys_mask();
1731
1732        do_each_subsys_mask(ss, ssid, ss_mask) {
1733                struct cgroup_root *src_root = ss->root;
1734                struct cgroup *scgrp = &src_root->cgrp;
1735                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736                struct css_set *cset;
1737
1738                WARN_ON(!css || cgroup_css(dcgrp, ss));
1739
1740                /* disable from the source */
1741                src_root->subsys_mask &= ~(1 << ssid);
1742                WARN_ON(cgroup_apply_control(scgrp));
1743                cgroup_finalize_control(scgrp, 0);
1744
1745                /* rebind */
1746                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748                ss->root = dst_root;
1749                css->cgroup = dcgrp;
1750
1751                spin_lock_irq(&css_set_lock);
1752                hash_for_each(css_set_table, i, cset, hlist)
1753                        list_move_tail(&cset->e_cset_node[ss->id],
1754                                       &dcgrp->e_csets[ss->id]);
1755                spin_unlock_irq(&css_set_lock);
1756
1757                /* default hierarchy doesn't enable controllers by default */
1758                dst_root->subsys_mask |= 1 << ssid;
1759                if (dst_root == &cgrp_dfl_root) {
1760                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761                } else {
1762                        dcgrp->subtree_control |= 1 << ssid;
1763                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764                }
1765
1766                ret = cgroup_apply_control(dcgrp);
1767                if (ret)
1768                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769                                ss->name, ret);
1770
1771                if (ss->bind)
1772                        ss->bind(css);
1773        } while_each_subsys_mask();
1774
1775        kernfs_activate(dcgrp->kn);
1776        return 0;
1777}
1778
1779int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780                     struct kernfs_root *kf_root)
1781{
1782        int len = 0;
1783        char *buf = NULL;
1784        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785        struct cgroup *ns_cgroup;
1786
1787        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788        if (!buf)
1789                return -ENOMEM;
1790
1791        spin_lock_irq(&css_set_lock);
1792        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794        spin_unlock_irq(&css_set_lock);
1795
1796        if (len >= PATH_MAX)
1797                len = -ERANGE;
1798        else if (len > 0) {
1799                seq_escape(sf, buf, " \t\n\\");
1800                len = 0;
1801        }
1802        kfree(buf);
1803        return len;
1804}
1805
1806enum cgroup2_param {
1807        Opt_nsdelegate,
1808        Opt_memory_localevents,
1809        Opt_memory_recursiveprot,
1810        nr__cgroup2_params
1811};
1812
1813static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1815        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1816        fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1817        {}
1818};
1819
1820static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821{
1822        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823        struct fs_parse_result result;
1824        int opt;
1825
1826        opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827        if (opt < 0)
1828                return opt;
1829
1830        switch (opt) {
1831        case Opt_nsdelegate:
1832                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833                return 0;
1834        case Opt_memory_localevents:
1835                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836                return 0;
1837        case Opt_memory_recursiveprot:
1838                ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839                return 0;
1840        }
1841        return -EINVAL;
1842}
1843
1844static void apply_cgroup_root_flags(unsigned int root_flags)
1845{
1846        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849                else
1850                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851
1852                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854                else
1855                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856
1857                if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859                else
1860                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861        }
1862}
1863
1864static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865{
1866        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867                seq_puts(seq, ",nsdelegate");
1868        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869                seq_puts(seq, ",memory_localevents");
1870        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871                seq_puts(seq, ",memory_recursiveprot");
1872        return 0;
1873}
1874
1875static int cgroup_reconfigure(struct fs_context *fc)
1876{
1877        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878
1879        apply_cgroup_root_flags(ctx->flags);
1880        return 0;
1881}
1882
1883static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884{
1885        struct cgroup_subsys *ss;
1886        int ssid;
1887
1888        INIT_LIST_HEAD(&cgrp->self.sibling);
1889        INIT_LIST_HEAD(&cgrp->self.children);
1890        INIT_LIST_HEAD(&cgrp->cset_links);
1891        INIT_LIST_HEAD(&cgrp->pidlists);
1892        mutex_init(&cgrp->pidlist_mutex);
1893        cgrp->self.cgroup = cgrp;
1894        cgrp->self.flags |= CSS_ONLINE;
1895        cgrp->dom_cgrp = cgrp;
1896        cgrp->max_descendants = INT_MAX;
1897        cgrp->max_depth = INT_MAX;
1898        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899        prev_cputime_init(&cgrp->prev_cputime);
1900
1901        for_each_subsys(ss, ssid)
1902                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904        init_waitqueue_head(&cgrp->offline_waitq);
1905        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906}
1907
1908void init_cgroup_root(struct cgroup_fs_context *ctx)
1909{
1910        struct cgroup_root *root = ctx->root;
1911        struct cgroup *cgrp = &root->cgrp;
1912
1913        INIT_LIST_HEAD(&root->root_list);
1914        atomic_set(&root->nr_cgrps, 1);
1915        cgrp->root = root;
1916        init_cgroup_housekeeping(cgrp);
1917
1918        root->flags = ctx->flags;
1919        if (ctx->release_agent)
1920                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921        if (ctx->name)
1922                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923        if (ctx->cpuset_clone_children)
1924                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925}
1926
1927int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928{
1929        LIST_HEAD(tmp_links);
1930        struct cgroup *root_cgrp = &root->cgrp;
1931        struct kernfs_syscall_ops *kf_sops;
1932        struct css_set *cset;
1933        int i, ret;
1934
1935        lockdep_assert_held(&cgroup_mutex);
1936
1937        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938                              0, GFP_KERNEL);
1939        if (ret)
1940                goto out;
1941
1942        /*
1943         * We're accessing css_set_count without locking css_set_lock here,
1944         * but that's OK - it can only be increased by someone holding
1945         * cgroup_lock, and that's us.  Later rebinding may disable
1946         * controllers on the default hierarchy and thus create new csets,
1947         * which can't be more than the existing ones.  Allocate 2x.
1948         */
1949        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950        if (ret)
1951                goto cancel_ref;
1952
1953        ret = cgroup_init_root_id(root);
1954        if (ret)
1955                goto cancel_ref;
1956
1957        kf_sops = root == &cgrp_dfl_root ?
1958                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959
1960        root->kf_root = kernfs_create_root(kf_sops,
1961                                           KERNFS_ROOT_CREATE_DEACTIVATED |
1962                                           KERNFS_ROOT_SUPPORT_EXPORTOP |
1963                                           KERNFS_ROOT_SUPPORT_USER_XATTR,
1964                                           root_cgrp);
1965        if (IS_ERR(root->kf_root)) {
1966                ret = PTR_ERR(root->kf_root);
1967                goto exit_root_id;
1968        }
1969        root_cgrp->kn = root->kf_root->kn;
1970        WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971        root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972
1973        ret = css_populate_dir(&root_cgrp->self);
1974        if (ret)
1975                goto destroy_root;
1976
1977        ret = rebind_subsystems(root, ss_mask);
1978        if (ret)
1979                goto destroy_root;
1980
1981        ret = cgroup_bpf_inherit(root_cgrp);
1982        WARN_ON_ONCE(ret);
1983
1984        trace_cgroup_setup_root(root);
1985
1986        /*
1987         * There must be no failure case after here, since rebinding takes
1988         * care of subsystems' refcounts, which are explicitly dropped in
1989         * the failure exit path.
1990         */
1991        list_add(&root->root_list, &cgroup_roots);
1992        cgroup_root_count++;
1993
1994        /*
1995         * Link the root cgroup in this hierarchy into all the css_set
1996         * objects.
1997         */
1998        spin_lock_irq(&css_set_lock);
1999        hash_for_each(css_set_table, i, cset, hlist) {
2000                link_css_set(&tmp_links, cset, root_cgrp);
2001                if (css_set_populated(cset))
2002                        cgroup_update_populated(root_cgrp, true);
2003        }
2004        spin_unlock_irq(&css_set_lock);
2005
2006        BUG_ON(!list_empty(&root_cgrp->self.children));
2007        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008
2009        ret = 0;
2010        goto out;
2011
2012destroy_root:
2013        kernfs_destroy_root(root->kf_root);
2014        root->kf_root = NULL;
2015exit_root_id:
2016        cgroup_exit_root_id(root);
2017cancel_ref:
2018        percpu_ref_exit(&root_cgrp->self.refcnt);
2019out:
2020        free_cgrp_cset_links(&tmp_links);
2021        return ret;
2022}
2023
2024int cgroup_do_get_tree(struct fs_context *fc)
2025{
2026        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2027        int ret;
2028
2029        ctx->kfc.root = ctx->root->kf_root;
2030        if (fc->fs_type == &cgroup2_fs_type)
2031                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2032        else
2033                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2034        ret = kernfs_get_tree(fc);
2035
2036        /*
2037         * In non-init cgroup namespace, instead of root cgroup's dentry,
2038         * we return the dentry corresponding to the cgroupns->root_cgrp.
2039         */
2040        if (!ret && ctx->ns != &init_cgroup_ns) {
2041                struct dentry *nsdentry;
2042                struct super_block *sb = fc->root->d_sb;
2043                struct cgroup *cgrp;
2044
2045                mutex_lock(&cgroup_mutex);
2046                spin_lock_irq(&css_set_lock);
2047
2048                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2049
2050                spin_unlock_irq(&css_set_lock);
2051                mutex_unlock(&cgroup_mutex);
2052
2053                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2054                dput(fc->root);
2055                if (IS_ERR(nsdentry)) {
2056                        deactivate_locked_super(sb);
2057                        ret = PTR_ERR(nsdentry);
2058                        nsdentry = NULL;
2059                }
2060                fc->root = nsdentry;
2061        }
2062
2063        if (!ctx->kfc.new_sb_created)
2064                cgroup_put(&ctx->root->cgrp);
2065
2066        return ret;
2067}
2068
2069/*
2070 * Destroy a cgroup filesystem context.
2071 */
2072static void cgroup_fs_context_free(struct fs_context *fc)
2073{
2074        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075
2076        kfree(ctx->name);
2077        kfree(ctx->release_agent);
2078        put_cgroup_ns(ctx->ns);
2079        kernfs_free_fs_context(fc);
2080        kfree(ctx);
2081}
2082
2083static int cgroup_get_tree(struct fs_context *fc)
2084{
2085        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2086        int ret;
2087
2088        cgrp_dfl_visible = true;
2089        cgroup_get_live(&cgrp_dfl_root.cgrp);
2090        ctx->root = &cgrp_dfl_root;
2091
2092        ret = cgroup_do_get_tree(fc);
2093        if (!ret)
2094                apply_cgroup_root_flags(ctx->flags);
2095        return ret;
2096}
2097
2098static const struct fs_context_operations cgroup_fs_context_ops = {
2099        .free           = cgroup_fs_context_free,
2100        .parse_param    = cgroup2_parse_param,
2101        .get_tree       = cgroup_get_tree,
2102        .reconfigure    = cgroup_reconfigure,
2103};
2104
2105static const struct fs_context_operations cgroup1_fs_context_ops = {
2106        .free           = cgroup_fs_context_free,
2107        .parse_param    = cgroup1_parse_param,
2108        .get_tree       = cgroup1_get_tree,
2109        .reconfigure    = cgroup1_reconfigure,
2110};
2111
2112/*
2113 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2114 * we select the namespace we're going to use.
2115 */
2116static int cgroup_init_fs_context(struct fs_context *fc)
2117{
2118        struct cgroup_fs_context *ctx;
2119
2120        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2121        if (!ctx)
2122                return -ENOMEM;
2123
2124        ctx->ns = current->nsproxy->cgroup_ns;
2125        get_cgroup_ns(ctx->ns);
2126        fc->fs_private = &ctx->kfc;
2127        if (fc->fs_type == &cgroup2_fs_type)
2128                fc->ops = &cgroup_fs_context_ops;
2129        else
2130                fc->ops = &cgroup1_fs_context_ops;
2131        put_user_ns(fc->user_ns);
2132        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2133        fc->global = true;
2134        return 0;
2135}
2136
2137static void cgroup_kill_sb(struct super_block *sb)
2138{
2139        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141
2142        /*
2143         * If @root doesn't have any children, start killing it.
2144         * This prevents new mounts by disabling percpu_ref_tryget_live().
2145         * cgroup_mount() may wait for @root's release.
2146         *
2147         * And don't kill the default root.
2148         */
2149        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2150            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2151                percpu_ref_kill(&root->cgrp.self.refcnt);
2152        cgroup_put(&root->cgrp);
2153        kernfs_kill_sb(sb);
2154}
2155
2156struct file_system_type cgroup_fs_type = {
2157        .name                   = "cgroup",
2158        .init_fs_context        = cgroup_init_fs_context,
2159        .parameters             = cgroup1_fs_parameters,
2160        .kill_sb                = cgroup_kill_sb,
2161        .fs_flags               = FS_USERNS_MOUNT,
2162};
2163
2164static struct file_system_type cgroup2_fs_type = {
2165        .name                   = "cgroup2",
2166        .init_fs_context        = cgroup_init_fs_context,
2167        .parameters             = cgroup2_fs_parameters,
2168        .kill_sb                = cgroup_kill_sb,
2169        .fs_flags               = FS_USERNS_MOUNT,
2170};
2171
2172#ifdef CONFIG_CPUSETS
2173static const struct fs_context_operations cpuset_fs_context_ops = {
2174        .get_tree       = cgroup1_get_tree,
2175        .free           = cgroup_fs_context_free,
2176};
2177
2178/*
2179 * This is ugly, but preserves the userspace API for existing cpuset
2180 * users. If someone tries to mount the "cpuset" filesystem, we
2181 * silently switch it to mount "cgroup" instead
2182 */
2183static int cpuset_init_fs_context(struct fs_context *fc)
2184{
2185        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2186        struct cgroup_fs_context *ctx;
2187        int err;
2188
2189        err = cgroup_init_fs_context(fc);
2190        if (err) {
2191                kfree(agent);
2192                return err;
2193        }
2194
2195        fc->ops = &cpuset_fs_context_ops;
2196
2197        ctx = cgroup_fc2context(fc);
2198        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2199        ctx->flags |= CGRP_ROOT_NOPREFIX;
2200        ctx->release_agent = agent;
2201
2202        get_filesystem(&cgroup_fs_type);
2203        put_filesystem(fc->fs_type);
2204        fc->fs_type = &cgroup_fs_type;
2205
2206        return 0;
2207}
2208
2209static struct file_system_type cpuset_fs_type = {
2210        .name                   = "cpuset",
2211        .init_fs_context        = cpuset_init_fs_context,
2212        .fs_flags               = FS_USERNS_MOUNT,
2213};
2214#endif
2215
2216int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2217                          struct cgroup_namespace *ns)
2218{
2219        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2220
2221        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2222}
2223
2224int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2225                   struct cgroup_namespace *ns)
2226{
2227        int ret;
2228
2229        mutex_lock(&cgroup_mutex);
2230        spin_lock_irq(&css_set_lock);
2231
2232        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2233
2234        spin_unlock_irq(&css_set_lock);
2235        mutex_unlock(&cgroup_mutex);
2236
2237        return ret;
2238}
2239EXPORT_SYMBOL_GPL(cgroup_path_ns);
2240
2241/**
2242 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2243 * @task: target task
2244 * @buf: the buffer to write the path into
2245 * @buflen: the length of the buffer
2246 *
2247 * Determine @task's cgroup on the first (the one with the lowest non-zero
2248 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2249 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2250 * cgroup controller callbacks.
2251 *
2252 * Return value is the same as kernfs_path().
2253 */
2254int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2255{
2256        struct cgroup_root *root;
2257        struct cgroup *cgrp;
2258        int hierarchy_id = 1;
2259        int ret;
2260
2261        mutex_lock(&cgroup_mutex);
2262        spin_lock_irq(&css_set_lock);
2263
2264        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2265
2266        if (root) {
2267                cgrp = task_cgroup_from_root(task, root);
2268                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2269        } else {
2270                /* if no hierarchy exists, everyone is in "/" */
2271                ret = strlcpy(buf, "/", buflen);
2272        }
2273
2274        spin_unlock_irq(&css_set_lock);
2275        mutex_unlock(&cgroup_mutex);
2276        return ret;
2277}
2278EXPORT_SYMBOL_GPL(task_cgroup_path);
2279
2280/**
2281 * cgroup_migrate_add_task - add a migration target task to a migration context
2282 * @task: target task
2283 * @mgctx: target migration context
2284 *
2285 * Add @task, which is a migration target, to @mgctx->tset.  This function
2286 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2287 * should have been added as a migration source and @task->cg_list will be
2288 * moved from the css_set's tasks list to mg_tasks one.
2289 */
2290static void cgroup_migrate_add_task(struct task_struct *task,
2291                                    struct cgroup_mgctx *mgctx)
2292{
2293        struct css_set *cset;
2294
2295        lockdep_assert_held(&css_set_lock);
2296
2297        /* @task either already exited or can't exit until the end */
2298        if (task->flags & PF_EXITING)
2299                return;
2300
2301        /* cgroup_threadgroup_rwsem protects racing against forks */
2302        WARN_ON_ONCE(list_empty(&task->cg_list));
2303
2304        cset = task_css_set(task);
2305        if (!cset->mg_src_cgrp)
2306                return;
2307
2308        mgctx->tset.nr_tasks++;
2309
2310        list_move_tail(&task->cg_list, &cset->mg_tasks);
2311        if (list_empty(&cset->mg_node))
2312                list_add_tail(&cset->mg_node,
2313                              &mgctx->tset.src_csets);
2314        if (list_empty(&cset->mg_dst_cset->mg_node))
2315                list_add_tail(&cset->mg_dst_cset->mg_node,
2316                              &mgctx->tset.dst_csets);
2317}
2318
2319/**
2320 * cgroup_taskset_first - reset taskset and return the first task
2321 * @tset: taskset of interest
2322 * @dst_cssp: output variable for the destination css
2323 *
2324 * @tset iteration is initialized and the first task is returned.
2325 */
2326struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2327                                         struct cgroup_subsys_state **dst_cssp)
2328{
2329        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2330        tset->cur_task = NULL;
2331
2332        return cgroup_taskset_next(tset, dst_cssp);
2333}
2334
2335/**
2336 * cgroup_taskset_next - iterate to the next task in taskset
2337 * @tset: taskset of interest
2338 * @dst_cssp: output variable for the destination css
2339 *
2340 * Return the next task in @tset.  Iteration must have been initialized
2341 * with cgroup_taskset_first().
2342 */
2343struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2344                                        struct cgroup_subsys_state **dst_cssp)
2345{
2346        struct css_set *cset = tset->cur_cset;
2347        struct task_struct *task = tset->cur_task;
2348
2349        while (&cset->mg_node != tset->csets) {
2350                if (!task)
2351                        task = list_first_entry(&cset->mg_tasks,
2352                                                struct task_struct, cg_list);
2353                else
2354                        task = list_next_entry(task, cg_list);
2355
2356                if (&task->cg_list != &cset->mg_tasks) {
2357                        tset->cur_cset = cset;
2358                        tset->cur_task = task;
2359
2360                        /*
2361                         * This function may be called both before and
2362                         * after cgroup_taskset_migrate().  The two cases
2363                         * can be distinguished by looking at whether @cset
2364                         * has its ->mg_dst_cset set.
2365                         */
2366                        if (cset->mg_dst_cset)
2367                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2368                        else
2369                                *dst_cssp = cset->subsys[tset->ssid];
2370
2371                        return task;
2372                }
2373
2374                cset = list_next_entry(cset, mg_node);
2375                task = NULL;
2376        }
2377
2378        return NULL;
2379}
2380
2381/**
2382 * cgroup_taskset_migrate - migrate a taskset
2383 * @mgctx: migration context
2384 *
2385 * Migrate tasks in @mgctx as setup by migration preparation functions.
2386 * This function fails iff one of the ->can_attach callbacks fails and
2387 * guarantees that either all or none of the tasks in @mgctx are migrated.
2388 * @mgctx is consumed regardless of success.
2389 */
2390static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2391{
2392        struct cgroup_taskset *tset = &mgctx->tset;
2393        struct cgroup_subsys *ss;
2394        struct task_struct *task, *tmp_task;
2395        struct css_set *cset, *tmp_cset;
2396        int ssid, failed_ssid, ret;
2397
2398        /* check that we can legitimately attach to the cgroup */
2399        if (tset->nr_tasks) {
2400                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2401                        if (ss->can_attach) {
2402                                tset->ssid = ssid;
2403                                ret = ss->can_attach(tset);
2404                                if (ret) {
2405                                        failed_ssid = ssid;
2406                                        goto out_cancel_attach;
2407                                }
2408                        }
2409                } while_each_subsys_mask();
2410        }
2411
2412        /*
2413         * Now that we're guaranteed success, proceed to move all tasks to
2414         * the new cgroup.  There are no failure cases after here, so this
2415         * is the commit point.
2416         */
2417        spin_lock_irq(&css_set_lock);
2418        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2419                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2420                        struct css_set *from_cset = task_css_set(task);
2421                        struct css_set *to_cset = cset->mg_dst_cset;
2422
2423                        get_css_set(to_cset);
2424                        to_cset->nr_tasks++;
2425                        css_set_move_task(task, from_cset, to_cset, true);
2426                        from_cset->nr_tasks--;
2427                        /*
2428                         * If the source or destination cgroup is frozen,
2429                         * the task might require to change its state.
2430                         */
2431                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2432                                                    to_cset->dfl_cgrp);
2433                        put_css_set_locked(from_cset);
2434
2435                }
2436        }
2437        spin_unlock_irq(&css_set_lock);
2438
2439        /*
2440         * Migration is committed, all target tasks are now on dst_csets.
2441         * Nothing is sensitive to fork() after this point.  Notify
2442         * controllers that migration is complete.
2443         */
2444        tset->csets = &tset->dst_csets;
2445
2446        if (tset->nr_tasks) {
2447                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2448                        if (ss->attach) {
2449                                tset->ssid = ssid;
2450                                ss->attach(tset);
2451                        }
2452                } while_each_subsys_mask();
2453        }
2454
2455        ret = 0;
2456        goto out_release_tset;
2457
2458out_cancel_attach:
2459        if (tset->nr_tasks) {
2460                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2461                        if (ssid == failed_ssid)
2462                                break;
2463                        if (ss->cancel_attach) {
2464                                tset->ssid = ssid;
2465                                ss->cancel_attach(tset);
2466                        }
2467                } while_each_subsys_mask();
2468        }
2469out_release_tset:
2470        spin_lock_irq(&css_set_lock);
2471        list_splice_init(&tset->dst_csets, &tset->src_csets);
2472        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474                list_del_init(&cset->mg_node);
2475        }
2476        spin_unlock_irq(&css_set_lock);
2477
2478        /*
2479         * Re-initialize the cgroup_taskset structure in case it is reused
2480         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2481         * iteration.
2482         */
2483        tset->nr_tasks = 0;
2484        tset->csets    = &tset->src_csets;
2485        return ret;
2486}
2487
2488/**
2489 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2490 * @dst_cgrp: destination cgroup to test
2491 *
2492 * On the default hierarchy, except for the mixable, (possible) thread root
2493 * and threaded cgroups, subtree_control must be zero for migration
2494 * destination cgroups with tasks so that child cgroups don't compete
2495 * against tasks.
2496 */
2497int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2498{
2499        /* v1 doesn't have any restriction */
2500        if (!cgroup_on_dfl(dst_cgrp))
2501                return 0;
2502
2503        /* verify @dst_cgrp can host resources */
2504        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2505                return -EOPNOTSUPP;
2506
2507        /* mixables don't care */
2508        if (cgroup_is_mixable(dst_cgrp))
2509                return 0;
2510
2511        /*
2512         * If @dst_cgrp is already or can become a thread root or is
2513         * threaded, it doesn't matter.
2514         */
2515        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2516                return 0;
2517
2518        /* apply no-internal-process constraint */
2519        if (dst_cgrp->subtree_control)
2520                return -EBUSY;
2521
2522        return 0;
2523}
2524
2525/**
2526 * cgroup_migrate_finish - cleanup after attach
2527 * @mgctx: migration context
2528 *
2529 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2530 * those functions for details.
2531 */
2532void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2533{
2534        LIST_HEAD(preloaded);
2535        struct css_set *cset, *tmp_cset;
2536
2537        lockdep_assert_held(&cgroup_mutex);
2538
2539        spin_lock_irq(&css_set_lock);
2540
2541        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2542        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2543
2544        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2545                cset->mg_src_cgrp = NULL;
2546                cset->mg_dst_cgrp = NULL;
2547                cset->mg_dst_cset = NULL;
2548                list_del_init(&cset->mg_preload_node);
2549                put_css_set_locked(cset);
2550        }
2551
2552        spin_unlock_irq(&css_set_lock);
2553}
2554
2555/**
2556 * cgroup_migrate_add_src - add a migration source css_set
2557 * @src_cset: the source css_set to add
2558 * @dst_cgrp: the destination cgroup
2559 * @mgctx: migration context
2560 *
2561 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2562 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2563 * up by cgroup_migrate_finish().
2564 *
2565 * This function may be called without holding cgroup_threadgroup_rwsem
2566 * even if the target is a process.  Threads may be created and destroyed
2567 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2568 * into play and the preloaded css_sets are guaranteed to cover all
2569 * migrations.
2570 */
2571void cgroup_migrate_add_src(struct css_set *src_cset,
2572                            struct cgroup *dst_cgrp,
2573                            struct cgroup_mgctx *mgctx)
2574{
2575        struct cgroup *src_cgrp;
2576
2577        lockdep_assert_held(&cgroup_mutex);
2578        lockdep_assert_held(&css_set_lock);
2579
2580        /*
2581         * If ->dead, @src_set is associated with one or more dead cgroups
2582         * and doesn't contain any migratable tasks.  Ignore it early so
2583         * that the rest of migration path doesn't get confused by it.
2584         */
2585        if (src_cset->dead)
2586                return;
2587
2588        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2589
2590        if (!list_empty(&src_cset->mg_preload_node))
2591                return;
2592
2593        WARN_ON(src_cset->mg_src_cgrp);
2594        WARN_ON(src_cset->mg_dst_cgrp);
2595        WARN_ON(!list_empty(&src_cset->mg_tasks));
2596        WARN_ON(!list_empty(&src_cset->mg_node));
2597
2598        src_cset->mg_src_cgrp = src_cgrp;
2599        src_cset->mg_dst_cgrp = dst_cgrp;
2600        get_css_set(src_cset);
2601        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2602}
2603
2604/**
2605 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2606 * @mgctx: migration context
2607 *
2608 * Tasks are about to be moved and all the source css_sets have been
2609 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2610 * pins all destination css_sets, links each to its source, and append them
2611 * to @mgctx->preloaded_dst_csets.
2612 *
2613 * This function must be called after cgroup_migrate_add_src() has been
2614 * called on each migration source css_set.  After migration is performed
2615 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2616 * @mgctx.
2617 */
2618int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2619{
2620        struct css_set *src_cset, *tmp_cset;
2621
2622        lockdep_assert_held(&cgroup_mutex);
2623
2624        /* look up the dst cset for each src cset and link it to src */
2625        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2626                                 mg_preload_node) {
2627                struct css_set *dst_cset;
2628                struct cgroup_subsys *ss;
2629                int ssid;
2630
2631                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2632                if (!dst_cset)
2633                        return -ENOMEM;
2634
2635                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2636
2637                /*
2638                 * If src cset equals dst, it's noop.  Drop the src.
2639                 * cgroup_migrate() will skip the cset too.  Note that we
2640                 * can't handle src == dst as some nodes are used by both.
2641                 */
2642                if (src_cset == dst_cset) {
2643                        src_cset->mg_src_cgrp = NULL;
2644                        src_cset->mg_dst_cgrp = NULL;
2645                        list_del_init(&src_cset->mg_preload_node);
2646                        put_css_set(src_cset);
2647                        put_css_set(dst_cset);
2648                        continue;
2649                }
2650
2651                src_cset->mg_dst_cset = dst_cset;
2652
2653                if (list_empty(&dst_cset->mg_preload_node))
2654                        list_add_tail(&dst_cset->mg_preload_node,
2655                                      &mgctx->preloaded_dst_csets);
2656                else
2657                        put_css_set(dst_cset);
2658
2659                for_each_subsys(ss, ssid)
2660                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2661                                mgctx->ss_mask |= 1 << ssid;
2662        }
2663
2664        return 0;
2665}
2666
2667/**
2668 * cgroup_migrate - migrate a process or task to a cgroup
2669 * @leader: the leader of the process or the task to migrate
2670 * @threadgroup: whether @leader points to the whole process or a single task
2671 * @mgctx: migration context
2672 *
2673 * Migrate a process or task denoted by @leader.  If migrating a process,
2674 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2675 * responsible for invoking cgroup_migrate_add_src() and
2676 * cgroup_migrate_prepare_dst() on the targets before invoking this
2677 * function and following up with cgroup_migrate_finish().
2678 *
2679 * As long as a controller's ->can_attach() doesn't fail, this function is
2680 * guaranteed to succeed.  This means that, excluding ->can_attach()
2681 * failure, when migrating multiple targets, the success or failure can be
2682 * decided for all targets by invoking group_migrate_prepare_dst() before
2683 * actually starting migrating.
2684 */
2685int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2686                   struct cgroup_mgctx *mgctx)
2687{
2688        struct task_struct *task;
2689
2690        /*
2691         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2692         * already PF_EXITING could be freed from underneath us unless we
2693         * take an rcu_read_lock.
2694         */
2695        spin_lock_irq(&css_set_lock);
2696        rcu_read_lock();
2697        task = leader;
2698        do {
2699                cgroup_migrate_add_task(task, mgctx);
2700                if (!threadgroup)
2701                        break;
2702        } while_each_thread(leader, task);
2703        rcu_read_unlock();
2704        spin_unlock_irq(&css_set_lock);
2705
2706        return cgroup_migrate_execute(mgctx);
2707}
2708
2709/**
2710 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2711 * @dst_cgrp: the cgroup to attach to
2712 * @leader: the task or the leader of the threadgroup to be attached
2713 * @threadgroup: attach the whole threadgroup?
2714 *
2715 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2716 */
2717int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2718                       bool threadgroup)
2719{
2720        DEFINE_CGROUP_MGCTX(mgctx);
2721        struct task_struct *task;
2722        int ret = 0;
2723
2724        /* look up all src csets */
2725        spin_lock_irq(&css_set_lock);
2726        rcu_read_lock();
2727        task = leader;
2728        do {
2729                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2730                if (!threadgroup)
2731                        break;
2732        } while_each_thread(leader, task);
2733        rcu_read_unlock();
2734        spin_unlock_irq(&css_set_lock);
2735
2736        /* prepare dst csets and commit */
2737        ret = cgroup_migrate_prepare_dst(&mgctx);
2738        if (!ret)
2739                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2740
2741        cgroup_migrate_finish(&mgctx);
2742
2743        if (!ret)
2744                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2745
2746        return ret;
2747}
2748
2749struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2750                                             bool *locked)
2751        __acquires(&cgroup_threadgroup_rwsem)
2752{
2753        struct task_struct *tsk;
2754        pid_t pid;
2755
2756        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2757                return ERR_PTR(-EINVAL);
2758
2759        /*
2760         * If we migrate a single thread, we don't care about threadgroup
2761         * stability. If the thread is `current`, it won't exit(2) under our
2762         * hands or change PID through exec(2). We exclude
2763         * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2764         * callers by cgroup_mutex.
2765         * Therefore, we can skip the global lock.
2766         */
2767        lockdep_assert_held(&cgroup_mutex);
2768        if (pid || threadgroup) {
2769                percpu_down_write(&cgroup_threadgroup_rwsem);
2770                *locked = true;
2771        } else {
2772                *locked = false;
2773        }
2774
2775        rcu_read_lock();
2776        if (pid) {
2777                tsk = find_task_by_vpid(pid);
2778                if (!tsk) {
2779                        tsk = ERR_PTR(-ESRCH);
2780                        goto out_unlock_threadgroup;
2781                }
2782        } else {
2783                tsk = current;
2784        }
2785
2786        if (threadgroup)
2787                tsk = tsk->group_leader;
2788
2789        /*
2790         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2791         * If userland migrates such a kthread to a non-root cgroup, it can
2792         * become trapped in a cpuset, or RT kthread may be born in a
2793         * cgroup with no rt_runtime allocated.  Just say no.
2794         */
2795        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2796                tsk = ERR_PTR(-EINVAL);
2797                goto out_unlock_threadgroup;
2798        }
2799
2800        get_task_struct(tsk);
2801        goto out_unlock_rcu;
2802
2803out_unlock_threadgroup:
2804        if (*locked) {
2805                percpu_up_write(&cgroup_threadgroup_rwsem);
2806                *locked = false;
2807        }
2808out_unlock_rcu:
2809        rcu_read_unlock();
2810        return tsk;
2811}
2812
2813void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2814        __releases(&cgroup_threadgroup_rwsem)
2815{
2816        struct cgroup_subsys *ss;
2817        int ssid;
2818
2819        /* release reference from cgroup_procs_write_start() */
2820        put_task_struct(task);
2821
2822        if (locked)
2823                percpu_up_write(&cgroup_threadgroup_rwsem);
2824        for_each_subsys(ss, ssid)
2825                if (ss->post_attach)
2826                        ss->post_attach();
2827}
2828
2829static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2830{
2831        struct cgroup_subsys *ss;
2832        bool printed = false;
2833        int ssid;
2834
2835        do_each_subsys_mask(ss, ssid, ss_mask) {
2836                if (printed)
2837                        seq_putc(seq, ' ');
2838                seq_puts(seq, ss->name);
2839                printed = true;
2840        } while_each_subsys_mask();
2841        if (printed)
2842                seq_putc(seq, '\n');
2843}
2844
2845/* show controllers which are enabled from the parent */
2846static int cgroup_controllers_show(struct seq_file *seq, void *v)
2847{
2848        struct cgroup *cgrp = seq_css(seq)->cgroup;
2849
2850        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2851        return 0;
2852}
2853
2854/* show controllers which are enabled for a given cgroup's children */
2855static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2856{
2857        struct cgroup *cgrp = seq_css(seq)->cgroup;
2858
2859        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2860        return 0;
2861}
2862
2863/**
2864 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2865 * @cgrp: root of the subtree to update csses for
2866 *
2867 * @cgrp's control masks have changed and its subtree's css associations
2868 * need to be updated accordingly.  This function looks up all css_sets
2869 * which are attached to the subtree, creates the matching updated css_sets
2870 * and migrates the tasks to the new ones.
2871 */
2872static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2873{
2874        DEFINE_CGROUP_MGCTX(mgctx);
2875        struct cgroup_subsys_state *d_css;
2876        struct cgroup *dsct;
2877        struct css_set *src_cset;
2878        int ret;
2879
2880        lockdep_assert_held(&cgroup_mutex);
2881
2882        percpu_down_write(&cgroup_threadgroup_rwsem);
2883
2884        /* look up all csses currently attached to @cgrp's subtree */
2885        spin_lock_irq(&css_set_lock);
2886        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2887                struct cgrp_cset_link *link;
2888
2889                list_for_each_entry(link, &dsct->cset_links, cset_link)
2890                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2891        }
2892        spin_unlock_irq(&css_set_lock);
2893
2894        /* NULL dst indicates self on default hierarchy */
2895        ret = cgroup_migrate_prepare_dst(&mgctx);
2896        if (ret)
2897                goto out_finish;
2898
2899        spin_lock_irq(&css_set_lock);
2900        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2901                struct task_struct *task, *ntask;
2902
2903                /* all tasks in src_csets need to be migrated */
2904                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2905                        cgroup_migrate_add_task(task, &mgctx);
2906        }
2907        spin_unlock_irq(&css_set_lock);
2908
2909        ret = cgroup_migrate_execute(&mgctx);
2910out_finish:
2911        cgroup_migrate_finish(&mgctx);
2912        percpu_up_write(&cgroup_threadgroup_rwsem);
2913        return ret;
2914}
2915
2916/**
2917 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2918 * @cgrp: root of the target subtree
2919 *
2920 * Because css offlining is asynchronous, userland may try to re-enable a
2921 * controller while the previous css is still around.  This function grabs
2922 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2923 */
2924void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2925        __acquires(&cgroup_mutex)
2926{
2927        struct cgroup *dsct;
2928        struct cgroup_subsys_state *d_css;
2929        struct cgroup_subsys *ss;
2930        int ssid;
2931
2932restart:
2933        mutex_lock(&cgroup_mutex);
2934
2935        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2936                for_each_subsys(ss, ssid) {
2937                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2938                        DEFINE_WAIT(wait);
2939
2940                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2941                                continue;
2942
2943                        cgroup_get_live(dsct);
2944                        prepare_to_wait(&dsct->offline_waitq, &wait,
2945                                        TASK_UNINTERRUPTIBLE);
2946
2947                        mutex_unlock(&cgroup_mutex);
2948                        schedule();
2949                        finish_wait(&dsct->offline_waitq, &wait);
2950
2951                        cgroup_put(dsct);
2952                        goto restart;
2953                }
2954        }
2955}
2956
2957/**
2958 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2959 * @cgrp: root of the target subtree
2960 *
2961 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2962 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2963 * itself.
2964 */
2965static void cgroup_save_control(struct cgroup *cgrp)
2966{
2967        struct cgroup *dsct;
2968        struct cgroup_subsys_state *d_css;
2969
2970        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2971                dsct->old_subtree_control = dsct->subtree_control;
2972                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2973                dsct->old_dom_cgrp = dsct->dom_cgrp;
2974        }
2975}
2976
2977/**
2978 * cgroup_propagate_control - refresh control masks of a subtree
2979 * @cgrp: root of the target subtree
2980 *
2981 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2982 * ->subtree_control and propagate controller availability through the
2983 * subtree so that descendants don't have unavailable controllers enabled.
2984 */
2985static void cgroup_propagate_control(struct cgroup *cgrp)
2986{
2987        struct cgroup *dsct;
2988        struct cgroup_subsys_state *d_css;
2989
2990        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2991                dsct->subtree_control &= cgroup_control(dsct);
2992                dsct->subtree_ss_mask =
2993                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2994                                                    cgroup_ss_mask(dsct));
2995        }
2996}
2997
2998/**
2999 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3000 * @cgrp: root of the target subtree
3001 *
3002 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3003 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3004 * itself.
3005 */
3006static void cgroup_restore_control(struct cgroup *cgrp)
3007{
3008        struct cgroup *dsct;
3009        struct cgroup_subsys_state *d_css;
3010
3011        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3012                dsct->subtree_control = dsct->old_subtree_control;
3013                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3014                dsct->dom_cgrp = dsct->old_dom_cgrp;
3015        }
3016}
3017
3018static bool css_visible(struct cgroup_subsys_state *css)
3019{
3020        struct cgroup_subsys *ss = css->ss;
3021        struct cgroup *cgrp = css->cgroup;
3022
3023        if (cgroup_control(cgrp) & (1 << ss->id))
3024                return true;
3025        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3026                return false;
3027        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3028}
3029
3030/**
3031 * cgroup_apply_control_enable - enable or show csses according to control
3032 * @cgrp: root of the target subtree
3033 *
3034 * Walk @cgrp's subtree and create new csses or make the existing ones
3035 * visible.  A css is created invisible if it's being implicitly enabled
3036 * through dependency.  An invisible css is made visible when the userland
3037 * explicitly enables it.
3038 *
3039 * Returns 0 on success, -errno on failure.  On failure, csses which have
3040 * been processed already aren't cleaned up.  The caller is responsible for
3041 * cleaning up with cgroup_apply_control_disable().
3042 */
3043static int cgroup_apply_control_enable(struct cgroup *cgrp)
3044{
3045        struct cgroup *dsct;
3046        struct cgroup_subsys_state *d_css;
3047        struct cgroup_subsys *ss;
3048        int ssid, ret;
3049
3050        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3051                for_each_subsys(ss, ssid) {
3052                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3053
3054                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3055                                continue;
3056
3057                        if (!css) {
3058                                css = css_create(dsct, ss);
3059                                if (IS_ERR(css))
3060                                        return PTR_ERR(css);
3061                        }
3062
3063                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3064
3065                        if (css_visible(css)) {
3066                                ret = css_populate_dir(css);
3067                                if (ret)
3068                                        return ret;
3069                        }
3070                }
3071        }
3072
3073        return 0;
3074}
3075
3076/**
3077 * cgroup_apply_control_disable - kill or hide csses according to control
3078 * @cgrp: root of the target subtree
3079 *
3080 * Walk @cgrp's subtree and kill and hide csses so that they match
3081 * cgroup_ss_mask() and cgroup_visible_mask().
3082 *
3083 * A css is hidden when the userland requests it to be disabled while other
3084 * subsystems are still depending on it.  The css must not actively control
3085 * resources and be in the vanilla state if it's made visible again later.
3086 * Controllers which may be depended upon should provide ->css_reset() for
3087 * this purpose.
3088 */
3089static void cgroup_apply_control_disable(struct cgroup *cgrp)
3090{
3091        struct cgroup *dsct;
3092        struct cgroup_subsys_state *d_css;
3093        struct cgroup_subsys *ss;
3094        int ssid;
3095
3096        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3097                for_each_subsys(ss, ssid) {
3098                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3099
3100                        if (!css)
3101                                continue;
3102
3103                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3104
3105                        if (css->parent &&
3106                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3107                                kill_css(css);
3108                        } else if (!css_visible(css)) {
3109                                css_clear_dir(css);
3110                                if (ss->css_reset)
3111                                        ss->css_reset(css);
3112                        }
3113                }
3114        }
3115}
3116
3117/**
3118 * cgroup_apply_control - apply control mask updates to the subtree
3119 * @cgrp: root of the target subtree
3120 *
3121 * subsystems can be enabled and disabled in a subtree using the following
3122 * steps.
3123 *
3124 * 1. Call cgroup_save_control() to stash the current state.
3125 * 2. Update ->subtree_control masks in the subtree as desired.
3126 * 3. Call cgroup_apply_control() to apply the changes.
3127 * 4. Optionally perform other related operations.
3128 * 5. Call cgroup_finalize_control() to finish up.
3129 *
3130 * This function implements step 3 and propagates the mask changes
3131 * throughout @cgrp's subtree, updates csses accordingly and perform
3132 * process migrations.
3133 */
3134static int cgroup_apply_control(struct cgroup *cgrp)
3135{
3136        int ret;
3137
3138        cgroup_propagate_control(cgrp);
3139
3140        ret = cgroup_apply_control_enable(cgrp);
3141        if (ret)
3142                return ret;
3143
3144        /*
3145         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3146         * making the following cgroup_update_dfl_csses() properly update
3147         * css associations of all tasks in the subtree.
3148         */
3149        ret = cgroup_update_dfl_csses(cgrp);
3150        if (ret)
3151                return ret;
3152
3153        return 0;
3154}
3155
3156/**
3157 * cgroup_finalize_control - finalize control mask update
3158 * @cgrp: root of the target subtree
3159 * @ret: the result of the update
3160 *
3161 * Finalize control mask update.  See cgroup_apply_control() for more info.
3162 */
3163static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3164{
3165        if (ret) {
3166                cgroup_restore_control(cgrp);
3167                cgroup_propagate_control(cgrp);
3168        }
3169
3170        cgroup_apply_control_disable(cgrp);
3171}
3172
3173static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3174{
3175        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3176
3177        /* if nothing is getting enabled, nothing to worry about */
3178        if (!enable)
3179                return 0;
3180
3181        /* can @cgrp host any resources? */
3182        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3183                return -EOPNOTSUPP;
3184
3185        /* mixables don't care */
3186        if (cgroup_is_mixable(cgrp))
3187                return 0;
3188
3189        if (domain_enable) {
3190                /* can't enable domain controllers inside a thread subtree */
3191                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3192                        return -EOPNOTSUPP;
3193        } else {
3194                /*
3195                 * Threaded controllers can handle internal competitions
3196                 * and are always allowed inside a (prospective) thread
3197                 * subtree.
3198                 */
3199                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3200                        return 0;
3201        }
3202
3203        /*
3204         * Controllers can't be enabled for a cgroup with tasks to avoid
3205         * child cgroups competing against tasks.
3206         */
3207        if (cgroup_has_tasks(cgrp))
3208                return -EBUSY;
3209
3210        return 0;
3211}
3212
3213/* change the enabled child controllers for a cgroup in the default hierarchy */
3214static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3215                                            char *buf, size_t nbytes,
3216                                            loff_t off)
3217{
3218        u16 enable = 0, disable = 0;
3219        struct cgroup *cgrp, *child;
3220        struct cgroup_subsys *ss;
3221        char *tok;
3222        int ssid, ret;
3223
3224        /*
3225         * Parse input - space separated list of subsystem names prefixed
3226         * with either + or -.
3227         */
3228        buf = strstrip(buf);
3229        while ((tok = strsep(&buf, " "))) {
3230                if (tok[0] == '\0')
3231                        continue;
3232                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3233                        if (!cgroup_ssid_enabled(ssid) ||
3234                            strcmp(tok + 1, ss->name))
3235                                continue;
3236
3237                        if (*tok == '+') {
3238                                enable |= 1 << ssid;
3239                                disable &= ~(1 << ssid);
3240                        } else if (*tok == '-') {
3241                                disable |= 1 << ssid;
3242                                enable &= ~(1 << ssid);
3243                        } else {
3244                                return -EINVAL;
3245                        }
3246                        break;
3247                } while_each_subsys_mask();
3248                if (ssid == CGROUP_SUBSYS_COUNT)
3249                        return -EINVAL;
3250        }
3251
3252        cgrp = cgroup_kn_lock_live(of->kn, true);
3253        if (!cgrp)
3254                return -ENODEV;
3255
3256        for_each_subsys(ss, ssid) {
3257                if (enable & (1 << ssid)) {
3258                        if (cgrp->subtree_control & (1 << ssid)) {
3259                                enable &= ~(1 << ssid);
3260                                continue;
3261                        }
3262
3263                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3264                                ret = -ENOENT;
3265                                goto out_unlock;
3266                        }
3267                } else if (disable & (1 << ssid)) {
3268                        if (!(cgrp->subtree_control & (1 << ssid))) {
3269                                disable &= ~(1 << ssid);
3270                                continue;
3271                        }
3272
3273                        /* a child has it enabled? */
3274                        cgroup_for_each_live_child(child, cgrp) {
3275                                if (child->subtree_control & (1 << ssid)) {
3276                                        ret = -EBUSY;
3277                                        goto out_unlock;
3278                                }
3279                        }
3280                }
3281        }
3282
3283        if (!enable && !disable) {
3284                ret = 0;
3285                goto out_unlock;
3286        }
3287
3288        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3289        if (ret)
3290                goto out_unlock;
3291
3292        /* save and update control masks and prepare csses */
3293        cgroup_save_control(cgrp);
3294
3295        cgrp->subtree_control |= enable;
3296        cgrp->subtree_control &= ~disable;
3297
3298        ret = cgroup_apply_control(cgrp);
3299        cgroup_finalize_control(cgrp, ret);
3300        if (ret)
3301                goto out_unlock;
3302
3303        kernfs_activate(cgrp->kn);
3304out_unlock:
3305        cgroup_kn_unlock(of->kn);
3306        return ret ?: nbytes;
3307}
3308
3309/**
3310 * cgroup_enable_threaded - make @cgrp threaded
3311 * @cgrp: the target cgroup
3312 *
3313 * Called when "threaded" is written to the cgroup.type interface file and
3314 * tries to make @cgrp threaded and join the parent's resource domain.
3315 * This function is never called on the root cgroup as cgroup.type doesn't
3316 * exist on it.
3317 */
3318static int cgroup_enable_threaded(struct cgroup *cgrp)
3319{
3320        struct cgroup *parent = cgroup_parent(cgrp);
3321        struct cgroup *dom_cgrp = parent->dom_cgrp;
3322        struct cgroup *dsct;
3323        struct cgroup_subsys_state *d_css;
3324        int ret;
3325
3326        lockdep_assert_held(&cgroup_mutex);
3327
3328        /* noop if already threaded */
3329        if (cgroup_is_threaded(cgrp))
3330                return 0;
3331
3332        /*
3333         * If @cgroup is populated or has domain controllers enabled, it
3334         * can't be switched.  While the below cgroup_can_be_thread_root()
3335         * test can catch the same conditions, that's only when @parent is
3336         * not mixable, so let's check it explicitly.
3337         */
3338        if (cgroup_is_populated(cgrp) ||
3339            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3340                return -EOPNOTSUPP;
3341
3342        /* we're joining the parent's domain, ensure its validity */
3343        if (!cgroup_is_valid_domain(dom_cgrp) ||
3344            !cgroup_can_be_thread_root(dom_cgrp))
3345                return -EOPNOTSUPP;
3346
3347        /*
3348         * The following shouldn't cause actual migrations and should
3349         * always succeed.
3350         */
3351        cgroup_save_control(cgrp);
3352
3353        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3354                if (dsct == cgrp || cgroup_is_threaded(dsct))
3355                        dsct->dom_cgrp = dom_cgrp;
3356
3357        ret = cgroup_apply_control(cgrp);
3358        if (!ret)
3359                parent->nr_threaded_children++;
3360
3361        cgroup_finalize_control(cgrp, ret);
3362        return ret;
3363}
3364
3365static int cgroup_type_show(struct seq_file *seq, void *v)
3366{
3367        struct cgroup *cgrp = seq_css(seq)->cgroup;
3368
3369        if (cgroup_is_threaded(cgrp))
3370                seq_puts(seq, "threaded\n");
3371        else if (!cgroup_is_valid_domain(cgrp))
3372                seq_puts(seq, "domain invalid\n");
3373        else if (cgroup_is_thread_root(cgrp))
3374                seq_puts(seq, "domain threaded\n");
3375        else
3376                seq_puts(seq, "domain\n");
3377
3378        return 0;
3379}
3380
3381static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3382                                 size_t nbytes, loff_t off)
3383{
3384        struct cgroup *cgrp;
3385        int ret;
3386
3387        /* only switching to threaded mode is supported */
3388        if (strcmp(strstrip(buf), "threaded"))
3389                return -EINVAL;
3390
3391        /* drain dying csses before we re-apply (threaded) subtree control */
3392        cgrp = cgroup_kn_lock_live(of->kn, true);
3393        if (!cgrp)
3394                return -ENOENT;
3395
3396        /* threaded can only be enabled */
3397        ret = cgroup_enable_threaded(cgrp);
3398
3399        cgroup_kn_unlock(of->kn);
3400        return ret ?: nbytes;
3401}
3402
3403static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3404{
3405        struct cgroup *cgrp = seq_css(seq)->cgroup;
3406        int descendants = READ_ONCE(cgrp->max_descendants);
3407
3408        if (descendants == INT_MAX)
3409                seq_puts(seq, "max\n");
3410        else
3411                seq_printf(seq, "%d\n", descendants);
3412
3413        return 0;
3414}
3415
3416static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3417                                           char *buf, size_t nbytes, loff_t off)
3418{
3419        struct cgroup *cgrp;
3420        int descendants;
3421        ssize_t ret;
3422
3423        buf = strstrip(buf);
3424        if (!strcmp(buf, "max")) {
3425                descendants = INT_MAX;
3426        } else {
3427                ret = kstrtoint(buf, 0, &descendants);
3428                if (ret)
3429                        return ret;
3430        }
3431
3432        if (descendants < 0)
3433                return -ERANGE;
3434
3435        cgrp = cgroup_kn_lock_live(of->kn, false);
3436        if (!cgrp)
3437                return -ENOENT;
3438
3439        cgrp->max_descendants = descendants;
3440
3441        cgroup_kn_unlock(of->kn);
3442
3443        return nbytes;
3444}
3445
3446static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3447{
3448        struct cgroup *cgrp = seq_css(seq)->cgroup;
3449        int depth = READ_ONCE(cgrp->max_depth);
3450
3451        if (depth == INT_MAX)
3452                seq_puts(seq, "max\n");
3453        else
3454                seq_printf(seq, "%d\n", depth);
3455
3456        return 0;
3457}
3458
3459static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3460                                      char *buf, size_t nbytes, loff_t off)
3461{
3462        struct cgroup *cgrp;
3463        ssize_t ret;
3464        int depth;
3465
3466        buf = strstrip(buf);
3467        if (!strcmp(buf, "max")) {
3468                depth = INT_MAX;
3469        } else {
3470                ret = kstrtoint(buf, 0, &depth);
3471                if (ret)
3472                        return ret;
3473        }
3474
3475        if (depth < 0)
3476                return -ERANGE;
3477
3478        cgrp = cgroup_kn_lock_live(of->kn, false);
3479        if (!cgrp)
3480                return -ENOENT;
3481
3482        cgrp->max_depth = depth;
3483
3484        cgroup_kn_unlock(of->kn);
3485
3486        return nbytes;
3487}
3488
3489static int cgroup_events_show(struct seq_file *seq, void *v)
3490{
3491        struct cgroup *cgrp = seq_css(seq)->cgroup;
3492
3493        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3494        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3495
3496        return 0;
3497}
3498
3499static int cgroup_stat_show(struct seq_file *seq, void *v)
3500{
3501        struct cgroup *cgroup = seq_css(seq)->cgroup;
3502
3503        seq_printf(seq, "nr_descendants %d\n",
3504                   cgroup->nr_descendants);
3505        seq_printf(seq, "nr_dying_descendants %d\n",
3506                   cgroup->nr_dying_descendants);
3507
3508        return 0;
3509}
3510
3511static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3512                                                 struct cgroup *cgrp, int ssid)
3513{
3514        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3515        struct cgroup_subsys_state *css;
3516        int ret;
3517
3518        if (!ss->css_extra_stat_show)
3519                return 0;
3520
3521        css = cgroup_tryget_css(cgrp, ss);
3522        if (!css)
3523                return 0;
3524
3525        ret = ss->css_extra_stat_show(seq, css);
3526        css_put(css);
3527        return ret;
3528}
3529
3530static int cpu_stat_show(struct seq_file *seq, void *v)
3531{
3532        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3533        int ret = 0;
3534
3535        cgroup_base_stat_cputime_show(seq);
3536#ifdef CONFIG_CGROUP_SCHED
3537        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3538#endif
3539        return ret;
3540}
3541
3542#ifdef CONFIG_PSI
3543static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3544{
3545        struct cgroup *cgrp = seq_css(seq)->cgroup;
3546        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3547
3548        return psi_show(seq, psi, PSI_IO);
3549}
3550static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3551{
3552        struct cgroup *cgrp = seq_css(seq)->cgroup;
3553        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3554
3555        return psi_show(seq, psi, PSI_MEM);
3556}
3557static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3558{
3559        struct cgroup *cgrp = seq_css(seq)->cgroup;
3560        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3561
3562        return psi_show(seq, psi, PSI_CPU);
3563}
3564
3565static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3566                                          size_t nbytes, enum psi_res res)
3567{
3568        struct psi_trigger *new;
3569        struct cgroup *cgrp;
3570
3571        cgrp = cgroup_kn_lock_live(of->kn, false);
3572        if (!cgrp)
3573                return -ENODEV;
3574
3575        cgroup_get(cgrp);
3576        cgroup_kn_unlock(of->kn);
3577
3578        new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3579        if (IS_ERR(new)) {
3580                cgroup_put(cgrp);
3581                return PTR_ERR(new);
3582        }
3583
3584        psi_trigger_replace(&of->priv, new);
3585
3586        cgroup_put(cgrp);
3587
3588        return nbytes;
3589}
3590
3591static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3592                                          char *buf, size_t nbytes,
3593                                          loff_t off)
3594{
3595        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3596}
3597
3598static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3599                                          char *buf, size_t nbytes,
3600                                          loff_t off)
3601{
3602        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3603}
3604
3605static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3606                                          char *buf, size_t nbytes,
3607                                          loff_t off)
3608{
3609        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3610}
3611
3612static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3613                                          poll_table *pt)
3614{
3615        return psi_trigger_poll(&of->priv, of->file, pt);
3616}
3617
3618static void cgroup_pressure_release(struct kernfs_open_file *of)
3619{
3620        psi_trigger_replace(&of->priv, NULL);
3621}
3622#endif /* CONFIG_PSI */
3623
3624static int cgroup_freeze_show(struct seq_file *seq, void *v)
3625{
3626        struct cgroup *cgrp = seq_css(seq)->cgroup;
3627
3628        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3629
3630        return 0;
3631}
3632
3633static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3634                                   char *buf, size_t nbytes, loff_t off)
3635{
3636        struct cgroup *cgrp;
3637        ssize_t ret;
3638        int freeze;
3639
3640        ret = kstrtoint(strstrip(buf), 0, &freeze);
3641        if (ret)
3642                return ret;
3643
3644        if (freeze < 0 || freeze > 1)
3645                return -ERANGE;
3646
3647        cgrp = cgroup_kn_lock_live(of->kn, false);
3648        if (!cgrp)
3649                return -ENOENT;
3650
3651        cgroup_freeze(cgrp, freeze);
3652
3653        cgroup_kn_unlock(of->kn);
3654
3655        return nbytes;
3656}
3657
3658static int cgroup_file_open(struct kernfs_open_file *of)
3659{
3660        struct cftype *cft = of->kn->priv;
3661
3662        if (cft->open)
3663                return cft->open(of);
3664        return 0;
3665}
3666
3667static void cgroup_file_release(struct kernfs_open_file *of)
3668{
3669        struct cftype *cft = of->kn->priv;
3670
3671        if (cft->release)
3672                cft->release(of);
3673}
3674
3675static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3676                                 size_t nbytes, loff_t off)
3677{
3678        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3679        struct cgroup *cgrp = of->kn->parent->priv;
3680        struct cftype *cft = of->kn->priv;
3681        struct cgroup_subsys_state *css;
3682        int ret;
3683
3684        if (!nbytes)
3685                return 0;
3686
3687        /*
3688         * If namespaces are delegation boundaries, disallow writes to
3689         * files in an non-init namespace root from inside the namespace
3690         * except for the files explicitly marked delegatable -
3691         * cgroup.procs and cgroup.subtree_control.
3692         */
3693        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3694            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3695            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3696                return -EPERM;
3697
3698        if (cft->write)
3699                return cft->write(of, buf, nbytes, off);
3700
3701        /*
3702         * kernfs guarantees that a file isn't deleted with operations in
3703         * flight, which means that the matching css is and stays alive and
3704         * doesn't need to be pinned.  The RCU locking is not necessary
3705         * either.  It's just for the convenience of using cgroup_css().
3706         */
3707        rcu_read_lock();
3708        css = cgroup_css(cgrp, cft->ss);
3709        rcu_read_unlock();
3710
3711        if (cft->write_u64) {
3712                unsigned long long v;
3713                ret = kstrtoull(buf, 0, &v);
3714                if (!ret)
3715                        ret = cft->write_u64(css, cft, v);
3716        } else if (cft->write_s64) {
3717                long long v;
3718                ret = kstrtoll(buf, 0, &v);
3719                if (!ret)
3720                        ret = cft->write_s64(css, cft, v);
3721        } else {
3722                ret = -EINVAL;
3723        }
3724
3725        return ret ?: nbytes;
3726}
3727
3728static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3729{
3730        struct cftype *cft = of->kn->priv;
3731
3732        if (cft->poll)
3733                return cft->poll(of, pt);
3734
3735        return kernfs_generic_poll(of, pt);
3736}
3737
3738static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3739{
3740        return seq_cft(seq)->seq_start(seq, ppos);
3741}
3742
3743static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3744{
3745        return seq_cft(seq)->seq_next(seq, v, ppos);
3746}
3747
3748static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3749{
3750        if (seq_cft(seq)->seq_stop)
3751                seq_cft(seq)->seq_stop(seq, v);
3752}
3753
3754static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3755{
3756        struct cftype *cft = seq_cft(m);
3757        struct cgroup_subsys_state *css = seq_css(m);
3758
3759        if (cft->seq_show)
3760                return cft->seq_show(m, arg);
3761
3762        if (cft->read_u64)
3763                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3764        else if (cft->read_s64)
3765                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3766        else
3767                return -EINVAL;
3768        return 0;
3769}
3770
3771static struct kernfs_ops cgroup_kf_single_ops = {
3772        .atomic_write_len       = PAGE_SIZE,
3773        .open                   = cgroup_file_open,
3774        .release                = cgroup_file_release,
3775        .write                  = cgroup_file_write,
3776        .poll                   = cgroup_file_poll,
3777        .seq_show               = cgroup_seqfile_show,
3778};
3779
3780static struct kernfs_ops cgroup_kf_ops = {
3781        .atomic_write_len       = PAGE_SIZE,
3782        .open                   = cgroup_file_open,
3783        .release                = cgroup_file_release,
3784        .write                  = cgroup_file_write,
3785        .poll                   = cgroup_file_poll,
3786        .seq_start              = cgroup_seqfile_start,
3787        .seq_next               = cgroup_seqfile_next,
3788        .seq_stop               = cgroup_seqfile_stop,
3789        .seq_show               = cgroup_seqfile_show,
3790};
3791
3792/* set uid and gid of cgroup dirs and files to that of the creator */
3793static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3794{
3795        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3796                               .ia_uid = current_fsuid(),
3797                               .ia_gid = current_fsgid(), };
3798
3799        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3800            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3801                return 0;
3802
3803        return kernfs_setattr(kn, &iattr);
3804}
3805
3806static void cgroup_file_notify_timer(struct timer_list *timer)
3807{
3808        cgroup_file_notify(container_of(timer, struct cgroup_file,
3809                                        notify_timer));
3810}
3811
3812static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3813                           struct cftype *cft)
3814{
3815        char name[CGROUP_FILE_NAME_MAX];
3816        struct kernfs_node *kn;
3817        struct lock_class_key *key = NULL;
3818        int ret;
3819
3820#ifdef CONFIG_DEBUG_LOCK_ALLOC
3821        key = &cft->lockdep_key;
3822#endif
3823        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3824                                  cgroup_file_mode(cft),
3825                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3826                                  0, cft->kf_ops, cft,
3827                                  NULL, key);
3828        if (IS_ERR(kn))
3829                return PTR_ERR(kn);
3830
3831        ret = cgroup_kn_set_ugid(kn);
3832        if (ret) {
3833                kernfs_remove(kn);
3834                return ret;
3835        }
3836
3837        if (cft->file_offset) {
3838                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3839
3840                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3841
3842                spin_lock_irq(&cgroup_file_kn_lock);
3843                cfile->kn = kn;
3844                spin_unlock_irq(&cgroup_file_kn_lock);
3845        }
3846
3847        return 0;
3848}
3849
3850/**
3851 * cgroup_addrm_files - add or remove files to a cgroup directory
3852 * @css: the target css
3853 * @cgrp: the target cgroup (usually css->cgroup)
3854 * @cfts: array of cftypes to be added
3855 * @is_add: whether to add or remove
3856 *
3857 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3858 * For removals, this function never fails.
3859 */
3860static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3861                              struct cgroup *cgrp, struct cftype cfts[],
3862                              bool is_add)
3863{
3864        struct cftype *cft, *cft_end = NULL;
3865        int ret = 0;
3866
3867        lockdep_assert_held(&cgroup_mutex);
3868
3869restart:
3870        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3871                /* does cft->flags tell us to skip this file on @cgrp? */
3872                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3873                        continue;
3874                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3875                        continue;
3876                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3877                        continue;
3878                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3879                        continue;
3880                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3881                        continue;
3882                if (is_add) {
3883                        ret = cgroup_add_file(css, cgrp, cft);
3884                        if (ret) {
3885                                pr_warn("%s: failed to add %s, err=%d\n",
3886                                        __func__, cft->name, ret);
3887                                cft_end = cft;
3888                                is_add = false;
3889                                goto restart;
3890                        }
3891                } else {
3892                        cgroup_rm_file(cgrp, cft);
3893                }
3894        }
3895        return ret;
3896}
3897
3898static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3899{
3900        struct cgroup_subsys *ss = cfts[0].ss;
3901        struct cgroup *root = &ss->root->cgrp;
3902        struct cgroup_subsys_state *css;
3903        int ret = 0;
3904
3905        lockdep_assert_held(&cgroup_mutex);
3906
3907        /* add/rm files for all cgroups created before */
3908        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3909                struct cgroup *cgrp = css->cgroup;
3910
3911                if (!(css->flags & CSS_VISIBLE))
3912                        continue;
3913
3914                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3915                if (ret)
3916                        break;
3917        }
3918
3919        if (is_add && !ret)
3920                kernfs_activate(root->kn);
3921        return ret;
3922}
3923
3924static void cgroup_exit_cftypes(struct cftype *cfts)
3925{
3926        struct cftype *cft;
3927
3928        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3929                /* free copy for custom atomic_write_len, see init_cftypes() */
3930                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3931                        kfree(cft->kf_ops);
3932                cft->kf_ops = NULL;
3933                cft->ss = NULL;
3934
3935                /* revert flags set by cgroup core while adding @cfts */
3936                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3937        }
3938}
3939
3940static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3941{
3942        struct cftype *cft;
3943
3944        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3945                struct kernfs_ops *kf_ops;
3946
3947                WARN_ON(cft->ss || cft->kf_ops);
3948
3949                if (cft->seq_start)
3950                        kf_ops = &cgroup_kf_ops;
3951                else
3952                        kf_ops = &cgroup_kf_single_ops;
3953
3954                /*
3955                 * Ugh... if @cft wants a custom max_write_len, we need to
3956                 * make a copy of kf_ops to set its atomic_write_len.
3957                 */
3958                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3959                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3960                        if (!kf_ops) {
3961                                cgroup_exit_cftypes(cfts);
3962                                return -ENOMEM;
3963                        }
3964                        kf_ops->atomic_write_len = cft->max_write_len;
3965                }
3966
3967                cft->kf_ops = kf_ops;
3968                cft->ss = ss;
3969        }
3970
3971        return 0;
3972}
3973
3974static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3975{
3976        lockdep_assert_held(&cgroup_mutex);
3977
3978        if (!cfts || !cfts[0].ss)
3979                return -ENOENT;
3980
3981        list_del(&cfts->node);
3982        cgroup_apply_cftypes(cfts, false);
3983        cgroup_exit_cftypes(cfts);
3984        return 0;
3985}
3986
3987/**
3988 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3989 * @cfts: zero-length name terminated array of cftypes
3990 *
3991 * Unregister @cfts.  Files described by @cfts are removed from all
3992 * existing cgroups and all future cgroups won't have them either.  This
3993 * function can be called anytime whether @cfts' subsys is attached or not.
3994 *
3995 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996 * registered.
3997 */
3998int cgroup_rm_cftypes(struct cftype *cfts)
3999{
4000        int ret;
4001
4002        mutex_lock(&cgroup_mutex);
4003        ret = cgroup_rm_cftypes_locked(cfts);
4004        mutex_unlock(&cgroup_mutex);
4005        return ret;
4006}
4007
4008/**
4009 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4010 * @ss: target cgroup subsystem
4011 * @cfts: zero-length name terminated array of cftypes
4012 *
4013 * Register @cfts to @ss.  Files described by @cfts are created for all
4014 * existing cgroups to which @ss is attached and all future cgroups will
4015 * have them too.  This function can be called anytime whether @ss is
4016 * attached or not.
4017 *
4018 * Returns 0 on successful registration, -errno on failure.  Note that this
4019 * function currently returns 0 as long as @cfts registration is successful
4020 * even if some file creation attempts on existing cgroups fail.
4021 */
4022static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4023{
4024        int ret;
4025
4026        if (!cgroup_ssid_enabled(ss->id))
4027                return 0;
4028
4029        if (!cfts || cfts[0].name[0] == '\0')
4030                return 0;
4031
4032        ret = cgroup_init_cftypes(ss, cfts);
4033        if (ret)
4034                return ret;
4035
4036        mutex_lock(&cgroup_mutex);
4037
4038        list_add_tail(&cfts->node, &ss->cfts);
4039        ret = cgroup_apply_cftypes(cfts, true);
4040        if (ret)
4041                cgroup_rm_cftypes_locked(cfts);
4042
4043        mutex_unlock(&cgroup_mutex);
4044        return ret;
4045}
4046
4047/**
4048 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4049 * @ss: target cgroup subsystem
4050 * @cfts: zero-length name terminated array of cftypes
4051 *
4052 * Similar to cgroup_add_cftypes() but the added files are only used for
4053 * the default hierarchy.
4054 */
4055int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4056{
4057        struct cftype *cft;
4058
4059        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4060                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4061        return cgroup_add_cftypes(ss, cfts);
4062}
4063
4064/**
4065 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4066 * @ss: target cgroup subsystem
4067 * @cfts: zero-length name terminated array of cftypes
4068 *
4069 * Similar to cgroup_add_cftypes() but the added files are only used for
4070 * the legacy hierarchies.
4071 */
4072int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073{
4074        struct cftype *cft;
4075
4076        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4077                cft->flags |= __CFTYPE_NOT_ON_DFL;
4078        return cgroup_add_cftypes(ss, cfts);
4079}
4080
4081/**
4082 * cgroup_file_notify - generate a file modified event for a cgroup_file
4083 * @cfile: target cgroup_file
4084 *
4085 * @cfile must have been obtained by setting cftype->file_offset.
4086 */
4087void cgroup_file_notify(struct cgroup_file *cfile)
4088{
4089        unsigned long flags;
4090
4091        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4092        if (cfile->kn) {
4093                unsigned long last = cfile->notified_at;
4094                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4095
4096                if (time_in_range(jiffies, last, next)) {
4097                        timer_reduce(&cfile->notify_timer, next);
4098                } else {
4099                        kernfs_notify(cfile->kn);
4100                        cfile->notified_at = jiffies;
4101                }
4102        }
4103        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4104}
4105
4106/**
4107 * css_next_child - find the next child of a given css
4108 * @pos: the current position (%NULL to initiate traversal)
4109 * @parent: css whose children to walk
4110 *
4111 * This function returns the next child of @parent and should be called
4112 * under either cgroup_mutex or RCU read lock.  The only requirement is
4113 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4114 * be returned regardless of their states.
4115 *
4116 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4117 * css which finished ->css_online() is guaranteed to be visible in the
4118 * future iterations and will stay visible until the last reference is put.
4119 * A css which hasn't finished ->css_online() or already finished
4120 * ->css_offline() may show up during traversal.  It's each subsystem's
4121 * responsibility to synchronize against on/offlining.
4122 */
4123struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4124                                           struct cgroup_subsys_state *parent)
4125{
4126        struct cgroup_subsys_state *next;
4127
4128        cgroup_assert_mutex_or_rcu_locked();
4129
4130        /*
4131         * @pos could already have been unlinked from the sibling list.
4132         * Once a cgroup is removed, its ->sibling.next is no longer
4133         * updated when its next sibling changes.  CSS_RELEASED is set when
4134         * @pos is taken off list, at which time its next pointer is valid,
4135         * and, as releases are serialized, the one pointed to by the next
4136         * pointer is guaranteed to not have started release yet.  This
4137         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4138         * critical section, the one pointed to by its next pointer is
4139         * guaranteed to not have finished its RCU grace period even if we
4140         * have dropped rcu_read_lock() inbetween iterations.
4141         *
4142         * If @pos has CSS_RELEASED set, its next pointer can't be
4143         * dereferenced; however, as each css is given a monotonically
4144         * increasing unique serial number and always appended to the
4145         * sibling list, the next one can be found by walking the parent's
4146         * children until the first css with higher serial number than
4147         * @pos's.  While this path can be slower, it happens iff iteration
4148         * races against release and the race window is very small.
4149         */
4150        if (!pos) {
4151                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4152        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4153                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4154        } else {
4155                list_for_each_entry_rcu(next, &parent->children, sibling,
4156                                        lockdep_is_held(&cgroup_mutex))
4157                        if (next->serial_nr > pos->serial_nr)
4158                                break;
4159        }
4160
4161        /*
4162         * @next, if not pointing to the head, can be dereferenced and is
4163         * the next sibling.
4164         */
4165        if (&next->sibling != &parent->children)
4166                return next;
4167        return NULL;
4168}
4169
4170/**
4171 * css_next_descendant_pre - find the next descendant for pre-order walk
4172 * @pos: the current position (%NULL to initiate traversal)
4173 * @root: css whose descendants to walk
4174 *
4175 * To be used by css_for_each_descendant_pre().  Find the next descendant
4176 * to visit for pre-order traversal of @root's descendants.  @root is
4177 * included in the iteration and the first node to be visited.
4178 *
4179 * While this function requires cgroup_mutex or RCU read locking, it
4180 * doesn't require the whole traversal to be contained in a single critical
4181 * section.  This function will return the correct next descendant as long
4182 * as both @pos and @root are accessible and @pos is a descendant of @root.
4183 *
4184 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4185 * css which finished ->css_online() is guaranteed to be visible in the
4186 * future iterations and will stay visible until the last reference is put.
4187 * A css which hasn't finished ->css_online() or already finished
4188 * ->css_offline() may show up during traversal.  It's each subsystem's
4189 * responsibility to synchronize against on/offlining.
4190 */
4191struct cgroup_subsys_state *
4192css_next_descendant_pre(struct cgroup_subsys_state *pos,
4193                        struct cgroup_subsys_state *root)
4194{
4195        struct cgroup_subsys_state *next;
4196
4197        cgroup_assert_mutex_or_rcu_locked();
4198
4199        /* if first iteration, visit @root */
4200        if (!pos)
4201                return root;
4202
4203        /* visit the first child if exists */
4204        next = css_next_child(NULL, pos);
4205        if (next)
4206                return next;
4207
4208        /* no child, visit my or the closest ancestor's next sibling */
4209        while (pos != root) {
4210                next = css_next_child(pos, pos->parent);
4211                if (next)
4212                        return next;
4213                pos = pos->parent;
4214        }
4215
4216        return NULL;
4217}
4218EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4219
4220/**
4221 * css_rightmost_descendant - return the rightmost descendant of a css
4222 * @pos: css of interest
4223 *
4224 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4225 * is returned.  This can be used during pre-order traversal to skip
4226 * subtree of @pos.
4227 *
4228 * While this function requires cgroup_mutex or RCU read locking, it
4229 * doesn't require the whole traversal to be contained in a single critical
4230 * section.  This function will return the correct rightmost descendant as
4231 * long as @pos is accessible.
4232 */
4233struct cgroup_subsys_state *
4234css_rightmost_descendant(struct cgroup_subsys_state *pos)
4235{
4236        struct cgroup_subsys_state *last, *tmp;
4237
4238        cgroup_assert_mutex_or_rcu_locked();
4239
4240        do {
4241                last = pos;
4242                /* ->prev isn't RCU safe, walk ->next till the end */
4243                pos = NULL;
4244                css_for_each_child(tmp, last)
4245                        pos = tmp;
4246        } while (pos);
4247
4248        return last;
4249}
4250
4251static struct cgroup_subsys_state *
4252css_leftmost_descendant(struct cgroup_subsys_state *pos)
4253{
4254        struct cgroup_subsys_state *last;
4255
4256        do {
4257                last = pos;
4258                pos = css_next_child(NULL, pos);
4259        } while (pos);
4260
4261        return last;
4262}
4263
4264/**
4265 * css_next_descendant_post - find the next descendant for post-order walk
4266 * @pos: the current position (%NULL to initiate traversal)
4267 * @root: css whose descendants to walk
4268 *
4269 * To be used by css_for_each_descendant_post().  Find the next descendant
4270 * to visit for post-order traversal of @root's descendants.  @root is
4271 * included in the iteration and the last node to be visited.
4272 *
4273 * While this function requires cgroup_mutex or RCU read locking, it
4274 * doesn't require the whole traversal to be contained in a single critical
4275 * section.  This function will return the correct next descendant as long
4276 * as both @pos and @cgroup are accessible and @pos is a descendant of
4277 * @cgroup.
4278 *
4279 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4280 * css which finished ->css_online() is guaranteed to be visible in the
4281 * future iterations and will stay visible until the last reference is put.
4282 * A css which hasn't finished ->css_online() or already finished
4283 * ->css_offline() may show up during traversal.  It's each subsystem's
4284 * responsibility to synchronize against on/offlining.
4285 */
4286struct cgroup_subsys_state *
4287css_next_descendant_post(struct cgroup_subsys_state *pos,
4288                         struct cgroup_subsys_state *root)
4289{
4290        struct cgroup_subsys_state *next;
4291
4292        cgroup_assert_mutex_or_rcu_locked();
4293
4294        /* if first iteration, visit leftmost descendant which may be @root */
4295        if (!pos)
4296                return css_leftmost_descendant(root);
4297
4298        /* if we visited @root, we're done */
4299        if (pos == root)
4300                return NULL;
4301
4302        /* if there's an unvisited sibling, visit its leftmost descendant */
4303        next = css_next_child(pos, pos->parent);
4304        if (next)
4305                return css_leftmost_descendant(next);
4306
4307        /* no sibling left, visit parent */
4308        return pos->parent;
4309}
4310
4311/**
4312 * css_has_online_children - does a css have online children
4313 * @css: the target css
4314 *
4315 * Returns %true if @css has any online children; otherwise, %false.  This
4316 * function can be called from any context but the caller is responsible
4317 * for synchronizing against on/offlining as necessary.
4318 */
4319bool css_has_online_children(struct cgroup_subsys_state *css)
4320{
4321        struct cgroup_subsys_state *child;
4322        bool ret = false;
4323
4324        rcu_read_lock();
4325        css_for_each_child(child, css) {
4326                if (child->flags & CSS_ONLINE) {
4327                        ret = true;
4328                        break;
4329                }
4330        }
4331        rcu_read_unlock();
4332        return ret;
4333}
4334
4335static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4336{
4337        struct list_head *l;
4338        struct cgrp_cset_link *link;
4339        struct css_set *cset;
4340
4341        lockdep_assert_held(&css_set_lock);
4342
4343        /* find the next threaded cset */
4344        if (it->tcset_pos) {
4345                l = it->tcset_pos->next;
4346
4347                if (l != it->tcset_head) {
4348                        it->tcset_pos = l;
4349                        return container_of(l, struct css_set,
4350                                            threaded_csets_node);
4351                }
4352
4353                it->tcset_pos = NULL;
4354        }
4355
4356        /* find the next cset */
4357        l = it->cset_pos;
4358        l = l->next;
4359        if (l == it->cset_head) {
4360                it->cset_pos = NULL;
4361                return NULL;
4362        }
4363
4364        if (it->ss) {
4365                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4366        } else {
4367                link = list_entry(l, struct cgrp_cset_link, cset_link);
4368                cset = link->cset;
4369        }
4370
4371        it->cset_pos = l;
4372
4373        /* initialize threaded css_set walking */
4374        if (it->flags & CSS_TASK_ITER_THREADED) {
4375                if (it->cur_dcset)
4376                        put_css_set_locked(it->cur_dcset);
4377                it->cur_dcset = cset;
4378                get_css_set(cset);
4379
4380                it->tcset_head = &cset->threaded_csets;
4381                it->tcset_pos = &cset->threaded_csets;
4382        }
4383
4384        return cset;
4385}
4386
4387/**
4388 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4389 * @it: the iterator to advance
4390 *
4391 * Advance @it to the next css_set to walk.
4392 */
4393static void css_task_iter_advance_css_set(struct css_task_iter *it)
4394{
4395        struct css_set *cset;
4396
4397        lockdep_assert_held(&css_set_lock);
4398
4399        /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4400        while ((cset = css_task_iter_next_css_set(it))) {
4401                if (!list_empty(&cset->tasks)) {
4402                        it->cur_tasks_head = &cset->tasks;
4403                        break;
4404                } else if (!list_empty(&cset->mg_tasks)) {
4405                        it->cur_tasks_head = &cset->mg_tasks;
4406                        break;
4407                } else if (!list_empty(&cset->dying_tasks)) {
4408                        it->cur_tasks_head = &cset->dying_tasks;
4409                        break;
4410                }
4411        }
4412        if (!cset) {
4413                it->task_pos = NULL;
4414                return;
4415        }
4416        it->task_pos = it->cur_tasks_head->next;
4417
4418        /*
4419         * We don't keep css_sets locked across iteration steps and thus
4420         * need to take steps to ensure that iteration can be resumed after
4421         * the lock is re-acquired.  Iteration is performed at two levels -
4422         * css_sets and tasks in them.
4423         *
4424         * Once created, a css_set never leaves its cgroup lists, so a
4425         * pinned css_set is guaranteed to stay put and we can resume
4426         * iteration afterwards.
4427         *
4428         * Tasks may leave @cset across iteration steps.  This is resolved
4429         * by registering each iterator with the css_set currently being
4430         * walked and making css_set_move_task() advance iterators whose
4431         * next task is leaving.
4432         */
4433        if (it->cur_cset) {
4434                list_del(&it->iters_node);
4435                put_css_set_locked(it->cur_cset);
4436        }
4437        get_css_set(cset);
4438        it->cur_cset = cset;
4439        list_add(&it->iters_node, &cset->task_iters);
4440}
4441
4442static void css_task_iter_skip(struct css_task_iter *it,
4443                               struct task_struct *task)
4444{
4445        lockdep_assert_held(&css_set_lock);
4446
4447        if (it->task_pos == &task->cg_list) {
4448                it->task_pos = it->task_pos->next;
4449                it->flags |= CSS_TASK_ITER_SKIPPED;
4450        }
4451}
4452
4453static void css_task_iter_advance(struct css_task_iter *it)
4454{
4455        struct task_struct *task;
4456
4457        lockdep_assert_held(&css_set_lock);
4458repeat:
4459        if (it->task_pos) {
4460                /*
4461                 * Advance iterator to find next entry. We go through cset
4462                 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4463                 * the next cset.
4464                 */
4465                if (it->flags & CSS_TASK_ITER_SKIPPED)
4466                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4467                else
4468                        it->task_pos = it->task_pos->next;
4469
4470                if (it->task_pos == &it->cur_cset->tasks) {
4471                        it->cur_tasks_head = &it->cur_cset->mg_tasks;
4472                        it->task_pos = it->cur_tasks_head->next;
4473                }
4474                if (it->task_pos == &it->cur_cset->mg_tasks) {
4475                        it->cur_tasks_head = &it->cur_cset->dying_tasks;
4476                        it->task_pos = it->cur_tasks_head->next;
4477                }
4478                if (it->task_pos == &it->cur_cset->dying_tasks)
4479                        css_task_iter_advance_css_set(it);
4480        } else {
4481                /* called from start, proceed to the first cset */
4482                css_task_iter_advance_css_set(it);
4483        }
4484
4485        if (!it->task_pos)
4486                return;
4487
4488        task = list_entry(it->task_pos, struct task_struct, cg_list);
4489
4490        if (it->flags & CSS_TASK_ITER_PROCS) {
4491                /* if PROCS, skip over tasks which aren't group leaders */
4492                if (!thread_group_leader(task))
4493                        goto repeat;
4494
4495                /* and dying leaders w/o live member threads */
4496                if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4497                    !atomic_read(&task->signal->live))
4498                        goto repeat;
4499        } else {
4500                /* skip all dying ones */
4501                if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4502                        goto repeat;
4503        }
4504}
4505
4506/**
4507 * css_task_iter_start - initiate task iteration
4508 * @css: the css to walk tasks of
4509 * @flags: CSS_TASK_ITER_* flags
4510 * @it: the task iterator to use
4511 *
4512 * Initiate iteration through the tasks of @css.  The caller can call
4513 * css_task_iter_next() to walk through the tasks until the function
4514 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4515 * called.
4516 */
4517void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4518                         struct css_task_iter *it)
4519{
4520        memset(it, 0, sizeof(*it));
4521
4522        spin_lock_irq(&css_set_lock);
4523
4524        it->ss = css->ss;
4525        it->flags = flags;
4526
4527        if (it->ss)
4528                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4529        else
4530                it->cset_pos = &css->cgroup->cset_links;
4531
4532        it->cset_head = it->cset_pos;
4533
4534        css_task_iter_advance(it);
4535
4536        spin_unlock_irq(&css_set_lock);
4537}
4538
4539/**
4540 * css_task_iter_next - return the next task for the iterator
4541 * @it: the task iterator being iterated
4542 *
4543 * The "next" function for task iteration.  @it should have been
4544 * initialized via css_task_iter_start().  Returns NULL when the iteration
4545 * reaches the end.
4546 */
4547struct task_struct *css_task_iter_next(struct css_task_iter *it)
4548{
4549        if (it->cur_task) {
4550                put_task_struct(it->cur_task);
4551                it->cur_task = NULL;
4552        }
4553
4554        spin_lock_irq(&css_set_lock);
4555
4556        /* @it may be half-advanced by skips, finish advancing */
4557        if (it->flags & CSS_TASK_ITER_SKIPPED)
4558                css_task_iter_advance(it);
4559
4560        if (it->task_pos) {
4561                it->cur_task = list_entry(it->task_pos, struct task_struct,
4562                                          cg_list);
4563                get_task_struct(it->cur_task);
4564                css_task_iter_advance(it);
4565        }
4566
4567        spin_unlock_irq(&css_set_lock);
4568
4569        return it->cur_task;
4570}
4571
4572/**
4573 * css_task_iter_end - finish task iteration
4574 * @it: the task iterator to finish
4575 *
4576 * Finish task iteration started by css_task_iter_start().
4577 */
4578void css_task_iter_end(struct css_task_iter *it)
4579{
4580        if (it->cur_cset) {
4581                spin_lock_irq(&css_set_lock);
4582                list_del(&it->iters_node);
4583                put_css_set_locked(it->cur_cset);
4584                spin_unlock_irq(&css_set_lock);
4585        }
4586
4587        if (it->cur_dcset)
4588                put_css_set(it->cur_dcset);
4589
4590        if (it->cur_task)
4591                put_task_struct(it->cur_task);
4592}
4593
4594static void cgroup_procs_release(struct kernfs_open_file *of)
4595{
4596        if (of->priv) {
4597                css_task_iter_end(of->priv);
4598                kfree(of->priv);
4599        }
4600}
4601
4602static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4603{
4604        struct kernfs_open_file *of = s->private;
4605        struct css_task_iter *it = of->priv;
4606
4607        if (pos)
4608                (*pos)++;
4609
4610        return css_task_iter_next(it);
4611}
4612
4613static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4614                                  unsigned int iter_flags)
4615{
4616        struct kernfs_open_file *of = s->private;
4617        struct cgroup *cgrp = seq_css(s)->cgroup;
4618        struct css_task_iter *it = of->priv;
4619
4620        /*
4621         * When a seq_file is seeked, it's always traversed sequentially
4622         * from position 0, so we can simply keep iterating on !0 *pos.
4623         */
4624        if (!it) {
4625                if (WARN_ON_ONCE((*pos)))
4626                        return ERR_PTR(-EINVAL);
4627
4628                it = kzalloc(sizeof(*it), GFP_KERNEL);
4629                if (!it)
4630                        return ERR_PTR(-ENOMEM);
4631                of->priv = it;
4632                css_task_iter_start(&cgrp->self, iter_flags, it);
4633        } else if (!(*pos)) {
4634                css_task_iter_end(it);
4635                css_task_iter_start(&cgrp->self, iter_flags, it);
4636        } else
4637                return it->cur_task;
4638
4639        return cgroup_procs_next(s, NULL, NULL);
4640}
4641
4642static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4643{
4644        struct cgroup *cgrp = seq_css(s)->cgroup;
4645
4646        /*
4647         * All processes of a threaded subtree belong to the domain cgroup
4648         * of the subtree.  Only threads can be distributed across the
4649         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4650         * They're always empty anyway.
4651         */
4652        if (cgroup_is_threaded(cgrp))
4653                return ERR_PTR(-EOPNOTSUPP);
4654
4655        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4656                                            CSS_TASK_ITER_THREADED);
4657}
4658
4659static int cgroup_procs_show(struct seq_file *s, void *v)
4660{
4661        seq_printf(s, "%d\n", task_pid_vnr(v));
4662        return 0;
4663}
4664
4665static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4666{
4667        int ret;
4668        struct inode *inode;
4669
4670        lockdep_assert_held(&cgroup_mutex);
4671
4672        inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4673        if (!inode)
4674                return -ENOMEM;
4675
4676        ret = inode_permission(inode, MAY_WRITE);
4677        iput(inode);
4678        return ret;
4679}
4680
4681static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4682                                         struct cgroup *dst_cgrp,
4683                                         struct super_block *sb)
4684{
4685        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4686        struct cgroup *com_cgrp = src_cgrp;
4687        int ret;
4688
4689        lockdep_assert_held(&cgroup_mutex);
4690
4691        /* find the common ancestor */
4692        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4693                com_cgrp = cgroup_parent(com_cgrp);
4694
4695        /* %current should be authorized to migrate to the common ancestor */
4696        ret = cgroup_may_write(com_cgrp, sb);
4697        if (ret)
4698                return ret;
4699
4700        /*
4701         * If namespaces are delegation boundaries, %current must be able
4702         * to see both source and destination cgroups from its namespace.
4703         */
4704        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4705            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4706             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4707                return -ENOENT;
4708
4709        return 0;
4710}
4711
4712static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4713                                     struct cgroup *dst_cgrp,
4714                                     struct super_block *sb, bool threadgroup)
4715{
4716        int ret = 0;
4717
4718        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4719        if (ret)
4720                return ret;
4721
4722        ret = cgroup_migrate_vet_dst(dst_cgrp);
4723        if (ret)
4724                return ret;
4725
4726        if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4727                ret = -EOPNOTSUPP;
4728
4729        return ret;
4730}
4731
4732static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4733                                  char *buf, size_t nbytes, loff_t off)
4734{
4735        struct cgroup *src_cgrp, *dst_cgrp;
4736        struct task_struct *task;
4737        ssize_t ret;
4738        bool locked;
4739
4740        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4741        if (!dst_cgrp)
4742                return -ENODEV;
4743
4744        task = cgroup_procs_write_start(buf, true, &locked);
4745        ret = PTR_ERR_OR_ZERO(task);
4746        if (ret)
4747                goto out_unlock;
4748
4749        /* find the source cgroup */
4750        spin_lock_irq(&css_set_lock);
4751        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4752        spin_unlock_irq(&css_set_lock);
4753
4754        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4755                                        of->file->f_path.dentry->d_sb, true);
4756        if (ret)
4757                goto out_finish;
4758
4759        ret = cgroup_attach_task(dst_cgrp, task, true);
4760
4761out_finish:
4762        cgroup_procs_write_finish(task, locked);
4763out_unlock:
4764        cgroup_kn_unlock(of->kn);
4765
4766        return ret ?: nbytes;
4767}
4768
4769static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4770{
4771        return __cgroup_procs_start(s, pos, 0);
4772}
4773
4774static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4775                                    char *buf, size_t nbytes, loff_t off)
4776{
4777        struct cgroup *src_cgrp, *dst_cgrp;
4778        struct task_struct *task;
4779        ssize_t ret;
4780        bool locked;
4781
4782        buf = strstrip(buf);
4783
4784        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4785        if (!dst_cgrp)
4786                return -ENODEV;
4787
4788        task = cgroup_procs_write_start(buf, false, &locked);
4789        ret = PTR_ERR_OR_ZERO(task);
4790        if (ret)
4791                goto out_unlock;
4792
4793        /* find the source cgroup */
4794        spin_lock_irq(&css_set_lock);
4795        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4796        spin_unlock_irq(&css_set_lock);
4797
4798        /* thread migrations follow the cgroup.procs delegation rule */
4799        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4800                                        of->file->f_path.dentry->d_sb, false);
4801        if (ret)
4802                goto out_finish;
4803
4804        ret = cgroup_attach_task(dst_cgrp, task, false);
4805
4806out_finish:
4807        cgroup_procs_write_finish(task, locked);
4808out_unlock:
4809        cgroup_kn_unlock(of->kn);
4810
4811        return ret ?: nbytes;
4812}
4813
4814/* cgroup core interface files for the default hierarchy */
4815static struct cftype cgroup_base_files[] = {
4816        {
4817                .name = "cgroup.type",
4818                .flags = CFTYPE_NOT_ON_ROOT,
4819                .seq_show = cgroup_type_show,
4820                .write = cgroup_type_write,
4821        },
4822        {
4823                .name = "cgroup.procs",
4824                .flags = CFTYPE_NS_DELEGATABLE,
4825                .file_offset = offsetof(struct cgroup, procs_file),
4826                .release = cgroup_procs_release,
4827                .seq_start = cgroup_procs_start,
4828                .seq_next = cgroup_procs_next,
4829                .seq_show = cgroup_procs_show,
4830                .write = cgroup_procs_write,
4831        },
4832        {
4833                .name = "cgroup.threads",
4834                .flags = CFTYPE_NS_DELEGATABLE,
4835                .release = cgroup_procs_release,
4836                .seq_start = cgroup_threads_start,
4837                .seq_next = cgroup_procs_next,
4838                .seq_show = cgroup_procs_show,
4839                .write = cgroup_threads_write,
4840        },
4841        {
4842                .name = "cgroup.controllers",
4843                .seq_show = cgroup_controllers_show,
4844        },
4845        {
4846                .name = "cgroup.subtree_control",
4847                .flags = CFTYPE_NS_DELEGATABLE,
4848                .seq_show = cgroup_subtree_control_show,
4849                .write = cgroup_subtree_control_write,
4850        },
4851        {
4852                .name = "cgroup.events",
4853                .flags = CFTYPE_NOT_ON_ROOT,
4854                .file_offset = offsetof(struct cgroup, events_file),
4855                .seq_show = cgroup_events_show,
4856        },
4857        {
4858                .name = "cgroup.max.descendants",
4859                .seq_show = cgroup_max_descendants_show,
4860                .write = cgroup_max_descendants_write,
4861        },
4862        {
4863                .name = "cgroup.max.depth",
4864                .seq_show = cgroup_max_depth_show,
4865                .write = cgroup_max_depth_write,
4866        },
4867        {
4868                .name = "cgroup.stat",
4869                .seq_show = cgroup_stat_show,
4870        },
4871        {
4872                .name = "cgroup.freeze",
4873                .flags = CFTYPE_NOT_ON_ROOT,
4874                .seq_show = cgroup_freeze_show,
4875                .write = cgroup_freeze_write,
4876        },
4877        {
4878                .name = "cpu.stat",
4879                .seq_show = cpu_stat_show,
4880        },
4881#ifdef CONFIG_PSI
4882        {
4883                .name = "io.pressure",
4884                .seq_show = cgroup_io_pressure_show,
4885                .write = cgroup_io_pressure_write,
4886                .poll = cgroup_pressure_poll,
4887                .release = cgroup_pressure_release,
4888        },
4889        {
4890                .name = "memory.pressure",
4891                .seq_show = cgroup_memory_pressure_show,
4892                .write = cgroup_memory_pressure_write,
4893                .poll = cgroup_pressure_poll,
4894                .release = cgroup_pressure_release,
4895        },
4896        {
4897                .name = "cpu.pressure",
4898                .seq_show = cgroup_cpu_pressure_show,
4899                .write = cgroup_cpu_pressure_write,
4900                .poll = cgroup_pressure_poll,
4901                .release = cgroup_pressure_release,
4902        },
4903#endif /* CONFIG_PSI */
4904        { }     /* terminate */
4905};
4906
4907/*
4908 * css destruction is four-stage process.
4909 *
4910 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4911 *    Implemented in kill_css().
4912 *
4913 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4914 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4915 *    offlined by invoking offline_css().  After offlining, the base ref is
4916 *    put.  Implemented in css_killed_work_fn().
4917 *
4918 * 3. When the percpu_ref reaches zero, the only possible remaining
4919 *    accessors are inside RCU read sections.  css_release() schedules the
4920 *    RCU callback.
4921 *
4922 * 4. After the grace period, the css can be freed.  Implemented in
4923 *    css_free_work_fn().
4924 *
4925 * It is actually hairier because both step 2 and 4 require process context
4926 * and thus involve punting to css->destroy_work adding two additional
4927 * steps to the already complex sequence.
4928 */
4929static void css_free_rwork_fn(struct work_struct *work)
4930{
4931        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4932                                struct cgroup_subsys_state, destroy_rwork);
4933        struct cgroup_subsys *ss = css->ss;
4934        struct cgroup *cgrp = css->cgroup;
4935
4936        percpu_ref_exit(&css->refcnt);
4937
4938        if (ss) {
4939                /* css free path */
4940                struct cgroup_subsys_state *parent = css->parent;
4941                int id = css->id;
4942
4943                ss->css_free(css);
4944                cgroup_idr_remove(&ss->css_idr, id);
4945                cgroup_put(cgrp);
4946
4947                if (parent)
4948                        css_put(parent);
4949        } else {
4950                /* cgroup free path */
4951                atomic_dec(&cgrp->root->nr_cgrps);
4952                cgroup1_pidlist_destroy_all(cgrp);
4953                cancel_work_sync(&cgrp->release_agent_work);
4954
4955                if (cgroup_parent(cgrp)) {
4956                        /*
4957                         * We get a ref to the parent, and put the ref when
4958                         * this cgroup is being freed, so it's guaranteed
4959                         * that the parent won't be destroyed before its
4960                         * children.
4961                         */
4962                        cgroup_put(cgroup_parent(cgrp));
4963                        kernfs_put(cgrp->kn);
4964                        psi_cgroup_free(cgrp);
4965                        if (cgroup_on_dfl(cgrp))
4966                                cgroup_rstat_exit(cgrp);
4967                        kfree(cgrp);
4968                } else {
4969                        /*
4970                         * This is root cgroup's refcnt reaching zero,
4971                         * which indicates that the root should be
4972                         * released.
4973                         */
4974                        cgroup_destroy_root(cgrp->root);
4975                }
4976        }
4977}
4978
4979static void css_release_work_fn(struct work_struct *work)
4980{
4981        struct cgroup_subsys_state *css =
4982                container_of(work, struct cgroup_subsys_state, destroy_work);
4983        struct cgroup_subsys *ss = css->ss;
4984        struct cgroup *cgrp = css->cgroup;
4985
4986        mutex_lock(&cgroup_mutex);
4987
4988        css->flags |= CSS_RELEASED;
4989        list_del_rcu(&css->sibling);
4990
4991        if (ss) {
4992                /* css release path */
4993                if (!list_empty(&css->rstat_css_node)) {
4994                        cgroup_rstat_flush(cgrp);
4995                        list_del_rcu(&css->rstat_css_node);
4996                }
4997
4998                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4999                if (ss->css_released)
5000                        ss->css_released(css);
5001        } else {
5002                struct cgroup *tcgrp;
5003
5004                /* cgroup release path */
5005                TRACE_CGROUP_PATH(release, cgrp);
5006
5007                if (cgroup_on_dfl(cgrp))
5008                        cgroup_rstat_flush(cgrp);
5009
5010                spin_lock_irq(&css_set_lock);
5011                for (tcgrp = cgroup_parent(cgrp); tcgrp;
5012                     tcgrp = cgroup_parent(tcgrp))
5013                        tcgrp->nr_dying_descendants--;
5014                spin_unlock_irq(&css_set_lock);
5015
5016                /*
5017                 * There are two control paths which try to determine
5018                 * cgroup from dentry without going through kernfs -
5019                 * cgroupstats_build() and css_tryget_online_from_dir().
5020                 * Those are supported by RCU protecting clearing of
5021                 * cgrp->kn->priv backpointer.
5022                 */
5023                if (cgrp->kn)
5024                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5025                                         NULL);
5026        }
5027
5028        mutex_unlock(&cgroup_mutex);
5029
5030        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5031        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5032}
5033
5034static void css_release(struct percpu_ref *ref)
5035{
5036        struct cgroup_subsys_state *css =
5037                container_of(ref, struct cgroup_subsys_state, refcnt);
5038
5039        INIT_WORK(&css->destroy_work, css_release_work_fn);
5040        queue_work(cgroup_destroy_wq, &css->destroy_work);
5041}
5042
5043static void init_and_link_css(struct cgroup_subsys_state *css,
5044                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5045{
5046        lockdep_assert_held(&cgroup_mutex);
5047
5048        cgroup_get_live(cgrp);
5049
5050        memset(css, 0, sizeof(*css));
5051        css->cgroup = cgrp;
5052        css->ss = ss;
5053        css->id = -1;
5054        INIT_LIST_HEAD(&css->sibling);
5055        INIT_LIST_HEAD(&css->children);
5056        INIT_LIST_HEAD(&css->rstat_css_node);
5057        css->serial_nr = css_serial_nr_next++;
5058        atomic_set(&css->online_cnt, 0);
5059
5060        if (cgroup_parent(cgrp)) {
5061                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5062                css_get(css->parent);
5063        }
5064
5065        if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5066                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5067
5068        BUG_ON(cgroup_css(cgrp, ss));
5069}
5070
5071/* invoke ->css_online() on a new CSS and mark it online if successful */
5072static int online_css(struct cgroup_subsys_state *css)
5073{
5074        struct cgroup_subsys *ss = css->ss;
5075        int ret = 0;
5076
5077        lockdep_assert_held(&cgroup_mutex);
5078
5079        if (ss->css_online)
5080                ret = ss->css_online(css);
5081        if (!ret) {
5082                css->flags |= CSS_ONLINE;
5083                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5084
5085                atomic_inc(&css->online_cnt);
5086                if (css->parent)
5087                        atomic_inc(&css->parent->online_cnt);
5088        }
5089        return ret;
5090}
5091
5092/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5093static void offline_css(struct cgroup_subsys_state *css)
5094{
5095        struct cgroup_subsys *ss = css->ss;
5096
5097        lockdep_assert_held(&cgroup_mutex);
5098
5099        if (!(css->flags & CSS_ONLINE))
5100                return;
5101
5102        if (ss->css_offline)
5103                ss->css_offline(css);
5104
5105        css->flags &= ~CSS_ONLINE;
5106        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5107
5108        wake_up_all(&css->cgroup->offline_waitq);
5109}
5110
5111/**
5112 * css_create - create a cgroup_subsys_state
5113 * @cgrp: the cgroup new css will be associated with
5114 * @ss: the subsys of new css
5115 *
5116 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5117 * css is online and installed in @cgrp.  This function doesn't create the
5118 * interface files.  Returns 0 on success, -errno on failure.
5119 */
5120static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5121                                              struct cgroup_subsys *ss)
5122{
5123        struct cgroup *parent = cgroup_parent(cgrp);
5124        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5125        struct cgroup_subsys_state *css;
5126        int err;
5127
5128        lockdep_assert_held(&cgroup_mutex);
5129
5130        css = ss->css_alloc(parent_css);
5131        if (!css)
5132                css = ERR_PTR(-ENOMEM);
5133        if (IS_ERR(css))
5134                return css;
5135
5136        init_and_link_css(css, ss, cgrp);
5137
5138        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5139        if (err)
5140                goto err_free_css;
5141
5142        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5143        if (err < 0)
5144                goto err_free_css;
5145        css->id = err;
5146
5147        /* @css is ready to be brought online now, make it visible */
5148        list_add_tail_rcu(&css->sibling, &parent_css->children);
5149        cgroup_idr_replace(&ss->css_idr, css, css->id);
5150
5151        err = online_css(css);
5152        if (err)
5153                goto err_list_del;
5154
5155        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5156            cgroup_parent(parent)) {
5157                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5158                        current->comm, current->pid, ss->name);
5159                if (!strcmp(ss->name, "memory"))
5160                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5161                ss->warned_broken_hierarchy = true;
5162        }
5163
5164        return css;
5165
5166err_list_del:
5167        list_del_rcu(&css->sibling);
5168err_free_css:
5169        list_del_rcu(&css->rstat_css_node);
5170        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5171        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5172        return ERR_PTR(err);
5173}
5174
5175/*
5176 * The returned cgroup is fully initialized including its control mask, but
5177 * it isn't associated with its kernfs_node and doesn't have the control
5178 * mask applied.
5179 */
5180static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5181                                    umode_t mode)
5182{
5183        struct cgroup_root *root = parent->root;
5184        struct cgroup *cgrp, *tcgrp;
5185        struct kernfs_node *kn;
5186        int level = parent->level + 1;
5187        int ret;
5188
5189        /* allocate the cgroup and its ID, 0 is reserved for the root */
5190        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5191                       GFP_KERNEL);
5192        if (!cgrp)
5193                return ERR_PTR(-ENOMEM);
5194
5195        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5196        if (ret)
5197                goto out_free_cgrp;
5198
5199        if (cgroup_on_dfl(parent)) {
5200                ret = cgroup_rstat_init(cgrp);
5201                if (ret)
5202                        goto out_cancel_ref;
5203        }
5204
5205        /* create the directory */
5206        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5207        if (IS_ERR(kn)) {
5208                ret = PTR_ERR(kn);
5209                goto out_stat_exit;
5210        }
5211        cgrp->kn = kn;
5212
5213        init_cgroup_housekeeping(cgrp);
5214
5215        cgrp->self.parent = &parent->self;
5216        cgrp->root = root;
5217        cgrp->level = level;
5218
5219        ret = psi_cgroup_alloc(cgrp);
5220        if (ret)
5221                goto out_kernfs_remove;
5222
5223        ret = cgroup_bpf_inherit(cgrp);
5224        if (ret)
5225                goto out_psi_free;
5226
5227        /*
5228         * New cgroup inherits effective freeze counter, and
5229         * if the parent has to be frozen, the child has too.
5230         */
5231        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5232        if (cgrp->freezer.e_freeze) {
5233                /*
5234                 * Set the CGRP_FREEZE flag, so when a process will be
5235                 * attached to the child cgroup, it will become frozen.
5236                 * At this point the new cgroup is unpopulated, so we can
5237                 * consider it frozen immediately.
5238                 */
5239                set_bit(CGRP_FREEZE, &cgrp->flags);
5240                set_bit(CGRP_FROZEN, &cgrp->flags);
5241        }
5242
5243        spin_lock_irq(&css_set_lock);
5244        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5245                cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5246
5247                if (tcgrp != cgrp) {
5248                        tcgrp->nr_descendants++;
5249
5250                        /*
5251                         * If the new cgroup is frozen, all ancestor cgroups
5252                         * get a new frozen descendant, but their state can't
5253                         * change because of this.
5254                         */
5255                        if (cgrp->freezer.e_freeze)
5256                                tcgrp->freezer.nr_frozen_descendants++;
5257                }
5258        }
5259        spin_unlock_irq(&css_set_lock);
5260
5261        if (notify_on_release(parent))
5262                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5263
5264        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5265                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5266
5267        cgrp->self.serial_nr = css_serial_nr_next++;
5268
5269        /* allocation complete, commit to creation */
5270        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5271        atomic_inc(&root->nr_cgrps);
5272        cgroup_get_live(parent);
5273
5274        /*
5275         * On the default hierarchy, a child doesn't automatically inherit
5276         * subtree_control from the parent.  Each is configured manually.
5277         */
5278        if (!cgroup_on_dfl(cgrp))
5279                cgrp->subtree_control = cgroup_control(cgrp);
5280
5281        cgroup_propagate_control(cgrp);
5282
5283        return cgrp;
5284
5285out_psi_free:
5286        psi_cgroup_free(cgrp);
5287out_kernfs_remove:
5288        kernfs_remove(cgrp->kn);
5289out_stat_exit:
5290        if (cgroup_on_dfl(parent))
5291                cgroup_rstat_exit(cgrp);
5292out_cancel_ref:
5293        percpu_ref_exit(&cgrp->self.refcnt);
5294out_free_cgrp:
5295        kfree(cgrp);
5296        return ERR_PTR(ret);
5297}
5298
5299static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5300{
5301        struct cgroup *cgroup;
5302        int ret = false;
5303        int level = 1;
5304
5305        lockdep_assert_held(&cgroup_mutex);
5306
5307        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5308                if (cgroup->nr_descendants >= cgroup->max_descendants)
5309                        goto fail;
5310
5311                if (level > cgroup->max_depth)
5312                        goto fail;
5313
5314                level++;
5315        }
5316
5317        ret = true;
5318fail:
5319        return ret;
5320}
5321
5322int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5323{
5324        struct cgroup *parent, *cgrp;
5325        int ret;
5326
5327        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5328        if (strchr(name, '\n'))
5329                return -EINVAL;
5330
5331        parent = cgroup_kn_lock_live(parent_kn, false);
5332        if (!parent)
5333                return -ENODEV;
5334
5335        if (!cgroup_check_hierarchy_limits(parent)) {
5336                ret = -EAGAIN;
5337                goto out_unlock;
5338        }
5339
5340        cgrp = cgroup_create(parent, name, mode);
5341        if (IS_ERR(cgrp)) {
5342                ret = PTR_ERR(cgrp);
5343                goto out_unlock;
5344        }
5345
5346        /*
5347         * This extra ref will be put in cgroup_free_fn() and guarantees
5348         * that @cgrp->kn is always accessible.
5349         */
5350        kernfs_get(cgrp->kn);
5351
5352        ret = cgroup_kn_set_ugid(cgrp->kn);
5353        if (ret)
5354                goto out_destroy;
5355
5356        ret = css_populate_dir(&cgrp->self);
5357        if (ret)
5358                goto out_destroy;
5359
5360        ret = cgroup_apply_control_enable(cgrp);
5361        if (ret)
5362                goto out_destroy;
5363
5364        TRACE_CGROUP_PATH(mkdir, cgrp);
5365
5366        /* let's create and online css's */
5367        kernfs_activate(cgrp->kn);
5368
5369        ret = 0;
5370        goto out_unlock;
5371
5372out_destroy:
5373        cgroup_destroy_locked(cgrp);
5374out_unlock:
5375        cgroup_kn_unlock(parent_kn);
5376        return ret;
5377}
5378
5379/*
5380 * This is called when the refcnt of a css is confirmed to be killed.
5381 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5382 * initate destruction and put the css ref from kill_css().
5383 */
5384static void css_killed_work_fn(struct work_struct *work)
5385{
5386        struct cgroup_subsys_state *css =
5387                container_of(work, struct cgroup_subsys_state, destroy_work);
5388
5389        mutex_lock(&cgroup_mutex);
5390
5391        do {
5392                offline_css(css);
5393                css_put(css);
5394                /* @css can't go away while we're holding cgroup_mutex */
5395                css = css->parent;
5396        } while (css && atomic_dec_and_test(&css->online_cnt));
5397
5398        mutex_unlock(&cgroup_mutex);
5399}
5400
5401/* css kill confirmation processing requires process context, bounce */
5402static void css_killed_ref_fn(struct percpu_ref *ref)
5403{
5404        struct cgroup_subsys_state *css =
5405                container_of(ref, struct cgroup_subsys_state, refcnt);
5406
5407        if (atomic_dec_and_test(&css->online_cnt)) {
5408                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5409                queue_work(cgroup_destroy_wq, &css->destroy_work);
5410        }
5411}
5412
5413/**
5414 * kill_css - destroy a css
5415 * @css: css to destroy
5416 *
5417 * This function initiates destruction of @css by removing cgroup interface
5418 * files and putting its base reference.  ->css_offline() will be invoked
5419 * asynchronously once css_tryget_online() is guaranteed to fail and when
5420 * the reference count reaches zero, @css will be released.
5421 */
5422static void kill_css(struct cgroup_subsys_state *css)
5423{
5424        lockdep_assert_held(&cgroup_mutex);
5425
5426        if (css->flags & CSS_DYING)
5427                return;
5428
5429        css->flags |= CSS_DYING;
5430
5431        /*
5432         * This must happen before css is disassociated with its cgroup.
5433         * See seq_css() for details.
5434         */
5435        css_clear_dir(css);
5436
5437        /*
5438         * Killing would put the base ref, but we need to keep it alive
5439         * until after ->css_offline().
5440         */
5441        css_get(css);
5442
5443        /*
5444         * cgroup core guarantees that, by the time ->css_offline() is
5445         * invoked, no new css reference will be given out via
5446         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5447         * proceed to offlining css's because percpu_ref_kill() doesn't
5448         * guarantee that the ref is seen as killed on all CPUs on return.
5449         *
5450         * Use percpu_ref_kill_and_confirm() to get notifications as each
5451         * css is confirmed to be seen as killed on all CPUs.
5452         */
5453        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5454}
5455
5456/**
5457 * cgroup_destroy_locked - the first stage of cgroup destruction
5458 * @cgrp: cgroup to be destroyed
5459 *
5460 * css's make use of percpu refcnts whose killing latency shouldn't be
5461 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5462 * guarantee that css_tryget_online() won't succeed by the time
5463 * ->css_offline() is invoked.  To satisfy all the requirements,
5464 * destruction is implemented in the following two steps.
5465 *
5466 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5467 *     userland visible parts and start killing the percpu refcnts of
5468 *     css's.  Set up so that the next stage will be kicked off once all
5469 *     the percpu refcnts are confirmed to be killed.
5470 *
5471 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5472 *     rest of destruction.  Once all cgroup references are gone, the
5473 *     cgroup is RCU-freed.
5474 *
5475 * This function implements s1.  After this step, @cgrp is gone as far as
5476 * the userland is concerned and a new cgroup with the same name may be
5477 * created.  As cgroup doesn't care about the names internally, this
5478 * doesn't cause any problem.
5479 */
5480static int cgroup_destroy_locked(struct cgroup *cgrp)
5481        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5482{
5483        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5484        struct cgroup_subsys_state *css;
5485        struct cgrp_cset_link *link;
5486        int ssid;
5487
5488        lockdep_assert_held(&cgroup_mutex);
5489
5490        /*
5491         * Only migration can raise populated from zero and we're already
5492         * holding cgroup_mutex.
5493         */
5494        if (cgroup_is_populated(cgrp))
5495                return -EBUSY;
5496
5497        /*
5498         * Make sure there's no live children.  We can't test emptiness of
5499         * ->self.children as dead children linger on it while being
5500         * drained; otherwise, "rmdir parent/child parent" may fail.
5501         */
5502        if (css_has_online_children(&cgrp->self))
5503                return -EBUSY;
5504
5505        /*
5506         * Mark @cgrp and the associated csets dead.  The former prevents
5507         * further task migration and child creation by disabling
5508         * cgroup_lock_live_group().  The latter makes the csets ignored by
5509         * the migration path.
5510         */
5511        cgrp->self.flags &= ~CSS_ONLINE;
5512
5513        spin_lock_irq(&css_set_lock);
5514        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5515                link->cset->dead = true;
5516        spin_unlock_irq(&css_set_lock);
5517
5518        /* initiate massacre of all css's */
5519        for_each_css(css, ssid, cgrp)
5520                kill_css(css);
5521
5522        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5523        css_clear_dir(&cgrp->self);
5524        kernfs_remove(cgrp->kn);
5525
5526        if (parent && cgroup_is_threaded(cgrp))
5527                parent->nr_threaded_children--;
5528
5529        spin_lock_irq(&css_set_lock);
5530        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5531                tcgrp->nr_descendants--;
5532                tcgrp->nr_dying_descendants++;
5533                /*
5534                 * If the dying cgroup is frozen, decrease frozen descendants
5535                 * counters of ancestor cgroups.
5536                 */
5537                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5538                        tcgrp->freezer.nr_frozen_descendants--;
5539        }
5540        spin_unlock_irq(&css_set_lock);
5541
5542        cgroup1_check_for_release(parent);
5543
5544        cgroup_bpf_offline(cgrp);
5545
5546        /* put the base reference */
5547        percpu_ref_kill(&cgrp->self.refcnt);
5548
5549        return 0;
5550};
5551
5552int cgroup_rmdir(struct kernfs_node *kn)
5553{
5554        struct cgroup *cgrp;
5555        int ret = 0;
5556
5557        cgrp = cgroup_kn_lock_live(kn, false);
5558        if (!cgrp)
5559                return 0;
5560
5561        ret = cgroup_destroy_locked(cgrp);
5562        if (!ret)
5563                TRACE_CGROUP_PATH(rmdir, cgrp);
5564
5565        cgroup_kn_unlock(kn);
5566        return ret;
5567}
5568
5569static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5570        .show_options           = cgroup_show_options,
5571        .mkdir                  = cgroup_mkdir,
5572        .rmdir                  = cgroup_rmdir,
5573        .show_path              = cgroup_show_path,
5574};
5575
5576static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5577{
5578        struct cgroup_subsys_state *css;
5579
5580        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5581
5582        mutex_lock(&cgroup_mutex);
5583
5584        idr_init(&ss->css_idr);
5585        INIT_LIST_HEAD(&ss->cfts);
5586
5587        /* Create the root cgroup state for this subsystem */
5588        ss->root = &cgrp_dfl_root;
5589        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5590        /* We don't handle early failures gracefully */
5591        BUG_ON(IS_ERR(css));
5592        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5593
5594        /*
5595         * Root csses are never destroyed and we can't initialize
5596         * percpu_ref during early init.  Disable refcnting.
5597         */
5598        css->flags |= CSS_NO_REF;
5599
5600        if (early) {
5601                /* allocation can't be done safely during early init */
5602                css->id = 1;
5603        } else {
5604                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5605                BUG_ON(css->id < 0);
5606        }
5607
5608        /* Update the init_css_set to contain a subsys
5609         * pointer to this state - since the subsystem is
5610         * newly registered, all tasks and hence the
5611         * init_css_set is in the subsystem's root cgroup. */
5612        init_css_set.subsys[ss->id] = css;
5613
5614        have_fork_callback |= (bool)ss->fork << ss->id;
5615        have_exit_callback |= (bool)ss->exit << ss->id;
5616        have_release_callback |= (bool)ss->release << ss->id;
5617        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5618
5619        /* At system boot, before all subsystems have been
5620         * registered, no tasks have been forked, so we don't
5621         * need to invoke fork callbacks here. */
5622        BUG_ON(!list_empty(&init_task.tasks));
5623
5624        BUG_ON(online_css(css));
5625
5626        mutex_unlock(&cgroup_mutex);
5627}
5628
5629/**
5630 * cgroup_init_early - cgroup initialization at system boot
5631 *
5632 * Initialize cgroups at system boot, and initialize any
5633 * subsystems that request early init.
5634 */
5635int __init cgroup_init_early(void)
5636{
5637        static struct cgroup_fs_context __initdata ctx;
5638        struct cgroup_subsys *ss;
5639        int i;
5640
5641        ctx.root = &cgrp_dfl_root;
5642        init_cgroup_root(&ctx);
5643        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5644
5645        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5646
5647        for_each_subsys(ss, i) {
5648                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5649                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5650                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5651                     ss->id, ss->name);
5652                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5653                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5654
5655                ss->id = i;
5656                ss->name = cgroup_subsys_name[i];
5657                if (!ss->legacy_name)
5658                        ss->legacy_name = cgroup_subsys_name[i];
5659
5660                if (ss->early_init)
5661                        cgroup_init_subsys(ss, true);
5662        }
5663        return 0;
5664}
5665
5666static u16 cgroup_disable_mask __initdata;
5667
5668/**
5669 * cgroup_init - cgroup initialization
5670 *
5671 * Register cgroup filesystem and /proc file, and initialize
5672 * any subsystems that didn't request early init.
5673 */
5674int __init cgroup_init(void)
5675{
5676        struct cgroup_subsys *ss;
5677        int ssid;
5678
5679        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5680        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5681        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5682
5683        cgroup_rstat_boot();
5684
5685        /*
5686         * The latency of the synchronize_rcu() is too high for cgroups,
5687         * avoid it at the cost of forcing all readers into the slow path.
5688         */
5689        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5690
5691        get_user_ns(init_cgroup_ns.user_ns);
5692
5693        mutex_lock(&cgroup_mutex);
5694
5695        /*
5696         * Add init_css_set to the hash table so that dfl_root can link to
5697         * it during init.
5698         */
5699        hash_add(css_set_table, &init_css_set.hlist,
5700                 css_set_hash(init_css_set.subsys));
5701
5702        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5703
5704        mutex_unlock(&cgroup_mutex);
5705
5706        for_each_subsys(ss, ssid) {
5707                if (ss->early_init) {
5708                        struct cgroup_subsys_state *css =
5709                                init_css_set.subsys[ss->id];
5710
5711                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5712                                                   GFP_KERNEL);
5713                        BUG_ON(css->id < 0);
5714                } else {
5715                        cgroup_init_subsys(ss, false);
5716                }
5717
5718                list_add_tail(&init_css_set.e_cset_node[ssid],
5719                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5720
5721                /*
5722                 * Setting dfl_root subsys_mask needs to consider the
5723                 * disabled flag and cftype registration needs kmalloc,
5724                 * both of which aren't available during early_init.
5725                 */
5726                if (cgroup_disable_mask & (1 << ssid)) {
5727                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5728                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5729                               ss->name);
5730                        continue;
5731                }
5732
5733                if (cgroup1_ssid_disabled(ssid))
5734                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5735                               ss->name);
5736
5737                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5738
5739                /* implicit controllers must be threaded too */
5740                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5741
5742                if (ss->implicit_on_dfl)
5743                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5744                else if (!ss->dfl_cftypes)
5745                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5746
5747                if (ss->threaded)
5748                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5749
5750                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5751                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5752                } else {
5753                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5754                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5755                }
5756
5757                if (ss->bind)
5758                        ss->bind(init_css_set.subsys[ssid]);
5759
5760                mutex_lock(&cgroup_mutex);
5761                css_populate_dir(init_css_set.subsys[ssid]);
5762                mutex_unlock(&cgroup_mutex);
5763        }
5764
5765        /* init_css_set.subsys[] has been updated, re-hash */
5766        hash_del(&init_css_set.hlist);
5767        hash_add(css_set_table, &init_css_set.hlist,
5768                 css_set_hash(init_css_set.subsys));
5769
5770        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5771        WARN_ON(register_filesystem(&cgroup_fs_type));
5772        WARN_ON(register_filesystem(&cgroup2_fs_type));
5773        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5774#ifdef CONFIG_CPUSETS
5775        WARN_ON(register_filesystem(&cpuset_fs_type));
5776#endif
5777
5778        return 0;
5779}
5780
5781static int __init cgroup_wq_init(void)
5782{
5783        /*
5784         * There isn't much point in executing destruction path in
5785         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5786         * Use 1 for @max_active.
5787         *
5788         * We would prefer to do this in cgroup_init() above, but that
5789         * is called before init_workqueues(): so leave this until after.
5790         */
5791        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5792        BUG_ON(!cgroup_destroy_wq);
5793        return 0;
5794}
5795core_initcall(cgroup_wq_init);
5796
5797void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5798{
5799        struct kernfs_node *kn;
5800
5801        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5802        if (!kn)
5803                return;
5804        kernfs_path(kn, buf, buflen);
5805        kernfs_put(kn);
5806}
5807
5808/*
5809 * proc_cgroup_show()
5810 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5811 *  - Used for /proc/<pid>/cgroup.
5812 */
5813int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5814                     struct pid *pid, struct task_struct *tsk)
5815{
5816        char *buf;
5817        int retval;
5818        struct cgroup_root *root;
5819
5820        retval = -ENOMEM;
5821        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5822        if (!buf)
5823                goto out;
5824
5825        mutex_lock(&cgroup_mutex);
5826        spin_lock_irq(&css_set_lock);
5827
5828        for_each_root(root) {
5829                struct cgroup_subsys *ss;
5830                struct cgroup *cgrp;
5831                int ssid, count = 0;
5832
5833                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5834                        continue;
5835
5836                seq_printf(m, "%d:", root->hierarchy_id);
5837                if (root != &cgrp_dfl_root)
5838                        for_each_subsys(ss, ssid)
5839                                if (root->subsys_mask & (1 << ssid))
5840                                        seq_printf(m, "%s%s", count++ ? "," : "",
5841                                                   ss->legacy_name);
5842                if (strlen(root->name))
5843                        seq_printf(m, "%sname=%s", count ? "," : "",
5844                                   root->name);
5845                seq_putc(m, ':');
5846
5847                cgrp = task_cgroup_from_root(tsk, root);
5848
5849                /*
5850                 * On traditional hierarchies, all zombie tasks show up as
5851                 * belonging to the root cgroup.  On the default hierarchy,
5852                 * while a zombie doesn't show up in "cgroup.procs" and
5853                 * thus can't be migrated, its /proc/PID/cgroup keeps
5854                 * reporting the cgroup it belonged to before exiting.  If
5855                 * the cgroup is removed before the zombie is reaped,
5856                 * " (deleted)" is appended to the cgroup path.
5857                 */
5858                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5859                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5860                                                current->nsproxy->cgroup_ns);
5861                        if (retval >= PATH_MAX)
5862                                retval = -ENAMETOOLONG;
5863                        if (retval < 0)
5864                                goto out_unlock;
5865
5866                        seq_puts(m, buf);
5867                } else {
5868                        seq_puts(m, "/");
5869                }
5870
5871                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5872                        seq_puts(m, " (deleted)\n");
5873                else
5874                        seq_putc(m, '\n');
5875        }
5876
5877        retval = 0;
5878out_unlock:
5879        spin_unlock_irq(&css_set_lock);
5880        mutex_unlock(&cgroup_mutex);
5881        kfree(buf);
5882out:
5883        return retval;
5884}
5885
5886/**
5887 * cgroup_fork - initialize cgroup related fields during copy_process()
5888 * @child: pointer to task_struct of forking parent process.
5889 *
5890 * A task is associated with the init_css_set until cgroup_post_fork()
5891 * attaches it to the target css_set.
5892 */
5893void cgroup_fork(struct task_struct *child)
5894{
5895        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5896        INIT_LIST_HEAD(&child->cg_list);
5897}
5898
5899static struct cgroup *cgroup_get_from_file(struct file *f)
5900{
5901        struct cgroup_subsys_state *css;
5902        struct cgroup *cgrp;
5903
5904        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5905        if (IS_ERR(css))
5906                return ERR_CAST(css);
5907
5908        cgrp = css->cgroup;
5909        if (!cgroup_on_dfl(cgrp)) {
5910                cgroup_put(cgrp);
5911                return ERR_PTR(-EBADF);
5912        }
5913
5914        return cgrp;
5915}
5916
5917/**
5918 * cgroup_css_set_fork - find or create a css_set for a child process
5919 * @kargs: the arguments passed to create the child process
5920 *
5921 * This functions finds or creates a new css_set which the child
5922 * process will be attached to in cgroup_post_fork(). By default,
5923 * the child process will be given the same css_set as its parent.
5924 *
5925 * If CLONE_INTO_CGROUP is specified this function will try to find an
5926 * existing css_set which includes the requested cgroup and if not create
5927 * a new css_set that the child will be attached to later. If this function
5928 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5929 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5930 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5931 * to the target cgroup.
5932 */
5933static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5934        __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5935{
5936        int ret;
5937        struct cgroup *dst_cgrp = NULL;
5938        struct css_set *cset;
5939        struct super_block *sb;
5940        struct file *f;
5941
5942        if (kargs->flags & CLONE_INTO_CGROUP)
5943                mutex_lock(&cgroup_mutex);
5944
5945        cgroup_threadgroup_change_begin(current);
5946
5947        spin_lock_irq(&css_set_lock);
5948        cset = task_css_set(current);
5949        get_css_set(cset);
5950        spin_unlock_irq(&css_set_lock);
5951
5952        if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5953                kargs->cset = cset;
5954                return 0;
5955        }
5956
5957        f = fget_raw(kargs->cgroup);
5958        if (!f) {
5959                ret = -EBADF;
5960                goto err;
5961        }
5962        sb = f->f_path.dentry->d_sb;
5963
5964        dst_cgrp = cgroup_get_from_file(f);
5965        if (IS_ERR(dst_cgrp)) {
5966                ret = PTR_ERR(dst_cgrp);
5967                dst_cgrp = NULL;
5968                goto err;
5969        }
5970
5971        if (cgroup_is_dead(dst_cgrp)) {
5972                ret = -ENODEV;
5973                goto err;
5974        }
5975
5976        /*
5977         * Verify that we the target cgroup is writable for us. This is
5978         * usually done by the vfs layer but since we're not going through
5979         * the vfs layer here we need to do it "manually".
5980         */
5981        ret = cgroup_may_write(dst_cgrp, sb);
5982        if (ret)
5983                goto err;
5984
5985        ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5986                                        !(kargs->flags & CLONE_THREAD));
5987        if (ret)
5988                goto err;
5989
5990        kargs->cset = find_css_set(cset, dst_cgrp);
5991        if (!kargs->cset) {
5992                ret = -ENOMEM;
5993                goto err;
5994        }
5995
5996        put_css_set(cset);
5997        fput(f);
5998        kargs->cgrp = dst_cgrp;
5999        return ret;
6000
6001err:
6002        cgroup_threadgroup_change_end(current);
6003        mutex_unlock(&cgroup_mutex);
6004        if (f)
6005                fput(f);
6006        if (dst_cgrp)
6007                cgroup_put(dst_cgrp);
6008        put_css_set(cset);
6009        if (kargs->cset)
6010                put_css_set(kargs->cset);
6011        return ret;
6012}
6013
6014/**
6015 * cgroup_css_set_put_fork - drop references we took during fork
6016 * @kargs: the arguments passed to create the child process
6017 *
6018 * Drop references to the prepared css_set and target cgroup if
6019 * CLONE_INTO_CGROUP was requested.
6020 */
6021static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6022        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6023{
6024        cgroup_threadgroup_change_end(current);
6025
6026        if (kargs->flags & CLONE_INTO_CGROUP) {
6027                struct cgroup *cgrp = kargs->cgrp;
6028                struct css_set *cset = kargs->cset;
6029
6030                mutex_unlock(&cgroup_mutex);
6031
6032                if (cset) {
6033                        put_css_set(cset);
6034                        kargs->cset = NULL;
6035                }
6036
6037                if (cgrp) {
6038                        cgroup_put(cgrp);
6039                        kargs->cgrp = NULL;
6040                }
6041        }
6042}
6043
6044/**
6045 * cgroup_can_fork - called on a new task before the process is exposed
6046 * @child: the child process
6047 *
6048 * This prepares a new css_set for the child process which the child will
6049 * be attached to in cgroup_post_fork().
6050 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6051 * callback returns an error, the fork aborts with that error code. This
6052 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6053 */
6054int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6055{
6056        struct cgroup_subsys *ss;
6057        int i, j, ret;
6058
6059        ret = cgroup_css_set_fork(kargs);
6060        if (ret)
6061                return ret;
6062
6063        do_each_subsys_mask(ss, i, have_canfork_callback) {
6064                ret = ss->can_fork(child, kargs->cset);
6065                if (ret)
6066                        goto out_revert;
6067        } while_each_subsys_mask();
6068
6069        return 0;
6070
6071out_revert:
6072        for_each_subsys(ss, j) {
6073                if (j >= i)
6074                        break;
6075                if (ss->cancel_fork)
6076                        ss->cancel_fork(child, kargs->cset);
6077        }
6078
6079        cgroup_css_set_put_fork(kargs);
6080
6081        return ret;
6082}
6083
6084/**
6085 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6086 * @child: the child process
6087 * @kargs: the arguments passed to create the child process
6088 *
6089 * This calls the cancel_fork() callbacks if a fork failed *after*
6090 * cgroup_can_fork() succeded and cleans up references we took to
6091 * prepare a new css_set for the child process in cgroup_can_fork().
6092 */
6093void cgroup_cancel_fork(struct task_struct *child,
6094                        struct kernel_clone_args *kargs)
6095{
6096        struct cgroup_subsys *ss;
6097        int i;
6098
6099        for_each_subsys(ss, i)
6100                if (ss->cancel_fork)
6101                        ss->cancel_fork(child, kargs->cset);
6102
6103        cgroup_css_set_put_fork(kargs);
6104}
6105
6106/**
6107 * cgroup_post_fork - finalize cgroup setup for the child process
6108 * @child: the child process
6109 *
6110 * Attach the child process to its css_set calling the subsystem fork()
6111 * callbacks.
6112 */
6113void cgroup_post_fork(struct task_struct *child,
6114                      struct kernel_clone_args *kargs)
6115        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6116{
6117        struct cgroup_subsys *ss;
6118        struct css_set *cset;
6119        int i;
6120
6121        cset = kargs->cset;
6122        kargs->cset = NULL;
6123
6124        spin_lock_irq(&css_set_lock);
6125
6126        /* init tasks are special, only link regular threads */
6127        if (likely(child->pid)) {
6128                WARN_ON_ONCE(!list_empty(&child->cg_list));
6129                cset->nr_tasks++;
6130                css_set_move_task(child, NULL, cset, false);
6131        } else {
6132                put_css_set(cset);
6133                cset = NULL;
6134        }
6135
6136        /*
6137         * If the cgroup has to be frozen, the new task has too.  Let's set
6138         * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6139         * frozen state.
6140         */
6141        if (unlikely(cgroup_task_freeze(child))) {
6142                spin_lock(&child->sighand->siglock);
6143                WARN_ON_ONCE(child->frozen);
6144                child->jobctl |= JOBCTL_TRAP_FREEZE;
6145                spin_unlock(&child->sighand->siglock);
6146
6147                /*
6148                 * Calling cgroup_update_frozen() isn't required here,
6149                 * because it will be called anyway a bit later from
6150                 * do_freezer_trap(). So we avoid cgroup's transient switch
6151                 * from the frozen state and back.
6152                 */
6153        }
6154
6155        spin_unlock_irq(&css_set_lock);
6156
6157        /*
6158         * Call ss->fork().  This must happen after @child is linked on
6159         * css_set; otherwise, @child might change state between ->fork()
6160         * and addition to css_set.
6161         */
6162        do_each_subsys_mask(ss, i, have_fork_callback) {
6163                ss->fork(child);
6164        } while_each_subsys_mask();
6165
6166        /* Make the new cset the root_cset of the new cgroup namespace. */
6167        if (kargs->flags & CLONE_NEWCGROUP) {
6168                struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6169
6170                get_css_set(cset);
6171                child->nsproxy->cgroup_ns->root_cset = cset;
6172                put_css_set(rcset);
6173        }
6174
6175        cgroup_css_set_put_fork(kargs);
6176}
6177
6178/**
6179 * cgroup_exit - detach cgroup from exiting task
6180 * @tsk: pointer to task_struct of exiting process
6181 *
6182 * Description: Detach cgroup from @tsk.
6183 *
6184 */
6185void cgroup_exit(struct task_struct *tsk)
6186{
6187        struct cgroup_subsys *ss;
6188        struct css_set *cset;
6189        int i;
6190
6191        spin_lock_irq(&css_set_lock);
6192
6193        WARN_ON_ONCE(list_empty(&tsk->cg_list));
6194        cset = task_css_set(tsk);
6195        css_set_move_task(tsk, cset, NULL, false);
6196        list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6197        cset->nr_tasks--;
6198
6199        WARN_ON_ONCE(cgroup_task_frozen(tsk));
6200        if (unlikely(cgroup_task_freeze(tsk)))
6201                cgroup_update_frozen(task_dfl_cgroup(tsk));
6202
6203        spin_unlock_irq(&css_set_lock);
6204
6205        /* see cgroup_post_fork() for details */
6206        do_each_subsys_mask(ss, i, have_exit_callback) {
6207                ss->exit(tsk);
6208        } while_each_subsys_mask();
6209}
6210
6211void cgroup_release(struct task_struct *task)
6212{
6213        struct cgroup_subsys *ss;
6214        int ssid;
6215
6216        do_each_subsys_mask(ss, ssid, have_release_callback) {
6217                ss->release(task);
6218        } while_each_subsys_mask();
6219
6220        spin_lock_irq(&css_set_lock);
6221        css_set_skip_task_iters(task_css_set(task), task);
6222        list_del_init(&task->cg_list);
6223        spin_unlock_irq(&css_set_lock);
6224}
6225
6226void cgroup_free(struct task_struct *task)
6227{
6228        struct css_set *cset = task_css_set(task);
6229        put_css_set(cset);
6230}
6231
6232static int __init cgroup_disable(char *str)
6233{
6234        struct cgroup_subsys *ss;
6235        char *token;
6236        int i;
6237
6238        while ((token = strsep(&str, ",")) != NULL) {
6239                if (!*token)
6240                        continue;
6241
6242                for_each_subsys(ss, i) {
6243                        if (strcmp(token, ss->name) &&
6244                            strcmp(token, ss->legacy_name))
6245                                continue;
6246                        cgroup_disable_mask |= 1 << i;
6247                }
6248        }
6249        return 1;
6250}
6251__setup("cgroup_disable=", cgroup_disable);
6252
6253void __init __weak enable_debug_cgroup(void) { }
6254
6255static int __init enable_cgroup_debug(char *str)
6256{
6257        cgroup_debug = true;
6258        enable_debug_cgroup();
6259        return 1;
6260}
6261__setup("cgroup_debug", enable_cgroup_debug);
6262
6263/**
6264 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6265 * @dentry: directory dentry of interest
6266 * @ss: subsystem of interest
6267 *
6268 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6269 * to get the corresponding css and return it.  If such css doesn't exist
6270 * or can't be pinned, an ERR_PTR value is returned.
6271 */
6272struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6273                                                       struct cgroup_subsys *ss)
6274{
6275        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6276        struct file_system_type *s_type = dentry->d_sb->s_type;
6277        struct cgroup_subsys_state *css = NULL;
6278        struct cgroup *cgrp;
6279
6280        /* is @dentry a cgroup dir? */
6281        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6282            !kn || kernfs_type(kn) != KERNFS_DIR)
6283                return ERR_PTR(-EBADF);
6284
6285        rcu_read_lock();
6286
6287        /*
6288         * This path doesn't originate from kernfs and @kn could already
6289         * have been or be removed at any point.  @kn->priv is RCU
6290         * protected for this access.  See css_release_work_fn() for details.
6291         */
6292        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6293        if (cgrp)
6294                css = cgroup_css(cgrp, ss);
6295
6296        if (!css || !css_tryget_online(css))
6297                css = ERR_PTR(-ENOENT);
6298
6299        rcu_read_unlock();
6300        return css;
6301}
6302
6303/**
6304 * css_from_id - lookup css by id
6305 * @id: the cgroup id
6306 * @ss: cgroup subsys to be looked into
6307 *
6308 * Returns the css if there's valid one with @id, otherwise returns NULL.
6309 * Should be called under rcu_read_lock().
6310 */
6311struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6312{
6313        WARN_ON_ONCE(!rcu_read_lock_held());
6314        return idr_find(&ss->css_idr, id);
6315}
6316
6317/**
6318 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6319 * @path: path on the default hierarchy
6320 *
6321 * Find the cgroup at @path on the default hierarchy, increment its
6322 * reference count and return it.  Returns pointer to the found cgroup on
6323 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6324 * if @path points to a non-directory.
6325 */
6326struct cgroup *cgroup_get_from_path(const char *path)
6327{
6328        struct kernfs_node *kn;
6329        struct cgroup *cgrp;
6330
6331        mutex_lock(&cgroup_mutex);
6332
6333        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6334        if (kn) {
6335                if (kernfs_type(kn) == KERNFS_DIR) {
6336                        cgrp = kn->priv;
6337                        cgroup_get_live(cgrp);
6338                } else {
6339                        cgrp = ERR_PTR(-ENOTDIR);
6340                }
6341                kernfs_put(kn);
6342        } else {
6343                cgrp = ERR_PTR(-ENOENT);
6344        }
6345
6346        mutex_unlock(&cgroup_mutex);
6347        return cgrp;
6348}
6349EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6350
6351/**
6352 * cgroup_get_from_fd - get a cgroup pointer from a fd
6353 * @fd: fd obtained by open(cgroup2_dir)
6354 *
6355 * Find the cgroup from a fd which should be obtained
6356 * by opening a cgroup directory.  Returns a pointer to the
6357 * cgroup on success. ERR_PTR is returned if the cgroup
6358 * cannot be found.
6359 */
6360struct cgroup *cgroup_get_from_fd(int fd)
6361{
6362        struct cgroup *cgrp;
6363        struct file *f;
6364
6365        f = fget_raw(fd);
6366        if (!f)
6367                return ERR_PTR(-EBADF);
6368
6369        cgrp = cgroup_get_from_file(f);
6370        fput(f);
6371        return cgrp;
6372}
6373EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6374
6375static u64 power_of_ten(int power)
6376{
6377        u64 v = 1;
6378        while (power--)
6379                v *= 10;
6380        return v;
6381}
6382
6383/**
6384 * cgroup_parse_float - parse a floating number
6385 * @input: input string
6386 * @dec_shift: number of decimal digits to shift
6387 * @v: output
6388 *
6389 * Parse a decimal floating point number in @input and store the result in
6390 * @v with decimal point right shifted @dec_shift times.  For example, if
6391 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6392 * Returns 0 on success, -errno otherwise.
6393 *
6394 * There's nothing cgroup specific about this function except that it's
6395 * currently the only user.
6396 */
6397int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6398{
6399        s64 whole, frac = 0;
6400        int fstart = 0, fend = 0, flen;
6401
6402        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6403                return -EINVAL;
6404        if (frac < 0)
6405                return -EINVAL;
6406
6407        flen = fend > fstart ? fend - fstart : 0;
6408        if (flen < dec_shift)
6409                frac *= power_of_ten(dec_shift - flen);
6410        else
6411                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6412
6413        *v = whole * power_of_ten(dec_shift) + frac;
6414        return 0;
6415}
6416
6417/*
6418 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6419 * definition in cgroup-defs.h.
6420 */
6421#ifdef CONFIG_SOCK_CGROUP_DATA
6422
6423#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6424
6425DEFINE_SPINLOCK(cgroup_sk_update_lock);
6426static bool cgroup_sk_alloc_disabled __read_mostly;
6427
6428void cgroup_sk_alloc_disable(void)
6429{
6430        if (cgroup_sk_alloc_disabled)
6431                return;
6432        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6433        cgroup_sk_alloc_disabled = true;
6434}
6435
6436#else
6437
6438#define cgroup_sk_alloc_disabled        false
6439
6440#endif
6441
6442void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6443{
6444        if (cgroup_sk_alloc_disabled) {
6445                skcd->no_refcnt = 1;
6446                return;
6447        }
6448
6449        /* Don't associate the sock with unrelated interrupted task's cgroup. */
6450        if (in_interrupt())
6451                return;
6452
6453        rcu_read_lock();
6454
6455        while (true) {
6456                struct css_set *cset;
6457
6458                cset = task_css_set(current);
6459                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6460                        skcd->val = (unsigned long)cset->dfl_cgrp;
6461                        cgroup_bpf_get(cset->dfl_cgrp);
6462                        break;
6463                }
6464                cpu_relax();
6465        }
6466
6467        rcu_read_unlock();
6468}
6469
6470void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6471{
6472        if (skcd->val) {
6473                if (skcd->no_refcnt)
6474                        return;
6475                /*
6476                 * We might be cloning a socket which is left in an empty
6477                 * cgroup and the cgroup might have already been rmdir'd.
6478                 * Don't use cgroup_get_live().
6479                 */
6480                cgroup_get(sock_cgroup_ptr(skcd));
6481                cgroup_bpf_get(sock_cgroup_ptr(skcd));
6482        }
6483}
6484
6485void cgroup_sk_free(struct sock_cgroup_data *skcd)
6486{
6487        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6488
6489        if (skcd->no_refcnt)
6490                return;
6491        cgroup_bpf_put(cgrp);
6492        cgroup_put(cgrp);
6493}
6494
6495#endif  /* CONFIG_SOCK_CGROUP_DATA */
6496
6497#ifdef CONFIG_CGROUP_BPF
6498int cgroup_bpf_attach(struct cgroup *cgrp,
6499                      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6500                      struct bpf_cgroup_link *link,
6501                      enum bpf_attach_type type,
6502                      u32 flags)
6503{
6504        int ret;
6505
6506        mutex_lock(&cgroup_mutex);
6507        ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6508        mutex_unlock(&cgroup_mutex);
6509        return ret;
6510}
6511
6512int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6513                      enum bpf_attach_type type)
6514{
6515        int ret;
6516
6517        mutex_lock(&cgroup_mutex);
6518        ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6519        mutex_unlock(&cgroup_mutex);
6520        return ret;
6521}
6522
6523int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6524                     union bpf_attr __user *uattr)
6525{
6526        int ret;
6527
6528        mutex_lock(&cgroup_mutex);
6529        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6530        mutex_unlock(&cgroup_mutex);
6531        return ret;
6532}
6533#endif /* CONFIG_CGROUP_BPF */
6534
6535#ifdef CONFIG_SYSFS
6536static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6537                                      ssize_t size, const char *prefix)
6538{
6539        struct cftype *cft;
6540        ssize_t ret = 0;
6541
6542        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6543                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6544                        continue;
6545
6546                if (prefix)
6547                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6548
6549                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6550
6551                if (WARN_ON(ret >= size))
6552                        break;
6553        }
6554
6555        return ret;
6556}
6557
6558static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6559                              char *buf)
6560{
6561        struct cgroup_subsys *ss;
6562        int ssid;
6563        ssize_t ret = 0;
6564
6565        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6566                                     NULL);
6567
6568        for_each_subsys(ss, ssid)
6569                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6570                                              PAGE_SIZE - ret,
6571                                              cgroup_subsys_name[ssid]);
6572
6573        return ret;
6574}
6575static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6576
6577static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6578                             char *buf)
6579{
6580        return snprintf(buf, PAGE_SIZE,
6581                        "nsdelegate\n"
6582                        "memory_localevents\n"
6583                        "memory_recursiveprot\n");
6584}
6585static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6586
6587static struct attribute *cgroup_sysfs_attrs[] = {
6588        &cgroup_delegate_attr.attr,
6589        &cgroup_features_attr.attr,
6590        NULL,
6591};
6592
6593static const struct attribute_group cgroup_sysfs_attr_group = {
6594        .attrs = cgroup_sysfs_attrs,
6595        .name = "cgroup",
6596};
6597
6598static int __init cgroup_sysfs_init(void)
6599{
6600        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6601}
6602subsys_initcall(cgroup_sysfs_init);
6603
6604#endif /* CONFIG_SYSFS */
6605