linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28__read_mostly bool force_irqthreads;
  29EXPORT_SYMBOL_GPL(force_irqthreads);
  30
  31static int __init setup_forced_irqthreads(char *arg)
  32{
  33        force_irqthreads = true;
  34        return 0;
  35}
  36early_param("threadirqs", setup_forced_irqthreads);
  37#endif
  38
  39static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  40{
  41        struct irq_data *irqd = irq_desc_get_irq_data(desc);
  42        bool inprogress;
  43
  44        do {
  45                unsigned long flags;
  46
  47                /*
  48                 * Wait until we're out of the critical section.  This might
  49                 * give the wrong answer due to the lack of memory barriers.
  50                 */
  51                while (irqd_irq_inprogress(&desc->irq_data))
  52                        cpu_relax();
  53
  54                /* Ok, that indicated we're done: double-check carefully. */
  55                raw_spin_lock_irqsave(&desc->lock, flags);
  56                inprogress = irqd_irq_inprogress(&desc->irq_data);
  57
  58                /*
  59                 * If requested and supported, check at the chip whether it
  60                 * is in flight at the hardware level, i.e. already pending
  61                 * in a CPU and waiting for service and acknowledge.
  62                 */
  63                if (!inprogress && sync_chip) {
  64                        /*
  65                         * Ignore the return code. inprogress is only updated
  66                         * when the chip supports it.
  67                         */
  68                        __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  69                                                &inprogress);
  70                }
  71                raw_spin_unlock_irqrestore(&desc->lock, flags);
  72
  73                /* Oops, that failed? */
  74        } while (inprogress);
  75}
  76
  77/**
  78 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  79 *      @irq: interrupt number to wait for
  80 *
  81 *      This function waits for any pending hard IRQ handlers for this
  82 *      interrupt to complete before returning. If you use this
  83 *      function while holding a resource the IRQ handler may need you
  84 *      will deadlock. It does not take associated threaded handlers
  85 *      into account.
  86 *
  87 *      Do not use this for shutdown scenarios where you must be sure
  88 *      that all parts (hardirq and threaded handler) have completed.
  89 *
  90 *      Returns: false if a threaded handler is active.
  91 *
  92 *      This function may be called - with care - from IRQ context.
  93 *
  94 *      It does not check whether there is an interrupt in flight at the
  95 *      hardware level, but not serviced yet, as this might deadlock when
  96 *      called with interrupts disabled and the target CPU of the interrupt
  97 *      is the current CPU.
  98 */
  99bool synchronize_hardirq(unsigned int irq)
 100{
 101        struct irq_desc *desc = irq_to_desc(irq);
 102
 103        if (desc) {
 104                __synchronize_hardirq(desc, false);
 105                return !atomic_read(&desc->threads_active);
 106        }
 107
 108        return true;
 109}
 110EXPORT_SYMBOL(synchronize_hardirq);
 111
 112/**
 113 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 114 *      @irq: interrupt number to wait for
 115 *
 116 *      This function waits for any pending IRQ handlers for this interrupt
 117 *      to complete before returning. If you use this function while
 118 *      holding a resource the IRQ handler may need you will deadlock.
 119 *
 120 *      Can only be called from preemptible code as it might sleep when
 121 *      an interrupt thread is associated to @irq.
 122 *
 123 *      It optionally makes sure (when the irq chip supports that method)
 124 *      that the interrupt is not pending in any CPU and waiting for
 125 *      service.
 126 */
 127void synchronize_irq(unsigned int irq)
 128{
 129        struct irq_desc *desc = irq_to_desc(irq);
 130
 131        if (desc) {
 132                __synchronize_hardirq(desc, true);
 133                /*
 134                 * We made sure that no hardirq handler is
 135                 * running. Now verify that no threaded handlers are
 136                 * active.
 137                 */
 138                wait_event(desc->wait_for_threads,
 139                           !atomic_read(&desc->threads_active));
 140        }
 141}
 142EXPORT_SYMBOL(synchronize_irq);
 143
 144#ifdef CONFIG_SMP
 145cpumask_var_t irq_default_affinity;
 146
 147static bool __irq_can_set_affinity(struct irq_desc *desc)
 148{
 149        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 150            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 151                return false;
 152        return true;
 153}
 154
 155/**
 156 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 157 *      @irq:           Interrupt to check
 158 *
 159 */
 160int irq_can_set_affinity(unsigned int irq)
 161{
 162        return __irq_can_set_affinity(irq_to_desc(irq));
 163}
 164
 165/**
 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 167 * @irq:        Interrupt to check
 168 *
 169 * Like irq_can_set_affinity() above, but additionally checks for the
 170 * AFFINITY_MANAGED flag.
 171 */
 172bool irq_can_set_affinity_usr(unsigned int irq)
 173{
 174        struct irq_desc *desc = irq_to_desc(irq);
 175
 176        return __irq_can_set_affinity(desc) &&
 177                !irqd_affinity_is_managed(&desc->irq_data);
 178}
 179
 180/**
 181 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 182 *      @desc:          irq descriptor which has affitnity changed
 183 *
 184 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 185 *      to the interrupt thread itself. We can not call
 186 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 187 *      code can be called from hard interrupt context.
 188 */
 189void irq_set_thread_affinity(struct irq_desc *desc)
 190{
 191        struct irqaction *action;
 192
 193        for_each_action_of_desc(desc, action)
 194                if (action->thread)
 195                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 196}
 197
 198#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 199static void irq_validate_effective_affinity(struct irq_data *data)
 200{
 201        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 202        struct irq_chip *chip = irq_data_get_irq_chip(data);
 203
 204        if (!cpumask_empty(m))
 205                return;
 206        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 207                     chip->name, data->irq);
 208}
 209
 210static inline void irq_init_effective_affinity(struct irq_data *data,
 211                                               const struct cpumask *mask)
 212{
 213        cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
 214}
 215#else
 216static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 217static inline void irq_init_effective_affinity(struct irq_data *data,
 218                                               const struct cpumask *mask) { }
 219#endif
 220
 221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 222                        bool force)
 223{
 224        struct irq_desc *desc = irq_data_to_desc(data);
 225        struct irq_chip *chip = irq_data_get_irq_chip(data);
 226        int ret;
 227
 228        if (!chip || !chip->irq_set_affinity)
 229                return -EINVAL;
 230
 231        /*
 232         * If this is a managed interrupt and housekeeping is enabled on
 233         * it check whether the requested affinity mask intersects with
 234         * a housekeeping CPU. If so, then remove the isolated CPUs from
 235         * the mask and just keep the housekeeping CPU(s). This prevents
 236         * the affinity setter from routing the interrupt to an isolated
 237         * CPU to avoid that I/O submitted from a housekeeping CPU causes
 238         * interrupts on an isolated one.
 239         *
 240         * If the masks do not intersect or include online CPU(s) then
 241         * keep the requested mask. The isolated target CPUs are only
 242         * receiving interrupts when the I/O operation was submitted
 243         * directly from them.
 244         *
 245         * If all housekeeping CPUs in the affinity mask are offline, the
 246         * interrupt will be migrated by the CPU hotplug code once a
 247         * housekeeping CPU which belongs to the affinity mask comes
 248         * online.
 249         */
 250        if (irqd_affinity_is_managed(data) &&
 251            housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
 252                const struct cpumask *hk_mask, *prog_mask;
 253
 254                static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 255                static struct cpumask tmp_mask;
 256
 257                hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
 258
 259                raw_spin_lock(&tmp_mask_lock);
 260                cpumask_and(&tmp_mask, mask, hk_mask);
 261                if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 262                        prog_mask = mask;
 263                else
 264                        prog_mask = &tmp_mask;
 265                ret = chip->irq_set_affinity(data, prog_mask, force);
 266                raw_spin_unlock(&tmp_mask_lock);
 267        } else {
 268                ret = chip->irq_set_affinity(data, mask, force);
 269        }
 270        switch (ret) {
 271        case IRQ_SET_MASK_OK:
 272        case IRQ_SET_MASK_OK_DONE:
 273                cpumask_copy(desc->irq_common_data.affinity, mask);
 274                fallthrough;
 275        case IRQ_SET_MASK_OK_NOCOPY:
 276                irq_validate_effective_affinity(data);
 277                irq_set_thread_affinity(desc);
 278                ret = 0;
 279        }
 280
 281        return ret;
 282}
 283
 284#ifdef CONFIG_GENERIC_PENDING_IRQ
 285static inline int irq_set_affinity_pending(struct irq_data *data,
 286                                           const struct cpumask *dest)
 287{
 288        struct irq_desc *desc = irq_data_to_desc(data);
 289
 290        irqd_set_move_pending(data);
 291        irq_copy_pending(desc, dest);
 292        return 0;
 293}
 294#else
 295static inline int irq_set_affinity_pending(struct irq_data *data,
 296                                           const struct cpumask *dest)
 297{
 298        return -EBUSY;
 299}
 300#endif
 301
 302static int irq_try_set_affinity(struct irq_data *data,
 303                                const struct cpumask *dest, bool force)
 304{
 305        int ret = irq_do_set_affinity(data, dest, force);
 306
 307        /*
 308         * In case that the underlying vector management is busy and the
 309         * architecture supports the generic pending mechanism then utilize
 310         * this to avoid returning an error to user space.
 311         */
 312        if (ret == -EBUSY && !force)
 313                ret = irq_set_affinity_pending(data, dest);
 314        return ret;
 315}
 316
 317static bool irq_set_affinity_deactivated(struct irq_data *data,
 318                                         const struct cpumask *mask, bool force)
 319{
 320        struct irq_desc *desc = irq_data_to_desc(data);
 321
 322        /*
 323         * Handle irq chips which can handle affinity only in activated
 324         * state correctly
 325         *
 326         * If the interrupt is not yet activated, just store the affinity
 327         * mask and do not call the chip driver at all. On activation the
 328         * driver has to make sure anyway that the interrupt is in a
 329         * useable state so startup works.
 330         */
 331        if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 332            irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 333                return false;
 334
 335        cpumask_copy(desc->irq_common_data.affinity, mask);
 336        irq_init_effective_affinity(data, mask);
 337        irqd_set(data, IRQD_AFFINITY_SET);
 338        return true;
 339}
 340
 341int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 342                            bool force)
 343{
 344        struct irq_chip *chip = irq_data_get_irq_chip(data);
 345        struct irq_desc *desc = irq_data_to_desc(data);
 346        int ret = 0;
 347
 348        if (!chip || !chip->irq_set_affinity)
 349                return -EINVAL;
 350
 351        if (irq_set_affinity_deactivated(data, mask, force))
 352                return 0;
 353
 354        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 355                ret = irq_try_set_affinity(data, mask, force);
 356        } else {
 357                irqd_set_move_pending(data);
 358                irq_copy_pending(desc, mask);
 359        }
 360
 361        if (desc->affinity_notify) {
 362                kref_get(&desc->affinity_notify->kref);
 363                if (!schedule_work(&desc->affinity_notify->work)) {
 364                        /* Work was already scheduled, drop our extra ref */
 365                        kref_put(&desc->affinity_notify->kref,
 366                                 desc->affinity_notify->release);
 367                }
 368        }
 369        irqd_set(data, IRQD_AFFINITY_SET);
 370
 371        return ret;
 372}
 373
 374int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 375{
 376        struct irq_desc *desc = irq_to_desc(irq);
 377        unsigned long flags;
 378        int ret;
 379
 380        if (!desc)
 381                return -EINVAL;
 382
 383        raw_spin_lock_irqsave(&desc->lock, flags);
 384        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 385        raw_spin_unlock_irqrestore(&desc->lock, flags);
 386        return ret;
 387}
 388
 389int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 390{
 391        unsigned long flags;
 392        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 393
 394        if (!desc)
 395                return -EINVAL;
 396        desc->affinity_hint = m;
 397        irq_put_desc_unlock(desc, flags);
 398        /* set the initial affinity to prevent every interrupt being on CPU0 */
 399        if (m)
 400                __irq_set_affinity(irq, m, false);
 401        return 0;
 402}
 403EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 404
 405static void irq_affinity_notify(struct work_struct *work)
 406{
 407        struct irq_affinity_notify *notify =
 408                container_of(work, struct irq_affinity_notify, work);
 409        struct irq_desc *desc = irq_to_desc(notify->irq);
 410        cpumask_var_t cpumask;
 411        unsigned long flags;
 412
 413        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 414                goto out;
 415
 416        raw_spin_lock_irqsave(&desc->lock, flags);
 417        if (irq_move_pending(&desc->irq_data))
 418                irq_get_pending(cpumask, desc);
 419        else
 420                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 421        raw_spin_unlock_irqrestore(&desc->lock, flags);
 422
 423        notify->notify(notify, cpumask);
 424
 425        free_cpumask_var(cpumask);
 426out:
 427        kref_put(&notify->kref, notify->release);
 428}
 429
 430/**
 431 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 432 *      @irq:           Interrupt for which to enable/disable notification
 433 *      @notify:        Context for notification, or %NULL to disable
 434 *                      notification.  Function pointers must be initialised;
 435 *                      the other fields will be initialised by this function.
 436 *
 437 *      Must be called in process context.  Notification may only be enabled
 438 *      after the IRQ is allocated and must be disabled before the IRQ is
 439 *      freed using free_irq().
 440 */
 441int
 442irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 443{
 444        struct irq_desc *desc = irq_to_desc(irq);
 445        struct irq_affinity_notify *old_notify;
 446        unsigned long flags;
 447
 448        /* The release function is promised process context */
 449        might_sleep();
 450
 451        if (!desc || desc->istate & IRQS_NMI)
 452                return -EINVAL;
 453
 454        /* Complete initialisation of *notify */
 455        if (notify) {
 456                notify->irq = irq;
 457                kref_init(&notify->kref);
 458                INIT_WORK(&notify->work, irq_affinity_notify);
 459        }
 460
 461        raw_spin_lock_irqsave(&desc->lock, flags);
 462        old_notify = desc->affinity_notify;
 463        desc->affinity_notify = notify;
 464        raw_spin_unlock_irqrestore(&desc->lock, flags);
 465
 466        if (old_notify) {
 467                if (cancel_work_sync(&old_notify->work)) {
 468                        /* Pending work had a ref, put that one too */
 469                        kref_put(&old_notify->kref, old_notify->release);
 470                }
 471                kref_put(&old_notify->kref, old_notify->release);
 472        }
 473
 474        return 0;
 475}
 476EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 477
 478#ifndef CONFIG_AUTO_IRQ_AFFINITY
 479/*
 480 * Generic version of the affinity autoselector.
 481 */
 482int irq_setup_affinity(struct irq_desc *desc)
 483{
 484        struct cpumask *set = irq_default_affinity;
 485        int ret, node = irq_desc_get_node(desc);
 486        static DEFINE_RAW_SPINLOCK(mask_lock);
 487        static struct cpumask mask;
 488
 489        /* Excludes PER_CPU and NO_BALANCE interrupts */
 490        if (!__irq_can_set_affinity(desc))
 491                return 0;
 492
 493        raw_spin_lock(&mask_lock);
 494        /*
 495         * Preserve the managed affinity setting and a userspace affinity
 496         * setup, but make sure that one of the targets is online.
 497         */
 498        if (irqd_affinity_is_managed(&desc->irq_data) ||
 499            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 500                if (cpumask_intersects(desc->irq_common_data.affinity,
 501                                       cpu_online_mask))
 502                        set = desc->irq_common_data.affinity;
 503                else
 504                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 505        }
 506
 507        cpumask_and(&mask, cpu_online_mask, set);
 508        if (cpumask_empty(&mask))
 509                cpumask_copy(&mask, cpu_online_mask);
 510
 511        if (node != NUMA_NO_NODE) {
 512                const struct cpumask *nodemask = cpumask_of_node(node);
 513
 514                /* make sure at least one of the cpus in nodemask is online */
 515                if (cpumask_intersects(&mask, nodemask))
 516                        cpumask_and(&mask, &mask, nodemask);
 517        }
 518        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 519        raw_spin_unlock(&mask_lock);
 520        return ret;
 521}
 522#else
 523/* Wrapper for ALPHA specific affinity selector magic */
 524int irq_setup_affinity(struct irq_desc *desc)
 525{
 526        return irq_select_affinity(irq_desc_get_irq(desc));
 527}
 528#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 529#endif /* CONFIG_SMP */
 530
 531
 532/**
 533 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 534 *      @irq: interrupt number to set affinity
 535 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 536 *                  specific data for percpu_devid interrupts
 537 *
 538 *      This function uses the vCPU specific data to set the vCPU
 539 *      affinity for an irq. The vCPU specific data is passed from
 540 *      outside, such as KVM. One example code path is as below:
 541 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 542 */
 543int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 544{
 545        unsigned long flags;
 546        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 547        struct irq_data *data;
 548        struct irq_chip *chip;
 549        int ret = -ENOSYS;
 550
 551        if (!desc)
 552                return -EINVAL;
 553
 554        data = irq_desc_get_irq_data(desc);
 555        do {
 556                chip = irq_data_get_irq_chip(data);
 557                if (chip && chip->irq_set_vcpu_affinity)
 558                        break;
 559#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 560                data = data->parent_data;
 561#else
 562                data = NULL;
 563#endif
 564        } while (data);
 565
 566        if (data)
 567                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 568        irq_put_desc_unlock(desc, flags);
 569
 570        return ret;
 571}
 572EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 573
 574void __disable_irq(struct irq_desc *desc)
 575{
 576        if (!desc->depth++)
 577                irq_disable(desc);
 578}
 579
 580static int __disable_irq_nosync(unsigned int irq)
 581{
 582        unsigned long flags;
 583        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 584
 585        if (!desc)
 586                return -EINVAL;
 587        __disable_irq(desc);
 588        irq_put_desc_busunlock(desc, flags);
 589        return 0;
 590}
 591
 592/**
 593 *      disable_irq_nosync - disable an irq without waiting
 594 *      @irq: Interrupt to disable
 595 *
 596 *      Disable the selected interrupt line.  Disables and Enables are
 597 *      nested.
 598 *      Unlike disable_irq(), this function does not ensure existing
 599 *      instances of the IRQ handler have completed before returning.
 600 *
 601 *      This function may be called from IRQ context.
 602 */
 603void disable_irq_nosync(unsigned int irq)
 604{
 605        __disable_irq_nosync(irq);
 606}
 607EXPORT_SYMBOL(disable_irq_nosync);
 608
 609/**
 610 *      disable_irq - disable an irq and wait for completion
 611 *      @irq: Interrupt to disable
 612 *
 613 *      Disable the selected interrupt line.  Enables and Disables are
 614 *      nested.
 615 *      This function waits for any pending IRQ handlers for this interrupt
 616 *      to complete before returning. If you use this function while
 617 *      holding a resource the IRQ handler may need you will deadlock.
 618 *
 619 *      This function may be called - with care - from IRQ context.
 620 */
 621void disable_irq(unsigned int irq)
 622{
 623        if (!__disable_irq_nosync(irq))
 624                synchronize_irq(irq);
 625}
 626EXPORT_SYMBOL(disable_irq);
 627
 628/**
 629 *      disable_hardirq - disables an irq and waits for hardirq completion
 630 *      @irq: Interrupt to disable
 631 *
 632 *      Disable the selected interrupt line.  Enables and Disables are
 633 *      nested.
 634 *      This function waits for any pending hard IRQ handlers for this
 635 *      interrupt to complete before returning. If you use this function while
 636 *      holding a resource the hard IRQ handler may need you will deadlock.
 637 *
 638 *      When used to optimistically disable an interrupt from atomic context
 639 *      the return value must be checked.
 640 *
 641 *      Returns: false if a threaded handler is active.
 642 *
 643 *      This function may be called - with care - from IRQ context.
 644 */
 645bool disable_hardirq(unsigned int irq)
 646{
 647        if (!__disable_irq_nosync(irq))
 648                return synchronize_hardirq(irq);
 649
 650        return false;
 651}
 652EXPORT_SYMBOL_GPL(disable_hardirq);
 653
 654/**
 655 *      disable_nmi_nosync - disable an nmi without waiting
 656 *      @irq: Interrupt to disable
 657 *
 658 *      Disable the selected interrupt line. Disables and enables are
 659 *      nested.
 660 *      The interrupt to disable must have been requested through request_nmi.
 661 *      Unlike disable_nmi(), this function does not ensure existing
 662 *      instances of the IRQ handler have completed before returning.
 663 */
 664void disable_nmi_nosync(unsigned int irq)
 665{
 666        disable_irq_nosync(irq);
 667}
 668
 669void __enable_irq(struct irq_desc *desc)
 670{
 671        switch (desc->depth) {
 672        case 0:
 673 err_out:
 674                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 675                     irq_desc_get_irq(desc));
 676                break;
 677        case 1: {
 678                if (desc->istate & IRQS_SUSPENDED)
 679                        goto err_out;
 680                /* Prevent probing on this irq: */
 681                irq_settings_set_noprobe(desc);
 682                /*
 683                 * Call irq_startup() not irq_enable() here because the
 684                 * interrupt might be marked NOAUTOEN. So irq_startup()
 685                 * needs to be invoked when it gets enabled the first
 686                 * time. If it was already started up, then irq_startup()
 687                 * will invoke irq_enable() under the hood.
 688                 */
 689                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 690                break;
 691        }
 692        default:
 693                desc->depth--;
 694        }
 695}
 696
 697/**
 698 *      enable_irq - enable handling of an irq
 699 *      @irq: Interrupt to enable
 700 *
 701 *      Undoes the effect of one call to disable_irq().  If this
 702 *      matches the last disable, processing of interrupts on this
 703 *      IRQ line is re-enabled.
 704 *
 705 *      This function may be called from IRQ context only when
 706 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 707 */
 708void enable_irq(unsigned int irq)
 709{
 710        unsigned long flags;
 711        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 712
 713        if (!desc)
 714                return;
 715        if (WARN(!desc->irq_data.chip,
 716                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 717                goto out;
 718
 719        __enable_irq(desc);
 720out:
 721        irq_put_desc_busunlock(desc, flags);
 722}
 723EXPORT_SYMBOL(enable_irq);
 724
 725/**
 726 *      enable_nmi - enable handling of an nmi
 727 *      @irq: Interrupt to enable
 728 *
 729 *      The interrupt to enable must have been requested through request_nmi.
 730 *      Undoes the effect of one call to disable_nmi(). If this
 731 *      matches the last disable, processing of interrupts on this
 732 *      IRQ line is re-enabled.
 733 */
 734void enable_nmi(unsigned int irq)
 735{
 736        enable_irq(irq);
 737}
 738
 739static int set_irq_wake_real(unsigned int irq, unsigned int on)
 740{
 741        struct irq_desc *desc = irq_to_desc(irq);
 742        int ret = -ENXIO;
 743
 744        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 745                return 0;
 746
 747        if (desc->irq_data.chip->irq_set_wake)
 748                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 749
 750        return ret;
 751}
 752
 753/**
 754 *      irq_set_irq_wake - control irq power management wakeup
 755 *      @irq:   interrupt to control
 756 *      @on:    enable/disable power management wakeup
 757 *
 758 *      Enable/disable power management wakeup mode, which is
 759 *      disabled by default.  Enables and disables must match,
 760 *      just as they match for non-wakeup mode support.
 761 *
 762 *      Wakeup mode lets this IRQ wake the system from sleep
 763 *      states like "suspend to RAM".
 764 *
 765 *      Note: irq enable/disable state is completely orthogonal
 766 *      to the enable/disable state of irq wake. An irq can be
 767 *      disabled with disable_irq() and still wake the system as
 768 *      long as the irq has wake enabled. If this does not hold,
 769 *      then the underlying irq chip and the related driver need
 770 *      to be investigated.
 771 */
 772int irq_set_irq_wake(unsigned int irq, unsigned int on)
 773{
 774        unsigned long flags;
 775        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 776        int ret = 0;
 777
 778        if (!desc)
 779                return -EINVAL;
 780
 781        /* Don't use NMIs as wake up interrupts please */
 782        if (desc->istate & IRQS_NMI) {
 783                ret = -EINVAL;
 784                goto out_unlock;
 785        }
 786
 787        /* wakeup-capable irqs can be shared between drivers that
 788         * don't need to have the same sleep mode behaviors.
 789         */
 790        if (on) {
 791                if (desc->wake_depth++ == 0) {
 792                        ret = set_irq_wake_real(irq, on);
 793                        if (ret)
 794                                desc->wake_depth = 0;
 795                        else
 796                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 797                }
 798        } else {
 799                if (desc->wake_depth == 0) {
 800                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 801                } else if (--desc->wake_depth == 0) {
 802                        ret = set_irq_wake_real(irq, on);
 803                        if (ret)
 804                                desc->wake_depth = 1;
 805                        else
 806                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 807                }
 808        }
 809
 810out_unlock:
 811        irq_put_desc_busunlock(desc, flags);
 812        return ret;
 813}
 814EXPORT_SYMBOL(irq_set_irq_wake);
 815
 816/*
 817 * Internal function that tells the architecture code whether a
 818 * particular irq has been exclusively allocated or is available
 819 * for driver use.
 820 */
 821int can_request_irq(unsigned int irq, unsigned long irqflags)
 822{
 823        unsigned long flags;
 824        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 825        int canrequest = 0;
 826
 827        if (!desc)
 828                return 0;
 829
 830        if (irq_settings_can_request(desc)) {
 831                if (!desc->action ||
 832                    irqflags & desc->action->flags & IRQF_SHARED)
 833                        canrequest = 1;
 834        }
 835        irq_put_desc_unlock(desc, flags);
 836        return canrequest;
 837}
 838
 839int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 840{
 841        struct irq_chip *chip = desc->irq_data.chip;
 842        int ret, unmask = 0;
 843
 844        if (!chip || !chip->irq_set_type) {
 845                /*
 846                 * IRQF_TRIGGER_* but the PIC does not support multiple
 847                 * flow-types?
 848                 */
 849                pr_debug("No set_type function for IRQ %d (%s)\n",
 850                         irq_desc_get_irq(desc),
 851                         chip ? (chip->name ? : "unknown") : "unknown");
 852                return 0;
 853        }
 854
 855        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 856                if (!irqd_irq_masked(&desc->irq_data))
 857                        mask_irq(desc);
 858                if (!irqd_irq_disabled(&desc->irq_data))
 859                        unmask = 1;
 860        }
 861
 862        /* Mask all flags except trigger mode */
 863        flags &= IRQ_TYPE_SENSE_MASK;
 864        ret = chip->irq_set_type(&desc->irq_data, flags);
 865
 866        switch (ret) {
 867        case IRQ_SET_MASK_OK:
 868        case IRQ_SET_MASK_OK_DONE:
 869                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 870                irqd_set(&desc->irq_data, flags);
 871                fallthrough;
 872
 873        case IRQ_SET_MASK_OK_NOCOPY:
 874                flags = irqd_get_trigger_type(&desc->irq_data);
 875                irq_settings_set_trigger_mask(desc, flags);
 876                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 877                irq_settings_clr_level(desc);
 878                if (flags & IRQ_TYPE_LEVEL_MASK) {
 879                        irq_settings_set_level(desc);
 880                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 881                }
 882
 883                ret = 0;
 884                break;
 885        default:
 886                pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 887                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 888        }
 889        if (unmask)
 890                unmask_irq(desc);
 891        return ret;
 892}
 893
 894#ifdef CONFIG_HARDIRQS_SW_RESEND
 895int irq_set_parent(int irq, int parent_irq)
 896{
 897        unsigned long flags;
 898        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 899
 900        if (!desc)
 901                return -EINVAL;
 902
 903        desc->parent_irq = parent_irq;
 904
 905        irq_put_desc_unlock(desc, flags);
 906        return 0;
 907}
 908EXPORT_SYMBOL_GPL(irq_set_parent);
 909#endif
 910
 911/*
 912 * Default primary interrupt handler for threaded interrupts. Is
 913 * assigned as primary handler when request_threaded_irq is called
 914 * with handler == NULL. Useful for oneshot interrupts.
 915 */
 916static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 917{
 918        return IRQ_WAKE_THREAD;
 919}
 920
 921/*
 922 * Primary handler for nested threaded interrupts. Should never be
 923 * called.
 924 */
 925static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 926{
 927        WARN(1, "Primary handler called for nested irq %d\n", irq);
 928        return IRQ_NONE;
 929}
 930
 931static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 932{
 933        WARN(1, "Secondary action handler called for irq %d\n", irq);
 934        return IRQ_NONE;
 935}
 936
 937static int irq_wait_for_interrupt(struct irqaction *action)
 938{
 939        for (;;) {
 940                set_current_state(TASK_INTERRUPTIBLE);
 941
 942                if (kthread_should_stop()) {
 943                        /* may need to run one last time */
 944                        if (test_and_clear_bit(IRQTF_RUNTHREAD,
 945                                               &action->thread_flags)) {
 946                                __set_current_state(TASK_RUNNING);
 947                                return 0;
 948                        }
 949                        __set_current_state(TASK_RUNNING);
 950                        return -1;
 951                }
 952
 953                if (test_and_clear_bit(IRQTF_RUNTHREAD,
 954                                       &action->thread_flags)) {
 955                        __set_current_state(TASK_RUNNING);
 956                        return 0;
 957                }
 958                schedule();
 959        }
 960}
 961
 962/*
 963 * Oneshot interrupts keep the irq line masked until the threaded
 964 * handler finished. unmask if the interrupt has not been disabled and
 965 * is marked MASKED.
 966 */
 967static void irq_finalize_oneshot(struct irq_desc *desc,
 968                                 struct irqaction *action)
 969{
 970        if (!(desc->istate & IRQS_ONESHOT) ||
 971            action->handler == irq_forced_secondary_handler)
 972                return;
 973again:
 974        chip_bus_lock(desc);
 975        raw_spin_lock_irq(&desc->lock);
 976
 977        /*
 978         * Implausible though it may be we need to protect us against
 979         * the following scenario:
 980         *
 981         * The thread is faster done than the hard interrupt handler
 982         * on the other CPU. If we unmask the irq line then the
 983         * interrupt can come in again and masks the line, leaves due
 984         * to IRQS_INPROGRESS and the irq line is masked forever.
 985         *
 986         * This also serializes the state of shared oneshot handlers
 987         * versus "desc->threads_onehsot |= action->thread_mask;" in
 988         * irq_wake_thread(). See the comment there which explains the
 989         * serialization.
 990         */
 991        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 992                raw_spin_unlock_irq(&desc->lock);
 993                chip_bus_sync_unlock(desc);
 994                cpu_relax();
 995                goto again;
 996        }
 997
 998        /*
 999         * Now check again, whether the thread should run. Otherwise
1000         * we would clear the threads_oneshot bit of this thread which
1001         * was just set.
1002         */
1003        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1004                goto out_unlock;
1005
1006        desc->threads_oneshot &= ~action->thread_mask;
1007
1008        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1009            irqd_irq_masked(&desc->irq_data))
1010                unmask_threaded_irq(desc);
1011
1012out_unlock:
1013        raw_spin_unlock_irq(&desc->lock);
1014        chip_bus_sync_unlock(desc);
1015}
1016
1017#ifdef CONFIG_SMP
1018/*
1019 * Check whether we need to change the affinity of the interrupt thread.
1020 */
1021static void
1022irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1023{
1024        cpumask_var_t mask;
1025        bool valid = true;
1026
1027        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1028                return;
1029
1030        /*
1031         * In case we are out of memory we set IRQTF_AFFINITY again and
1032         * try again next time
1033         */
1034        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1035                set_bit(IRQTF_AFFINITY, &action->thread_flags);
1036                return;
1037        }
1038
1039        raw_spin_lock_irq(&desc->lock);
1040        /*
1041         * This code is triggered unconditionally. Check the affinity
1042         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1043         */
1044        if (cpumask_available(desc->irq_common_data.affinity)) {
1045                const struct cpumask *m;
1046
1047                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1048                cpumask_copy(mask, m);
1049        } else {
1050                valid = false;
1051        }
1052        raw_spin_unlock_irq(&desc->lock);
1053
1054        if (valid)
1055                set_cpus_allowed_ptr(current, mask);
1056        free_cpumask_var(mask);
1057}
1058#else
1059static inline void
1060irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1061#endif
1062
1063/*
1064 * Interrupts which are not explicitly requested as threaded
1065 * interrupts rely on the implicit bh/preempt disable of the hard irq
1066 * context. So we need to disable bh here to avoid deadlocks and other
1067 * side effects.
1068 */
1069static irqreturn_t
1070irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1071{
1072        irqreturn_t ret;
1073
1074        local_bh_disable();
1075        ret = action->thread_fn(action->irq, action->dev_id);
1076        if (ret == IRQ_HANDLED)
1077                atomic_inc(&desc->threads_handled);
1078
1079        irq_finalize_oneshot(desc, action);
1080        local_bh_enable();
1081        return ret;
1082}
1083
1084/*
1085 * Interrupts explicitly requested as threaded interrupts want to be
1086 * preemtible - many of them need to sleep and wait for slow busses to
1087 * complete.
1088 */
1089static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1090                struct irqaction *action)
1091{
1092        irqreturn_t ret;
1093
1094        ret = action->thread_fn(action->irq, action->dev_id);
1095        if (ret == IRQ_HANDLED)
1096                atomic_inc(&desc->threads_handled);
1097
1098        irq_finalize_oneshot(desc, action);
1099        return ret;
1100}
1101
1102static void wake_threads_waitq(struct irq_desc *desc)
1103{
1104        if (atomic_dec_and_test(&desc->threads_active))
1105                wake_up(&desc->wait_for_threads);
1106}
1107
1108static void irq_thread_dtor(struct callback_head *unused)
1109{
1110        struct task_struct *tsk = current;
1111        struct irq_desc *desc;
1112        struct irqaction *action;
1113
1114        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1115                return;
1116
1117        action = kthread_data(tsk);
1118
1119        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1120               tsk->comm, tsk->pid, action->irq);
1121
1122
1123        desc = irq_to_desc(action->irq);
1124        /*
1125         * If IRQTF_RUNTHREAD is set, we need to decrement
1126         * desc->threads_active and wake possible waiters.
1127         */
1128        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1129                wake_threads_waitq(desc);
1130
1131        /* Prevent a stale desc->threads_oneshot */
1132        irq_finalize_oneshot(desc, action);
1133}
1134
1135static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1136{
1137        struct irqaction *secondary = action->secondary;
1138
1139        if (WARN_ON_ONCE(!secondary))
1140                return;
1141
1142        raw_spin_lock_irq(&desc->lock);
1143        __irq_wake_thread(desc, secondary);
1144        raw_spin_unlock_irq(&desc->lock);
1145}
1146
1147/*
1148 * Interrupt handler thread
1149 */
1150static int irq_thread(void *data)
1151{
1152        struct callback_head on_exit_work;
1153        struct irqaction *action = data;
1154        struct irq_desc *desc = irq_to_desc(action->irq);
1155        irqreturn_t (*handler_fn)(struct irq_desc *desc,
1156                        struct irqaction *action);
1157
1158        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1159                                        &action->thread_flags))
1160                handler_fn = irq_forced_thread_fn;
1161        else
1162                handler_fn = irq_thread_fn;
1163
1164        init_task_work(&on_exit_work, irq_thread_dtor);
1165        task_work_add(current, &on_exit_work, TWA_NONE);
1166
1167        irq_thread_check_affinity(desc, action);
1168
1169        while (!irq_wait_for_interrupt(action)) {
1170                irqreturn_t action_ret;
1171
1172                irq_thread_check_affinity(desc, action);
1173
1174                action_ret = handler_fn(desc, action);
1175                if (action_ret == IRQ_WAKE_THREAD)
1176                        irq_wake_secondary(desc, action);
1177
1178                wake_threads_waitq(desc);
1179        }
1180
1181        /*
1182         * This is the regular exit path. __free_irq() is stopping the
1183         * thread via kthread_stop() after calling
1184         * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1185         * oneshot mask bit can be set.
1186         */
1187        task_work_cancel(current, irq_thread_dtor);
1188        return 0;
1189}
1190
1191/**
1192 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1193 *      @irq:           Interrupt line
1194 *      @dev_id:        Device identity for which the thread should be woken
1195 *
1196 */
1197void irq_wake_thread(unsigned int irq, void *dev_id)
1198{
1199        struct irq_desc *desc = irq_to_desc(irq);
1200        struct irqaction *action;
1201        unsigned long flags;
1202
1203        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1204                return;
1205
1206        raw_spin_lock_irqsave(&desc->lock, flags);
1207        for_each_action_of_desc(desc, action) {
1208                if (action->dev_id == dev_id) {
1209                        if (action->thread)
1210                                __irq_wake_thread(desc, action);
1211                        break;
1212                }
1213        }
1214        raw_spin_unlock_irqrestore(&desc->lock, flags);
1215}
1216EXPORT_SYMBOL_GPL(irq_wake_thread);
1217
1218static int irq_setup_forced_threading(struct irqaction *new)
1219{
1220        if (!force_irqthreads)
1221                return 0;
1222        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1223                return 0;
1224
1225        /*
1226         * No further action required for interrupts which are requested as
1227         * threaded interrupts already
1228         */
1229        if (new->handler == irq_default_primary_handler)
1230                return 0;
1231
1232        new->flags |= IRQF_ONESHOT;
1233
1234        /*
1235         * Handle the case where we have a real primary handler and a
1236         * thread handler. We force thread them as well by creating a
1237         * secondary action.
1238         */
1239        if (new->handler && new->thread_fn) {
1240                /* Allocate the secondary action */
1241                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1242                if (!new->secondary)
1243                        return -ENOMEM;
1244                new->secondary->handler = irq_forced_secondary_handler;
1245                new->secondary->thread_fn = new->thread_fn;
1246                new->secondary->dev_id = new->dev_id;
1247                new->secondary->irq = new->irq;
1248                new->secondary->name = new->name;
1249        }
1250        /* Deal with the primary handler */
1251        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1252        new->thread_fn = new->handler;
1253        new->handler = irq_default_primary_handler;
1254        return 0;
1255}
1256
1257static int irq_request_resources(struct irq_desc *desc)
1258{
1259        struct irq_data *d = &desc->irq_data;
1260        struct irq_chip *c = d->chip;
1261
1262        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1263}
1264
1265static void irq_release_resources(struct irq_desc *desc)
1266{
1267        struct irq_data *d = &desc->irq_data;
1268        struct irq_chip *c = d->chip;
1269
1270        if (c->irq_release_resources)
1271                c->irq_release_resources(d);
1272}
1273
1274static bool irq_supports_nmi(struct irq_desc *desc)
1275{
1276        struct irq_data *d = irq_desc_get_irq_data(desc);
1277
1278#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1279        /* Only IRQs directly managed by the root irqchip can be set as NMI */
1280        if (d->parent_data)
1281                return false;
1282#endif
1283        /* Don't support NMIs for chips behind a slow bus */
1284        if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1285                return false;
1286
1287        return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1288}
1289
1290static int irq_nmi_setup(struct irq_desc *desc)
1291{
1292        struct irq_data *d = irq_desc_get_irq_data(desc);
1293        struct irq_chip *c = d->chip;
1294
1295        return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1296}
1297
1298static void irq_nmi_teardown(struct irq_desc *desc)
1299{
1300        struct irq_data *d = irq_desc_get_irq_data(desc);
1301        struct irq_chip *c = d->chip;
1302
1303        if (c->irq_nmi_teardown)
1304                c->irq_nmi_teardown(d);
1305}
1306
1307static int
1308setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1309{
1310        struct task_struct *t;
1311
1312        if (!secondary) {
1313                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1314                                   new->name);
1315        } else {
1316                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1317                                   new->name);
1318        }
1319
1320        if (IS_ERR(t))
1321                return PTR_ERR(t);
1322
1323        sched_set_fifo(t);
1324
1325        /*
1326         * We keep the reference to the task struct even if
1327         * the thread dies to avoid that the interrupt code
1328         * references an already freed task_struct.
1329         */
1330        new->thread = get_task_struct(t);
1331        /*
1332         * Tell the thread to set its affinity. This is
1333         * important for shared interrupt handlers as we do
1334         * not invoke setup_affinity() for the secondary
1335         * handlers as everything is already set up. Even for
1336         * interrupts marked with IRQF_NO_BALANCE this is
1337         * correct as we want the thread to move to the cpu(s)
1338         * on which the requesting code placed the interrupt.
1339         */
1340        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1341        return 0;
1342}
1343
1344/*
1345 * Internal function to register an irqaction - typically used to
1346 * allocate special interrupts that are part of the architecture.
1347 *
1348 * Locking rules:
1349 *
1350 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1351 *   chip_bus_lock      Provides serialization for slow bus operations
1352 *     desc->lock       Provides serialization against hard interrupts
1353 *
1354 * chip_bus_lock and desc->lock are sufficient for all other management and
1355 * interrupt related functions. desc->request_mutex solely serializes
1356 * request/free_irq().
1357 */
1358static int
1359__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1360{
1361        struct irqaction *old, **old_ptr;
1362        unsigned long flags, thread_mask = 0;
1363        int ret, nested, shared = 0;
1364
1365        if (!desc)
1366                return -EINVAL;
1367
1368        if (desc->irq_data.chip == &no_irq_chip)
1369                return -ENOSYS;
1370        if (!try_module_get(desc->owner))
1371                return -ENODEV;
1372
1373        new->irq = irq;
1374
1375        /*
1376         * If the trigger type is not specified by the caller,
1377         * then use the default for this interrupt.
1378         */
1379        if (!(new->flags & IRQF_TRIGGER_MASK))
1380                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1381
1382        /*
1383         * Check whether the interrupt nests into another interrupt
1384         * thread.
1385         */
1386        nested = irq_settings_is_nested_thread(desc);
1387        if (nested) {
1388                if (!new->thread_fn) {
1389                        ret = -EINVAL;
1390                        goto out_mput;
1391                }
1392                /*
1393                 * Replace the primary handler which was provided from
1394                 * the driver for non nested interrupt handling by the
1395                 * dummy function which warns when called.
1396                 */
1397                new->handler = irq_nested_primary_handler;
1398        } else {
1399                if (irq_settings_can_thread(desc)) {
1400                        ret = irq_setup_forced_threading(new);
1401                        if (ret)
1402                                goto out_mput;
1403                }
1404        }
1405
1406        /*
1407         * Create a handler thread when a thread function is supplied
1408         * and the interrupt does not nest into another interrupt
1409         * thread.
1410         */
1411        if (new->thread_fn && !nested) {
1412                ret = setup_irq_thread(new, irq, false);
1413                if (ret)
1414                        goto out_mput;
1415                if (new->secondary) {
1416                        ret = setup_irq_thread(new->secondary, irq, true);
1417                        if (ret)
1418                                goto out_thread;
1419                }
1420        }
1421
1422        /*
1423         * Drivers are often written to work w/o knowledge about the
1424         * underlying irq chip implementation, so a request for a
1425         * threaded irq without a primary hard irq context handler
1426         * requires the ONESHOT flag to be set. Some irq chips like
1427         * MSI based interrupts are per se one shot safe. Check the
1428         * chip flags, so we can avoid the unmask dance at the end of
1429         * the threaded handler for those.
1430         */
1431        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1432                new->flags &= ~IRQF_ONESHOT;
1433
1434        /*
1435         * Protects against a concurrent __free_irq() call which might wait
1436         * for synchronize_hardirq() to complete without holding the optional
1437         * chip bus lock and desc->lock. Also protects against handing out
1438         * a recycled oneshot thread_mask bit while it's still in use by
1439         * its previous owner.
1440         */
1441        mutex_lock(&desc->request_mutex);
1442
1443        /*
1444         * Acquire bus lock as the irq_request_resources() callback below
1445         * might rely on the serialization or the magic power management
1446         * functions which are abusing the irq_bus_lock() callback,
1447         */
1448        chip_bus_lock(desc);
1449
1450        /* First installed action requests resources. */
1451        if (!desc->action) {
1452                ret = irq_request_resources(desc);
1453                if (ret) {
1454                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1455                               new->name, irq, desc->irq_data.chip->name);
1456                        goto out_bus_unlock;
1457                }
1458        }
1459
1460        /*
1461         * The following block of code has to be executed atomically
1462         * protected against a concurrent interrupt and any of the other
1463         * management calls which are not serialized via
1464         * desc->request_mutex or the optional bus lock.
1465         */
1466        raw_spin_lock_irqsave(&desc->lock, flags);
1467        old_ptr = &desc->action;
1468        old = *old_ptr;
1469        if (old) {
1470                /*
1471                 * Can't share interrupts unless both agree to and are
1472                 * the same type (level, edge, polarity). So both flag
1473                 * fields must have IRQF_SHARED set and the bits which
1474                 * set the trigger type must match. Also all must
1475                 * agree on ONESHOT.
1476                 * Interrupt lines used for NMIs cannot be shared.
1477                 */
1478                unsigned int oldtype;
1479
1480                if (desc->istate & IRQS_NMI) {
1481                        pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1482                                new->name, irq, desc->irq_data.chip->name);
1483                        ret = -EINVAL;
1484                        goto out_unlock;
1485                }
1486
1487                /*
1488                 * If nobody did set the configuration before, inherit
1489                 * the one provided by the requester.
1490                 */
1491                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1492                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1493                } else {
1494                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1495                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1496                }
1497
1498                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1499                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1500                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1501                        goto mismatch;
1502
1503                /* All handlers must agree on per-cpuness */
1504                if ((old->flags & IRQF_PERCPU) !=
1505                    (new->flags & IRQF_PERCPU))
1506                        goto mismatch;
1507
1508                /* add new interrupt at end of irq queue */
1509                do {
1510                        /*
1511                         * Or all existing action->thread_mask bits,
1512                         * so we can find the next zero bit for this
1513                         * new action.
1514                         */
1515                        thread_mask |= old->thread_mask;
1516                        old_ptr = &old->next;
1517                        old = *old_ptr;
1518                } while (old);
1519                shared = 1;
1520        }
1521
1522        /*
1523         * Setup the thread mask for this irqaction for ONESHOT. For
1524         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1525         * conditional in irq_wake_thread().
1526         */
1527        if (new->flags & IRQF_ONESHOT) {
1528                /*
1529                 * Unlikely to have 32 resp 64 irqs sharing one line,
1530                 * but who knows.
1531                 */
1532                if (thread_mask == ~0UL) {
1533                        ret = -EBUSY;
1534                        goto out_unlock;
1535                }
1536                /*
1537                 * The thread_mask for the action is or'ed to
1538                 * desc->thread_active to indicate that the
1539                 * IRQF_ONESHOT thread handler has been woken, but not
1540                 * yet finished. The bit is cleared when a thread
1541                 * completes. When all threads of a shared interrupt
1542                 * line have completed desc->threads_active becomes
1543                 * zero and the interrupt line is unmasked. See
1544                 * handle.c:irq_wake_thread() for further information.
1545                 *
1546                 * If no thread is woken by primary (hard irq context)
1547                 * interrupt handlers, then desc->threads_active is
1548                 * also checked for zero to unmask the irq line in the
1549                 * affected hard irq flow handlers
1550                 * (handle_[fasteoi|level]_irq).
1551                 *
1552                 * The new action gets the first zero bit of
1553                 * thread_mask assigned. See the loop above which or's
1554                 * all existing action->thread_mask bits.
1555                 */
1556                new->thread_mask = 1UL << ffz(thread_mask);
1557
1558        } else if (new->handler == irq_default_primary_handler &&
1559                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1560                /*
1561                 * The interrupt was requested with handler = NULL, so
1562                 * we use the default primary handler for it. But it
1563                 * does not have the oneshot flag set. In combination
1564                 * with level interrupts this is deadly, because the
1565                 * default primary handler just wakes the thread, then
1566                 * the irq lines is reenabled, but the device still
1567                 * has the level irq asserted. Rinse and repeat....
1568                 *
1569                 * While this works for edge type interrupts, we play
1570                 * it safe and reject unconditionally because we can't
1571                 * say for sure which type this interrupt really
1572                 * has. The type flags are unreliable as the
1573                 * underlying chip implementation can override them.
1574                 */
1575                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1576                       new->name, irq);
1577                ret = -EINVAL;
1578                goto out_unlock;
1579        }
1580
1581        if (!shared) {
1582                init_waitqueue_head(&desc->wait_for_threads);
1583
1584                /* Setup the type (level, edge polarity) if configured: */
1585                if (new->flags & IRQF_TRIGGER_MASK) {
1586                        ret = __irq_set_trigger(desc,
1587                                                new->flags & IRQF_TRIGGER_MASK);
1588
1589                        if (ret)
1590                                goto out_unlock;
1591                }
1592
1593                /*
1594                 * Activate the interrupt. That activation must happen
1595                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1596                 * and the callers are supposed to handle
1597                 * that. enable_irq() of an interrupt requested with
1598                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1599                 * keeps it in shutdown mode, it merily associates
1600                 * resources if necessary and if that's not possible it
1601                 * fails. Interrupts which are in managed shutdown mode
1602                 * will simply ignore that activation request.
1603                 */
1604                ret = irq_activate(desc);
1605                if (ret)
1606                        goto out_unlock;
1607
1608                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1609                                  IRQS_ONESHOT | IRQS_WAITING);
1610                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1611
1612                if (new->flags & IRQF_PERCPU) {
1613                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1614                        irq_settings_set_per_cpu(desc);
1615                }
1616
1617                if (new->flags & IRQF_ONESHOT)
1618                        desc->istate |= IRQS_ONESHOT;
1619
1620                /* Exclude IRQ from balancing if requested */
1621                if (new->flags & IRQF_NOBALANCING) {
1622                        irq_settings_set_no_balancing(desc);
1623                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1624                }
1625
1626                if (irq_settings_can_autoenable(desc)) {
1627                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1628                } else {
1629                        /*
1630                         * Shared interrupts do not go well with disabling
1631                         * auto enable. The sharing interrupt might request
1632                         * it while it's still disabled and then wait for
1633                         * interrupts forever.
1634                         */
1635                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1636                        /* Undo nested disables: */
1637                        desc->depth = 1;
1638                }
1639
1640        } else if (new->flags & IRQF_TRIGGER_MASK) {
1641                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1642                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1643
1644                if (nmsk != omsk)
1645                        /* hope the handler works with current  trigger mode */
1646                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1647                                irq, omsk, nmsk);
1648        }
1649
1650        *old_ptr = new;
1651
1652        irq_pm_install_action(desc, new);
1653
1654        /* Reset broken irq detection when installing new handler */
1655        desc->irq_count = 0;
1656        desc->irqs_unhandled = 0;
1657
1658        /*
1659         * Check whether we disabled the irq via the spurious handler
1660         * before. Reenable it and give it another chance.
1661         */
1662        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1663                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1664                __enable_irq(desc);
1665        }
1666
1667        raw_spin_unlock_irqrestore(&desc->lock, flags);
1668        chip_bus_sync_unlock(desc);
1669        mutex_unlock(&desc->request_mutex);
1670
1671        irq_setup_timings(desc, new);
1672
1673        /*
1674         * Strictly no need to wake it up, but hung_task complains
1675         * when no hard interrupt wakes the thread up.
1676         */
1677        if (new->thread)
1678                wake_up_process(new->thread);
1679        if (new->secondary)
1680                wake_up_process(new->secondary->thread);
1681
1682        register_irq_proc(irq, desc);
1683        new->dir = NULL;
1684        register_handler_proc(irq, new);
1685        return 0;
1686
1687mismatch:
1688        if (!(new->flags & IRQF_PROBE_SHARED)) {
1689                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1690                       irq, new->flags, new->name, old->flags, old->name);
1691#ifdef CONFIG_DEBUG_SHIRQ
1692                dump_stack();
1693#endif
1694        }
1695        ret = -EBUSY;
1696
1697out_unlock:
1698        raw_spin_unlock_irqrestore(&desc->lock, flags);
1699
1700        if (!desc->action)
1701                irq_release_resources(desc);
1702out_bus_unlock:
1703        chip_bus_sync_unlock(desc);
1704        mutex_unlock(&desc->request_mutex);
1705
1706out_thread:
1707        if (new->thread) {
1708                struct task_struct *t = new->thread;
1709
1710                new->thread = NULL;
1711                kthread_stop(t);
1712                put_task_struct(t);
1713        }
1714        if (new->secondary && new->secondary->thread) {
1715                struct task_struct *t = new->secondary->thread;
1716
1717                new->secondary->thread = NULL;
1718                kthread_stop(t);
1719                put_task_struct(t);
1720        }
1721out_mput:
1722        module_put(desc->owner);
1723        return ret;
1724}
1725
1726/*
1727 * Internal function to unregister an irqaction - used to free
1728 * regular and special interrupts that are part of the architecture.
1729 */
1730static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1731{
1732        unsigned irq = desc->irq_data.irq;
1733        struct irqaction *action, **action_ptr;
1734        unsigned long flags;
1735
1736        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1737
1738        mutex_lock(&desc->request_mutex);
1739        chip_bus_lock(desc);
1740        raw_spin_lock_irqsave(&desc->lock, flags);
1741
1742        /*
1743         * There can be multiple actions per IRQ descriptor, find the right
1744         * one based on the dev_id:
1745         */
1746        action_ptr = &desc->action;
1747        for (;;) {
1748                action = *action_ptr;
1749
1750                if (!action) {
1751                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1752                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1753                        chip_bus_sync_unlock(desc);
1754                        mutex_unlock(&desc->request_mutex);
1755                        return NULL;
1756                }
1757
1758                if (action->dev_id == dev_id)
1759                        break;
1760                action_ptr = &action->next;
1761        }
1762
1763        /* Found it - now remove it from the list of entries: */
1764        *action_ptr = action->next;
1765
1766        irq_pm_remove_action(desc, action);
1767
1768        /* If this was the last handler, shut down the IRQ line: */
1769        if (!desc->action) {
1770                irq_settings_clr_disable_unlazy(desc);
1771                /* Only shutdown. Deactivate after synchronize_hardirq() */
1772                irq_shutdown(desc);
1773        }
1774
1775#ifdef CONFIG_SMP
1776        /* make sure affinity_hint is cleaned up */
1777        if (WARN_ON_ONCE(desc->affinity_hint))
1778                desc->affinity_hint = NULL;
1779#endif
1780
1781        raw_spin_unlock_irqrestore(&desc->lock, flags);
1782        /*
1783         * Drop bus_lock here so the changes which were done in the chip
1784         * callbacks above are synced out to the irq chips which hang
1785         * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1786         *
1787         * Aside of that the bus_lock can also be taken from the threaded
1788         * handler in irq_finalize_oneshot() which results in a deadlock
1789         * because kthread_stop() would wait forever for the thread to
1790         * complete, which is blocked on the bus lock.
1791         *
1792         * The still held desc->request_mutex() protects against a
1793         * concurrent request_irq() of this irq so the release of resources
1794         * and timing data is properly serialized.
1795         */
1796        chip_bus_sync_unlock(desc);
1797
1798        unregister_handler_proc(irq, action);
1799
1800        /*
1801         * Make sure it's not being used on another CPU and if the chip
1802         * supports it also make sure that there is no (not yet serviced)
1803         * interrupt in flight at the hardware level.
1804         */
1805        __synchronize_hardirq(desc, true);
1806
1807#ifdef CONFIG_DEBUG_SHIRQ
1808        /*
1809         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1810         * event to happen even now it's being freed, so let's make sure that
1811         * is so by doing an extra call to the handler ....
1812         *
1813         * ( We do this after actually deregistering it, to make sure that a
1814         *   'real' IRQ doesn't run in parallel with our fake. )
1815         */
1816        if (action->flags & IRQF_SHARED) {
1817                local_irq_save(flags);
1818                action->handler(irq, dev_id);
1819                local_irq_restore(flags);
1820        }
1821#endif
1822
1823        /*
1824         * The action has already been removed above, but the thread writes
1825         * its oneshot mask bit when it completes. Though request_mutex is
1826         * held across this which prevents __setup_irq() from handing out
1827         * the same bit to a newly requested action.
1828         */
1829        if (action->thread) {
1830                kthread_stop(action->thread);
1831                put_task_struct(action->thread);
1832                if (action->secondary && action->secondary->thread) {
1833                        kthread_stop(action->secondary->thread);
1834                        put_task_struct(action->secondary->thread);
1835                }
1836        }
1837
1838        /* Last action releases resources */
1839        if (!desc->action) {
1840                /*
1841                 * Reaquire bus lock as irq_release_resources() might
1842                 * require it to deallocate resources over the slow bus.
1843                 */
1844                chip_bus_lock(desc);
1845                /*
1846                 * There is no interrupt on the fly anymore. Deactivate it
1847                 * completely.
1848                 */
1849                raw_spin_lock_irqsave(&desc->lock, flags);
1850                irq_domain_deactivate_irq(&desc->irq_data);
1851                raw_spin_unlock_irqrestore(&desc->lock, flags);
1852
1853                irq_release_resources(desc);
1854                chip_bus_sync_unlock(desc);
1855                irq_remove_timings(desc);
1856        }
1857
1858        mutex_unlock(&desc->request_mutex);
1859
1860        irq_chip_pm_put(&desc->irq_data);
1861        module_put(desc->owner);
1862        kfree(action->secondary);
1863        return action;
1864}
1865
1866/**
1867 *      free_irq - free an interrupt allocated with request_irq
1868 *      @irq: Interrupt line to free
1869 *      @dev_id: Device identity to free
1870 *
1871 *      Remove an interrupt handler. The handler is removed and if the
1872 *      interrupt line is no longer in use by any driver it is disabled.
1873 *      On a shared IRQ the caller must ensure the interrupt is disabled
1874 *      on the card it drives before calling this function. The function
1875 *      does not return until any executing interrupts for this IRQ
1876 *      have completed.
1877 *
1878 *      This function must not be called from interrupt context.
1879 *
1880 *      Returns the devname argument passed to request_irq.
1881 */
1882const void *free_irq(unsigned int irq, void *dev_id)
1883{
1884        struct irq_desc *desc = irq_to_desc(irq);
1885        struct irqaction *action;
1886        const char *devname;
1887
1888        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1889                return NULL;
1890
1891#ifdef CONFIG_SMP
1892        if (WARN_ON(desc->affinity_notify))
1893                desc->affinity_notify = NULL;
1894#endif
1895
1896        action = __free_irq(desc, dev_id);
1897
1898        if (!action)
1899                return NULL;
1900
1901        devname = action->name;
1902        kfree(action);
1903        return devname;
1904}
1905EXPORT_SYMBOL(free_irq);
1906
1907/* This function must be called with desc->lock held */
1908static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1909{
1910        const char *devname = NULL;
1911
1912        desc->istate &= ~IRQS_NMI;
1913
1914        if (!WARN_ON(desc->action == NULL)) {
1915                irq_pm_remove_action(desc, desc->action);
1916                devname = desc->action->name;
1917                unregister_handler_proc(irq, desc->action);
1918
1919                kfree(desc->action);
1920                desc->action = NULL;
1921        }
1922
1923        irq_settings_clr_disable_unlazy(desc);
1924        irq_shutdown_and_deactivate(desc);
1925
1926        irq_release_resources(desc);
1927
1928        irq_chip_pm_put(&desc->irq_data);
1929        module_put(desc->owner);
1930
1931        return devname;
1932}
1933
1934const void *free_nmi(unsigned int irq, void *dev_id)
1935{
1936        struct irq_desc *desc = irq_to_desc(irq);
1937        unsigned long flags;
1938        const void *devname;
1939
1940        if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1941                return NULL;
1942
1943        if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1944                return NULL;
1945
1946        /* NMI still enabled */
1947        if (WARN_ON(desc->depth == 0))
1948                disable_nmi_nosync(irq);
1949
1950        raw_spin_lock_irqsave(&desc->lock, flags);
1951
1952        irq_nmi_teardown(desc);
1953        devname = __cleanup_nmi(irq, desc);
1954
1955        raw_spin_unlock_irqrestore(&desc->lock, flags);
1956
1957        return devname;
1958}
1959
1960/**
1961 *      request_threaded_irq - allocate an interrupt line
1962 *      @irq: Interrupt line to allocate
1963 *      @handler: Function to be called when the IRQ occurs.
1964 *                Primary handler for threaded interrupts
1965 *                If NULL and thread_fn != NULL the default
1966 *                primary handler is installed
1967 *      @thread_fn: Function called from the irq handler thread
1968 *                  If NULL, no irq thread is created
1969 *      @irqflags: Interrupt type flags
1970 *      @devname: An ascii name for the claiming device
1971 *      @dev_id: A cookie passed back to the handler function
1972 *
1973 *      This call allocates interrupt resources and enables the
1974 *      interrupt line and IRQ handling. From the point this
1975 *      call is made your handler function may be invoked. Since
1976 *      your handler function must clear any interrupt the board
1977 *      raises, you must take care both to initialise your hardware
1978 *      and to set up the interrupt handler in the right order.
1979 *
1980 *      If you want to set up a threaded irq handler for your device
1981 *      then you need to supply @handler and @thread_fn. @handler is
1982 *      still called in hard interrupt context and has to check
1983 *      whether the interrupt originates from the device. If yes it
1984 *      needs to disable the interrupt on the device and return
1985 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1986 *      @thread_fn. This split handler design is necessary to support
1987 *      shared interrupts.
1988 *
1989 *      Dev_id must be globally unique. Normally the address of the
1990 *      device data structure is used as the cookie. Since the handler
1991 *      receives this value it makes sense to use it.
1992 *
1993 *      If your interrupt is shared you must pass a non NULL dev_id
1994 *      as this is required when freeing the interrupt.
1995 *
1996 *      Flags:
1997 *
1998 *      IRQF_SHARED             Interrupt is shared
1999 *      IRQF_TRIGGER_*          Specify active edge(s) or level
2000 *
2001 */
2002int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2003                         irq_handler_t thread_fn, unsigned long irqflags,
2004                         const char *devname, void *dev_id)
2005{
2006        struct irqaction *action;
2007        struct irq_desc *desc;
2008        int retval;
2009
2010        if (irq == IRQ_NOTCONNECTED)
2011                return -ENOTCONN;
2012
2013        /*
2014         * Sanity-check: shared interrupts must pass in a real dev-ID,
2015         * otherwise we'll have trouble later trying to figure out
2016         * which interrupt is which (messes up the interrupt freeing
2017         * logic etc).
2018         *
2019         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2020         * it cannot be set along with IRQF_NO_SUSPEND.
2021         */
2022        if (((irqflags & IRQF_SHARED) && !dev_id) ||
2023            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2024            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2025                return -EINVAL;
2026
2027        desc = irq_to_desc(irq);
2028        if (!desc)
2029                return -EINVAL;
2030
2031        if (!irq_settings_can_request(desc) ||
2032            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033                return -EINVAL;
2034
2035        if (!handler) {
2036                if (!thread_fn)
2037                        return -EINVAL;
2038                handler = irq_default_primary_handler;
2039        }
2040
2041        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2042        if (!action)
2043                return -ENOMEM;
2044
2045        action->handler = handler;
2046        action->thread_fn = thread_fn;
2047        action->flags = irqflags;
2048        action->name = devname;
2049        action->dev_id = dev_id;
2050
2051        retval = irq_chip_pm_get(&desc->irq_data);
2052        if (retval < 0) {
2053                kfree(action);
2054                return retval;
2055        }
2056
2057        retval = __setup_irq(irq, desc, action);
2058
2059        if (retval) {
2060                irq_chip_pm_put(&desc->irq_data);
2061                kfree(action->secondary);
2062                kfree(action);
2063        }
2064
2065#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2066        if (!retval && (irqflags & IRQF_SHARED)) {
2067                /*
2068                 * It's a shared IRQ -- the driver ought to be prepared for it
2069                 * to happen immediately, so let's make sure....
2070                 * We disable the irq to make sure that a 'real' IRQ doesn't
2071                 * run in parallel with our fake.
2072                 */
2073                unsigned long flags;
2074
2075                disable_irq(irq);
2076                local_irq_save(flags);
2077
2078                handler(irq, dev_id);
2079
2080                local_irq_restore(flags);
2081                enable_irq(irq);
2082        }
2083#endif
2084        return retval;
2085}
2086EXPORT_SYMBOL(request_threaded_irq);
2087
2088/**
2089 *      request_any_context_irq - allocate an interrupt line
2090 *      @irq: Interrupt line to allocate
2091 *      @handler: Function to be called when the IRQ occurs.
2092 *                Threaded handler for threaded interrupts.
2093 *      @flags: Interrupt type flags
2094 *      @name: An ascii name for the claiming device
2095 *      @dev_id: A cookie passed back to the handler function
2096 *
2097 *      This call allocates interrupt resources and enables the
2098 *      interrupt line and IRQ handling. It selects either a
2099 *      hardirq or threaded handling method depending on the
2100 *      context.
2101 *
2102 *      On failure, it returns a negative value. On success,
2103 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2104 */
2105int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2106                            unsigned long flags, const char *name, void *dev_id)
2107{
2108        struct irq_desc *desc;
2109        int ret;
2110
2111        if (irq == IRQ_NOTCONNECTED)
2112                return -ENOTCONN;
2113
2114        desc = irq_to_desc(irq);
2115        if (!desc)
2116                return -EINVAL;
2117
2118        if (irq_settings_is_nested_thread(desc)) {
2119                ret = request_threaded_irq(irq, NULL, handler,
2120                                           flags, name, dev_id);
2121                return !ret ? IRQC_IS_NESTED : ret;
2122        }
2123
2124        ret = request_irq(irq, handler, flags, name, dev_id);
2125        return !ret ? IRQC_IS_HARDIRQ : ret;
2126}
2127EXPORT_SYMBOL_GPL(request_any_context_irq);
2128
2129/**
2130 *      request_nmi - allocate an interrupt line for NMI delivery
2131 *      @irq: Interrupt line to allocate
2132 *      @handler: Function to be called when the IRQ occurs.
2133 *                Threaded handler for threaded interrupts.
2134 *      @irqflags: Interrupt type flags
2135 *      @name: An ascii name for the claiming device
2136 *      @dev_id: A cookie passed back to the handler function
2137 *
2138 *      This call allocates interrupt resources and enables the
2139 *      interrupt line and IRQ handling. It sets up the IRQ line
2140 *      to be handled as an NMI.
2141 *
2142 *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2143 *      cannot be threaded.
2144 *
2145 *      Interrupt lines requested for NMI delivering must produce per cpu
2146 *      interrupts and have auto enabling setting disabled.
2147 *
2148 *      Dev_id must be globally unique. Normally the address of the
2149 *      device data structure is used as the cookie. Since the handler
2150 *      receives this value it makes sense to use it.
2151 *
2152 *      If the interrupt line cannot be used to deliver NMIs, function
2153 *      will fail and return a negative value.
2154 */
2155int request_nmi(unsigned int irq, irq_handler_t handler,
2156                unsigned long irqflags, const char *name, void *dev_id)
2157{
2158        struct irqaction *action;
2159        struct irq_desc *desc;
2160        unsigned long flags;
2161        int retval;
2162
2163        if (irq == IRQ_NOTCONNECTED)
2164                return -ENOTCONN;
2165
2166        /* NMI cannot be shared, used for Polling */
2167        if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2168                return -EINVAL;
2169
2170        if (!(irqflags & IRQF_PERCPU))
2171                return -EINVAL;
2172
2173        if (!handler)
2174                return -EINVAL;
2175
2176        desc = irq_to_desc(irq);
2177
2178        if (!desc || irq_settings_can_autoenable(desc) ||
2179            !irq_settings_can_request(desc) ||
2180            WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2181            !irq_supports_nmi(desc))
2182                return -EINVAL;
2183
2184        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2185        if (!action)
2186                return -ENOMEM;
2187
2188        action->handler = handler;
2189        action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2190        action->name = name;
2191        action->dev_id = dev_id;
2192
2193        retval = irq_chip_pm_get(&desc->irq_data);
2194        if (retval < 0)
2195                goto err_out;
2196
2197        retval = __setup_irq(irq, desc, action);
2198        if (retval)
2199                goto err_irq_setup;
2200
2201        raw_spin_lock_irqsave(&desc->lock, flags);
2202
2203        /* Setup NMI state */
2204        desc->istate |= IRQS_NMI;
2205        retval = irq_nmi_setup(desc);
2206        if (retval) {
2207                __cleanup_nmi(irq, desc);
2208                raw_spin_unlock_irqrestore(&desc->lock, flags);
2209                return -EINVAL;
2210        }
2211
2212        raw_spin_unlock_irqrestore(&desc->lock, flags);
2213
2214        return 0;
2215
2216err_irq_setup:
2217        irq_chip_pm_put(&desc->irq_data);
2218err_out:
2219        kfree(action);
2220
2221        return retval;
2222}
2223
2224void enable_percpu_irq(unsigned int irq, unsigned int type)
2225{
2226        unsigned int cpu = smp_processor_id();
2227        unsigned long flags;
2228        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2229
2230        if (!desc)
2231                return;
2232
2233        /*
2234         * If the trigger type is not specified by the caller, then
2235         * use the default for this interrupt.
2236         */
2237        type &= IRQ_TYPE_SENSE_MASK;
2238        if (type == IRQ_TYPE_NONE)
2239                type = irqd_get_trigger_type(&desc->irq_data);
2240
2241        if (type != IRQ_TYPE_NONE) {
2242                int ret;
2243
2244                ret = __irq_set_trigger(desc, type);
2245
2246                if (ret) {
2247                        WARN(1, "failed to set type for IRQ%d\n", irq);
2248                        goto out;
2249                }
2250        }
2251
2252        irq_percpu_enable(desc, cpu);
2253out:
2254        irq_put_desc_unlock(desc, flags);
2255}
2256EXPORT_SYMBOL_GPL(enable_percpu_irq);
2257
2258void enable_percpu_nmi(unsigned int irq, unsigned int type)
2259{
2260        enable_percpu_irq(irq, type);
2261}
2262
2263/**
2264 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2265 * @irq:        Linux irq number to check for
2266 *
2267 * Must be called from a non migratable context. Returns the enable
2268 * state of a per cpu interrupt on the current cpu.
2269 */
2270bool irq_percpu_is_enabled(unsigned int irq)
2271{
2272        unsigned int cpu = smp_processor_id();
2273        struct irq_desc *desc;
2274        unsigned long flags;
2275        bool is_enabled;
2276
2277        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2278        if (!desc)
2279                return false;
2280
2281        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2282        irq_put_desc_unlock(desc, flags);
2283
2284        return is_enabled;
2285}
2286EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2287
2288void disable_percpu_irq(unsigned int irq)
2289{
2290        unsigned int cpu = smp_processor_id();
2291        unsigned long flags;
2292        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2293
2294        if (!desc)
2295                return;
2296
2297        irq_percpu_disable(desc, cpu);
2298        irq_put_desc_unlock(desc, flags);
2299}
2300EXPORT_SYMBOL_GPL(disable_percpu_irq);
2301
2302void disable_percpu_nmi(unsigned int irq)
2303{
2304        disable_percpu_irq(irq);
2305}
2306
2307/*
2308 * Internal function to unregister a percpu irqaction.
2309 */
2310static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2311{
2312        struct irq_desc *desc = irq_to_desc(irq);
2313        struct irqaction *action;
2314        unsigned long flags;
2315
2316        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2317
2318        if (!desc)
2319                return NULL;
2320
2321        raw_spin_lock_irqsave(&desc->lock, flags);
2322
2323        action = desc->action;
2324        if (!action || action->percpu_dev_id != dev_id) {
2325                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2326                goto bad;
2327        }
2328
2329        if (!cpumask_empty(desc->percpu_enabled)) {
2330                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2331                     irq, cpumask_first(desc->percpu_enabled));
2332                goto bad;
2333        }
2334
2335        /* Found it - now remove it from the list of entries: */
2336        desc->action = NULL;
2337
2338        desc->istate &= ~IRQS_NMI;
2339
2340        raw_spin_unlock_irqrestore(&desc->lock, flags);
2341
2342        unregister_handler_proc(irq, action);
2343
2344        irq_chip_pm_put(&desc->irq_data);
2345        module_put(desc->owner);
2346        return action;
2347
2348bad:
2349        raw_spin_unlock_irqrestore(&desc->lock, flags);
2350        return NULL;
2351}
2352
2353/**
2354 *      remove_percpu_irq - free a per-cpu interrupt
2355 *      @irq: Interrupt line to free
2356 *      @act: irqaction for the interrupt
2357 *
2358 * Used to remove interrupts statically setup by the early boot process.
2359 */
2360void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2361{
2362        struct irq_desc *desc = irq_to_desc(irq);
2363
2364        if (desc && irq_settings_is_per_cpu_devid(desc))
2365            __free_percpu_irq(irq, act->percpu_dev_id);
2366}
2367
2368/**
2369 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2370 *      @irq: Interrupt line to free
2371 *      @dev_id: Device identity to free
2372 *
2373 *      Remove a percpu interrupt handler. The handler is removed, but
2374 *      the interrupt line is not disabled. This must be done on each
2375 *      CPU before calling this function. The function does not return
2376 *      until any executing interrupts for this IRQ have completed.
2377 *
2378 *      This function must not be called from interrupt context.
2379 */
2380void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2381{
2382        struct irq_desc *desc = irq_to_desc(irq);
2383
2384        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2385                return;
2386
2387        chip_bus_lock(desc);
2388        kfree(__free_percpu_irq(irq, dev_id));
2389        chip_bus_sync_unlock(desc);
2390}
2391EXPORT_SYMBOL_GPL(free_percpu_irq);
2392
2393void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2394{
2395        struct irq_desc *desc = irq_to_desc(irq);
2396
2397        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2398                return;
2399
2400        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2401                return;
2402
2403        kfree(__free_percpu_irq(irq, dev_id));
2404}
2405
2406/**
2407 *      setup_percpu_irq - setup a per-cpu interrupt
2408 *      @irq: Interrupt line to setup
2409 *      @act: irqaction for the interrupt
2410 *
2411 * Used to statically setup per-cpu interrupts in the early boot process.
2412 */
2413int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2414{
2415        struct irq_desc *desc = irq_to_desc(irq);
2416        int retval;
2417
2418        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2419                return -EINVAL;
2420
2421        retval = irq_chip_pm_get(&desc->irq_data);
2422        if (retval < 0)
2423                return retval;
2424
2425        retval = __setup_irq(irq, desc, act);
2426
2427        if (retval)
2428                irq_chip_pm_put(&desc->irq_data);
2429
2430        return retval;
2431}
2432
2433/**
2434 *      __request_percpu_irq - allocate a percpu interrupt line
2435 *      @irq: Interrupt line to allocate
2436 *      @handler: Function to be called when the IRQ occurs.
2437 *      @flags: Interrupt type flags (IRQF_TIMER only)
2438 *      @devname: An ascii name for the claiming device
2439 *      @dev_id: A percpu cookie passed back to the handler function
2440 *
2441 *      This call allocates interrupt resources and enables the
2442 *      interrupt on the local CPU. If the interrupt is supposed to be
2443 *      enabled on other CPUs, it has to be done on each CPU using
2444 *      enable_percpu_irq().
2445 *
2446 *      Dev_id must be globally unique. It is a per-cpu variable, and
2447 *      the handler gets called with the interrupted CPU's instance of
2448 *      that variable.
2449 */
2450int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2451                         unsigned long flags, const char *devname,
2452                         void __percpu *dev_id)
2453{
2454        struct irqaction *action;
2455        struct irq_desc *desc;
2456        int retval;
2457
2458        if (!dev_id)
2459                return -EINVAL;
2460
2461        desc = irq_to_desc(irq);
2462        if (!desc || !irq_settings_can_request(desc) ||
2463            !irq_settings_is_per_cpu_devid(desc))
2464                return -EINVAL;
2465
2466        if (flags && flags != IRQF_TIMER)
2467                return -EINVAL;
2468
2469        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2470        if (!action)
2471                return -ENOMEM;
2472
2473        action->handler = handler;
2474        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2475        action->name = devname;
2476        action->percpu_dev_id = dev_id;
2477
2478        retval = irq_chip_pm_get(&desc->irq_data);
2479        if (retval < 0) {
2480                kfree(action);
2481                return retval;
2482        }
2483
2484        retval = __setup_irq(irq, desc, action);
2485
2486        if (retval) {
2487                irq_chip_pm_put(&desc->irq_data);
2488                kfree(action);
2489        }
2490
2491        return retval;
2492}
2493EXPORT_SYMBOL_GPL(__request_percpu_irq);
2494
2495/**
2496 *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2497 *      @irq: Interrupt line to allocate
2498 *      @handler: Function to be called when the IRQ occurs.
2499 *      @name: An ascii name for the claiming device
2500 *      @dev_id: A percpu cookie passed back to the handler function
2501 *
2502 *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2503 *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2504 *      being enabled on the same CPU by using enable_percpu_nmi().
2505 *
2506 *      Dev_id must be globally unique. It is a per-cpu variable, and
2507 *      the handler gets called with the interrupted CPU's instance of
2508 *      that variable.
2509 *
2510 *      Interrupt lines requested for NMI delivering should have auto enabling
2511 *      setting disabled.
2512 *
2513 *      If the interrupt line cannot be used to deliver NMIs, function
2514 *      will fail returning a negative value.
2515 */
2516int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2517                       const char *name, void __percpu *dev_id)
2518{
2519        struct irqaction *action;
2520        struct irq_desc *desc;
2521        unsigned long flags;
2522        int retval;
2523
2524        if (!handler)
2525                return -EINVAL;
2526
2527        desc = irq_to_desc(irq);
2528
2529        if (!desc || !irq_settings_can_request(desc) ||
2530            !irq_settings_is_per_cpu_devid(desc) ||
2531            irq_settings_can_autoenable(desc) ||
2532            !irq_supports_nmi(desc))
2533                return -EINVAL;
2534
2535        /* The line cannot already be NMI */
2536        if (desc->istate & IRQS_NMI)
2537                return -EINVAL;
2538
2539        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2540        if (!action)
2541                return -ENOMEM;
2542
2543        action->handler = handler;
2544        action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2545                | IRQF_NOBALANCING;
2546        action->name = name;
2547        action->percpu_dev_id = dev_id;
2548
2549        retval = irq_chip_pm_get(&desc->irq_data);
2550        if (retval < 0)
2551                goto err_out;
2552
2553        retval = __setup_irq(irq, desc, action);
2554        if (retval)
2555                goto err_irq_setup;
2556
2557        raw_spin_lock_irqsave(&desc->lock, flags);
2558        desc->istate |= IRQS_NMI;
2559        raw_spin_unlock_irqrestore(&desc->lock, flags);
2560
2561        return 0;
2562
2563err_irq_setup:
2564        irq_chip_pm_put(&desc->irq_data);
2565err_out:
2566        kfree(action);
2567
2568        return retval;
2569}
2570
2571/**
2572 *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2573 *      @irq: Interrupt line to prepare for NMI delivery
2574 *
2575 *      This call prepares an interrupt line to deliver NMI on the current CPU,
2576 *      before that interrupt line gets enabled with enable_percpu_nmi().
2577 *
2578 *      As a CPU local operation, this should be called from non-preemptible
2579 *      context.
2580 *
2581 *      If the interrupt line cannot be used to deliver NMIs, function
2582 *      will fail returning a negative value.
2583 */
2584int prepare_percpu_nmi(unsigned int irq)
2585{
2586        unsigned long flags;
2587        struct irq_desc *desc;
2588        int ret = 0;
2589
2590        WARN_ON(preemptible());
2591
2592        desc = irq_get_desc_lock(irq, &flags,
2593                                 IRQ_GET_DESC_CHECK_PERCPU);
2594        if (!desc)
2595                return -EINVAL;
2596
2597        if (WARN(!(desc->istate & IRQS_NMI),
2598                 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2599                 irq)) {
2600                ret = -EINVAL;
2601                goto out;
2602        }
2603
2604        ret = irq_nmi_setup(desc);
2605        if (ret) {
2606                pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2607                goto out;
2608        }
2609
2610out:
2611        irq_put_desc_unlock(desc, flags);
2612        return ret;
2613}
2614
2615/**
2616 *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2617 *      @irq: Interrupt line from which CPU local NMI configuration should be
2618 *            removed
2619 *
2620 *      This call undoes the setup done by prepare_percpu_nmi().
2621 *
2622 *      IRQ line should not be enabled for the current CPU.
2623 *
2624 *      As a CPU local operation, this should be called from non-preemptible
2625 *      context.
2626 */
2627void teardown_percpu_nmi(unsigned int irq)
2628{
2629        unsigned long flags;
2630        struct irq_desc *desc;
2631
2632        WARN_ON(preemptible());
2633
2634        desc = irq_get_desc_lock(irq, &flags,
2635                                 IRQ_GET_DESC_CHECK_PERCPU);
2636        if (!desc)
2637                return;
2638
2639        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2640                goto out;
2641
2642        irq_nmi_teardown(desc);
2643out:
2644        irq_put_desc_unlock(desc, flags);
2645}
2646
2647int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2648                            bool *state)
2649{
2650        struct irq_chip *chip;
2651        int err = -EINVAL;
2652
2653        do {
2654                chip = irq_data_get_irq_chip(data);
2655                if (WARN_ON_ONCE(!chip))
2656                        return -ENODEV;
2657                if (chip->irq_get_irqchip_state)
2658                        break;
2659#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2660                data = data->parent_data;
2661#else
2662                data = NULL;
2663#endif
2664        } while (data);
2665
2666        if (data)
2667                err = chip->irq_get_irqchip_state(data, which, state);
2668        return err;
2669}
2670
2671/**
2672 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2673 *      @irq: Interrupt line that is forwarded to a VM
2674 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2675 *      @state: a pointer to a boolean where the state is to be storeed
2676 *
2677 *      This call snapshots the internal irqchip state of an
2678 *      interrupt, returning into @state the bit corresponding to
2679 *      stage @which
2680 *
2681 *      This function should be called with preemption disabled if the
2682 *      interrupt controller has per-cpu registers.
2683 */
2684int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2685                          bool *state)
2686{
2687        struct irq_desc *desc;
2688        struct irq_data *data;
2689        unsigned long flags;
2690        int err = -EINVAL;
2691
2692        desc = irq_get_desc_buslock(irq, &flags, 0);
2693        if (!desc)
2694                return err;
2695
2696        data = irq_desc_get_irq_data(desc);
2697
2698        err = __irq_get_irqchip_state(data, which, state);
2699
2700        irq_put_desc_busunlock(desc, flags);
2701        return err;
2702}
2703EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2704
2705/**
2706 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2707 *      @irq: Interrupt line that is forwarded to a VM
2708 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2709 *      @val: Value corresponding to @which
2710 *
2711 *      This call sets the internal irqchip state of an interrupt,
2712 *      depending on the value of @which.
2713 *
2714 *      This function should be called with preemption disabled if the
2715 *      interrupt controller has per-cpu registers.
2716 */
2717int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2718                          bool val)
2719{
2720        struct irq_desc *desc;
2721        struct irq_data *data;
2722        struct irq_chip *chip;
2723        unsigned long flags;
2724        int err = -EINVAL;
2725
2726        desc = irq_get_desc_buslock(irq, &flags, 0);
2727        if (!desc)
2728                return err;
2729
2730        data = irq_desc_get_irq_data(desc);
2731
2732        do {
2733                chip = irq_data_get_irq_chip(data);
2734                if (WARN_ON_ONCE(!chip)) {
2735                        err = -ENODEV;
2736                        goto out_unlock;
2737                }
2738                if (chip->irq_set_irqchip_state)
2739                        break;
2740#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2741                data = data->parent_data;
2742#else
2743                data = NULL;
2744#endif
2745        } while (data);
2746
2747        if (data)
2748                err = chip->irq_set_irqchip_state(data, which, val);
2749
2750out_unlock:
2751        irq_put_desc_busunlock(desc, flags);
2752        return err;
2753}
2754EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2755