linux/kernel/sched/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
  14
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  44
  45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  46
  47#ifdef CONFIG_SCHED_DEBUG
  48/*
  49 * Debugging: various feature bits
  50 *
  51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  53 * at compile time and compiler optimization based on features default.
  54 */
  55#define SCHED_FEAT(name, enabled)       \
  56        (1UL << __SCHED_FEAT_##name) * enabled |
  57const_debug unsigned int sysctl_sched_features =
  58#include "features.h"
  59        0;
  60#undef SCHED_FEAT
  61#endif
  62
  63/*
  64 * Number of tasks to iterate in a single balance run.
  65 * Limited because this is done with IRQs disabled.
  66 */
  67const_debug unsigned int sysctl_sched_nr_migrate = 32;
  68
  69/*
  70 * period over which we measure -rt task CPU usage in us.
  71 * default: 1s
  72 */
  73unsigned int sysctl_sched_rt_period = 1000000;
  74
  75__read_mostly int scheduler_running;
  76
  77/*
  78 * part of the period that we allow rt tasks to run in us.
  79 * default: 0.95s
  80 */
  81int sysctl_sched_rt_runtime = 950000;
  82
  83
  84/*
  85 * Serialization rules:
  86 *
  87 * Lock order:
  88 *
  89 *   p->pi_lock
  90 *     rq->lock
  91 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  92 *
  93 *  rq1->lock
  94 *    rq2->lock  where: rq1 < rq2
  95 *
  96 * Regular state:
  97 *
  98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
 100 * always looks at the local rq data structures to find the most elegible task
 101 * to run next.
 102 *
 103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 105 * the local CPU to avoid bouncing the runqueue state around [ see
 106 * ttwu_queue_wakelist() ]
 107 *
 108 * Task wakeup, specifically wakeups that involve migration, are horribly
 109 * complicated to avoid having to take two rq->locks.
 110 *
 111 * Special state:
 112 *
 113 * System-calls and anything external will use task_rq_lock() which acquires
 114 * both p->pi_lock and rq->lock. As a consequence the state they change is
 115 * stable while holding either lock:
 116 *
 117 *  - sched_setaffinity()/
 118 *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
 119 *  - set_user_nice():          p->se.load, p->*prio
 120 *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
 121 *                              p->se.load, p->rt_priority,
 122 *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
 123 *  - sched_setnuma():          p->numa_preferred_nid
 124 *  - sched_move_task()/
 125 *    cpu_cgroup_fork():        p->sched_task_group
 126 *  - uclamp_update_active()    p->uclamp*
 127 *
 128 * p->state <- TASK_*:
 129 *
 130 *   is changed locklessly using set_current_state(), __set_current_state() or
 131 *   set_special_state(), see their respective comments, or by
 132 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 133 *   concurrent self.
 134 *
 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 136 *
 137 *   is set by activate_task() and cleared by deactivate_task(), under
 138 *   rq->lock. Non-zero indicates the task is runnable, the special
 139 *   ON_RQ_MIGRATING state is used for migration without holding both
 140 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 141 *
 142 * p->on_cpu <- { 0, 1 }:
 143 *
 144 *   is set by prepare_task() and cleared by finish_task() such that it will be
 145 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 146 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 147 *
 148 *   [ The astute reader will observe that it is possible for two tasks on one
 149 *     CPU to have ->on_cpu = 1 at the same time. ]
 150 *
 151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 152 *
 153 *  - Don't call set_task_cpu() on a blocked task:
 154 *
 155 *    We don't care what CPU we're not running on, this simplifies hotplug,
 156 *    the CPU assignment of blocked tasks isn't required to be valid.
 157 *
 158 *  - for try_to_wake_up(), called under p->pi_lock:
 159 *
 160 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 161 *
 162 *  - for migration called under rq->lock:
 163 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 164 *
 165 *    o move_queued_task()
 166 *    o detach_task()
 167 *
 168 *  - for migration called under double_rq_lock():
 169 *
 170 *    o __migrate_swap_task()
 171 *    o push_rt_task() / pull_rt_task()
 172 *    o push_dl_task() / pull_dl_task()
 173 *    o dl_task_offline_migration()
 174 *
 175 */
 176
 177/*
 178 * __task_rq_lock - lock the rq @p resides on.
 179 */
 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 181        __acquires(rq->lock)
 182{
 183        struct rq *rq;
 184
 185        lockdep_assert_held(&p->pi_lock);
 186
 187        for (;;) {
 188                rq = task_rq(p);
 189                raw_spin_lock(&rq->lock);
 190                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 191                        rq_pin_lock(rq, rf);
 192                        return rq;
 193                }
 194                raw_spin_unlock(&rq->lock);
 195
 196                while (unlikely(task_on_rq_migrating(p)))
 197                        cpu_relax();
 198        }
 199}
 200
 201/*
 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 203 */
 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 205        __acquires(p->pi_lock)
 206        __acquires(rq->lock)
 207{
 208        struct rq *rq;
 209
 210        for (;;) {
 211                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 212                rq = task_rq(p);
 213                raw_spin_lock(&rq->lock);
 214                /*
 215                 *      move_queued_task()              task_rq_lock()
 216                 *
 217                 *      ACQUIRE (rq->lock)
 218                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 219                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 220                 *      [S] ->cpu = new_cpu             [L] task_rq()
 221                 *                                      [L] ->on_rq
 222                 *      RELEASE (rq->lock)
 223                 *
 224                 * If we observe the old CPU in task_rq_lock(), the acquire of
 225                 * the old rq->lock will fully serialize against the stores.
 226                 *
 227                 * If we observe the new CPU in task_rq_lock(), the address
 228                 * dependency headed by '[L] rq = task_rq()' and the acquire
 229                 * will pair with the WMB to ensure we then also see migrating.
 230                 */
 231                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 232                        rq_pin_lock(rq, rf);
 233                        return rq;
 234                }
 235                raw_spin_unlock(&rq->lock);
 236                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 237
 238                while (unlikely(task_on_rq_migrating(p)))
 239                        cpu_relax();
 240        }
 241}
 242
 243/*
 244 * RQ-clock updating methods:
 245 */
 246
 247static void update_rq_clock_task(struct rq *rq, s64 delta)
 248{
 249/*
 250 * In theory, the compile should just see 0 here, and optimize out the call
 251 * to sched_rt_avg_update. But I don't trust it...
 252 */
 253        s64 __maybe_unused steal = 0, irq_delta = 0;
 254
 255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 256        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 257
 258        /*
 259         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 260         * this case when a previous update_rq_clock() happened inside a
 261         * {soft,}irq region.
 262         *
 263         * When this happens, we stop ->clock_task and only update the
 264         * prev_irq_time stamp to account for the part that fit, so that a next
 265         * update will consume the rest. This ensures ->clock_task is
 266         * monotonic.
 267         *
 268         * It does however cause some slight miss-attribution of {soft,}irq
 269         * time, a more accurate solution would be to update the irq_time using
 270         * the current rq->clock timestamp, except that would require using
 271         * atomic ops.
 272         */
 273        if (irq_delta > delta)
 274                irq_delta = delta;
 275
 276        rq->prev_irq_time += irq_delta;
 277        delta -= irq_delta;
 278#endif
 279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 280        if (static_key_false((&paravirt_steal_rq_enabled))) {
 281                steal = paravirt_steal_clock(cpu_of(rq));
 282                steal -= rq->prev_steal_time_rq;
 283
 284                if (unlikely(steal > delta))
 285                        steal = delta;
 286
 287                rq->prev_steal_time_rq += steal;
 288                delta -= steal;
 289        }
 290#endif
 291
 292        rq->clock_task += delta;
 293
 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 295        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 296                update_irq_load_avg(rq, irq_delta + steal);
 297#endif
 298        update_rq_clock_pelt(rq, delta);
 299}
 300
 301void update_rq_clock(struct rq *rq)
 302{
 303        s64 delta;
 304
 305        lockdep_assert_held(&rq->lock);
 306
 307        if (rq->clock_update_flags & RQCF_ACT_SKIP)
 308                return;
 309
 310#ifdef CONFIG_SCHED_DEBUG
 311        if (sched_feat(WARN_DOUBLE_CLOCK))
 312                SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 313        rq->clock_update_flags |= RQCF_UPDATED;
 314#endif
 315
 316        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 317        if (delta < 0)
 318                return;
 319        rq->clock += delta;
 320        update_rq_clock_task(rq, delta);
 321}
 322
 323static inline void
 324rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 325{
 326        csd->flags = 0;
 327        csd->func = func;
 328        csd->info = rq;
 329}
 330
 331#ifdef CONFIG_SCHED_HRTICK
 332/*
 333 * Use HR-timers to deliver accurate preemption points.
 334 */
 335
 336static void hrtick_clear(struct rq *rq)
 337{
 338        if (hrtimer_active(&rq->hrtick_timer))
 339                hrtimer_cancel(&rq->hrtick_timer);
 340}
 341
 342/*
 343 * High-resolution timer tick.
 344 * Runs from hardirq context with interrupts disabled.
 345 */
 346static enum hrtimer_restart hrtick(struct hrtimer *timer)
 347{
 348        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 349        struct rq_flags rf;
 350
 351        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 352
 353        rq_lock(rq, &rf);
 354        update_rq_clock(rq);
 355        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 356        rq_unlock(rq, &rf);
 357
 358        return HRTIMER_NORESTART;
 359}
 360
 361#ifdef CONFIG_SMP
 362
 363static void __hrtick_restart(struct rq *rq)
 364{
 365        struct hrtimer *timer = &rq->hrtick_timer;
 366
 367        hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 368}
 369
 370/*
 371 * called from hardirq (IPI) context
 372 */
 373static void __hrtick_start(void *arg)
 374{
 375        struct rq *rq = arg;
 376        struct rq_flags rf;
 377
 378        rq_lock(rq, &rf);
 379        __hrtick_restart(rq);
 380        rq_unlock(rq, &rf);
 381}
 382
 383/*
 384 * Called to set the hrtick timer state.
 385 *
 386 * called with rq->lock held and irqs disabled
 387 */
 388void hrtick_start(struct rq *rq, u64 delay)
 389{
 390        struct hrtimer *timer = &rq->hrtick_timer;
 391        ktime_t time;
 392        s64 delta;
 393
 394        /*
 395         * Don't schedule slices shorter than 10000ns, that just
 396         * doesn't make sense and can cause timer DoS.
 397         */
 398        delta = max_t(s64, delay, 10000LL);
 399        time = ktime_add_ns(timer->base->get_time(), delta);
 400
 401        hrtimer_set_expires(timer, time);
 402
 403        if (rq == this_rq())
 404                __hrtick_restart(rq);
 405        else
 406                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 407}
 408
 409#else
 410/*
 411 * Called to set the hrtick timer state.
 412 *
 413 * called with rq->lock held and irqs disabled
 414 */
 415void hrtick_start(struct rq *rq, u64 delay)
 416{
 417        /*
 418         * Don't schedule slices shorter than 10000ns, that just
 419         * doesn't make sense. Rely on vruntime for fairness.
 420         */
 421        delay = max_t(u64, delay, 10000LL);
 422        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 423                      HRTIMER_MODE_REL_PINNED_HARD);
 424}
 425
 426#endif /* CONFIG_SMP */
 427
 428static void hrtick_rq_init(struct rq *rq)
 429{
 430#ifdef CONFIG_SMP
 431        rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 432#endif
 433        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 434        rq->hrtick_timer.function = hrtick;
 435}
 436#else   /* CONFIG_SCHED_HRTICK */
 437static inline void hrtick_clear(struct rq *rq)
 438{
 439}
 440
 441static inline void hrtick_rq_init(struct rq *rq)
 442{
 443}
 444#endif  /* CONFIG_SCHED_HRTICK */
 445
 446/*
 447 * cmpxchg based fetch_or, macro so it works for different integer types
 448 */
 449#define fetch_or(ptr, mask)                                             \
 450        ({                                                              \
 451                typeof(ptr) _ptr = (ptr);                               \
 452                typeof(mask) _mask = (mask);                            \
 453                typeof(*_ptr) _old, _val = *_ptr;                       \
 454                                                                        \
 455                for (;;) {                                              \
 456                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 457                        if (_old == _val)                               \
 458                                break;                                  \
 459                        _val = _old;                                    \
 460                }                                                       \
 461        _old;                                                           \
 462})
 463
 464#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 465/*
 466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 467 * this avoids any races wrt polling state changes and thereby avoids
 468 * spurious IPIs.
 469 */
 470static bool set_nr_and_not_polling(struct task_struct *p)
 471{
 472        struct thread_info *ti = task_thread_info(p);
 473        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 474}
 475
 476/*
 477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 478 *
 479 * If this returns true, then the idle task promises to call
 480 * sched_ttwu_pending() and reschedule soon.
 481 */
 482static bool set_nr_if_polling(struct task_struct *p)
 483{
 484        struct thread_info *ti = task_thread_info(p);
 485        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 486
 487        for (;;) {
 488                if (!(val & _TIF_POLLING_NRFLAG))
 489                        return false;
 490                if (val & _TIF_NEED_RESCHED)
 491                        return true;
 492                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 493                if (old == val)
 494                        break;
 495                val = old;
 496        }
 497        return true;
 498}
 499
 500#else
 501static bool set_nr_and_not_polling(struct task_struct *p)
 502{
 503        set_tsk_need_resched(p);
 504        return true;
 505}
 506
 507#ifdef CONFIG_SMP
 508static bool set_nr_if_polling(struct task_struct *p)
 509{
 510        return false;
 511}
 512#endif
 513#endif
 514
 515static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 516{
 517        struct wake_q_node *node = &task->wake_q;
 518
 519        /*
 520         * Atomically grab the task, if ->wake_q is !nil already it means
 521         * its already queued (either by us or someone else) and will get the
 522         * wakeup due to that.
 523         *
 524         * In order to ensure that a pending wakeup will observe our pending
 525         * state, even in the failed case, an explicit smp_mb() must be used.
 526         */
 527        smp_mb__before_atomic();
 528        if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 529                return false;
 530
 531        /*
 532         * The head is context local, there can be no concurrency.
 533         */
 534        *head->lastp = node;
 535        head->lastp = &node->next;
 536        return true;
 537}
 538
 539/**
 540 * wake_q_add() - queue a wakeup for 'later' waking.
 541 * @head: the wake_q_head to add @task to
 542 * @task: the task to queue for 'later' wakeup
 543 *
 544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 546 * instantly.
 547 *
 548 * This function must be used as-if it were wake_up_process(); IOW the task
 549 * must be ready to be woken at this location.
 550 */
 551void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 552{
 553        if (__wake_q_add(head, task))
 554                get_task_struct(task);
 555}
 556
 557/**
 558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 559 * @head: the wake_q_head to add @task to
 560 * @task: the task to queue for 'later' wakeup
 561 *
 562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 564 * instantly.
 565 *
 566 * This function must be used as-if it were wake_up_process(); IOW the task
 567 * must be ready to be woken at this location.
 568 *
 569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 570 * that already hold reference to @task can call the 'safe' version and trust
 571 * wake_q to do the right thing depending whether or not the @task is already
 572 * queued for wakeup.
 573 */
 574void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 575{
 576        if (!__wake_q_add(head, task))
 577                put_task_struct(task);
 578}
 579
 580void wake_up_q(struct wake_q_head *head)
 581{
 582        struct wake_q_node *node = head->first;
 583
 584        while (node != WAKE_Q_TAIL) {
 585                struct task_struct *task;
 586
 587                task = container_of(node, struct task_struct, wake_q);
 588                BUG_ON(!task);
 589                /* Task can safely be re-inserted now: */
 590                node = node->next;
 591                task->wake_q.next = NULL;
 592
 593                /*
 594                 * wake_up_process() executes a full barrier, which pairs with
 595                 * the queueing in wake_q_add() so as not to miss wakeups.
 596                 */
 597                wake_up_process(task);
 598                put_task_struct(task);
 599        }
 600}
 601
 602/*
 603 * resched_curr - mark rq's current task 'to be rescheduled now'.
 604 *
 605 * On UP this means the setting of the need_resched flag, on SMP it
 606 * might also involve a cross-CPU call to trigger the scheduler on
 607 * the target CPU.
 608 */
 609void resched_curr(struct rq *rq)
 610{
 611        struct task_struct *curr = rq->curr;
 612        int cpu;
 613
 614        lockdep_assert_held(&rq->lock);
 615
 616        if (test_tsk_need_resched(curr))
 617                return;
 618
 619        cpu = cpu_of(rq);
 620
 621        if (cpu == smp_processor_id()) {
 622                set_tsk_need_resched(curr);
 623                set_preempt_need_resched();
 624                return;
 625        }
 626
 627        if (set_nr_and_not_polling(curr))
 628                smp_send_reschedule(cpu);
 629        else
 630                trace_sched_wake_idle_without_ipi(cpu);
 631}
 632
 633void resched_cpu(int cpu)
 634{
 635        struct rq *rq = cpu_rq(cpu);
 636        unsigned long flags;
 637
 638        raw_spin_lock_irqsave(&rq->lock, flags);
 639        if (cpu_online(cpu) || cpu == smp_processor_id())
 640                resched_curr(rq);
 641        raw_spin_unlock_irqrestore(&rq->lock, flags);
 642}
 643
 644#ifdef CONFIG_SMP
 645#ifdef CONFIG_NO_HZ_COMMON
 646/*
 647 * In the semi idle case, use the nearest busy CPU for migrating timers
 648 * from an idle CPU.  This is good for power-savings.
 649 *
 650 * We don't do similar optimization for completely idle system, as
 651 * selecting an idle CPU will add more delays to the timers than intended
 652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 653 */
 654int get_nohz_timer_target(void)
 655{
 656        int i, cpu = smp_processor_id(), default_cpu = -1;
 657        struct sched_domain *sd;
 658
 659        if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 660                if (!idle_cpu(cpu))
 661                        return cpu;
 662                default_cpu = cpu;
 663        }
 664
 665        rcu_read_lock();
 666        for_each_domain(cpu, sd) {
 667                for_each_cpu_and(i, sched_domain_span(sd),
 668                        housekeeping_cpumask(HK_FLAG_TIMER)) {
 669                        if (cpu == i)
 670                                continue;
 671
 672                        if (!idle_cpu(i)) {
 673                                cpu = i;
 674                                goto unlock;
 675                        }
 676                }
 677        }
 678
 679        if (default_cpu == -1)
 680                default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 681        cpu = default_cpu;
 682unlock:
 683        rcu_read_unlock();
 684        return cpu;
 685}
 686
 687/*
 688 * When add_timer_on() enqueues a timer into the timer wheel of an
 689 * idle CPU then this timer might expire before the next timer event
 690 * which is scheduled to wake up that CPU. In case of a completely
 691 * idle system the next event might even be infinite time into the
 692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 693 * leaves the inner idle loop so the newly added timer is taken into
 694 * account when the CPU goes back to idle and evaluates the timer
 695 * wheel for the next timer event.
 696 */
 697static void wake_up_idle_cpu(int cpu)
 698{
 699        struct rq *rq = cpu_rq(cpu);
 700
 701        if (cpu == smp_processor_id())
 702                return;
 703
 704        if (set_nr_and_not_polling(rq->idle))
 705                smp_send_reschedule(cpu);
 706        else
 707                trace_sched_wake_idle_without_ipi(cpu);
 708}
 709
 710static bool wake_up_full_nohz_cpu(int cpu)
 711{
 712        /*
 713         * We just need the target to call irq_exit() and re-evaluate
 714         * the next tick. The nohz full kick at least implies that.
 715         * If needed we can still optimize that later with an
 716         * empty IRQ.
 717         */
 718        if (cpu_is_offline(cpu))
 719                return true;  /* Don't try to wake offline CPUs. */
 720        if (tick_nohz_full_cpu(cpu)) {
 721                if (cpu != smp_processor_id() ||
 722                    tick_nohz_tick_stopped())
 723                        tick_nohz_full_kick_cpu(cpu);
 724                return true;
 725        }
 726
 727        return false;
 728}
 729
 730/*
 731 * Wake up the specified CPU.  If the CPU is going offline, it is the
 732 * caller's responsibility to deal with the lost wakeup, for example,
 733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 734 */
 735void wake_up_nohz_cpu(int cpu)
 736{
 737        if (!wake_up_full_nohz_cpu(cpu))
 738                wake_up_idle_cpu(cpu);
 739}
 740
 741static void nohz_csd_func(void *info)
 742{
 743        struct rq *rq = info;
 744        int cpu = cpu_of(rq);
 745        unsigned int flags;
 746
 747        /*
 748         * Release the rq::nohz_csd.
 749         */
 750        flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 751        WARN_ON(!(flags & NOHZ_KICK_MASK));
 752
 753        rq->idle_balance = idle_cpu(cpu);
 754        if (rq->idle_balance && !need_resched()) {
 755                rq->nohz_idle_balance = flags;
 756                raise_softirq_irqoff(SCHED_SOFTIRQ);
 757        }
 758}
 759
 760#endif /* CONFIG_NO_HZ_COMMON */
 761
 762#ifdef CONFIG_NO_HZ_FULL
 763bool sched_can_stop_tick(struct rq *rq)
 764{
 765        int fifo_nr_running;
 766
 767        /* Deadline tasks, even if single, need the tick */
 768        if (rq->dl.dl_nr_running)
 769                return false;
 770
 771        /*
 772         * If there are more than one RR tasks, we need the tick to effect the
 773         * actual RR behaviour.
 774         */
 775        if (rq->rt.rr_nr_running) {
 776                if (rq->rt.rr_nr_running == 1)
 777                        return true;
 778                else
 779                        return false;
 780        }
 781
 782        /*
 783         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 784         * forced preemption between FIFO tasks.
 785         */
 786        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 787        if (fifo_nr_running)
 788                return true;
 789
 790        /*
 791         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 792         * if there's more than one we need the tick for involuntary
 793         * preemption.
 794         */
 795        if (rq->nr_running > 1)
 796                return false;
 797
 798        return true;
 799}
 800#endif /* CONFIG_NO_HZ_FULL */
 801#endif /* CONFIG_SMP */
 802
 803#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 804                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 805/*
 806 * Iterate task_group tree rooted at *from, calling @down when first entering a
 807 * node and @up when leaving it for the final time.
 808 *
 809 * Caller must hold rcu_lock or sufficient equivalent.
 810 */
 811int walk_tg_tree_from(struct task_group *from,
 812                             tg_visitor down, tg_visitor up, void *data)
 813{
 814        struct task_group *parent, *child;
 815        int ret;
 816
 817        parent = from;
 818
 819down:
 820        ret = (*down)(parent, data);
 821        if (ret)
 822                goto out;
 823        list_for_each_entry_rcu(child, &parent->children, siblings) {
 824                parent = child;
 825                goto down;
 826
 827up:
 828                continue;
 829        }
 830        ret = (*up)(parent, data);
 831        if (ret || parent == from)
 832                goto out;
 833
 834        child = parent;
 835        parent = parent->parent;
 836        if (parent)
 837                goto up;
 838out:
 839        return ret;
 840}
 841
 842int tg_nop(struct task_group *tg, void *data)
 843{
 844        return 0;
 845}
 846#endif
 847
 848static void set_load_weight(struct task_struct *p, bool update_load)
 849{
 850        int prio = p->static_prio - MAX_RT_PRIO;
 851        struct load_weight *load = &p->se.load;
 852
 853        /*
 854         * SCHED_IDLE tasks get minimal weight:
 855         */
 856        if (task_has_idle_policy(p)) {
 857                load->weight = scale_load(WEIGHT_IDLEPRIO);
 858                load->inv_weight = WMULT_IDLEPRIO;
 859                return;
 860        }
 861
 862        /*
 863         * SCHED_OTHER tasks have to update their load when changing their
 864         * weight
 865         */
 866        if (update_load && p->sched_class == &fair_sched_class) {
 867                reweight_task(p, prio);
 868        } else {
 869                load->weight = scale_load(sched_prio_to_weight[prio]);
 870                load->inv_weight = sched_prio_to_wmult[prio];
 871        }
 872}
 873
 874#ifdef CONFIG_UCLAMP_TASK
 875/*
 876 * Serializes updates of utilization clamp values
 877 *
 878 * The (slow-path) user-space triggers utilization clamp value updates which
 879 * can require updates on (fast-path) scheduler's data structures used to
 880 * support enqueue/dequeue operations.
 881 * While the per-CPU rq lock protects fast-path update operations, user-space
 882 * requests are serialized using a mutex to reduce the risk of conflicting
 883 * updates or API abuses.
 884 */
 885static DEFINE_MUTEX(uclamp_mutex);
 886
 887/* Max allowed minimum utilization */
 888unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 889
 890/* Max allowed maximum utilization */
 891unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 892
 893/*
 894 * By default RT tasks run at the maximum performance point/capacity of the
 895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 896 * SCHED_CAPACITY_SCALE.
 897 *
 898 * This knob allows admins to change the default behavior when uclamp is being
 899 * used. In battery powered devices, particularly, running at the maximum
 900 * capacity and frequency will increase energy consumption and shorten the
 901 * battery life.
 902 *
 903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 904 *
 905 * This knob will not override the system default sched_util_clamp_min defined
 906 * above.
 907 */
 908unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 909
 910/* All clamps are required to be less or equal than these values */
 911static struct uclamp_se uclamp_default[UCLAMP_CNT];
 912
 913/*
 914 * This static key is used to reduce the uclamp overhead in the fast path. It
 915 * primarily disables the call to uclamp_rq_{inc, dec}() in
 916 * enqueue/dequeue_task().
 917 *
 918 * This allows users to continue to enable uclamp in their kernel config with
 919 * minimum uclamp overhead in the fast path.
 920 *
 921 * As soon as userspace modifies any of the uclamp knobs, the static key is
 922 * enabled, since we have an actual users that make use of uclamp
 923 * functionality.
 924 *
 925 * The knobs that would enable this static key are:
 926 *
 927 *   * A task modifying its uclamp value with sched_setattr().
 928 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 929 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 930 */
 931DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 932
 933/* Integer rounded range for each bucket */
 934#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 935
 936#define for_each_clamp_id(clamp_id) \
 937        for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 938
 939static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 940{
 941        return clamp_value / UCLAMP_BUCKET_DELTA;
 942}
 943
 944static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 945{
 946        if (clamp_id == UCLAMP_MIN)
 947                return 0;
 948        return SCHED_CAPACITY_SCALE;
 949}
 950
 951static inline void uclamp_se_set(struct uclamp_se *uc_se,
 952                                 unsigned int value, bool user_defined)
 953{
 954        uc_se->value = value;
 955        uc_se->bucket_id = uclamp_bucket_id(value);
 956        uc_se->user_defined = user_defined;
 957}
 958
 959static inline unsigned int
 960uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 961                  unsigned int clamp_value)
 962{
 963        /*
 964         * Avoid blocked utilization pushing up the frequency when we go
 965         * idle (which drops the max-clamp) by retaining the last known
 966         * max-clamp.
 967         */
 968        if (clamp_id == UCLAMP_MAX) {
 969                rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 970                return clamp_value;
 971        }
 972
 973        return uclamp_none(UCLAMP_MIN);
 974}
 975
 976static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 977                                     unsigned int clamp_value)
 978{
 979        /* Reset max-clamp retention only on idle exit */
 980        if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 981                return;
 982
 983        WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 984}
 985
 986static inline
 987unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 988                                   unsigned int clamp_value)
 989{
 990        struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 991        int bucket_id = UCLAMP_BUCKETS - 1;
 992
 993        /*
 994         * Since both min and max clamps are max aggregated, find the
 995         * top most bucket with tasks in.
 996         */
 997        for ( ; bucket_id >= 0; bucket_id--) {
 998                if (!bucket[bucket_id].tasks)
 999                        continue;
1000                return bucket[bucket_id].value;
1001        }
1002
1003        /* No tasks -- default clamp values */
1004        return uclamp_idle_value(rq, clamp_id, clamp_value);
1005}
1006
1007static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008{
1009        unsigned int default_util_min;
1010        struct uclamp_se *uc_se;
1011
1012        lockdep_assert_held(&p->pi_lock);
1013
1014        uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016        /* Only sync if user didn't override the default */
1017        if (uc_se->user_defined)
1018                return;
1019
1020        default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021        uclamp_se_set(uc_se, default_util_min, false);
1022}
1023
1024static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025{
1026        struct rq_flags rf;
1027        struct rq *rq;
1028
1029        if (!rt_task(p))
1030                return;
1031
1032        /* Protect updates to p->uclamp_* */
1033        rq = task_rq_lock(p, &rf);
1034        __uclamp_update_util_min_rt_default(p);
1035        task_rq_unlock(rq, p, &rf);
1036}
1037
1038static void uclamp_sync_util_min_rt_default(void)
1039{
1040        struct task_struct *g, *p;
1041
1042        /*
1043         * copy_process()                       sysctl_uclamp
1044         *                                        uclamp_min_rt = X;
1045         *   write_lock(&tasklist_lock)           read_lock(&tasklist_lock)
1046         *   // link thread                       smp_mb__after_spinlock()
1047         *   write_unlock(&tasklist_lock)         read_unlock(&tasklist_lock);
1048         *   sched_post_fork()                    for_each_process_thread()
1049         *     __uclamp_sync_rt()                   __uclamp_sync_rt()
1050         *
1051         * Ensures that either sched_post_fork() will observe the new
1052         * uclamp_min_rt or for_each_process_thread() will observe the new
1053         * task.
1054         */
1055        read_lock(&tasklist_lock);
1056        smp_mb__after_spinlock();
1057        read_unlock(&tasklist_lock);
1058
1059        rcu_read_lock();
1060        for_each_process_thread(g, p)
1061                uclamp_update_util_min_rt_default(p);
1062        rcu_read_unlock();
1063}
1064
1065static inline struct uclamp_se
1066uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1067{
1068        struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069#ifdef CONFIG_UCLAMP_TASK_GROUP
1070        struct uclamp_se uc_max;
1071
1072        /*
1073         * Tasks in autogroups or root task group will be
1074         * restricted by system defaults.
1075         */
1076        if (task_group_is_autogroup(task_group(p)))
1077                return uc_req;
1078        if (task_group(p) == &root_task_group)
1079                return uc_req;
1080
1081        uc_max = task_group(p)->uclamp[clamp_id];
1082        if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083                return uc_max;
1084#endif
1085
1086        return uc_req;
1087}
1088
1089/*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
1093 * - the task group effective clamp value, for tasks not either in the root
1094 *   group or in an autogroup
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097static inline struct uclamp_se
1098uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1099{
1100        struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1101        struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103        /* System default restrictions always apply */
1104        if (unlikely(uc_req.value > uc_max.value))
1105                return uc_max;
1106
1107        return uc_req;
1108}
1109
1110unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1111{
1112        struct uclamp_se uc_eff;
1113
1114        /* Task currently refcounted: use back-annotated (effective) value */
1115        if (p->uclamp[clamp_id].active)
1116                return (unsigned long)p->uclamp[clamp_id].value;
1117
1118        uc_eff = uclamp_eff_get(p, clamp_id);
1119
1120        return (unsigned long)uc_eff.value;
1121}
1122
1123/*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
1132 */
1133static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1134                                    enum uclamp_id clamp_id)
1135{
1136        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138        struct uclamp_bucket *bucket;
1139
1140        lockdep_assert_held(&rq->lock);
1141
1142        /* Update task effective clamp */
1143        p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
1145        bucket = &uc_rq->bucket[uc_se->bucket_id];
1146        bucket->tasks++;
1147        uc_se->active = true;
1148
1149        uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
1151        /*
1152         * Local max aggregation: rq buckets always track the max
1153         * "requested" clamp value of its RUNNABLE tasks.
1154         */
1155        if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156                bucket->value = uc_se->value;
1157
1158        if (uc_se->value > READ_ONCE(uc_rq->value))
1159                WRITE_ONCE(uc_rq->value, uc_se->value);
1160}
1161
1162/*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1172                                    enum uclamp_id clamp_id)
1173{
1174        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176        struct uclamp_bucket *bucket;
1177        unsigned int bkt_clamp;
1178        unsigned int rq_clamp;
1179
1180        lockdep_assert_held(&rq->lock);
1181
1182        /*
1183         * If sched_uclamp_used was enabled after task @p was enqueued,
1184         * we could end up with unbalanced call to uclamp_rq_dec_id().
1185         *
1186         * In this case the uc_se->active flag should be false since no uclamp
1187         * accounting was performed at enqueue time and we can just return
1188         * here.
1189         *
1190         * Need to be careful of the following enqeueue/dequeue ordering
1191         * problem too
1192         *
1193         *      enqueue(taskA)
1194         *      // sched_uclamp_used gets enabled
1195         *      enqueue(taskB)
1196         *      dequeue(taskA)
1197         *      // Must not decrement bukcet->tasks here
1198         *      dequeue(taskB)
1199         *
1200         * where we could end up with stale data in uc_se and
1201         * bucket[uc_se->bucket_id].
1202         *
1203         * The following check here eliminates the possibility of such race.
1204         */
1205        if (unlikely(!uc_se->active))
1206                return;
1207
1208        bucket = &uc_rq->bucket[uc_se->bucket_id];
1209
1210        SCHED_WARN_ON(!bucket->tasks);
1211        if (likely(bucket->tasks))
1212                bucket->tasks--;
1213
1214        uc_se->active = false;
1215
1216        /*
1217         * Keep "local max aggregation" simple and accept to (possibly)
1218         * overboost some RUNNABLE tasks in the same bucket.
1219         * The rq clamp bucket value is reset to its base value whenever
1220         * there are no more RUNNABLE tasks refcounting it.
1221         */
1222        if (likely(bucket->tasks))
1223                return;
1224
1225        rq_clamp = READ_ONCE(uc_rq->value);
1226        /*
1227         * Defensive programming: this should never happen. If it happens,
1228         * e.g. due to future modification, warn and fixup the expected value.
1229         */
1230        SCHED_WARN_ON(bucket->value > rq_clamp);
1231        if (bucket->value >= rq_clamp) {
1232                bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233                WRITE_ONCE(uc_rq->value, bkt_clamp);
1234        }
1235}
1236
1237static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238{
1239        enum uclamp_id clamp_id;
1240
1241        /*
1242         * Avoid any overhead until uclamp is actually used by the userspace.
1243         *
1244         * The condition is constructed such that a NOP is generated when
1245         * sched_uclamp_used is disabled.
1246         */
1247        if (!static_branch_unlikely(&sched_uclamp_used))
1248                return;
1249
1250        if (unlikely(!p->sched_class->uclamp_enabled))
1251                return;
1252
1253        for_each_clamp_id(clamp_id)
1254                uclamp_rq_inc_id(rq, p, clamp_id);
1255
1256        /* Reset clamp idle holding when there is one RUNNABLE task */
1257        if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258                rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1259}
1260
1261static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262{
1263        enum uclamp_id clamp_id;
1264
1265        /*
1266         * Avoid any overhead until uclamp is actually used by the userspace.
1267         *
1268         * The condition is constructed such that a NOP is generated when
1269         * sched_uclamp_used is disabled.
1270         */
1271        if (!static_branch_unlikely(&sched_uclamp_used))
1272                return;
1273
1274        if (unlikely(!p->sched_class->uclamp_enabled))
1275                return;
1276
1277        for_each_clamp_id(clamp_id)
1278                uclamp_rq_dec_id(rq, p, clamp_id);
1279}
1280
1281static inline void
1282uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1283{
1284        struct rq_flags rf;
1285        struct rq *rq;
1286
1287        /*
1288         * Lock the task and the rq where the task is (or was) queued.
1289         *
1290         * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291         * price to pay to safely serialize util_{min,max} updates with
1292         * enqueues, dequeues and migration operations.
1293         * This is the same locking schema used by __set_cpus_allowed_ptr().
1294         */
1295        rq = task_rq_lock(p, &rf);
1296
1297        /*
1298         * Setting the clamp bucket is serialized by task_rq_lock().
1299         * If the task is not yet RUNNABLE and its task_struct is not
1300         * affecting a valid clamp bucket, the next time it's enqueued,
1301         * it will already see the updated clamp bucket value.
1302         */
1303        if (p->uclamp[clamp_id].active) {
1304                uclamp_rq_dec_id(rq, p, clamp_id);
1305                uclamp_rq_inc_id(rq, p, clamp_id);
1306        }
1307
1308        task_rq_unlock(rq, p, &rf);
1309}
1310
1311#ifdef CONFIG_UCLAMP_TASK_GROUP
1312static inline void
1313uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314                           unsigned int clamps)
1315{
1316        enum uclamp_id clamp_id;
1317        struct css_task_iter it;
1318        struct task_struct *p;
1319
1320        css_task_iter_start(css, 0, &it);
1321        while ((p = css_task_iter_next(&it))) {
1322                for_each_clamp_id(clamp_id) {
1323                        if ((0x1 << clamp_id) & clamps)
1324                                uclamp_update_active(p, clamp_id);
1325                }
1326        }
1327        css_task_iter_end(&it);
1328}
1329
1330static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331static void uclamp_update_root_tg(void)
1332{
1333        struct task_group *tg = &root_task_group;
1334
1335        uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336                      sysctl_sched_uclamp_util_min, false);
1337        uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338                      sysctl_sched_uclamp_util_max, false);
1339
1340        rcu_read_lock();
1341        cpu_util_update_eff(&root_task_group.css);
1342        rcu_read_unlock();
1343}
1344#else
1345static void uclamp_update_root_tg(void) { }
1346#endif
1347
1348int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1349                                void *buffer, size_t *lenp, loff_t *ppos)
1350{
1351        bool update_root_tg = false;
1352        int old_min, old_max, old_min_rt;
1353        int result;
1354
1355        mutex_lock(&uclamp_mutex);
1356        old_min = sysctl_sched_uclamp_util_min;
1357        old_max = sysctl_sched_uclamp_util_max;
1358        old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1359
1360        result = proc_dointvec(table, write, buffer, lenp, ppos);
1361        if (result)
1362                goto undo;
1363        if (!write)
1364                goto done;
1365
1366        if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1367            sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368            sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
1370                result = -EINVAL;
1371                goto undo;
1372        }
1373
1374        if (old_min != sysctl_sched_uclamp_util_min) {
1375                uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1376                              sysctl_sched_uclamp_util_min, false);
1377                update_root_tg = true;
1378        }
1379        if (old_max != sysctl_sched_uclamp_util_max) {
1380                uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1381                              sysctl_sched_uclamp_util_max, false);
1382                update_root_tg = true;
1383        }
1384
1385        if (update_root_tg) {
1386                static_branch_enable(&sched_uclamp_used);
1387                uclamp_update_root_tg();
1388        }
1389
1390        if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391                static_branch_enable(&sched_uclamp_used);
1392                uclamp_sync_util_min_rt_default();
1393        }
1394
1395        /*
1396         * We update all RUNNABLE tasks only when task groups are in use.
1397         * Otherwise, keep it simple and do just a lazy update at each next
1398         * task enqueue time.
1399         */
1400
1401        goto done;
1402
1403undo:
1404        sysctl_sched_uclamp_util_min = old_min;
1405        sysctl_sched_uclamp_util_max = old_max;
1406        sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1407done:
1408        mutex_unlock(&uclamp_mutex);
1409
1410        return result;
1411}
1412
1413static int uclamp_validate(struct task_struct *p,
1414                           const struct sched_attr *attr)
1415{
1416        unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1417        unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1418
1419        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1420                lower_bound = attr->sched_util_min;
1421        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1422                upper_bound = attr->sched_util_max;
1423
1424        if (lower_bound > upper_bound)
1425                return -EINVAL;
1426        if (upper_bound > SCHED_CAPACITY_SCALE)
1427                return -EINVAL;
1428
1429        /*
1430         * We have valid uclamp attributes; make sure uclamp is enabled.
1431         *
1432         * We need to do that here, because enabling static branches is a
1433         * blocking operation which obviously cannot be done while holding
1434         * scheduler locks.
1435         */
1436        static_branch_enable(&sched_uclamp_used);
1437
1438        return 0;
1439}
1440
1441static void __setscheduler_uclamp(struct task_struct *p,
1442                                  const struct sched_attr *attr)
1443{
1444        enum uclamp_id clamp_id;
1445
1446        /*
1447         * On scheduling class change, reset to default clamps for tasks
1448         * without a task-specific value.
1449         */
1450        for_each_clamp_id(clamp_id) {
1451                struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1452
1453                /* Keep using defined clamps across class changes */
1454                if (uc_se->user_defined)
1455                        continue;
1456
1457                /*
1458                 * RT by default have a 100% boost value that could be modified
1459                 * at runtime.
1460                 */
1461                if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1462                        __uclamp_update_util_min_rt_default(p);
1463                else
1464                        uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1465
1466        }
1467
1468        if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1469                return;
1470
1471        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1472                uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1473                              attr->sched_util_min, true);
1474        }
1475
1476        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1477                uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1478                              attr->sched_util_max, true);
1479        }
1480}
1481
1482static void uclamp_fork(struct task_struct *p)
1483{
1484        enum uclamp_id clamp_id;
1485
1486        /*
1487         * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1488         * as the task is still at its early fork stages.
1489         */
1490        for_each_clamp_id(clamp_id)
1491                p->uclamp[clamp_id].active = false;
1492
1493        if (likely(!p->sched_reset_on_fork))
1494                return;
1495
1496        for_each_clamp_id(clamp_id) {
1497                uclamp_se_set(&p->uclamp_req[clamp_id],
1498                              uclamp_none(clamp_id), false);
1499        }
1500}
1501
1502static void uclamp_post_fork(struct task_struct *p)
1503{
1504        uclamp_update_util_min_rt_default(p);
1505}
1506
1507static void __init init_uclamp_rq(struct rq *rq)
1508{
1509        enum uclamp_id clamp_id;
1510        struct uclamp_rq *uc_rq = rq->uclamp;
1511
1512        for_each_clamp_id(clamp_id) {
1513                uc_rq[clamp_id] = (struct uclamp_rq) {
1514                        .value = uclamp_none(clamp_id)
1515                };
1516        }
1517
1518        rq->uclamp_flags = 0;
1519}
1520
1521static void __init init_uclamp(void)
1522{
1523        struct uclamp_se uc_max = {};
1524        enum uclamp_id clamp_id;
1525        int cpu;
1526
1527        for_each_possible_cpu(cpu)
1528                init_uclamp_rq(cpu_rq(cpu));
1529
1530        for_each_clamp_id(clamp_id) {
1531                uclamp_se_set(&init_task.uclamp_req[clamp_id],
1532                              uclamp_none(clamp_id), false);
1533        }
1534
1535        /* System defaults allow max clamp values for both indexes */
1536        uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1537        for_each_clamp_id(clamp_id) {
1538                uclamp_default[clamp_id] = uc_max;
1539#ifdef CONFIG_UCLAMP_TASK_GROUP
1540                root_task_group.uclamp_req[clamp_id] = uc_max;
1541                root_task_group.uclamp[clamp_id] = uc_max;
1542#endif
1543        }
1544}
1545
1546#else /* CONFIG_UCLAMP_TASK */
1547static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1548static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1549static inline int uclamp_validate(struct task_struct *p,
1550                                  const struct sched_attr *attr)
1551{
1552        return -EOPNOTSUPP;
1553}
1554static void __setscheduler_uclamp(struct task_struct *p,
1555                                  const struct sched_attr *attr) { }
1556static inline void uclamp_fork(struct task_struct *p) { }
1557static inline void uclamp_post_fork(struct task_struct *p) { }
1558static inline void init_uclamp(void) { }
1559#endif /* CONFIG_UCLAMP_TASK */
1560
1561static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1562{
1563        if (!(flags & ENQUEUE_NOCLOCK))
1564                update_rq_clock(rq);
1565
1566        if (!(flags & ENQUEUE_RESTORE)) {
1567                sched_info_queued(rq, p);
1568                psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1569        }
1570
1571        uclamp_rq_inc(rq, p);
1572        p->sched_class->enqueue_task(rq, p, flags);
1573}
1574
1575static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1576{
1577        if (!(flags & DEQUEUE_NOCLOCK))
1578                update_rq_clock(rq);
1579
1580        if (!(flags & DEQUEUE_SAVE)) {
1581                sched_info_dequeued(rq, p);
1582                psi_dequeue(p, flags & DEQUEUE_SLEEP);
1583        }
1584
1585        uclamp_rq_dec(rq, p);
1586        p->sched_class->dequeue_task(rq, p, flags);
1587}
1588
1589void activate_task(struct rq *rq, struct task_struct *p, int flags)
1590{
1591        enqueue_task(rq, p, flags);
1592
1593        p->on_rq = TASK_ON_RQ_QUEUED;
1594}
1595
1596void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1597{
1598        p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1599
1600        dequeue_task(rq, p, flags);
1601}
1602
1603/*
1604 * __normal_prio - return the priority that is based on the static prio
1605 */
1606static inline int __normal_prio(struct task_struct *p)
1607{
1608        return p->static_prio;
1609}
1610
1611/*
1612 * Calculate the expected normal priority: i.e. priority
1613 * without taking RT-inheritance into account. Might be
1614 * boosted by interactivity modifiers. Changes upon fork,
1615 * setprio syscalls, and whenever the interactivity
1616 * estimator recalculates.
1617 */
1618static inline int normal_prio(struct task_struct *p)
1619{
1620        int prio;
1621
1622        if (task_has_dl_policy(p))
1623                prio = MAX_DL_PRIO-1;
1624        else if (task_has_rt_policy(p))
1625                prio = MAX_RT_PRIO-1 - p->rt_priority;
1626        else
1627                prio = __normal_prio(p);
1628        return prio;
1629}
1630
1631/*
1632 * Calculate the current priority, i.e. the priority
1633 * taken into account by the scheduler. This value might
1634 * be boosted by RT tasks, or might be boosted by
1635 * interactivity modifiers. Will be RT if the task got
1636 * RT-boosted. If not then it returns p->normal_prio.
1637 */
1638static int effective_prio(struct task_struct *p)
1639{
1640        p->normal_prio = normal_prio(p);
1641        /*
1642         * If we are RT tasks or we were boosted to RT priority,
1643         * keep the priority unchanged. Otherwise, update priority
1644         * to the normal priority:
1645         */
1646        if (!rt_prio(p->prio))
1647                return p->normal_prio;
1648        return p->prio;
1649}
1650
1651/**
1652 * task_curr - is this task currently executing on a CPU?
1653 * @p: the task in question.
1654 *
1655 * Return: 1 if the task is currently executing. 0 otherwise.
1656 */
1657inline int task_curr(const struct task_struct *p)
1658{
1659        return cpu_curr(task_cpu(p)) == p;
1660}
1661
1662/*
1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1664 * use the balance_callback list if you want balancing.
1665 *
1666 * this means any call to check_class_changed() must be followed by a call to
1667 * balance_callback().
1668 */
1669static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670                                       const struct sched_class *prev_class,
1671                                       int oldprio)
1672{
1673        if (prev_class != p->sched_class) {
1674                if (prev_class->switched_from)
1675                        prev_class->switched_from(rq, p);
1676
1677                p->sched_class->switched_to(rq, p);
1678        } else if (oldprio != p->prio || dl_task(p))
1679                p->sched_class->prio_changed(rq, p, oldprio);
1680}
1681
1682void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1683{
1684        if (p->sched_class == rq->curr->sched_class)
1685                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1686        else if (p->sched_class > rq->curr->sched_class)
1687                resched_curr(rq);
1688
1689        /*
1690         * A queue event has occurred, and we're going to schedule.  In
1691         * this case, we can save a useless back to back clock update.
1692         */
1693        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1694                rq_clock_skip_update(rq);
1695}
1696
1697#ifdef CONFIG_SMP
1698
1699/*
1700 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1701 * __set_cpus_allowed_ptr() and select_fallback_rq().
1702 */
1703static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1704{
1705        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1706                return false;
1707
1708        if (is_per_cpu_kthread(p))
1709                return cpu_online(cpu);
1710
1711        return cpu_active(cpu);
1712}
1713
1714/*
1715 * This is how migration works:
1716 *
1717 * 1) we invoke migration_cpu_stop() on the target CPU using
1718 *    stop_one_cpu().
1719 * 2) stopper starts to run (implicitly forcing the migrated thread
1720 *    off the CPU)
1721 * 3) it checks whether the migrated task is still in the wrong runqueue.
1722 * 4) if it's in the wrong runqueue then the migration thread removes
1723 *    it and puts it into the right queue.
1724 * 5) stopper completes and stop_one_cpu() returns and the migration
1725 *    is done.
1726 */
1727
1728/*
1729 * move_queued_task - move a queued task to new rq.
1730 *
1731 * Returns (locked) new rq. Old rq's lock is released.
1732 */
1733static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1734                                   struct task_struct *p, int new_cpu)
1735{
1736        lockdep_assert_held(&rq->lock);
1737
1738        deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1739        set_task_cpu(p, new_cpu);
1740        rq_unlock(rq, rf);
1741
1742        rq = cpu_rq(new_cpu);
1743
1744        rq_lock(rq, rf);
1745        BUG_ON(task_cpu(p) != new_cpu);
1746        activate_task(rq, p, 0);
1747        check_preempt_curr(rq, p, 0);
1748
1749        return rq;
1750}
1751
1752struct migration_arg {
1753        struct task_struct *task;
1754        int dest_cpu;
1755};
1756
1757/*
1758 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1759 * this because either it can't run here any more (set_cpus_allowed()
1760 * away from this CPU, or CPU going down), or because we're
1761 * attempting to rebalance this task on exec (sched_exec).
1762 *
1763 * So we race with normal scheduler movements, but that's OK, as long
1764 * as the task is no longer on this CPU.
1765 */
1766static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1767                                 struct task_struct *p, int dest_cpu)
1768{
1769        /* Affinity changed (again). */
1770        if (!is_cpu_allowed(p, dest_cpu))
1771                return rq;
1772
1773        update_rq_clock(rq);
1774        rq = move_queued_task(rq, rf, p, dest_cpu);
1775
1776        return rq;
1777}
1778
1779/*
1780 * migration_cpu_stop - this will be executed by a highprio stopper thread
1781 * and performs thread migration by bumping thread off CPU then
1782 * 'pushing' onto another runqueue.
1783 */
1784static int migration_cpu_stop(void *data)
1785{
1786        struct migration_arg *arg = data;
1787        struct task_struct *p = arg->task;
1788        struct rq *rq = this_rq();
1789        struct rq_flags rf;
1790
1791        /*
1792         * The original target CPU might have gone down and we might
1793         * be on another CPU but it doesn't matter.
1794         */
1795        local_irq_disable();
1796        /*
1797         * We need to explicitly wake pending tasks before running
1798         * __migrate_task() such that we will not miss enforcing cpus_ptr
1799         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1800         */
1801        flush_smp_call_function_from_idle();
1802
1803        raw_spin_lock(&p->pi_lock);
1804        rq_lock(rq, &rf);
1805        /*
1806         * If task_rq(p) != rq, it cannot be migrated here, because we're
1807         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1808         * we're holding p->pi_lock.
1809         */
1810        if (task_rq(p) == rq) {
1811                if (task_on_rq_queued(p))
1812                        rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1813                else
1814                        p->wake_cpu = arg->dest_cpu;
1815        }
1816        rq_unlock(rq, &rf);
1817        raw_spin_unlock(&p->pi_lock);
1818
1819        local_irq_enable();
1820        return 0;
1821}
1822
1823/*
1824 * sched_class::set_cpus_allowed must do the below, but is not required to
1825 * actually call this function.
1826 */
1827void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1828{
1829        cpumask_copy(&p->cpus_mask, new_mask);
1830        p->nr_cpus_allowed = cpumask_weight(new_mask);
1831}
1832
1833void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1834{
1835        struct rq *rq = task_rq(p);
1836        bool queued, running;
1837
1838        lockdep_assert_held(&p->pi_lock);
1839
1840        queued = task_on_rq_queued(p);
1841        running = task_current(rq, p);
1842
1843        if (queued) {
1844                /*
1845                 * Because __kthread_bind() calls this on blocked tasks without
1846                 * holding rq->lock.
1847                 */
1848                lockdep_assert_held(&rq->lock);
1849                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1850        }
1851        if (running)
1852                put_prev_task(rq, p);
1853
1854        p->sched_class->set_cpus_allowed(p, new_mask);
1855
1856        if (queued)
1857                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1858        if (running)
1859                set_next_task(rq, p);
1860}
1861
1862/*
1863 * Change a given task's CPU affinity. Migrate the thread to a
1864 * proper CPU and schedule it away if the CPU it's executing on
1865 * is removed from the allowed bitmask.
1866 *
1867 * NOTE: the caller must have a valid reference to the task, the
1868 * task must not exit() & deallocate itself prematurely. The
1869 * call is not atomic; no spinlocks may be held.
1870 */
1871static int __set_cpus_allowed_ptr(struct task_struct *p,
1872                                  const struct cpumask *new_mask, bool check)
1873{
1874        const struct cpumask *cpu_valid_mask = cpu_active_mask;
1875        unsigned int dest_cpu;
1876        struct rq_flags rf;
1877        struct rq *rq;
1878        int ret = 0;
1879
1880        rq = task_rq_lock(p, &rf);
1881        update_rq_clock(rq);
1882
1883        if (p->flags & PF_KTHREAD) {
1884                /*
1885                 * Kernel threads are allowed on online && !active CPUs
1886                 */
1887                cpu_valid_mask = cpu_online_mask;
1888        }
1889
1890        /*
1891         * Must re-check here, to close a race against __kthread_bind(),
1892         * sched_setaffinity() is not guaranteed to observe the flag.
1893         */
1894        if (check && (p->flags & PF_NO_SETAFFINITY)) {
1895                ret = -EINVAL;
1896                goto out;
1897        }
1898
1899        if (cpumask_equal(&p->cpus_mask, new_mask))
1900                goto out;
1901
1902        /*
1903         * Picking a ~random cpu helps in cases where we are changing affinity
1904         * for groups of tasks (ie. cpuset), so that load balancing is not
1905         * immediately required to distribute the tasks within their new mask.
1906         */
1907        dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1908        if (dest_cpu >= nr_cpu_ids) {
1909                ret = -EINVAL;
1910                goto out;
1911        }
1912
1913        do_set_cpus_allowed(p, new_mask);
1914
1915        if (p->flags & PF_KTHREAD) {
1916                /*
1917                 * For kernel threads that do indeed end up on online &&
1918                 * !active we want to ensure they are strict per-CPU threads.
1919                 */
1920                WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1921                        !cpumask_intersects(new_mask, cpu_active_mask) &&
1922                        p->nr_cpus_allowed != 1);
1923        }
1924
1925        /* Can the task run on the task's current CPU? If so, we're done */
1926        if (cpumask_test_cpu(task_cpu(p), new_mask))
1927                goto out;
1928
1929        if (task_running(rq, p) || p->state == TASK_WAKING) {
1930                struct migration_arg arg = { p, dest_cpu };
1931                /* Need help from migration thread: drop lock and wait. */
1932                task_rq_unlock(rq, p, &rf);
1933                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1934                return 0;
1935        } else if (task_on_rq_queued(p)) {
1936                /*
1937                 * OK, since we're going to drop the lock immediately
1938                 * afterwards anyway.
1939                 */
1940                rq = move_queued_task(rq, &rf, p, dest_cpu);
1941        }
1942out:
1943        task_rq_unlock(rq, p, &rf);
1944
1945        return ret;
1946}
1947
1948int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1949{
1950        return __set_cpus_allowed_ptr(p, new_mask, false);
1951}
1952EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1953
1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955{
1956#ifdef CONFIG_SCHED_DEBUG
1957        /*
1958         * We should never call set_task_cpu() on a blocked task,
1959         * ttwu() will sort out the placement.
1960         */
1961        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1962                        !p->on_rq);
1963
1964        /*
1965         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1966         * because schedstat_wait_{start,end} rebase migrating task's wait_start
1967         * time relying on p->on_rq.
1968         */
1969        WARN_ON_ONCE(p->state == TASK_RUNNING &&
1970                     p->sched_class == &fair_sched_class &&
1971                     (p->on_rq && !task_on_rq_migrating(p)));
1972
1973#ifdef CONFIG_LOCKDEP
1974        /*
1975         * The caller should hold either p->pi_lock or rq->lock, when changing
1976         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1977         *
1978         * sched_move_task() holds both and thus holding either pins the cgroup,
1979         * see task_group().
1980         *
1981         * Furthermore, all task_rq users should acquire both locks, see
1982         * task_rq_lock().
1983         */
1984        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1985                                      lockdep_is_held(&task_rq(p)->lock)));
1986#endif
1987        /*
1988         * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1989         */
1990        WARN_ON_ONCE(!cpu_online(new_cpu));
1991#endif
1992
1993        trace_sched_migrate_task(p, new_cpu);
1994
1995        if (task_cpu(p) != new_cpu) {
1996                if (p->sched_class->migrate_task_rq)
1997                        p->sched_class->migrate_task_rq(p, new_cpu);
1998                p->se.nr_migrations++;
1999                rseq_migrate(p);
2000                perf_event_task_migrate(p);
2001        }
2002
2003        __set_task_cpu(p, new_cpu);
2004}
2005
2006#ifdef CONFIG_NUMA_BALANCING
2007static void __migrate_swap_task(struct task_struct *p, int cpu)
2008{
2009        if (task_on_rq_queued(p)) {
2010                struct rq *src_rq, *dst_rq;
2011                struct rq_flags srf, drf;
2012
2013                src_rq = task_rq(p);
2014                dst_rq = cpu_rq(cpu);
2015
2016                rq_pin_lock(src_rq, &srf);
2017                rq_pin_lock(dst_rq, &drf);
2018
2019                deactivate_task(src_rq, p, 0);
2020                set_task_cpu(p, cpu);
2021                activate_task(dst_rq, p, 0);
2022                check_preempt_curr(dst_rq, p, 0);
2023
2024                rq_unpin_lock(dst_rq, &drf);
2025                rq_unpin_lock(src_rq, &srf);
2026
2027        } else {
2028                /*
2029                 * Task isn't running anymore; make it appear like we migrated
2030                 * it before it went to sleep. This means on wakeup we make the
2031                 * previous CPU our target instead of where it really is.
2032                 */
2033                p->wake_cpu = cpu;
2034        }
2035}
2036
2037struct migration_swap_arg {
2038        struct task_struct *src_task, *dst_task;
2039        int src_cpu, dst_cpu;
2040};
2041
2042static int migrate_swap_stop(void *data)
2043{
2044        struct migration_swap_arg *arg = data;
2045        struct rq *src_rq, *dst_rq;
2046        int ret = -EAGAIN;
2047
2048        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2049                return -EAGAIN;
2050
2051        src_rq = cpu_rq(arg->src_cpu);
2052        dst_rq = cpu_rq(arg->dst_cpu);
2053
2054        double_raw_lock(&arg->src_task->pi_lock,
2055                        &arg->dst_task->pi_lock);
2056        double_rq_lock(src_rq, dst_rq);
2057
2058        if (task_cpu(arg->dst_task) != arg->dst_cpu)
2059                goto unlock;
2060
2061        if (task_cpu(arg->src_task) != arg->src_cpu)
2062                goto unlock;
2063
2064        if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2065                goto unlock;
2066
2067        if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2068                goto unlock;
2069
2070        __migrate_swap_task(arg->src_task, arg->dst_cpu);
2071        __migrate_swap_task(arg->dst_task, arg->src_cpu);
2072
2073        ret = 0;
2074
2075unlock:
2076        double_rq_unlock(src_rq, dst_rq);
2077        raw_spin_unlock(&arg->dst_task->pi_lock);
2078        raw_spin_unlock(&arg->src_task->pi_lock);
2079
2080        return ret;
2081}
2082
2083/*
2084 * Cross migrate two tasks
2085 */
2086int migrate_swap(struct task_struct *cur, struct task_struct *p,
2087                int target_cpu, int curr_cpu)
2088{
2089        struct migration_swap_arg arg;
2090        int ret = -EINVAL;
2091
2092        arg = (struct migration_swap_arg){
2093                .src_task = cur,
2094                .src_cpu = curr_cpu,
2095                .dst_task = p,
2096                .dst_cpu = target_cpu,
2097        };
2098
2099        if (arg.src_cpu == arg.dst_cpu)
2100                goto out;
2101
2102        /*
2103         * These three tests are all lockless; this is OK since all of them
2104         * will be re-checked with proper locks held further down the line.
2105         */
2106        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2107                goto out;
2108
2109        if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2110                goto out;
2111
2112        if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2113                goto out;
2114
2115        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2116        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2117
2118out:
2119        return ret;
2120}
2121#endif /* CONFIG_NUMA_BALANCING */
2122
2123/*
2124 * wait_task_inactive - wait for a thread to unschedule.
2125 *
2126 * If @match_state is nonzero, it's the @p->state value just checked and
2127 * not expected to change.  If it changes, i.e. @p might have woken up,
2128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2129 * we return a positive number (its total switch count).  If a second call
2130 * a short while later returns the same number, the caller can be sure that
2131 * @p has remained unscheduled the whole time.
2132 *
2133 * The caller must ensure that the task *will* unschedule sometime soon,
2134 * else this function might spin for a *long* time. This function can't
2135 * be called with interrupts off, or it may introduce deadlock with
2136 * smp_call_function() if an IPI is sent by the same process we are
2137 * waiting to become inactive.
2138 */
2139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2140{
2141        int running, queued;
2142        struct rq_flags rf;
2143        unsigned long ncsw;
2144        struct rq *rq;
2145
2146        for (;;) {
2147                /*
2148                 * We do the initial early heuristics without holding
2149                 * any task-queue locks at all. We'll only try to get
2150                 * the runqueue lock when things look like they will
2151                 * work out!
2152                 */
2153                rq = task_rq(p);
2154
2155                /*
2156                 * If the task is actively running on another CPU
2157                 * still, just relax and busy-wait without holding
2158                 * any locks.
2159                 *
2160                 * NOTE! Since we don't hold any locks, it's not
2161                 * even sure that "rq" stays as the right runqueue!
2162                 * But we don't care, since "task_running()" will
2163                 * return false if the runqueue has changed and p
2164                 * is actually now running somewhere else!
2165                 */
2166                while (task_running(rq, p)) {
2167                        if (match_state && unlikely(p->state != match_state))
2168                                return 0;
2169                        cpu_relax();
2170                }
2171
2172                /*
2173                 * Ok, time to look more closely! We need the rq
2174                 * lock now, to be *sure*. If we're wrong, we'll
2175                 * just go back and repeat.
2176                 */
2177                rq = task_rq_lock(p, &rf);
2178                trace_sched_wait_task(p);
2179                running = task_running(rq, p);
2180                queued = task_on_rq_queued(p);
2181                ncsw = 0;
2182                if (!match_state || p->state == match_state)
2183                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2184                task_rq_unlock(rq, p, &rf);
2185
2186                /*
2187                 * If it changed from the expected state, bail out now.
2188                 */
2189                if (unlikely(!ncsw))
2190                        break;
2191
2192                /*
2193                 * Was it really running after all now that we
2194                 * checked with the proper locks actually held?
2195                 *
2196                 * Oops. Go back and try again..
2197                 */
2198                if (unlikely(running)) {
2199                        cpu_relax();
2200                        continue;
2201                }
2202
2203                /*
2204                 * It's not enough that it's not actively running,
2205                 * it must be off the runqueue _entirely_, and not
2206                 * preempted!
2207                 *
2208                 * So if it was still runnable (but just not actively
2209                 * running right now), it's preempted, and we should
2210                 * yield - it could be a while.
2211                 */
2212                if (unlikely(queued)) {
2213                        ktime_t to = NSEC_PER_SEC / HZ;
2214
2215                        set_current_state(TASK_UNINTERRUPTIBLE);
2216                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2217                        continue;
2218                }
2219
2220                /*
2221                 * Ahh, all good. It wasn't running, and it wasn't
2222                 * runnable, which means that it will never become
2223                 * running in the future either. We're all done!
2224                 */
2225                break;
2226        }
2227
2228        return ncsw;
2229}
2230
2231/***
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2234 *
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2237 *
2238 * NOTE: this function doesn't have to take the runqueue lock,
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2242 * achieved as well.
2243 */
2244void kick_process(struct task_struct *p)
2245{
2246        int cpu;
2247
2248        preempt_disable();
2249        cpu = task_cpu(p);
2250        if ((cpu != smp_processor_id()) && task_curr(p))
2251                smp_send_reschedule(cpu);
2252        preempt_enable();
2253}
2254EXPORT_SYMBOL_GPL(kick_process);
2255
2256/*
2257 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2258 *
2259 * A few notes on cpu_active vs cpu_online:
2260 *
2261 *  - cpu_active must be a subset of cpu_online
2262 *
2263 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2264 *    see __set_cpus_allowed_ptr(). At this point the newly online
2265 *    CPU isn't yet part of the sched domains, and balancing will not
2266 *    see it.
2267 *
2268 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2269 *    avoid the load balancer to place new tasks on the to be removed
2270 *    CPU. Existing tasks will remain running there and will be taken
2271 *    off.
2272 *
2273 * This means that fallback selection must not select !active CPUs.
2274 * And can assume that any active CPU must be online. Conversely
2275 * select_task_rq() below may allow selection of !active CPUs in order
2276 * to satisfy the above rules.
2277 */
2278static int select_fallback_rq(int cpu, struct task_struct *p)
2279{
2280        int nid = cpu_to_node(cpu);
2281        const struct cpumask *nodemask = NULL;
2282        enum { cpuset, possible, fail } state = cpuset;
2283        int dest_cpu;
2284
2285        /*
2286         * If the node that the CPU is on has been offlined, cpu_to_node()
2287         * will return -1. There is no CPU on the node, and we should
2288         * select the CPU on the other node.
2289         */
2290        if (nid != -1) {
2291                nodemask = cpumask_of_node(nid);
2292
2293                /* Look for allowed, online CPU in same node. */
2294                for_each_cpu(dest_cpu, nodemask) {
2295                        if (!cpu_active(dest_cpu))
2296                                continue;
2297                        if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2298                                return dest_cpu;
2299                }
2300        }
2301
2302        for (;;) {
2303                /* Any allowed, online CPU? */
2304                for_each_cpu(dest_cpu, p->cpus_ptr) {
2305                        if (!is_cpu_allowed(p, dest_cpu))
2306                                continue;
2307
2308                        goto out;
2309                }
2310
2311                /* No more Mr. Nice Guy. */
2312                switch (state) {
2313                case cpuset:
2314                        if (IS_ENABLED(CONFIG_CPUSETS)) {
2315                                cpuset_cpus_allowed_fallback(p);
2316                                state = possible;
2317                                break;
2318                        }
2319                        fallthrough;
2320                case possible:
2321                        do_set_cpus_allowed(p, cpu_possible_mask);
2322                        state = fail;
2323                        break;
2324
2325                case fail:
2326                        BUG();
2327                        break;
2328                }
2329        }
2330
2331out:
2332        if (state != cpuset) {
2333                /*
2334                 * Don't tell them about moving exiting tasks or
2335                 * kernel threads (both mm NULL), since they never
2336                 * leave kernel.
2337                 */
2338                if (p->mm && printk_ratelimit()) {
2339                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2340                                        task_pid_nr(p), p->comm, cpu);
2341                }
2342        }
2343
2344        return dest_cpu;
2345}
2346
2347/*
2348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2349 */
2350static inline
2351int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2352{
2353        lockdep_assert_held(&p->pi_lock);
2354
2355        if (p->nr_cpus_allowed > 1)
2356                cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2357        else
2358                cpu = cpumask_any(p->cpus_ptr);
2359
2360        /*
2361         * In order not to call set_task_cpu() on a blocking task we need
2362         * to rely on ttwu() to place the task on a valid ->cpus_ptr
2363         * CPU.
2364         *
2365         * Since this is common to all placement strategies, this lives here.
2366         *
2367         * [ this allows ->select_task() to simply return task_cpu(p) and
2368         *   not worry about this generic constraint ]
2369         */
2370        if (unlikely(!is_cpu_allowed(p, cpu)))
2371                cpu = select_fallback_rq(task_cpu(p), p);
2372
2373        return cpu;
2374}
2375
2376void sched_set_stop_task(int cpu, struct task_struct *stop)
2377{
2378        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2379        struct task_struct *old_stop = cpu_rq(cpu)->stop;
2380
2381        if (stop) {
2382                /*
2383                 * Make it appear like a SCHED_FIFO task, its something
2384                 * userspace knows about and won't get confused about.
2385                 *
2386                 * Also, it will make PI more or less work without too
2387                 * much confusion -- but then, stop work should not
2388                 * rely on PI working anyway.
2389                 */
2390                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2391
2392                stop->sched_class = &stop_sched_class;
2393        }
2394
2395        cpu_rq(cpu)->stop = stop;
2396
2397        if (old_stop) {
2398                /*
2399                 * Reset it back to a normal scheduling class so that
2400                 * it can die in pieces.
2401                 */
2402                old_stop->sched_class = &rt_sched_class;
2403        }
2404}
2405
2406#else
2407
2408static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2409                                         const struct cpumask *new_mask, bool check)
2410{
2411        return set_cpus_allowed_ptr(p, new_mask);
2412}
2413
2414#endif /* CONFIG_SMP */
2415
2416static void
2417ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2418{
2419        struct rq *rq;
2420
2421        if (!schedstat_enabled())
2422                return;
2423
2424        rq = this_rq();
2425
2426#ifdef CONFIG_SMP
2427        if (cpu == rq->cpu) {
2428                __schedstat_inc(rq->ttwu_local);
2429                __schedstat_inc(p->se.statistics.nr_wakeups_local);
2430        } else {
2431                struct sched_domain *sd;
2432
2433                __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2434                rcu_read_lock();
2435                for_each_domain(rq->cpu, sd) {
2436                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2437                                __schedstat_inc(sd->ttwu_wake_remote);
2438                                break;
2439                        }
2440                }
2441                rcu_read_unlock();
2442        }
2443
2444        if (wake_flags & WF_MIGRATED)
2445                __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2446#endif /* CONFIG_SMP */
2447
2448        __schedstat_inc(rq->ttwu_count);
2449        __schedstat_inc(p->se.statistics.nr_wakeups);
2450
2451        if (wake_flags & WF_SYNC)
2452                __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2453}
2454
2455/*
2456 * Mark the task runnable and perform wakeup-preemption.
2457 */
2458static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2459                           struct rq_flags *rf)
2460{
2461        check_preempt_curr(rq, p, wake_flags);
2462        p->state = TASK_RUNNING;
2463        trace_sched_wakeup(p);
2464
2465#ifdef CONFIG_SMP
2466        if (p->sched_class->task_woken) {
2467                /*
2468                 * Our task @p is fully woken up and running; so its safe to
2469                 * drop the rq->lock, hereafter rq is only used for statistics.
2470                 */
2471                rq_unpin_lock(rq, rf);
2472                p->sched_class->task_woken(rq, p);
2473                rq_repin_lock(rq, rf);
2474        }
2475
2476        if (rq->idle_stamp) {
2477                u64 delta = rq_clock(rq) - rq->idle_stamp;
2478                u64 max = 2*rq->max_idle_balance_cost;
2479
2480                update_avg(&rq->avg_idle, delta);
2481
2482                if (rq->avg_idle > max)
2483                        rq->avg_idle = max;
2484
2485                rq->idle_stamp = 0;
2486        }
2487#endif
2488}
2489
2490static void
2491ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2492                 struct rq_flags *rf)
2493{
2494        int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2495
2496        lockdep_assert_held(&rq->lock);
2497
2498        if (p->sched_contributes_to_load)
2499                rq->nr_uninterruptible--;
2500
2501#ifdef CONFIG_SMP
2502        if (wake_flags & WF_MIGRATED)
2503                en_flags |= ENQUEUE_MIGRATED;
2504        else
2505#endif
2506        if (p->in_iowait) {
2507                delayacct_blkio_end(p);
2508                atomic_dec(&task_rq(p)->nr_iowait);
2509        }
2510
2511        activate_task(rq, p, en_flags);
2512        ttwu_do_wakeup(rq, p, wake_flags, rf);
2513}
2514
2515/*
2516 * Consider @p being inside a wait loop:
2517 *
2518 *   for (;;) {
2519 *      set_current_state(TASK_UNINTERRUPTIBLE);
2520 *
2521 *      if (CONDITION)
2522 *         break;
2523 *
2524 *      schedule();
2525 *   }
2526 *   __set_current_state(TASK_RUNNING);
2527 *
2528 * between set_current_state() and schedule(). In this case @p is still
2529 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2530 * an atomic manner.
2531 *
2532 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2533 * then schedule() must still happen and p->state can be changed to
2534 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2535 * need to do a full wakeup with enqueue.
2536 *
2537 * Returns: %true when the wakeup is done,
2538 *          %false otherwise.
2539 */
2540static int ttwu_runnable(struct task_struct *p, int wake_flags)
2541{
2542        struct rq_flags rf;
2543        struct rq *rq;
2544        int ret = 0;
2545
2546        rq = __task_rq_lock(p, &rf);
2547        if (task_on_rq_queued(p)) {
2548                /* check_preempt_curr() may use rq clock */
2549                update_rq_clock(rq);
2550                ttwu_do_wakeup(rq, p, wake_flags, &rf);
2551                ret = 1;
2552        }
2553        __task_rq_unlock(rq, &rf);
2554
2555        return ret;
2556}
2557
2558#ifdef CONFIG_SMP
2559void sched_ttwu_pending(void *arg)
2560{
2561        struct llist_node *llist = arg;
2562        struct rq *rq = this_rq();
2563        struct task_struct *p, *t;
2564        struct rq_flags rf;
2565
2566        if (!llist)
2567                return;
2568
2569        /*
2570         * rq::ttwu_pending racy indication of out-standing wakeups.
2571         * Races such that false-negatives are possible, since they
2572         * are shorter lived that false-positives would be.
2573         */
2574        WRITE_ONCE(rq->ttwu_pending, 0);
2575
2576        rq_lock_irqsave(rq, &rf);
2577        update_rq_clock(rq);
2578
2579        llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2580                if (WARN_ON_ONCE(p->on_cpu))
2581                        smp_cond_load_acquire(&p->on_cpu, !VAL);
2582
2583                if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2584                        set_task_cpu(p, cpu_of(rq));
2585
2586                ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2587        }
2588
2589        rq_unlock_irqrestore(rq, &rf);
2590}
2591
2592void send_call_function_single_ipi(int cpu)
2593{
2594        struct rq *rq = cpu_rq(cpu);
2595
2596        if (!set_nr_if_polling(rq->idle))
2597                arch_send_call_function_single_ipi(cpu);
2598        else
2599                trace_sched_wake_idle_without_ipi(cpu);
2600}
2601
2602/*
2603 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2604 * necessary. The wakee CPU on receipt of the IPI will queue the task
2605 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2606 * of the wakeup instead of the waker.
2607 */
2608static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2609{
2610        struct rq *rq = cpu_rq(cpu);
2611
2612        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2613
2614        WRITE_ONCE(rq->ttwu_pending, 1);
2615        __smp_call_single_queue(cpu, &p->wake_entry.llist);
2616}
2617
2618void wake_up_if_idle(int cpu)
2619{
2620        struct rq *rq = cpu_rq(cpu);
2621        struct rq_flags rf;
2622
2623        rcu_read_lock();
2624
2625        if (!is_idle_task(rcu_dereference(rq->curr)))
2626                goto out;
2627
2628        if (set_nr_if_polling(rq->idle)) {
2629                trace_sched_wake_idle_without_ipi(cpu);
2630        } else {
2631                rq_lock_irqsave(rq, &rf);
2632                if (is_idle_task(rq->curr))
2633                        smp_send_reschedule(cpu);
2634                /* Else CPU is not idle, do nothing here: */
2635                rq_unlock_irqrestore(rq, &rf);
2636        }
2637
2638out:
2639        rcu_read_unlock();
2640}
2641
2642bool cpus_share_cache(int this_cpu, int that_cpu)
2643{
2644        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2645}
2646
2647static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2648{
2649        /*
2650         * If the CPU does not share cache, then queue the task on the
2651         * remote rqs wakelist to avoid accessing remote data.
2652         */
2653        if (!cpus_share_cache(smp_processor_id(), cpu))
2654                return true;
2655
2656        /*
2657         * If the task is descheduling and the only running task on the
2658         * CPU then use the wakelist to offload the task activation to
2659         * the soon-to-be-idle CPU as the current CPU is likely busy.
2660         * nr_running is checked to avoid unnecessary task stacking.
2661         */
2662        if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2663                return true;
2664
2665        return false;
2666}
2667
2668static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2669{
2670        if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2671                if (WARN_ON_ONCE(cpu == smp_processor_id()))
2672                        return false;
2673
2674                sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2675                __ttwu_queue_wakelist(p, cpu, wake_flags);
2676                return true;
2677        }
2678
2679        return false;
2680}
2681
2682#else /* !CONFIG_SMP */
2683
2684static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2685{
2686        return false;
2687}
2688
2689#endif /* CONFIG_SMP */
2690
2691static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2692{
2693        struct rq *rq = cpu_rq(cpu);
2694        struct rq_flags rf;
2695
2696        if (ttwu_queue_wakelist(p, cpu, wake_flags))
2697                return;
2698
2699        rq_lock(rq, &rf);
2700        update_rq_clock(rq);
2701        ttwu_do_activate(rq, p, wake_flags, &rf);
2702        rq_unlock(rq, &rf);
2703}
2704
2705/*
2706 * Notes on Program-Order guarantees on SMP systems.
2707 *
2708 *  MIGRATION
2709 *
2710 * The basic program-order guarantee on SMP systems is that when a task [t]
2711 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2712 * execution on its new CPU [c1].
2713 *
2714 * For migration (of runnable tasks) this is provided by the following means:
2715 *
2716 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2717 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2718 *     rq(c1)->lock (if not at the same time, then in that order).
2719 *  C) LOCK of the rq(c1)->lock scheduling in task
2720 *
2721 * Release/acquire chaining guarantees that B happens after A and C after B.
2722 * Note: the CPU doing B need not be c0 or c1
2723 *
2724 * Example:
2725 *
2726 *   CPU0            CPU1            CPU2
2727 *
2728 *   LOCK rq(0)->lock
2729 *   sched-out X
2730 *   sched-in Y
2731 *   UNLOCK rq(0)->lock
2732 *
2733 *                                   LOCK rq(0)->lock // orders against CPU0
2734 *                                   dequeue X
2735 *                                   UNLOCK rq(0)->lock
2736 *
2737 *                                   LOCK rq(1)->lock
2738 *                                   enqueue X
2739 *                                   UNLOCK rq(1)->lock
2740 *
2741 *                   LOCK rq(1)->lock // orders against CPU2
2742 *                   sched-out Z
2743 *                   sched-in X
2744 *                   UNLOCK rq(1)->lock
2745 *
2746 *
2747 *  BLOCKING -- aka. SLEEP + WAKEUP
2748 *
2749 * For blocking we (obviously) need to provide the same guarantee as for
2750 * migration. However the means are completely different as there is no lock
2751 * chain to provide order. Instead we do:
2752 *
2753 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2754 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2755 *
2756 * Example:
2757 *
2758 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2759 *
2760 *   LOCK rq(0)->lock LOCK X->pi_lock
2761 *   dequeue X
2762 *   sched-out X
2763 *   smp_store_release(X->on_cpu, 0);
2764 *
2765 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2766 *                    X->state = WAKING
2767 *                    set_task_cpu(X,2)
2768 *
2769 *                    LOCK rq(2)->lock
2770 *                    enqueue X
2771 *                    X->state = RUNNING
2772 *                    UNLOCK rq(2)->lock
2773 *
2774 *                                          LOCK rq(2)->lock // orders against CPU1
2775 *                                          sched-out Z
2776 *                                          sched-in X
2777 *                                          UNLOCK rq(2)->lock
2778 *
2779 *                    UNLOCK X->pi_lock
2780 *   UNLOCK rq(0)->lock
2781 *
2782 *
2783 * However, for wakeups there is a second guarantee we must provide, namely we
2784 * must ensure that CONDITION=1 done by the caller can not be reordered with
2785 * accesses to the task state; see try_to_wake_up() and set_current_state().
2786 */
2787
2788/**
2789 * try_to_wake_up - wake up a thread
2790 * @p: the thread to be awakened
2791 * @state: the mask of task states that can be woken
2792 * @wake_flags: wake modifier flags (WF_*)
2793 *
2794 * Conceptually does:
2795 *
2796 *   If (@state & @p->state) @p->state = TASK_RUNNING.
2797 *
2798 * If the task was not queued/runnable, also place it back on a runqueue.
2799 *
2800 * This function is atomic against schedule() which would dequeue the task.
2801 *
2802 * It issues a full memory barrier before accessing @p->state, see the comment
2803 * with set_current_state().
2804 *
2805 * Uses p->pi_lock to serialize against concurrent wake-ups.
2806 *
2807 * Relies on p->pi_lock stabilizing:
2808 *  - p->sched_class
2809 *  - p->cpus_ptr
2810 *  - p->sched_task_group
2811 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2812 *
2813 * Tries really hard to only take one task_rq(p)->lock for performance.
2814 * Takes rq->lock in:
2815 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2816 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2817 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2818 *
2819 * As a consequence we race really badly with just about everything. See the
2820 * many memory barriers and their comments for details.
2821 *
2822 * Return: %true if @p->state changes (an actual wakeup was done),
2823 *         %false otherwise.
2824 */
2825static int
2826try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2827{
2828        unsigned long flags;
2829        int cpu, success = 0;
2830
2831        preempt_disable();
2832        if (p == current) {
2833                /*
2834                 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2835                 * == smp_processor_id()'. Together this means we can special
2836                 * case the whole 'p->on_rq && ttwu_runnable()' case below
2837                 * without taking any locks.
2838                 *
2839                 * In particular:
2840                 *  - we rely on Program-Order guarantees for all the ordering,
2841                 *  - we're serialized against set_special_state() by virtue of
2842                 *    it disabling IRQs (this allows not taking ->pi_lock).
2843                 */
2844                if (!(p->state & state))
2845                        goto out;
2846
2847                success = 1;
2848                trace_sched_waking(p);
2849                p->state = TASK_RUNNING;
2850                trace_sched_wakeup(p);
2851                goto out;
2852        }
2853
2854        /*
2855         * If we are going to wake up a thread waiting for CONDITION we
2856         * need to ensure that CONDITION=1 done by the caller can not be
2857         * reordered with p->state check below. This pairs with smp_store_mb()
2858         * in set_current_state() that the waiting thread does.
2859         */
2860        raw_spin_lock_irqsave(&p->pi_lock, flags);
2861        smp_mb__after_spinlock();
2862        if (!(p->state & state))
2863                goto unlock;
2864
2865        trace_sched_waking(p);
2866
2867        /* We're going to change ->state: */
2868        success = 1;
2869
2870        /*
2871         * Ensure we load p->on_rq _after_ p->state, otherwise it would
2872         * be possible to, falsely, observe p->on_rq == 0 and get stuck
2873         * in smp_cond_load_acquire() below.
2874         *
2875         * sched_ttwu_pending()                 try_to_wake_up()
2876         *   STORE p->on_rq = 1                   LOAD p->state
2877         *   UNLOCK rq->lock
2878         *
2879         * __schedule() (switch to task 'p')
2880         *   LOCK rq->lock                        smp_rmb();
2881         *   smp_mb__after_spinlock();
2882         *   UNLOCK rq->lock
2883         *
2884         * [task p]
2885         *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
2886         *
2887         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2888         * __schedule().  See the comment for smp_mb__after_spinlock().
2889         *
2890         * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2891         */
2892        smp_rmb();
2893        if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2894                goto unlock;
2895
2896#ifdef CONFIG_SMP
2897        /*
2898         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2899         * possible to, falsely, observe p->on_cpu == 0.
2900         *
2901         * One must be running (->on_cpu == 1) in order to remove oneself
2902         * from the runqueue.
2903         *
2904         * __schedule() (switch to task 'p')    try_to_wake_up()
2905         *   STORE p->on_cpu = 1                  LOAD p->on_rq
2906         *   UNLOCK rq->lock
2907         *
2908         * __schedule() (put 'p' to sleep)
2909         *   LOCK rq->lock                        smp_rmb();
2910         *   smp_mb__after_spinlock();
2911         *   STORE p->on_rq = 0                   LOAD p->on_cpu
2912         *
2913         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2914         * __schedule().  See the comment for smp_mb__after_spinlock().
2915         *
2916         * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2917         * schedule()'s deactivate_task() has 'happened' and p will no longer
2918         * care about it's own p->state. See the comment in __schedule().
2919         */
2920        smp_acquire__after_ctrl_dep();
2921
2922        /*
2923         * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2924         * == 0), which means we need to do an enqueue, change p->state to
2925         * TASK_WAKING such that we can unlock p->pi_lock before doing the
2926         * enqueue, such as ttwu_queue_wakelist().
2927         */
2928        p->state = TASK_WAKING;
2929
2930        /*
2931         * If the owning (remote) CPU is still in the middle of schedule() with
2932         * this task as prev, considering queueing p on the remote CPUs wake_list
2933         * which potentially sends an IPI instead of spinning on p->on_cpu to
2934         * let the waker make forward progress. This is safe because IRQs are
2935         * disabled and the IPI will deliver after on_cpu is cleared.
2936         *
2937         * Ensure we load task_cpu(p) after p->on_cpu:
2938         *
2939         * set_task_cpu(p, cpu);
2940         *   STORE p->cpu = @cpu
2941         * __schedule() (switch to task 'p')
2942         *   LOCK rq->lock
2943         *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
2944         *   STORE p->on_cpu = 1                LOAD p->cpu
2945         *
2946         * to ensure we observe the correct CPU on which the task is currently
2947         * scheduling.
2948         */
2949        if (smp_load_acquire(&p->on_cpu) &&
2950            ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2951                goto unlock;
2952
2953        /*
2954         * If the owning (remote) CPU is still in the middle of schedule() with
2955         * this task as prev, wait until its done referencing the task.
2956         *
2957         * Pairs with the smp_store_release() in finish_task().
2958         *
2959         * This ensures that tasks getting woken will be fully ordered against
2960         * their previous state and preserve Program Order.
2961         */
2962        smp_cond_load_acquire(&p->on_cpu, !VAL);
2963
2964        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2965        if (task_cpu(p) != cpu) {
2966                if (p->in_iowait) {
2967                        delayacct_blkio_end(p);
2968                        atomic_dec(&task_rq(p)->nr_iowait);
2969                }
2970
2971                wake_flags |= WF_MIGRATED;
2972                psi_ttwu_dequeue(p);
2973                set_task_cpu(p, cpu);
2974        }
2975#else
2976        cpu = task_cpu(p);
2977#endif /* CONFIG_SMP */
2978
2979        ttwu_queue(p, cpu, wake_flags);
2980unlock:
2981        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2982out:
2983        if (success)
2984                ttwu_stat(p, task_cpu(p), wake_flags);
2985        preempt_enable();
2986
2987        return success;
2988}
2989
2990/**
2991 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2992 * @p: Process for which the function is to be invoked.
2993 * @func: Function to invoke.
2994 * @arg: Argument to function.
2995 *
2996 * If the specified task can be quickly locked into a definite state
2997 * (either sleeping or on a given runqueue), arrange to keep it in that
2998 * state while invoking @func(@arg).  This function can use ->on_rq and
2999 * task_curr() to work out what the state is, if required.  Given that
3000 * @func can be invoked with a runqueue lock held, it had better be quite
3001 * lightweight.
3002 *
3003 * Returns:
3004 *      @false if the task slipped out from under the locks.
3005 *      @true if the task was locked onto a runqueue or is sleeping.
3006 *              However, @func can override this by returning @false.
3007 */
3008bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3009{
3010        bool ret = false;
3011        struct rq_flags rf;
3012        struct rq *rq;
3013
3014        lockdep_assert_irqs_enabled();
3015        raw_spin_lock_irq(&p->pi_lock);
3016        if (p->on_rq) {
3017                rq = __task_rq_lock(p, &rf);
3018                if (task_rq(p) == rq)
3019                        ret = func(p, arg);
3020                rq_unlock(rq, &rf);
3021        } else {
3022                switch (p->state) {
3023                case TASK_RUNNING:
3024                case TASK_WAKING:
3025                        break;
3026                default:
3027                        smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3028                        if (!p->on_rq)
3029                                ret = func(p, arg);
3030                }
3031        }
3032        raw_spin_unlock_irq(&p->pi_lock);
3033        return ret;
3034}
3035
3036/**
3037 * wake_up_process - Wake up a specific process
3038 * @p: The process to be woken up.
3039 *
3040 * Attempt to wake up the nominated process and move it to the set of runnable
3041 * processes.
3042 *
3043 * Return: 1 if the process was woken up, 0 if it was already running.
3044 *
3045 * This function executes a full memory barrier before accessing the task state.
3046 */
3047int wake_up_process(struct task_struct *p)
3048{
3049        return try_to_wake_up(p, TASK_NORMAL, 0);
3050}
3051EXPORT_SYMBOL(wake_up_process);
3052
3053int wake_up_state(struct task_struct *p, unsigned int state)
3054{
3055        return try_to_wake_up(p, state, 0);
3056}
3057
3058/*
3059 * Perform scheduler related setup for a newly forked process p.
3060 * p is forked by current.
3061 *
3062 * __sched_fork() is basic setup used by init_idle() too:
3063 */
3064static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3065{
3066        p->on_rq                        = 0;
3067
3068        p->se.on_rq                     = 0;
3069        p->se.exec_start                = 0;
3070        p->se.sum_exec_runtime          = 0;
3071        p->se.prev_sum_exec_runtime     = 0;
3072        p->se.nr_migrations             = 0;
3073        p->se.vruntime                  = 0;
3074        INIT_LIST_HEAD(&p->se.group_node);
3075
3076#ifdef CONFIG_FAIR_GROUP_SCHED
3077        p->se.cfs_rq                    = NULL;
3078#endif
3079
3080#ifdef CONFIG_SCHEDSTATS
3081        /* Even if schedstat is disabled, there should not be garbage */
3082        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3083#endif
3084
3085        RB_CLEAR_NODE(&p->dl.rb_node);
3086        init_dl_task_timer(&p->dl);
3087        init_dl_inactive_task_timer(&p->dl);
3088        __dl_clear_params(p);
3089
3090        INIT_LIST_HEAD(&p->rt.run_list);
3091        p->rt.timeout           = 0;
3092        p->rt.time_slice        = sched_rr_timeslice;
3093        p->rt.on_rq             = 0;
3094        p->rt.on_list           = 0;
3095
3096#ifdef CONFIG_PREEMPT_NOTIFIERS
3097        INIT_HLIST_HEAD(&p->preempt_notifiers);
3098#endif
3099
3100#ifdef CONFIG_COMPACTION
3101        p->capture_control = NULL;
3102#endif
3103        init_numa_balancing(clone_flags, p);
3104#ifdef CONFIG_SMP
3105        p->wake_entry.u_flags = CSD_TYPE_TTWU;
3106#endif
3107}
3108
3109DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3110
3111#ifdef CONFIG_NUMA_BALANCING
3112
3113void set_numabalancing_state(bool enabled)
3114{
3115        if (enabled)
3116                static_branch_enable(&sched_numa_balancing);
3117        else
3118                static_branch_disable(&sched_numa_balancing);
3119}
3120
3121#ifdef CONFIG_PROC_SYSCTL
3122int sysctl_numa_balancing(struct ctl_table *table, int write,
3123                          void *buffer, size_t *lenp, loff_t *ppos)
3124{
3125        struct ctl_table t;
3126        int err;
3127        int state = static_branch_likely(&sched_numa_balancing);
3128
3129        if (write && !capable(CAP_SYS_ADMIN))
3130                return -EPERM;
3131
3132        t = *table;
3133        t.data = &state;
3134        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3135        if (err < 0)
3136                return err;
3137        if (write)
3138                set_numabalancing_state(state);
3139        return err;
3140}
3141#endif
3142#endif
3143
3144#ifdef CONFIG_SCHEDSTATS
3145
3146DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3147static bool __initdata __sched_schedstats = false;
3148
3149static void set_schedstats(bool enabled)
3150{
3151        if (enabled)
3152                static_branch_enable(&sched_schedstats);
3153        else
3154                static_branch_disable(&sched_schedstats);
3155}
3156
3157void force_schedstat_enabled(void)
3158{
3159        if (!schedstat_enabled()) {
3160                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3161                static_branch_enable(&sched_schedstats);
3162        }
3163}
3164
3165static int __init setup_schedstats(char *str)
3166{
3167        int ret = 0;
3168        if (!str)
3169                goto out;
3170
3171        /*
3172         * This code is called before jump labels have been set up, so we can't
3173         * change the static branch directly just yet.  Instead set a temporary
3174         * variable so init_schedstats() can do it later.
3175         */
3176        if (!strcmp(str, "enable")) {
3177                __sched_schedstats = true;
3178                ret = 1;
3179        } else if (!strcmp(str, "disable")) {
3180                __sched_schedstats = false;
3181                ret = 1;
3182        }
3183out:
3184        if (!ret)
3185                pr_warn("Unable to parse schedstats=\n");
3186
3187        return ret;
3188}
3189__setup("schedstats=", setup_schedstats);
3190
3191static void __init init_schedstats(void)
3192{
3193        set_schedstats(__sched_schedstats);
3194}
3195
3196#ifdef CONFIG_PROC_SYSCTL
3197int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3198                size_t *lenp, loff_t *ppos)
3199{
3200        struct ctl_table t;
3201        int err;
3202        int state = static_branch_likely(&sched_schedstats);
3203
3204        if (write && !capable(CAP_SYS_ADMIN))
3205                return -EPERM;
3206
3207        t = *table;
3208        t.data = &state;
3209        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3210        if (err < 0)
3211                return err;
3212        if (write)
3213                set_schedstats(state);
3214        return err;
3215}
3216#endif /* CONFIG_PROC_SYSCTL */
3217#else  /* !CONFIG_SCHEDSTATS */
3218static inline void init_schedstats(void) {}
3219#endif /* CONFIG_SCHEDSTATS */
3220
3221/*
3222 * fork()/clone()-time setup:
3223 */
3224int sched_fork(unsigned long clone_flags, struct task_struct *p)
3225{
3226        unsigned long flags;
3227
3228        __sched_fork(clone_flags, p);
3229        /*
3230         * We mark the process as NEW here. This guarantees that
3231         * nobody will actually run it, and a signal or other external
3232         * event cannot wake it up and insert it on the runqueue either.
3233         */
3234        p->state = TASK_NEW;
3235
3236        /*
3237         * Make sure we do not leak PI boosting priority to the child.
3238         */
3239        p->prio = current->normal_prio;
3240
3241        uclamp_fork(p);
3242
3243        /*
3244         * Revert to default priority/policy on fork if requested.
3245         */
3246        if (unlikely(p->sched_reset_on_fork)) {
3247                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3248                        p->policy = SCHED_NORMAL;
3249                        p->static_prio = NICE_TO_PRIO(0);
3250                        p->rt_priority = 0;
3251                } else if (PRIO_TO_NICE(p->static_prio) < 0)
3252                        p->static_prio = NICE_TO_PRIO(0);
3253
3254                p->prio = p->normal_prio = __normal_prio(p);
3255                set_load_weight(p, false);
3256
3257                /*
3258                 * We don't need the reset flag anymore after the fork. It has
3259                 * fulfilled its duty:
3260                 */
3261                p->sched_reset_on_fork = 0;
3262        }
3263
3264        if (dl_prio(p->prio))
3265                return -EAGAIN;
3266        else if (rt_prio(p->prio))
3267                p->sched_class = &rt_sched_class;
3268        else
3269                p->sched_class = &fair_sched_class;
3270
3271        init_entity_runnable_average(&p->se);
3272
3273        /*
3274         * The child is not yet in the pid-hash so no cgroup attach races,
3275         * and the cgroup is pinned to this child due to cgroup_fork()
3276         * is ran before sched_fork().
3277         *
3278         * Silence PROVE_RCU.
3279         */
3280        raw_spin_lock_irqsave(&p->pi_lock, flags);
3281        rseq_migrate(p);
3282        /*
3283         * We're setting the CPU for the first time, we don't migrate,
3284         * so use __set_task_cpu().
3285         */
3286        __set_task_cpu(p, smp_processor_id());
3287        if (p->sched_class->task_fork)
3288                p->sched_class->task_fork(p);
3289        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3290
3291#ifdef CONFIG_SCHED_INFO
3292        if (likely(sched_info_on()))
3293                memset(&p->sched_info, 0, sizeof(p->sched_info));
3294#endif
3295#if defined(CONFIG_SMP)
3296        p->on_cpu = 0;
3297#endif
3298        init_task_preempt_count(p);
3299#ifdef CONFIG_SMP
3300        plist_node_init(&p->pushable_tasks, MAX_PRIO);
3301        RB_CLEAR_NODE(&p->pushable_dl_tasks);
3302#endif
3303        return 0;
3304}
3305
3306void sched_post_fork(struct task_struct *p)
3307{
3308        uclamp_post_fork(p);
3309}
3310
3311unsigned long to_ratio(u64 period, u64 runtime)
3312{
3313        if (runtime == RUNTIME_INF)
3314                return BW_UNIT;
3315
3316        /*
3317         * Doing this here saves a lot of checks in all
3318         * the calling paths, and returning zero seems
3319         * safe for them anyway.
3320         */
3321        if (period == 0)
3322                return 0;
3323
3324        return div64_u64(runtime << BW_SHIFT, period);
3325}
3326
3327/*
3328 * wake_up_new_task - wake up a newly created task for the first time.
3329 *
3330 * This function will do some initial scheduler statistics housekeeping
3331 * that must be done for every newly created context, then puts the task
3332 * on the runqueue and wakes it.
3333 */
3334void wake_up_new_task(struct task_struct *p)
3335{
3336        struct rq_flags rf;
3337        struct rq *rq;
3338
3339        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3340        p->state = TASK_RUNNING;
3341#ifdef CONFIG_SMP
3342        /*
3343         * Fork balancing, do it here and not earlier because:
3344         *  - cpus_ptr can change in the fork path
3345         *  - any previously selected CPU might disappear through hotplug
3346         *
3347         * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3348         * as we're not fully set-up yet.
3349         */
3350        p->recent_used_cpu = task_cpu(p);
3351        rseq_migrate(p);
3352        __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3353#endif
3354        rq = __task_rq_lock(p, &rf);
3355        update_rq_clock(rq);
3356        post_init_entity_util_avg(p);
3357
3358        activate_task(rq, p, ENQUEUE_NOCLOCK);
3359        trace_sched_wakeup_new(p);
3360        check_preempt_curr(rq, p, WF_FORK);
3361#ifdef CONFIG_SMP
3362        if (p->sched_class->task_woken) {
3363                /*
3364                 * Nothing relies on rq->lock after this, so its fine to
3365                 * drop it.
3366                 */
3367                rq_unpin_lock(rq, &rf);
3368                p->sched_class->task_woken(rq, p);
3369                rq_repin_lock(rq, &rf);
3370        }
3371#endif
3372        task_rq_unlock(rq, p, &rf);
3373}
3374
3375#ifdef CONFIG_PREEMPT_NOTIFIERS
3376
3377static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3378
3379void preempt_notifier_inc(void)
3380{
3381        static_branch_inc(&preempt_notifier_key);
3382}
3383EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3384
3385void preempt_notifier_dec(void)
3386{
3387        static_branch_dec(&preempt_notifier_key);
3388}
3389EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3390
3391/**
3392 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3393 * @notifier: notifier struct to register
3394 */
3395void preempt_notifier_register(struct preempt_notifier *notifier)
3396{
3397        if (!static_branch_unlikely(&preempt_notifier_key))
3398                WARN(1, "registering preempt_notifier while notifiers disabled\n");
3399
3400        hlist_add_head(&notifier->link, &current->preempt_notifiers);
3401}
3402EXPORT_SYMBOL_GPL(preempt_notifier_register);
3403
3404/**
3405 * preempt_notifier_unregister - no longer interested in preemption notifications
3406 * @notifier: notifier struct to unregister
3407 *
3408 * This is *not* safe to call from within a preemption notifier.
3409 */
3410void preempt_notifier_unregister(struct preempt_notifier *notifier)
3411{
3412        hlist_del(&notifier->link);
3413}
3414EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3415
3416static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3417{
3418        struct preempt_notifier *notifier;
3419
3420        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3421                notifier->ops->sched_in(notifier, raw_smp_processor_id());
3422}
3423
3424static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3425{
3426        if (static_branch_unlikely(&preempt_notifier_key))
3427                __fire_sched_in_preempt_notifiers(curr);
3428}
3429
3430static void
3431__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3432                                   struct task_struct *next)
3433{
3434        struct preempt_notifier *notifier;
3435
3436        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3437                notifier->ops->sched_out(notifier, next);
3438}
3439
3440static __always_inline void
3441fire_sched_out_preempt_notifiers(struct task_struct *curr,
3442                                 struct task_struct *next)
3443{
3444        if (static_branch_unlikely(&preempt_notifier_key))
3445                __fire_sched_out_preempt_notifiers(curr, next);
3446}
3447
3448#else /* !CONFIG_PREEMPT_NOTIFIERS */
3449
3450static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3451{
3452}
3453
3454static inline void
3455fire_sched_out_preempt_notifiers(struct task_struct *curr,
3456                                 struct task_struct *next)
3457{
3458}
3459
3460#endif /* CONFIG_PREEMPT_NOTIFIERS */
3461
3462static inline void prepare_task(struct task_struct *next)
3463{
3464#ifdef CONFIG_SMP
3465        /*
3466         * Claim the task as running, we do this before switching to it
3467         * such that any running task will have this set.
3468         *
3469         * See the ttwu() WF_ON_CPU case and its ordering comment.
3470         */
3471        WRITE_ONCE(next->on_cpu, 1);
3472#endif
3473}
3474
3475static inline void finish_task(struct task_struct *prev)
3476{
3477#ifdef CONFIG_SMP
3478        /*
3479         * This must be the very last reference to @prev from this CPU. After
3480         * p->on_cpu is cleared, the task can be moved to a different CPU. We
3481         * must ensure this doesn't happen until the switch is completely
3482         * finished.
3483         *
3484         * In particular, the load of prev->state in finish_task_switch() must
3485         * happen before this.
3486         *
3487         * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3488         */
3489        smp_store_release(&prev->on_cpu, 0);
3490#endif
3491}
3492
3493static inline void
3494prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3495{
3496        /*
3497         * Since the runqueue lock will be released by the next
3498         * task (which is an invalid locking op but in the case
3499         * of the scheduler it's an obvious special-case), so we
3500         * do an early lockdep release here:
3501         */
3502        rq_unpin_lock(rq, rf);
3503        spin_release(&rq->lock.dep_map, _THIS_IP_);
3504#ifdef CONFIG_DEBUG_SPINLOCK
3505        /* this is a valid case when another task releases the spinlock */
3506        rq->lock.owner = next;
3507#endif
3508}
3509
3510static inline void finish_lock_switch(struct rq *rq)
3511{
3512        /*
3513         * If we are tracking spinlock dependencies then we have to
3514         * fix up the runqueue lock - which gets 'carried over' from
3515         * prev into current:
3516         */
3517        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3518        raw_spin_unlock_irq(&rq->lock);
3519}
3520
3521/*
3522 * NOP if the arch has not defined these:
3523 */
3524
3525#ifndef prepare_arch_switch
3526# define prepare_arch_switch(next)      do { } while (0)
3527#endif
3528
3529#ifndef finish_arch_post_lock_switch
3530# define finish_arch_post_lock_switch() do { } while (0)
3531#endif
3532
3533/**
3534 * prepare_task_switch - prepare to switch tasks
3535 * @rq: the runqueue preparing to switch
3536 * @prev: the current task that is being switched out
3537 * @next: the task we are going to switch to.
3538 *
3539 * This is called with the rq lock held and interrupts off. It must
3540 * be paired with a subsequent finish_task_switch after the context
3541 * switch.
3542 *
3543 * prepare_task_switch sets up locking and calls architecture specific
3544 * hooks.
3545 */
3546static inline void
3547prepare_task_switch(struct rq *rq, struct task_struct *prev,
3548                    struct task_struct *next)
3549{
3550        kcov_prepare_switch(prev);
3551        sched_info_switch(rq, prev, next);
3552        perf_event_task_sched_out(prev, next);
3553        rseq_preempt(prev);
3554        fire_sched_out_preempt_notifiers(prev, next);
3555        prepare_task(next);
3556        prepare_arch_switch(next);
3557}
3558
3559/**
3560 * finish_task_switch - clean up after a task-switch
3561 * @prev: the thread we just switched away from.
3562 *
3563 * finish_task_switch must be called after the context switch, paired
3564 * with a prepare_task_switch call before the context switch.
3565 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3566 * and do any other architecture-specific cleanup actions.
3567 *
3568 * Note that we may have delayed dropping an mm in context_switch(). If
3569 * so, we finish that here outside of the runqueue lock. (Doing it
3570 * with the lock held can cause deadlocks; see schedule() for
3571 * details.)
3572 *
3573 * The context switch have flipped the stack from under us and restored the
3574 * local variables which were saved when this task called schedule() in the
3575 * past. prev == current is still correct but we need to recalculate this_rq
3576 * because prev may have moved to another CPU.
3577 */
3578static struct rq *finish_task_switch(struct task_struct *prev)
3579        __releases(rq->lock)
3580{
3581        struct rq *rq = this_rq();
3582        struct mm_struct *mm = rq->prev_mm;
3583        long prev_state;
3584
3585        /*
3586         * The previous task will have left us with a preempt_count of 2
3587         * because it left us after:
3588         *
3589         *      schedule()
3590         *        preempt_disable();                    // 1
3591         *        __schedule()
3592         *          raw_spin_lock_irq(&rq->lock)        // 2
3593         *
3594         * Also, see FORK_PREEMPT_COUNT.
3595         */
3596        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3597                      "corrupted preempt_count: %s/%d/0x%x\n",
3598                      current->comm, current->pid, preempt_count()))
3599                preempt_count_set(FORK_PREEMPT_COUNT);
3600
3601        rq->prev_mm = NULL;
3602
3603        /*
3604         * A task struct has one reference for the use as "current".
3605         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3606         * schedule one last time. The schedule call will never return, and
3607         * the scheduled task must drop that reference.
3608         *
3609         * We must observe prev->state before clearing prev->on_cpu (in
3610         * finish_task), otherwise a concurrent wakeup can get prev
3611         * running on another CPU and we could rave with its RUNNING -> DEAD
3612         * transition, resulting in a double drop.
3613         */
3614        prev_state = prev->state;
3615        vtime_task_switch(prev);
3616        perf_event_task_sched_in(prev, current);
3617        finish_task(prev);
3618        finish_lock_switch(rq);
3619        finish_arch_post_lock_switch();
3620        kcov_finish_switch(current);
3621
3622        fire_sched_in_preempt_notifiers(current);
3623        /*
3624         * When switching through a kernel thread, the loop in
3625         * membarrier_{private,global}_expedited() may have observed that
3626         * kernel thread and not issued an IPI. It is therefore possible to
3627         * schedule between user->kernel->user threads without passing though
3628         * switch_mm(). Membarrier requires a barrier after storing to
3629         * rq->curr, before returning to userspace, so provide them here:
3630         *
3631         * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3632         *   provided by mmdrop(),
3633         * - a sync_core for SYNC_CORE.
3634         */
3635        if (mm) {
3636                membarrier_mm_sync_core_before_usermode(mm);
3637                mmdrop(mm);
3638        }
3639        if (unlikely(prev_state == TASK_DEAD)) {
3640                if (prev->sched_class->task_dead)
3641                        prev->sched_class->task_dead(prev);
3642
3643                /*
3644                 * Remove function-return probe instances associated with this
3645                 * task and put them back on the free list.
3646                 */
3647                kprobe_flush_task(prev);
3648
3649                /* Task is done with its stack. */
3650                put_task_stack(prev);
3651
3652                put_task_struct_rcu_user(prev);
3653        }
3654
3655        tick_nohz_task_switch();
3656        return rq;
3657}
3658
3659#ifdef CONFIG_SMP
3660
3661/* rq->lock is NOT held, but preemption is disabled */
3662static void __balance_callback(struct rq *rq)
3663{
3664        struct callback_head *head, *next;
3665        void (*func)(struct rq *rq);
3666        unsigned long flags;
3667
3668        raw_spin_lock_irqsave(&rq->lock, flags);
3669        head = rq->balance_callback;
3670        rq->balance_callback = NULL;
3671        while (head) {
3672                func = (void (*)(struct rq *))head->func;
3673                next = head->next;
3674                head->next = NULL;
3675                head = next;
3676
3677                func(rq);
3678        }
3679        raw_spin_unlock_irqrestore(&rq->lock, flags);
3680}
3681
3682static inline void balance_callback(struct rq *rq)
3683{
3684        if (unlikely(rq->balance_callback))
3685                __balance_callback(rq);
3686}
3687
3688#else
3689
3690static inline void balance_callback(struct rq *rq)
3691{
3692}
3693
3694#endif
3695
3696/**
3697 * schedule_tail - first thing a freshly forked thread must call.
3698 * @prev: the thread we just switched away from.
3699 */
3700asmlinkage __visible void schedule_tail(struct task_struct *prev)
3701        __releases(rq->lock)
3702{
3703        struct rq *rq;
3704
3705        /*
3706         * New tasks start with FORK_PREEMPT_COUNT, see there and
3707         * finish_task_switch() for details.
3708         *
3709         * finish_task_switch() will drop rq->lock() and lower preempt_count
3710         * and the preempt_enable() will end up enabling preemption (on
3711         * PREEMPT_COUNT kernels).
3712         */
3713
3714        rq = finish_task_switch(prev);
3715        balance_callback(rq);
3716        preempt_enable();
3717
3718        if (current->set_child_tid)
3719                put_user(task_pid_vnr(current), current->set_child_tid);
3720
3721        calculate_sigpending();
3722}
3723
3724/*
3725 * context_switch - switch to the new MM and the new thread's register state.
3726 */
3727static __always_inline struct rq *
3728context_switch(struct rq *rq, struct task_struct *prev,
3729               struct task_struct *next, struct rq_flags *rf)
3730{
3731        prepare_task_switch(rq, prev, next);
3732
3733        /*
3734         * For paravirt, this is coupled with an exit in switch_to to
3735         * combine the page table reload and the switch backend into
3736         * one hypercall.
3737         */
3738        arch_start_context_switch(prev);
3739
3740        /*
3741         * kernel -> kernel   lazy + transfer active
3742         *   user -> kernel   lazy + mmgrab() active
3743         *
3744         * kernel ->   user   switch + mmdrop() active
3745         *   user ->   user   switch
3746         */
3747        if (!next->mm) {                                // to kernel
3748                enter_lazy_tlb(prev->active_mm, next);
3749
3750                next->active_mm = prev->active_mm;
3751                if (prev->mm)                           // from user
3752                        mmgrab(prev->active_mm);
3753                else
3754                        prev->active_mm = NULL;
3755        } else {                                        // to user
3756                membarrier_switch_mm(rq, prev->active_mm, next->mm);
3757                /*
3758                 * sys_membarrier() requires an smp_mb() between setting
3759                 * rq->curr / membarrier_switch_mm() and returning to userspace.
3760                 *
3761                 * The below provides this either through switch_mm(), or in
3762                 * case 'prev->active_mm == next->mm' through
3763                 * finish_task_switch()'s mmdrop().
3764                 */
3765                switch_mm_irqs_off(prev->active_mm, next->mm, next);
3766
3767                if (!prev->mm) {                        // from kernel
3768                        /* will mmdrop() in finish_task_switch(). */
3769                        rq->prev_mm = prev->active_mm;
3770                        prev->active_mm = NULL;
3771                }
3772        }
3773
3774        rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3775
3776        prepare_lock_switch(rq, next, rf);
3777
3778        /* Here we just switch the register state and the stack. */
3779        switch_to(prev, next, prev);
3780        barrier();
3781
3782        return finish_task_switch(prev);
3783}
3784
3785/*
3786 * nr_running and nr_context_switches:
3787 *
3788 * externally visible scheduler statistics: current number of runnable
3789 * threads, total number of context switches performed since bootup.
3790 */
3791unsigned long nr_running(void)
3792{
3793        unsigned long i, sum = 0;
3794
3795        for_each_online_cpu(i)
3796                sum += cpu_rq(i)->nr_running;
3797
3798        return sum;
3799}
3800
3801/*
3802 * Check if only the current task is running on the CPU.
3803 *
3804 * Caution: this function does not check that the caller has disabled
3805 * preemption, thus the result might have a time-of-check-to-time-of-use
3806 * race.  The caller is responsible to use it correctly, for example:
3807 *
3808 * - from a non-preemptible section (of course)
3809 *
3810 * - from a thread that is bound to a single CPU
3811 *
3812 * - in a loop with very short iterations (e.g. a polling loop)
3813 */
3814bool single_task_running(void)
3815{
3816        return raw_rq()->nr_running == 1;
3817}
3818EXPORT_SYMBOL(single_task_running);
3819
3820unsigned long long nr_context_switches(void)
3821{
3822        int i;
3823        unsigned long long sum = 0;
3824
3825        for_each_possible_cpu(i)
3826                sum += cpu_rq(i)->nr_switches;
3827
3828        return sum;
3829}
3830
3831/*
3832 * Consumers of these two interfaces, like for example the cpuidle menu
3833 * governor, are using nonsensical data. Preferring shallow idle state selection
3834 * for a CPU that has IO-wait which might not even end up running the task when
3835 * it does become runnable.
3836 */
3837
3838unsigned long nr_iowait_cpu(int cpu)
3839{
3840        return atomic_read(&cpu_rq(cpu)->nr_iowait);
3841}
3842
3843/*
3844 * IO-wait accounting, and how its mostly bollocks (on SMP).
3845 *
3846 * The idea behind IO-wait account is to account the idle time that we could
3847 * have spend running if it were not for IO. That is, if we were to improve the
3848 * storage performance, we'd have a proportional reduction in IO-wait time.
3849 *
3850 * This all works nicely on UP, where, when a task blocks on IO, we account
3851 * idle time as IO-wait, because if the storage were faster, it could've been
3852 * running and we'd not be idle.
3853 *
3854 * This has been extended to SMP, by doing the same for each CPU. This however
3855 * is broken.
3856 *
3857 * Imagine for instance the case where two tasks block on one CPU, only the one
3858 * CPU will have IO-wait accounted, while the other has regular idle. Even
3859 * though, if the storage were faster, both could've ran at the same time,
3860 * utilising both CPUs.
3861 *
3862 * This means, that when looking globally, the current IO-wait accounting on
3863 * SMP is a lower bound, by reason of under accounting.
3864 *
3865 * Worse, since the numbers are provided per CPU, they are sometimes
3866 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3867 * associated with any one particular CPU, it can wake to another CPU than it
3868 * blocked on. This means the per CPU IO-wait number is meaningless.
3869 *
3870 * Task CPU affinities can make all that even more 'interesting'.
3871 */
3872
3873unsigned long nr_iowait(void)
3874{
3875        unsigned long i, sum = 0;
3876
3877        for_each_possible_cpu(i)
3878                sum += nr_iowait_cpu(i);
3879
3880        return sum;
3881}
3882
3883#ifdef CONFIG_SMP
3884
3885/*
3886 * sched_exec - execve() is a valuable balancing opportunity, because at
3887 * this point the task has the smallest effective memory and cache footprint.
3888 */
3889void sched_exec(void)
3890{
3891        struct task_struct *p = current;
3892        unsigned long flags;
3893        int dest_cpu;
3894
3895        raw_spin_lock_irqsave(&p->pi_lock, flags);
3896        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3897        if (dest_cpu == smp_processor_id())
3898                goto unlock;
3899
3900        if (likely(cpu_active(dest_cpu))) {
3901                struct migration_arg arg = { p, dest_cpu };
3902
3903                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3904                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3905                return;
3906        }
3907unlock:
3908        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3909}
3910
3911#endif
3912
3913DEFINE_PER_CPU(struct kernel_stat, kstat);
3914DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3915
3916EXPORT_PER_CPU_SYMBOL(kstat);
3917EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3918
3919/*
3920 * The function fair_sched_class.update_curr accesses the struct curr
3921 * and its field curr->exec_start; when called from task_sched_runtime(),
3922 * we observe a high rate of cache misses in practice.
3923 * Prefetching this data results in improved performance.
3924 */
3925static inline void prefetch_curr_exec_start(struct task_struct *p)
3926{
3927#ifdef CONFIG_FAIR_GROUP_SCHED
3928        struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3929#else
3930        struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3931#endif
3932        prefetch(curr);
3933        prefetch(&curr->exec_start);
3934}
3935
3936/*
3937 * Return accounted runtime for the task.
3938 * In case the task is currently running, return the runtime plus current's
3939 * pending runtime that have not been accounted yet.
3940 */
3941unsigned long long task_sched_runtime(struct task_struct *p)
3942{
3943        struct rq_flags rf;
3944        struct rq *rq;
3945        u64 ns;
3946
3947#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3948        /*
3949         * 64-bit doesn't need locks to atomically read a 64-bit value.
3950         * So we have a optimization chance when the task's delta_exec is 0.
3951         * Reading ->on_cpu is racy, but this is ok.
3952         *
3953         * If we race with it leaving CPU, we'll take a lock. So we're correct.
3954         * If we race with it entering CPU, unaccounted time is 0. This is
3955         * indistinguishable from the read occurring a few cycles earlier.
3956         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3957         * been accounted, so we're correct here as well.
3958         */
3959        if (!p->on_cpu || !task_on_rq_queued(p))
3960                return p->se.sum_exec_runtime;
3961#endif
3962
3963        rq = task_rq_lock(p, &rf);
3964        /*
3965         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3966         * project cycles that may never be accounted to this
3967         * thread, breaking clock_gettime().
3968         */
3969        if (task_current(rq, p) && task_on_rq_queued(p)) {
3970                prefetch_curr_exec_start(p);
3971                update_rq_clock(rq);
3972                p->sched_class->update_curr(rq);
3973        }
3974        ns = p->se.sum_exec_runtime;
3975        task_rq_unlock(rq, p, &rf);
3976
3977        return ns;
3978}
3979
3980/*
3981 * This function gets called by the timer code, with HZ frequency.
3982 * We call it with interrupts disabled.
3983 */
3984void scheduler_tick(void)
3985{
3986        int cpu = smp_processor_id();
3987        struct rq *rq = cpu_rq(cpu);
3988        struct task_struct *curr = rq->curr;
3989        struct rq_flags rf;
3990        unsigned long thermal_pressure;
3991
3992        arch_scale_freq_tick();
3993        sched_clock_tick();
3994
3995        rq_lock(rq, &rf);
3996
3997        update_rq_clock(rq);
3998        thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3999        update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4000        curr->sched_class->task_tick(rq, curr, 0);
4001        calc_global_load_tick(rq);
4002        psi_task_tick(rq);
4003
4004        rq_unlock(rq, &rf);
4005
4006        perf_event_task_tick();
4007
4008#ifdef CONFIG_SMP
4009        rq->idle_balance = idle_cpu(cpu);
4010        trigger_load_balance(rq);
4011#endif
4012}
4013
4014#ifdef CONFIG_NO_HZ_FULL
4015
4016struct tick_work {
4017        int                     cpu;
4018        atomic_t                state;
4019        struct delayed_work     work;
4020};
4021/* Values for ->state, see diagram below. */
4022#define TICK_SCHED_REMOTE_OFFLINE       0
4023#define TICK_SCHED_REMOTE_OFFLINING     1
4024#define TICK_SCHED_REMOTE_RUNNING       2
4025
4026/*
4027 * State diagram for ->state:
4028 *
4029 *
4030 *          TICK_SCHED_REMOTE_OFFLINE
4031 *                    |   ^
4032 *                    |   |
4033 *                    |   | sched_tick_remote()
4034 *                    |   |
4035 *                    |   |
4036 *                    +--TICK_SCHED_REMOTE_OFFLINING
4037 *                    |   ^
4038 *                    |   |
4039 * sched_tick_start() |   | sched_tick_stop()
4040 *                    |   |
4041 *                    V   |
4042 *          TICK_SCHED_REMOTE_RUNNING
4043 *
4044 *
4045 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4046 * and sched_tick_start() are happy to leave the state in RUNNING.
4047 */
4048
4049static struct tick_work __percpu *tick_work_cpu;
4050
4051static void sched_tick_remote(struct work_struct *work)
4052{
4053        struct delayed_work *dwork = to_delayed_work(work);
4054        struct tick_work *twork = container_of(dwork, struct tick_work, work);
4055        int cpu = twork->cpu;
4056        struct rq *rq = cpu_rq(cpu);
4057        struct task_struct *curr;
4058        struct rq_flags rf;
4059        u64 delta;
4060        int os;
4061
4062        /*
4063         * Handle the tick only if it appears the remote CPU is running in full
4064         * dynticks mode. The check is racy by nature, but missing a tick or
4065         * having one too much is no big deal because the scheduler tick updates
4066         * statistics and checks timeslices in a time-independent way, regardless
4067         * of when exactly it is running.
4068         */
4069        if (!tick_nohz_tick_stopped_cpu(cpu))
4070                goto out_requeue;
4071
4072        rq_lock_irq(rq, &rf);
4073        curr = rq->curr;
4074        if (cpu_is_offline(cpu))
4075                goto out_unlock;
4076
4077        update_rq_clock(rq);
4078
4079        if (!is_idle_task(curr)) {
4080                /*
4081                 * Make sure the next tick runs within a reasonable
4082                 * amount of time.
4083                 */
4084                delta = rq_clock_task(rq) - curr->se.exec_start;
4085                WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4086        }
4087        curr->sched_class->task_tick(rq, curr, 0);
4088
4089        calc_load_nohz_remote(rq);
4090out_unlock:
4091        rq_unlock_irq(rq, &rf);
4092out_requeue:
4093
4094        /*
4095         * Run the remote tick once per second (1Hz). This arbitrary
4096         * frequency is large enough to avoid overload but short enough
4097         * to keep scheduler internal stats reasonably up to date.  But
4098         * first update state to reflect hotplug activity if required.
4099         */
4100        os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4101        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4102        if (os == TICK_SCHED_REMOTE_RUNNING)
4103                queue_delayed_work(system_unbound_wq, dwork, HZ);
4104}
4105
4106static void sched_tick_start(int cpu)
4107{
4108        int os;
4109        struct tick_work *twork;
4110
4111        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4112                return;
4113
4114        WARN_ON_ONCE(!tick_work_cpu);
4115
4116        twork = per_cpu_ptr(tick_work_cpu, cpu);
4117        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4118        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4119        if (os == TICK_SCHED_REMOTE_OFFLINE) {
4120                twork->cpu = cpu;
4121                INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4122                queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4123        }
4124}
4125
4126#ifdef CONFIG_HOTPLUG_CPU
4127static void sched_tick_stop(int cpu)
4128{
4129        struct tick_work *twork;
4130        int os;
4131
4132        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4133                return;
4134
4135        WARN_ON_ONCE(!tick_work_cpu);
4136
4137        twork = per_cpu_ptr(tick_work_cpu, cpu);
4138        /* There cannot be competing actions, but don't rely on stop-machine. */
4139        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4140        WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4141        /* Don't cancel, as this would mess up the state machine. */
4142}
4143#endif /* CONFIG_HOTPLUG_CPU */
4144
4145int __init sched_tick_offload_init(void)
4146{
4147        tick_work_cpu = alloc_percpu(struct tick_work);
4148        BUG_ON(!tick_work_cpu);
4149        return 0;
4150}
4151
4152#else /* !CONFIG_NO_HZ_FULL */
4153static inline void sched_tick_start(int cpu) { }
4154static inline void sched_tick_stop(int cpu) { }
4155#endif
4156
4157#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4158                                defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4159/*
4160 * If the value passed in is equal to the current preempt count
4161 * then we just disabled preemption. Start timing the latency.
4162 */
4163static inline void preempt_latency_start(int val)
4164{
4165        if (preempt_count() == val) {
4166                unsigned long ip = get_lock_parent_ip();
4167#ifdef CONFIG_DEBUG_PREEMPT
4168                current->preempt_disable_ip = ip;
4169#endif
4170                trace_preempt_off(CALLER_ADDR0, ip);
4171        }
4172}
4173
4174void preempt_count_add(int val)
4175{
4176#ifdef CONFIG_DEBUG_PREEMPT
4177        /*
4178         * Underflow?
4179         */
4180        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4181                return;
4182#endif
4183        __preempt_count_add(val);
4184#ifdef CONFIG_DEBUG_PREEMPT
4185        /*
4186         * Spinlock count overflowing soon?
4187         */
4188        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4189                                PREEMPT_MASK - 10);
4190#endif
4191        preempt_latency_start(val);
4192}
4193EXPORT_SYMBOL(preempt_count_add);
4194NOKPROBE_SYMBOL(preempt_count_add);
4195
4196/*
4197 * If the value passed in equals to the current preempt count
4198 * then we just enabled preemption. Stop timing the latency.
4199 */
4200static inline void preempt_latency_stop(int val)
4201{
4202        if (preempt_count() == val)
4203                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4204}
4205
4206void preempt_count_sub(int val)
4207{
4208#ifdef CONFIG_DEBUG_PREEMPT
4209        /*
4210         * Underflow?
4211         */
4212        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4213                return;
4214        /*
4215         * Is the spinlock portion underflowing?
4216         */
4217        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4218                        !(preempt_count() & PREEMPT_MASK)))
4219                return;
4220#endif
4221
4222        preempt_latency_stop(val);
4223        __preempt_count_sub(val);
4224}
4225EXPORT_SYMBOL(preempt_count_sub);
4226NOKPROBE_SYMBOL(preempt_count_sub);
4227
4228#else
4229static inline void preempt_latency_start(int val) { }
4230static inline void preempt_latency_stop(int val) { }
4231#endif
4232
4233static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4234{
4235#ifdef CONFIG_DEBUG_PREEMPT
4236        return p->preempt_disable_ip;
4237#else
4238        return 0;
4239#endif
4240}
4241
4242/*
4243 * Print scheduling while atomic bug:
4244 */
4245static noinline void __schedule_bug(struct task_struct *prev)
4246{
4247        /* Save this before calling printk(), since that will clobber it */
4248        unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4249
4250        if (oops_in_progress)
4251                return;
4252
4253        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4254                prev->comm, prev->pid, preempt_count());
4255
4256        debug_show_held_locks(prev);
4257        print_modules();
4258        if (irqs_disabled())
4259                print_irqtrace_events(prev);
4260        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4261            && in_atomic_preempt_off()) {
4262                pr_err("Preemption disabled at:");
4263                print_ip_sym(KERN_ERR, preempt_disable_ip);
4264        }
4265        if (panic_on_warn)
4266                panic("scheduling while atomic\n");
4267
4268        dump_stack();
4269        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4270}
4271
4272/*
4273 * Various schedule()-time debugging checks and statistics:
4274 */
4275static inline void schedule_debug(struct task_struct *prev, bool preempt)
4276{
4277#ifdef CONFIG_SCHED_STACK_END_CHECK
4278        if (task_stack_end_corrupted(prev))
4279                panic("corrupted stack end detected inside scheduler\n");
4280
4281        if (task_scs_end_corrupted(prev))
4282                panic("corrupted shadow stack detected inside scheduler\n");
4283#endif
4284
4285#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4286        if (!preempt && prev->state && prev->non_block_count) {
4287                printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4288                        prev->comm, prev->pid, prev->non_block_count);
4289                dump_stack();
4290                add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4291        }
4292#endif
4293
4294        if (unlikely(in_atomic_preempt_off())) {
4295                __schedule_bug(prev);
4296                preempt_count_set(PREEMPT_DISABLED);
4297        }
4298        rcu_sleep_check();
4299
4300        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4301
4302        schedstat_inc(this_rq()->sched_count);
4303}
4304
4305static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4306                                  struct rq_flags *rf)
4307{
4308#ifdef CONFIG_SMP
4309        const struct sched_class *class;
4310        /*
4311         * We must do the balancing pass before put_prev_task(), such
4312         * that when we release the rq->lock the task is in the same
4313         * state as before we took rq->lock.
4314         *
4315         * We can terminate the balance pass as soon as we know there is
4316         * a runnable task of @class priority or higher.
4317         */
4318        for_class_range(class, prev->sched_class, &idle_sched_class) {
4319                if (class->balance(rq, prev, rf))
4320                        break;
4321        }
4322#endif
4323
4324        put_prev_task(rq, prev);
4325}
4326
4327/*
4328 * Pick up the highest-prio task:
4329 */
4330static inline struct task_struct *
4331pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4332{
4333        const struct sched_class *class;
4334        struct task_struct *p;
4335
4336        /*
4337         * Optimization: we know that if all tasks are in the fair class we can
4338         * call that function directly, but only if the @prev task wasn't of a
4339         * higher scheduling class, because otherwise those loose the
4340         * opportunity to pull in more work from other CPUs.
4341         */
4342        if (likely(prev->sched_class <= &fair_sched_class &&
4343                   rq->nr_running == rq->cfs.h_nr_running)) {
4344
4345                p = pick_next_task_fair(rq, prev, rf);
4346                if (unlikely(p == RETRY_TASK))
4347                        goto restart;
4348
4349                /* Assumes fair_sched_class->next == idle_sched_class */
4350                if (!p) {
4351                        put_prev_task(rq, prev);
4352                        p = pick_next_task_idle(rq);
4353                }
4354
4355                return p;
4356        }
4357
4358restart:
4359        put_prev_task_balance(rq, prev, rf);
4360
4361        for_each_class(class) {
4362                p = class->pick_next_task(rq);
4363                if (p)
4364                        return p;
4365        }
4366
4367        /* The idle class should always have a runnable task: */
4368        BUG();
4369}
4370
4371/*
4372 * __schedule() is the main scheduler function.
4373 *
4374 * The main means of driving the scheduler and thus entering this function are:
4375 *
4376 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4377 *
4378 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4379 *      paths. For example, see arch/x86/entry_64.S.
4380 *
4381 *      To drive preemption between tasks, the scheduler sets the flag in timer
4382 *      interrupt handler scheduler_tick().
4383 *
4384 *   3. Wakeups don't really cause entry into schedule(). They add a
4385 *      task to the run-queue and that's it.
4386 *
4387 *      Now, if the new task added to the run-queue preempts the current
4388 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4389 *      called on the nearest possible occasion:
4390 *
4391 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4392 *
4393 *         - in syscall or exception context, at the next outmost
4394 *           preempt_enable(). (this might be as soon as the wake_up()'s
4395 *           spin_unlock()!)
4396 *
4397 *         - in IRQ context, return from interrupt-handler to
4398 *           preemptible context
4399 *
4400 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4401 *         then at the next:
4402 *
4403 *          - cond_resched() call
4404 *          - explicit schedule() call
4405 *          - return from syscall or exception to user-space
4406 *          - return from interrupt-handler to user-space
4407 *
4408 * WARNING: must be called with preemption disabled!
4409 */
4410static void __sched notrace __schedule(bool preempt)
4411{
4412        struct task_struct *prev, *next;
4413        unsigned long *switch_count;
4414        unsigned long prev_state;
4415        struct rq_flags rf;
4416        struct rq *rq;
4417        int cpu;
4418
4419        cpu = smp_processor_id();
4420        rq = cpu_rq(cpu);
4421        prev = rq->curr;
4422
4423        schedule_debug(prev, preempt);
4424
4425        if (sched_feat(HRTICK))
4426                hrtick_clear(rq);
4427
4428        local_irq_disable();
4429        rcu_note_context_switch(preempt);
4430
4431        /*
4432         * Make sure that signal_pending_state()->signal_pending() below
4433         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4434         * done by the caller to avoid the race with signal_wake_up():
4435         *
4436         * __set_current_state(@state)          signal_wake_up()
4437         * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
4438         *                                        wake_up_state(p, state)
4439         *   LOCK rq->lock                          LOCK p->pi_state
4440         *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
4441         *     if (signal_pending_state())          if (p->state & @state)
4442         *
4443         * Also, the membarrier system call requires a full memory barrier
4444         * after coming from user-space, before storing to rq->curr.
4445         */
4446        rq_lock(rq, &rf);
4447        smp_mb__after_spinlock();
4448
4449        /* Promote REQ to ACT */
4450        rq->clock_update_flags <<= 1;
4451        update_rq_clock(rq);
4452
4453        switch_count = &prev->nivcsw;
4454
4455        /*
4456         * We must load prev->state once (task_struct::state is volatile), such
4457         * that:
4458         *
4459         *  - we form a control dependency vs deactivate_task() below.
4460         *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4461         */
4462        prev_state = prev->state;
4463        if (!preempt && prev_state) {
4464                if (signal_pending_state(prev_state, prev)) {
4465                        prev->state = TASK_RUNNING;
4466                } else {
4467                        prev->sched_contributes_to_load =
4468                                (prev_state & TASK_UNINTERRUPTIBLE) &&
4469                                !(prev_state & TASK_NOLOAD) &&
4470                                !(prev->flags & PF_FROZEN);
4471
4472                        if (prev->sched_contributes_to_load)
4473                                rq->nr_uninterruptible++;
4474
4475                        /*
4476                         * __schedule()                 ttwu()
4477                         *   prev_state = prev->state;    if (p->on_rq && ...)
4478                         *   if (prev_state)                goto out;
4479                         *     p->on_rq = 0;              smp_acquire__after_ctrl_dep();
4480                         *                                p->state = TASK_WAKING
4481                         *
4482                         * Where __schedule() and ttwu() have matching control dependencies.
4483                         *
4484                         * After this, schedule() must not care about p->state any more.
4485                         */
4486                        deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4487
4488                        if (prev->in_iowait) {
4489                                atomic_inc(&rq->nr_iowait);
4490                                delayacct_blkio_start();
4491                        }
4492                }
4493                switch_count = &prev->nvcsw;
4494        }
4495
4496        next = pick_next_task(rq, prev, &rf);
4497        clear_tsk_need_resched(prev);
4498        clear_preempt_need_resched();
4499
4500        if (likely(prev != next)) {
4501                rq->nr_switches++;
4502                /*
4503                 * RCU users of rcu_dereference(rq->curr) may not see
4504                 * changes to task_struct made by pick_next_task().
4505                 */
4506                RCU_INIT_POINTER(rq->curr, next);
4507                /*
4508                 * The membarrier system call requires each architecture
4509                 * to have a full memory barrier after updating
4510                 * rq->curr, before returning to user-space.
4511                 *
4512                 * Here are the schemes providing that barrier on the
4513                 * various architectures:
4514                 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4515                 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4516                 * - finish_lock_switch() for weakly-ordered
4517                 *   architectures where spin_unlock is a full barrier,
4518                 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4519                 *   is a RELEASE barrier),
4520                 */
4521                ++*switch_count;
4522
4523                psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4524
4525                trace_sched_switch(preempt, prev, next);
4526
4527                /* Also unlocks the rq: */
4528                rq = context_switch(rq, prev, next, &rf);
4529        } else {
4530                rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4531                rq_unlock_irq(rq, &rf);
4532        }
4533
4534        balance_callback(rq);
4535}
4536
4537void __noreturn do_task_dead(void)
4538{
4539        /* Causes final put_task_struct in finish_task_switch(): */
4540        set_special_state(TASK_DEAD);
4541
4542        /* Tell freezer to ignore us: */
4543        current->flags |= PF_NOFREEZE;
4544
4545        __schedule(false);
4546        BUG();
4547
4548        /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4549        for (;;)
4550                cpu_relax();
4551}
4552
4553static inline void sched_submit_work(struct task_struct *tsk)
4554{
4555        unsigned int task_flags;
4556
4557        if (!tsk->state)
4558                return;
4559
4560        task_flags = tsk->flags;
4561        /*
4562         * If a worker went to sleep, notify and ask workqueue whether
4563         * it wants to wake up a task to maintain concurrency.
4564         * As this function is called inside the schedule() context,
4565         * we disable preemption to avoid it calling schedule() again
4566         * in the possible wakeup of a kworker and because wq_worker_sleeping()
4567         * requires it.
4568         */
4569        if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4570                preempt_disable();
4571                if (task_flags & PF_WQ_WORKER)
4572                        wq_worker_sleeping(tsk);
4573                else
4574                        io_wq_worker_sleeping(tsk);
4575                preempt_enable_no_resched();
4576        }
4577
4578        if (tsk_is_pi_blocked(tsk))
4579                return;
4580
4581        /*
4582         * If we are going to sleep and we have plugged IO queued,
4583         * make sure to submit it to avoid deadlocks.
4584         */
4585        if (blk_needs_flush_plug(tsk))
4586                blk_schedule_flush_plug(tsk);
4587}
4588
4589static void sched_update_worker(struct task_struct *tsk)
4590{
4591        if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4592                if (tsk->flags & PF_WQ_WORKER)
4593                        wq_worker_running(tsk);
4594                else
4595                        io_wq_worker_running(tsk);
4596        }
4597}
4598
4599asmlinkage __visible void __sched schedule(void)
4600{
4601        struct task_struct *tsk = current;
4602
4603        sched_submit_work(tsk);
4604        do {
4605                preempt_disable();
4606                __schedule(false);
4607                sched_preempt_enable_no_resched();
4608        } while (need_resched());
4609        sched_update_worker(tsk);
4610}
4611EXPORT_SYMBOL(schedule);
4612
4613/*
4614 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4615 * state (have scheduled out non-voluntarily) by making sure that all
4616 * tasks have either left the run queue or have gone into user space.
4617 * As idle tasks do not do either, they must not ever be preempted
4618 * (schedule out non-voluntarily).
4619 *
4620 * schedule_idle() is similar to schedule_preempt_disable() except that it
4621 * never enables preemption because it does not call sched_submit_work().
4622 */
4623void __sched schedule_idle(void)
4624{
4625        /*
4626         * As this skips calling sched_submit_work(), which the idle task does
4627         * regardless because that function is a nop when the task is in a
4628         * TASK_RUNNING state, make sure this isn't used someplace that the
4629         * current task can be in any other state. Note, idle is always in the
4630         * TASK_RUNNING state.
4631         */
4632        WARN_ON_ONCE(current->state);
4633        do {
4634                __schedule(false);
4635        } while (need_resched());
4636}
4637
4638#ifdef CONFIG_CONTEXT_TRACKING
4639asmlinkage __visible void __sched schedule_user(void)
4640{
4641        /*
4642         * If we come here after a random call to set_need_resched(),
4643         * or we have been woken up remotely but the IPI has not yet arrived,
4644         * we haven't yet exited the RCU idle mode. Do it here manually until
4645         * we find a better solution.
4646         *
4647         * NB: There are buggy callers of this function.  Ideally we
4648         * should warn if prev_state != CONTEXT_USER, but that will trigger
4649         * too frequently to make sense yet.
4650         */
4651        enum ctx_state prev_state = exception_enter();
4652        schedule();
4653        exception_exit(prev_state);
4654}
4655#endif
4656
4657/**
4658 * schedule_preempt_disabled - called with preemption disabled
4659 *
4660 * Returns with preemption disabled. Note: preempt_count must be 1
4661 */
4662void __sched schedule_preempt_disabled(void)
4663{
4664        sched_preempt_enable_no_resched();
4665        schedule();
4666        preempt_disable();
4667}
4668
4669static void __sched notrace preempt_schedule_common(void)
4670{
4671        do {
4672                /*
4673                 * Because the function tracer can trace preempt_count_sub()
4674                 * and it also uses preempt_enable/disable_notrace(), if
4675                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4676                 * by the function tracer will call this function again and
4677                 * cause infinite recursion.
4678                 *
4679                 * Preemption must be disabled here before the function
4680                 * tracer can trace. Break up preempt_disable() into two
4681                 * calls. One to disable preemption without fear of being
4682                 * traced. The other to still record the preemption latency,
4683                 * which can also be traced by the function tracer.
4684                 */
4685                preempt_disable_notrace();
4686                preempt_latency_start(1);
4687                __schedule(true);
4688                preempt_latency_stop(1);
4689                preempt_enable_no_resched_notrace();
4690
4691                /*
4692                 * Check again in case we missed a preemption opportunity
4693                 * between schedule and now.
4694                 */
4695        } while (need_resched());
4696}
4697
4698#ifdef CONFIG_PREEMPTION
4699/*
4700 * This is the entry point to schedule() from in-kernel preemption
4701 * off of preempt_enable.
4702 */
4703asmlinkage __visible void __sched notrace preempt_schedule(void)
4704{
4705        /*
4706         * If there is a non-zero preempt_count or interrupts are disabled,
4707         * we do not want to preempt the current task. Just return..
4708         */
4709        if (likely(!preemptible()))
4710                return;
4711
4712        preempt_schedule_common();
4713}
4714NOKPROBE_SYMBOL(preempt_schedule);
4715EXPORT_SYMBOL(preempt_schedule);
4716
4717/**
4718 * preempt_schedule_notrace - preempt_schedule called by tracing
4719 *
4720 * The tracing infrastructure uses preempt_enable_notrace to prevent
4721 * recursion and tracing preempt enabling caused by the tracing
4722 * infrastructure itself. But as tracing can happen in areas coming
4723 * from userspace or just about to enter userspace, a preempt enable
4724 * can occur before user_exit() is called. This will cause the scheduler
4725 * to be called when the system is still in usermode.
4726 *
4727 * To prevent this, the preempt_enable_notrace will use this function
4728 * instead of preempt_schedule() to exit user context if needed before
4729 * calling the scheduler.
4730 */
4731asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4732{
4733        enum ctx_state prev_ctx;
4734
4735        if (likely(!preemptible()))
4736                return;
4737
4738        do {
4739                /*
4740                 * Because the function tracer can trace preempt_count_sub()
4741                 * and it also uses preempt_enable/disable_notrace(), if
4742                 * NEED_RESCHED is set, the preempt_enable_notrace() called
4743                 * by the function tracer will call this function again and
4744                 * cause infinite recursion.
4745                 *
4746                 * Preemption must be disabled here before the function
4747                 * tracer can trace. Break up preempt_disable() into two
4748                 * calls. One to disable preemption without fear of being
4749                 * traced. The other to still record the preemption latency,
4750                 * which can also be traced by the function tracer.
4751                 */
4752                preempt_disable_notrace();
4753                preempt_latency_start(1);
4754                /*
4755                 * Needs preempt disabled in case user_exit() is traced
4756                 * and the tracer calls preempt_enable_notrace() causing
4757                 * an infinite recursion.
4758                 */
4759                prev_ctx = exception_enter();
4760                __schedule(true);
4761                exception_exit(prev_ctx);
4762
4763                preempt_latency_stop(1);
4764                preempt_enable_no_resched_notrace();
4765        } while (need_resched());
4766}
4767EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4768
4769#endif /* CONFIG_PREEMPTION */
4770
4771/*
4772 * This is the entry point to schedule() from kernel preemption
4773 * off of irq context.
4774 * Note, that this is called and return with irqs disabled. This will
4775 * protect us against recursive calling from irq.
4776 */
4777asmlinkage __visible void __sched preempt_schedule_irq(void)
4778{
4779        enum ctx_state prev_state;
4780
4781        /* Catch callers which need to be fixed */
4782        BUG_ON(preempt_count() || !irqs_disabled());
4783
4784        prev_state = exception_enter();
4785
4786        do {
4787                preempt_disable();
4788                local_irq_enable();
4789                __schedule(true);
4790                local_irq_disable();
4791                sched_preempt_enable_no_resched();
4792        } while (need_resched());
4793
4794        exception_exit(prev_state);
4795}
4796
4797int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4798                          void *key)
4799{
4800        WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4801        return try_to_wake_up(curr->private, mode, wake_flags);
4802}
4803EXPORT_SYMBOL(default_wake_function);
4804
4805#ifdef CONFIG_RT_MUTEXES
4806
4807static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4808{
4809        if (pi_task)
4810                prio = min(prio, pi_task->prio);
4811
4812        return prio;
4813}
4814
4815static inline int rt_effective_prio(struct task_struct *p, int prio)
4816{
4817        struct task_struct *pi_task = rt_mutex_get_top_task(p);
4818
4819        return __rt_effective_prio(pi_task, prio);
4820}
4821
4822/*
4823 * rt_mutex_setprio - set the current priority of a task
4824 * @p: task to boost
4825 * @pi_task: donor task
4826 *
4827 * This function changes the 'effective' priority of a task. It does
4828 * not touch ->normal_prio like __setscheduler().
4829 *
4830 * Used by the rt_mutex code to implement priority inheritance
4831 * logic. Call site only calls if the priority of the task changed.
4832 */
4833void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4834{
4835        int prio, oldprio, queued, running, queue_flag =
4836                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4837        const struct sched_class *prev_class;
4838        struct rq_flags rf;
4839        struct rq *rq;
4840
4841        /* XXX used to be waiter->prio, not waiter->task->prio */
4842        prio = __rt_effective_prio(pi_task, p->normal_prio);
4843
4844        /*
4845         * If nothing changed; bail early.
4846         */
4847        if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4848                return;
4849
4850        rq = __task_rq_lock(p, &rf);
4851        update_rq_clock(rq);
4852        /*
4853         * Set under pi_lock && rq->lock, such that the value can be used under
4854         * either lock.
4855         *
4856         * Note that there is loads of tricky to make this pointer cache work
4857         * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4858         * ensure a task is de-boosted (pi_task is set to NULL) before the
4859         * task is allowed to run again (and can exit). This ensures the pointer
4860         * points to a blocked task -- which guaratees the task is present.
4861         */
4862        p->pi_top_task = pi_task;
4863
4864        /*
4865         * For FIFO/RR we only need to set prio, if that matches we're done.
4866         */
4867        if (prio == p->prio && !dl_prio(prio))
4868                goto out_unlock;
4869
4870        /*
4871         * Idle task boosting is a nono in general. There is one
4872         * exception, when PREEMPT_RT and NOHZ is active:
4873         *
4874         * The idle task calls get_next_timer_interrupt() and holds
4875         * the timer wheel base->lock on the CPU and another CPU wants
4876         * to access the timer (probably to cancel it). We can safely
4877         * ignore the boosting request, as the idle CPU runs this code
4878         * with interrupts disabled and will complete the lock
4879         * protected section without being interrupted. So there is no
4880         * real need to boost.
4881         */
4882        if (unlikely(p == rq->idle)) {
4883                WARN_ON(p != rq->curr);
4884                WARN_ON(p->pi_blocked_on);
4885                goto out_unlock;
4886        }
4887
4888        trace_sched_pi_setprio(p, pi_task);
4889        oldprio = p->prio;
4890
4891        if (oldprio == prio)
4892                queue_flag &= ~DEQUEUE_MOVE;
4893
4894        prev_class = p->sched_class;
4895        queued = task_on_rq_queued(p);
4896        running = task_current(rq, p);
4897        if (queued)
4898                dequeue_task(rq, p, queue_flag);
4899        if (running)
4900                put_prev_task(rq, p);
4901
4902        /*
4903         * Boosting condition are:
4904         * 1. -rt task is running and holds mutex A
4905         *      --> -dl task blocks on mutex A
4906         *
4907         * 2. -dl task is running and holds mutex A
4908         *      --> -dl task blocks on mutex A and could preempt the
4909         *          running task
4910         */
4911        if (dl_prio(prio)) {
4912                if (!dl_prio(p->normal_prio) ||
4913                    (pi_task && dl_prio(pi_task->prio) &&
4914                     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4915                        p->dl.pi_se = pi_task->dl.pi_se;
4916                        queue_flag |= ENQUEUE_REPLENISH;
4917                } else {
4918                        p->dl.pi_se = &p->dl;
4919                }
4920                p->sched_class = &dl_sched_class;
4921        } else if (rt_prio(prio)) {
4922                if (dl_prio(oldprio))
4923                        p->dl.pi_se = &p->dl;
4924                if (oldprio < prio)
4925                        queue_flag |= ENQUEUE_HEAD;
4926                p->sched_class = &rt_sched_class;
4927        } else {
4928                if (dl_prio(oldprio))
4929                        p->dl.pi_se = &p->dl;
4930                if (rt_prio(oldprio))
4931                        p->rt.timeout = 0;
4932                p->sched_class = &fair_sched_class;
4933        }
4934
4935        p->prio = prio;
4936
4937        if (queued)
4938                enqueue_task(rq, p, queue_flag);
4939        if (running)
4940                set_next_task(rq, p);
4941
4942        check_class_changed(rq, p, prev_class, oldprio);
4943out_unlock:
4944        /* Avoid rq from going away on us: */
4945        preempt_disable();
4946        __task_rq_unlock(rq, &rf);
4947
4948        balance_callback(rq);
4949        preempt_enable();
4950}
4951#else
4952static inline int rt_effective_prio(struct task_struct *p, int prio)
4953{
4954        return prio;
4955}
4956#endif
4957
4958void set_user_nice(struct task_struct *p, long nice)
4959{
4960        bool queued, running;
4961        int old_prio;
4962        struct rq_flags rf;
4963        struct rq *rq;
4964
4965        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4966                return;
4967        /*
4968         * We have to be careful, if called from sys_setpriority(),
4969         * the task might be in the middle of scheduling on another CPU.
4970         */
4971        rq = task_rq_lock(p, &rf);
4972        update_rq_clock(rq);
4973
4974        /*
4975         * The RT priorities are set via sched_setscheduler(), but we still
4976         * allow the 'normal' nice value to be set - but as expected
4977         * it wont have any effect on scheduling until the task is
4978         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4979         */
4980        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4981                p->static_prio = NICE_TO_PRIO(nice);
4982                goto out_unlock;
4983        }
4984        queued = task_on_rq_queued(p);
4985        running = task_current(rq, p);
4986        if (queued)
4987                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4988        if (running)
4989                put_prev_task(rq, p);
4990
4991        p->static_prio = NICE_TO_PRIO(nice);
4992        set_load_weight(p, true);
4993        old_prio = p->prio;
4994        p->prio = effective_prio(p);
4995
4996        if (queued)
4997                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4998        if (running)
4999                set_next_task(rq, p);
5000
5001        /*
5002         * If the task increased its priority or is running and
5003         * lowered its priority, then reschedule its CPU:
5004         */
5005        p->sched_class->prio_changed(rq, p, old_prio);
5006
5007out_unlock:
5008        task_rq_unlock(rq, p, &rf);
5009}
5010EXPORT_SYMBOL(set_user_nice);
5011
5012/*
5013 * can_nice - check if a task can reduce its nice value
5014 * @p: task
5015 * @nice: nice value
5016 */
5017int can_nice(const struct task_struct *p, const int nice)
5018{
5019        /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5020        int nice_rlim = nice_to_rlimit(nice);
5021
5022        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5023                capable(CAP_SYS_NICE));
5024}
5025
5026#ifdef __ARCH_WANT_SYS_NICE
5027
5028/*
5029 * sys_nice - change the priority of the current process.
5030 * @increment: priority increment
5031 *
5032 * sys_setpriority is a more generic, but much slower function that
5033 * does similar things.
5034 */
5035SYSCALL_DEFINE1(nice, int, increment)
5036{
5037        long nice, retval;
5038
5039        /*
5040         * Setpriority might change our priority at the same moment.
5041         * We don't have to worry. Conceptually one call occurs first
5042         * and we have a single winner.
5043         */
5044        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5045        nice = task_nice(current) + increment;
5046
5047        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5048        if (increment < 0 && !can_nice(current, nice))
5049                return -EPERM;
5050
5051        retval = security_task_setnice(current, nice);
5052        if (retval)
5053                return retval;
5054
5055        set_user_nice(current, nice);
5056        return 0;
5057}
5058
5059#endif
5060
5061/**
5062 * task_prio - return the priority value of a given task.
5063 * @p: the task in question.
5064 *
5065 * Return: The priority value as seen by users in /proc.
5066 * RT tasks are offset by -200. Normal tasks are centered
5067 * around 0, value goes from -16 to +15.
5068 */
5069int task_prio(const struct task_struct *p)
5070{
5071        return p->prio - MAX_RT_PRIO;
5072}
5073
5074/**
5075 * idle_cpu - is a given CPU idle currently?
5076 * @cpu: the processor in question.
5077 *
5078 * Return: 1 if the CPU is currently idle. 0 otherwise.
5079 */
5080int idle_cpu(int cpu)
5081{
5082        struct rq *rq = cpu_rq(cpu);
5083
5084        if (rq->curr != rq->idle)
5085                return 0;
5086
5087        if (rq->nr_running)
5088                return 0;
5089
5090#ifdef CONFIG_SMP
5091        if (rq->ttwu_pending)
5092                return 0;
5093#endif
5094
5095        return 1;
5096}
5097
5098/**
5099 * available_idle_cpu - is a given CPU idle for enqueuing work.
5100 * @cpu: the CPU in question.
5101 *
5102 * Return: 1 if the CPU is currently idle. 0 otherwise.
5103 */
5104int available_idle_cpu(int cpu)
5105{
5106        if (!idle_cpu(cpu))
5107                return 0;
5108
5109        if (vcpu_is_preempted(cpu))
5110                return 0;
5111
5112        return 1;
5113}
5114
5115/**
5116 * idle_task - return the idle task for a given CPU.
5117 * @cpu: the processor in question.
5118 *
5119 * Return: The idle task for the CPU @cpu.
5120 */
5121struct task_struct *idle_task(int cpu)
5122{
5123        return cpu_rq(cpu)->idle;
5124}
5125
5126/**
5127 * find_process_by_pid - find a process with a matching PID value.
5128 * @pid: the pid in question.
5129 *
5130 * The task of @pid, if found. %NULL otherwise.
5131 */
5132static struct task_struct *find_process_by_pid(pid_t pid)
5133{
5134        return pid ? find_task_by_vpid(pid) : current;
5135}
5136
5137/*
5138 * sched_setparam() passes in -1 for its policy, to let the functions
5139 * it calls know not to change it.
5140 */
5141#define SETPARAM_POLICY -1
5142
5143static void __setscheduler_params(struct task_struct *p,
5144                const struct sched_attr *attr)
5145{
5146        int policy = attr->sched_policy;
5147
5148        if (policy == SETPARAM_POLICY)
5149                policy = p->policy;
5150
5151        p->policy = policy;
5152
5153        if (dl_policy(policy))
5154                __setparam_dl(p, attr);
5155        else if (fair_policy(policy))
5156                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5157
5158        /*
5159         * __sched_setscheduler() ensures attr->sched_priority == 0 when
5160         * !rt_policy. Always setting this ensures that things like
5161         * getparam()/getattr() don't report silly values for !rt tasks.
5162         */
5163        p->rt_priority = attr->sched_priority;
5164        p->normal_prio = normal_prio(p);
5165        set_load_weight(p, true);
5166}
5167
5168/* Actually do priority change: must hold pi & rq lock. */
5169static void __setscheduler(struct rq *rq, struct task_struct *p,
5170                           const struct sched_attr *attr, bool keep_boost)
5171{
5172        /*
5173         * If params can't change scheduling class changes aren't allowed
5174         * either.
5175         */
5176        if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5177                return;
5178
5179        __setscheduler_params(p, attr);
5180
5181        /*
5182         * Keep a potential priority boosting if called from
5183         * sched_setscheduler().
5184         */
5185        p->prio = normal_prio(p);
5186        if (keep_boost)
5187                p->prio = rt_effective_prio(p, p->prio);
5188
5189        if (dl_prio(p->prio))
5190                p->sched_class = &dl_sched_class;
5191        else if (rt_prio(p->prio))
5192                p->sched_class = &rt_sched_class;
5193        else
5194                p->sched_class = &fair_sched_class;
5195}
5196
5197/*
5198 * Check the target process has a UID that matches the current process's:
5199 */
5200static bool check_same_owner(struct task_struct *p)
5201{
5202        const struct cred *cred = current_cred(), *pcred;
5203        bool match;
5204
5205        rcu_read_lock();
5206        pcred = __task_cred(p);
5207        match = (uid_eq(cred->euid, pcred->euid) ||
5208                 uid_eq(cred->euid, pcred->uid));
5209        rcu_read_unlock();
5210        return match;
5211}
5212
5213static int __sched_setscheduler(struct task_struct *p,
5214                                const struct sched_attr *attr,
5215                                bool user, bool pi)
5216{
5217        int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5218                      MAX_RT_PRIO - 1 - attr->sched_priority;
5219        int retval, oldprio, oldpolicy = -1, queued, running;
5220        int new_effective_prio, policy = attr->sched_policy;
5221        const struct sched_class *prev_class;
5222        struct rq_flags rf;
5223        int reset_on_fork;
5224        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5225        struct rq *rq;
5226
5227        /* The pi code expects interrupts enabled */
5228        BUG_ON(pi && in_interrupt());
5229recheck:
5230        /* Double check policy once rq lock held: */
5231        if (policy < 0) {
5232                reset_on_fork = p->sched_reset_on_fork;
5233                policy = oldpolicy = p->policy;
5234        } else {
5235                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5236
5237                if (!valid_policy(policy))
5238                        return -EINVAL;
5239        }
5240
5241        if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5242                return -EINVAL;
5243
5244        /*
5245         * Valid priorities for SCHED_FIFO and SCHED_RR are
5246         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5247         * SCHED_BATCH and SCHED_IDLE is 0.
5248         */
5249        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5250            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5251                return -EINVAL;
5252        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5253            (rt_policy(policy) != (attr->sched_priority != 0)))
5254                return -EINVAL;
5255
5256        /*
5257         * Allow unprivileged RT tasks to decrease priority:
5258         */
5259        if (user && !capable(CAP_SYS_NICE)) {
5260                if (fair_policy(policy)) {
5261                        if (attr->sched_nice < task_nice(p) &&
5262                            !can_nice(p, attr->sched_nice))
5263                                return -EPERM;
5264                }
5265
5266                if (rt_policy(policy)) {
5267                        unsigned long rlim_rtprio =
5268                                        task_rlimit(p, RLIMIT_RTPRIO);
5269
5270                        /* Can't set/change the rt policy: */
5271                        if (policy != p->policy && !rlim_rtprio)
5272                                return -EPERM;
5273
5274                        /* Can't increase priority: */
5275                        if (attr->sched_priority > p->rt_priority &&
5276                            attr->sched_priority > rlim_rtprio)
5277                                return -EPERM;
5278                }
5279
5280                 /*
5281                  * Can't set/change SCHED_DEADLINE policy at all for now
5282                  * (safest behavior); in the future we would like to allow
5283                  * unprivileged DL tasks to increase their relative deadline
5284                  * or reduce their runtime (both ways reducing utilization)
5285                  */
5286                if (dl_policy(policy))
5287                        return -EPERM;
5288
5289                /*
5290                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5291                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5292                 */
5293                if (task_has_idle_policy(p) && !idle_policy(policy)) {
5294                        if (!can_nice(p, task_nice(p)))
5295                                return -EPERM;
5296                }
5297
5298                /* Can't change other user's priorities: */
5299                if (!check_same_owner(p))
5300                        return -EPERM;
5301
5302                /* Normal users shall not reset the sched_reset_on_fork flag: */
5303                if (p->sched_reset_on_fork && !reset_on_fork)
5304                        return -EPERM;
5305        }
5306
5307        if (user) {
5308                if (attr->sched_flags & SCHED_FLAG_SUGOV)
5309                        return -EINVAL;
5310
5311                retval = security_task_setscheduler(p);
5312                if (retval)
5313                        return retval;
5314        }
5315
5316        /* Update task specific "requested" clamps */
5317        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5318                retval = uclamp_validate(p, attr);
5319                if (retval)
5320                        return retval;
5321        }
5322
5323        if (pi)
5324                cpuset_read_lock();
5325
5326        /*
5327         * Make sure no PI-waiters arrive (or leave) while we are
5328         * changing the priority of the task:
5329         *
5330         * To be able to change p->policy safely, the appropriate
5331         * runqueue lock must be held.
5332         */
5333        rq = task_rq_lock(p, &rf);
5334        update_rq_clock(rq);
5335
5336        /*
5337         * Changing the policy of the stop threads its a very bad idea:
5338         */
5339        if (p == rq->stop) {
5340                retval = -EINVAL;
5341                goto unlock;
5342        }
5343
5344        /*
5345         * If not changing anything there's no need to proceed further,
5346         * but store a possible modification of reset_on_fork.
5347         */
5348        if (unlikely(policy == p->policy)) {
5349                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5350                        goto change;
5351                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5352                        goto change;
5353                if (dl_policy(policy) && dl_param_changed(p, attr))
5354                        goto change;
5355                if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5356                        goto change;
5357
5358                p->sched_reset_on_fork = reset_on_fork;
5359                retval = 0;
5360                goto unlock;
5361        }
5362change:
5363
5364        if (user) {
5365#ifdef CONFIG_RT_GROUP_SCHED
5366                /*
5367                 * Do not allow realtime tasks into groups that have no runtime
5368                 * assigned.
5369                 */
5370                if (rt_bandwidth_enabled() && rt_policy(policy) &&
5371                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5372                                !task_group_is_autogroup(task_group(p))) {
5373                        retval = -EPERM;
5374                        goto unlock;
5375                }
5376#endif
5377#ifdef CONFIG_SMP
5378                if (dl_bandwidth_enabled() && dl_policy(policy) &&
5379                                !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5380                        cpumask_t *span = rq->rd->span;
5381
5382                        /*
5383                         * Don't allow tasks with an affinity mask smaller than
5384                         * the entire root_domain to become SCHED_DEADLINE. We
5385                         * will also fail if there's no bandwidth available.
5386                         */
5387                        if (!cpumask_subset(span, p->cpus_ptr) ||
5388                            rq->rd->dl_bw.bw == 0) {
5389                                retval = -EPERM;
5390                                goto unlock;
5391                        }
5392                }
5393#endif
5394        }
5395
5396        /* Re-check policy now with rq lock held: */
5397        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5398                policy = oldpolicy = -1;
5399                task_rq_unlock(rq, p, &rf);
5400                if (pi)
5401                        cpuset_read_unlock();
5402                goto recheck;
5403        }
5404
5405        /*
5406         * If setscheduling to SCHED_DEADLINE (or changing the parameters
5407         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5408         * is available.
5409         */
5410        if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5411                retval = -EBUSY;
5412                goto unlock;
5413        }
5414
5415        p->sched_reset_on_fork = reset_on_fork;
5416        oldprio = p->prio;
5417
5418        if (pi) {
5419                /*
5420                 * Take priority boosted tasks into account. If the new
5421                 * effective priority is unchanged, we just store the new
5422                 * normal parameters and do not touch the scheduler class and
5423                 * the runqueue. This will be done when the task deboost
5424                 * itself.
5425                 */
5426                new_effective_prio = rt_effective_prio(p, newprio);
5427                if (new_effective_prio == oldprio)
5428                        queue_flags &= ~DEQUEUE_MOVE;
5429        }
5430
5431        queued = task_on_rq_queued(p);
5432        running = task_current(rq, p);
5433        if (queued)
5434                dequeue_task(rq, p, queue_flags);
5435        if (running)
5436                put_prev_task(rq, p);
5437
5438        prev_class = p->sched_class;
5439
5440        __setscheduler(rq, p, attr, pi);
5441        __setscheduler_uclamp(p, attr);
5442
5443        if (queued) {
5444                /*
5445                 * We enqueue to tail when the priority of a task is
5446                 * increased (user space view).
5447                 */
5448                if (oldprio < p->prio)
5449                        queue_flags |= ENQUEUE_HEAD;
5450
5451                enqueue_task(rq, p, queue_flags);
5452        }
5453        if (running)
5454                set_next_task(rq, p);
5455
5456        check_class_changed(rq, p, prev_class, oldprio);
5457
5458        /* Avoid rq from going away on us: */
5459        preempt_disable();
5460        task_rq_unlock(rq, p, &rf);
5461
5462        if (pi) {
5463                cpuset_read_unlock();
5464                rt_mutex_adjust_pi(p);
5465        }
5466
5467        /* Run balance callbacks after we've adjusted the PI chain: */
5468        balance_callback(rq);
5469        preempt_enable();
5470
5471        return 0;
5472
5473unlock:
5474        task_rq_unlock(rq, p, &rf);
5475        if (pi)
5476                cpuset_read_unlock();
5477        return retval;
5478}
5479
5480static int _sched_setscheduler(struct task_struct *p, int policy,
5481                               const struct sched_param *param, bool check)
5482{
5483        struct sched_attr attr = {
5484                .sched_policy   = policy,
5485                .sched_priority = param->sched_priority,
5486                .sched_nice     = PRIO_TO_NICE(p->static_prio),
5487        };
5488
5489        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5490        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5491                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5492                policy &= ~SCHED_RESET_ON_FORK;
5493                attr.sched_policy = policy;
5494        }
5495
5496        return __sched_setscheduler(p, &attr, check, true);
5497}
5498/**
5499 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5500 * @p: the task in question.
5501 * @policy: new policy.
5502 * @param: structure containing the new RT priority.
5503 *
5504 * Use sched_set_fifo(), read its comment.
5505 *
5506 * Return: 0 on success. An error code otherwise.
5507 *
5508 * NOTE that the task may be already dead.
5509 */
5510int sched_setscheduler(struct task_struct *p, int policy,
5511                       const struct sched_param *param)
5512{
5513        return _sched_setscheduler(p, policy, param, true);
5514}
5515
5516int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5517{
5518        return __sched_setscheduler(p, attr, true, true);
5519}
5520
5521int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5522{
5523        return __sched_setscheduler(p, attr, false, true);
5524}
5525
5526/**
5527 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5528 * @p: the task in question.
5529 * @policy: new policy.
5530 * @param: structure containing the new RT priority.
5531 *
5532 * Just like sched_setscheduler, only don't bother checking if the
5533 * current context has permission.  For example, this is needed in
5534 * stop_machine(): we create temporary high priority worker threads,
5535 * but our caller might not have that capability.
5536 *
5537 * Return: 0 on success. An error code otherwise.
5538 */
5539int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5540                               const struct sched_param *param)
5541{
5542        return _sched_setscheduler(p, policy, param, false);
5543}
5544
5545/*
5546 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5547 * incapable of resource management, which is the one thing an OS really should
5548 * be doing.
5549 *
5550 * This is of course the reason it is limited to privileged users only.
5551 *
5552 * Worse still; it is fundamentally impossible to compose static priority
5553 * workloads. You cannot take two correctly working static prio workloads
5554 * and smash them together and still expect them to work.
5555 *
5556 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5557 *
5558 *   MAX_RT_PRIO / 2
5559 *
5560 * The administrator _MUST_ configure the system, the kernel simply doesn't
5561 * know enough information to make a sensible choice.
5562 */
5563void sched_set_fifo(struct task_struct *p)
5564{
5565        struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5566        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5567}
5568EXPORT_SYMBOL_GPL(sched_set_fifo);
5569
5570/*
5571 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5572 */
5573void sched_set_fifo_low(struct task_struct *p)
5574{
5575        struct sched_param sp = { .sched_priority = 1 };
5576        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5577}
5578EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5579
5580void sched_set_normal(struct task_struct *p, int nice)
5581{
5582        struct sched_attr attr = {
5583                .sched_policy = SCHED_NORMAL,
5584                .sched_nice = nice,
5585        };
5586        WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5587}
5588EXPORT_SYMBOL_GPL(sched_set_normal);
5589
5590static int
5591do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5592{
5593        struct sched_param lparam;
5594        struct task_struct *p;
5595        int retval;
5596
5597        if (!param || pid < 0)
5598                return -EINVAL;
5599        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5600                return -EFAULT;
5601
5602        rcu_read_lock();
5603        retval = -ESRCH;
5604        p = find_process_by_pid(pid);
5605        if (likely(p))
5606                get_task_struct(p);
5607        rcu_read_unlock();
5608
5609        if (likely(p)) {
5610                retval = sched_setscheduler(p, policy, &lparam);
5611                put_task_struct(p);
5612        }
5613
5614        return retval;
5615}
5616
5617/*
5618 * Mimics kernel/events/core.c perf_copy_attr().
5619 */
5620static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5621{
5622        u32 size;
5623        int ret;
5624
5625        /* Zero the full structure, so that a short copy will be nice: */
5626        memset(attr, 0, sizeof(*attr));
5627
5628        ret = get_user(size, &uattr->size);
5629        if (ret)
5630                return ret;
5631
5632        /* ABI compatibility quirk: */
5633        if (!size)
5634                size = SCHED_ATTR_SIZE_VER0;
5635        if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5636                goto err_size;
5637
5638        ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5639        if (ret) {
5640                if (ret == -E2BIG)
5641                        goto err_size;
5642                return ret;
5643        }
5644
5645        if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5646            size < SCHED_ATTR_SIZE_VER1)
5647                return -EINVAL;
5648
5649        /*
5650         * XXX: Do we want to be lenient like existing syscalls; or do we want
5651         * to be strict and return an error on out-of-bounds values?
5652         */
5653        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5654
5655        return 0;
5656
5657err_size:
5658        put_user(sizeof(*attr), &uattr->size);
5659        return -E2BIG;
5660}
5661
5662/**
5663 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5664 * @pid: the pid in question.
5665 * @policy: new policy.
5666 * @param: structure containing the new RT priority.
5667 *
5668 * Return: 0 on success. An error code otherwise.
5669 */
5670SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5671{
5672        if (policy < 0)
5673                return -EINVAL;
5674
5675        return do_sched_setscheduler(pid, policy, param);
5676}
5677
5678/**
5679 * sys_sched_setparam - set/change the RT priority of a thread
5680 * @pid: the pid in question.
5681 * @param: structure containing the new RT priority.
5682 *
5683 * Return: 0 on success. An error code otherwise.
5684 */
5685SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5686{
5687        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5688}
5689
5690/**
5691 * sys_sched_setattr - same as above, but with extended sched_attr
5692 * @pid: the pid in question.
5693 * @uattr: structure containing the extended parameters.
5694 * @flags: for future extension.
5695 */
5696SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5697                               unsigned int, flags)
5698{
5699        struct sched_attr attr;
5700        struct task_struct *p;
5701        int retval;
5702
5703        if (!uattr || pid < 0 || flags)
5704                return -EINVAL;
5705
5706        retval = sched_copy_attr(uattr, &attr);
5707        if (retval)
5708                return retval;
5709
5710        if ((int)attr.sched_policy < 0)
5711                return -EINVAL;
5712        if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5713                attr.sched_policy = SETPARAM_POLICY;
5714
5715        rcu_read_lock();
5716        retval = -ESRCH;
5717        p = find_process_by_pid(pid);
5718        if (likely(p))
5719                get_task_struct(p);
5720        rcu_read_unlock();
5721
5722        if (likely(p)) {
5723                retval = sched_setattr(p, &attr);
5724                put_task_struct(p);
5725        }
5726
5727        return retval;
5728}
5729
5730/**
5731 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5732 * @pid: the pid in question.
5733 *
5734 * Return: On success, the policy of the thread. Otherwise, a negative error
5735 * code.
5736 */
5737SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5738{
5739        struct task_struct *p;
5740        int retval;
5741
5742        if (pid < 0)
5743                return -EINVAL;
5744
5745        retval = -ESRCH;
5746        rcu_read_lock();
5747        p = find_process_by_pid(pid);
5748        if (p) {
5749                retval = security_task_getscheduler(p);
5750                if (!retval)
5751                        retval = p->policy
5752                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5753        }
5754        rcu_read_unlock();
5755        return retval;
5756}
5757
5758/**
5759 * sys_sched_getparam - get the RT priority of a thread
5760 * @pid: the pid in question.
5761 * @param: structure containing the RT priority.
5762 *
5763 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5764 * code.
5765 */
5766SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5767{
5768        struct sched_param lp = { .sched_priority = 0 };
5769        struct task_struct *p;
5770        int retval;
5771
5772        if (!param || pid < 0)
5773                return -EINVAL;
5774
5775        rcu_read_lock();
5776        p = find_process_by_pid(pid);
5777        retval = -ESRCH;
5778        if (!p)
5779                goto out_unlock;
5780
5781        retval = security_task_getscheduler(p);
5782        if (retval)
5783                goto out_unlock;
5784
5785        if (task_has_rt_policy(p))
5786                lp.sched_priority = p->rt_priority;
5787        rcu_read_unlock();
5788
5789        /*
5790         * This one might sleep, we cannot do it with a spinlock held ...
5791         */
5792        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5793
5794        return retval;
5795
5796out_unlock:
5797        rcu_read_unlock();
5798        return retval;
5799}
5800
5801/*
5802 * Copy the kernel size attribute structure (which might be larger
5803 * than what user-space knows about) to user-space.
5804 *
5805 * Note that all cases are valid: user-space buffer can be larger or
5806 * smaller than the kernel-space buffer. The usual case is that both
5807 * have the same size.
5808 */
5809static int
5810sched_attr_copy_to_user(struct sched_attr __user *uattr,
5811                        struct sched_attr *kattr,
5812                        unsigned int usize)
5813{
5814        unsigned int ksize = sizeof(*kattr);
5815
5816        if (!access_ok(uattr, usize))
5817                return -EFAULT;
5818
5819        /*
5820         * sched_getattr() ABI forwards and backwards compatibility:
5821         *
5822         * If usize == ksize then we just copy everything to user-space and all is good.
5823         *
5824         * If usize < ksize then we only copy as much as user-space has space for,
5825         * this keeps ABI compatibility as well. We skip the rest.
5826         *
5827         * If usize > ksize then user-space is using a newer version of the ABI,
5828         * which part the kernel doesn't know about. Just ignore it - tooling can
5829         * detect the kernel's knowledge of attributes from the attr->size value
5830         * which is set to ksize in this case.
5831         */
5832        kattr->size = min(usize, ksize);
5833
5834        if (copy_to_user(uattr, kattr, kattr->size))
5835                return -EFAULT;
5836
5837        return 0;
5838}
5839
5840/**
5841 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5842 * @pid: the pid in question.
5843 * @uattr: structure containing the extended parameters.
5844 * @usize: sizeof(attr) for fwd/bwd comp.
5845 * @flags: for future extension.
5846 */
5847SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5848                unsigned int, usize, unsigned int, flags)
5849{
5850        struct sched_attr kattr = { };
5851        struct task_struct *p;
5852        int retval;
5853
5854        if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5855            usize < SCHED_ATTR_SIZE_VER0 || flags)
5856                return -EINVAL;
5857
5858        rcu_read_lock();
5859        p = find_process_by_pid(pid);
5860        retval = -ESRCH;
5861        if (!p)
5862                goto out_unlock;
5863
5864        retval = security_task_getscheduler(p);
5865        if (retval)
5866                goto out_unlock;
5867
5868        kattr.sched_policy = p->policy;
5869        if (p->sched_reset_on_fork)
5870                kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5871        if (task_has_dl_policy(p))
5872                __getparam_dl(p, &kattr);
5873        else if (task_has_rt_policy(p))
5874                kattr.sched_priority = p->rt_priority;
5875        else
5876                kattr.sched_nice = task_nice(p);
5877
5878#ifdef CONFIG_UCLAMP_TASK
5879        /*
5880         * This could race with another potential updater, but this is fine
5881         * because it'll correctly read the old or the new value. We don't need
5882         * to guarantee who wins the race as long as it doesn't return garbage.
5883         */
5884        kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5885        kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5886#endif
5887
5888        rcu_read_unlock();
5889
5890        return sched_attr_copy_to_user(uattr, &kattr, usize);
5891
5892out_unlock:
5893        rcu_read_unlock();
5894        return retval;
5895}
5896
5897long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5898{
5899        cpumask_var_t cpus_allowed, new_mask;
5900        struct task_struct *p;
5901        int retval;
5902
5903        rcu_read_lock();
5904
5905        p = find_process_by_pid(pid);
5906        if (!p) {
5907                rcu_read_unlock();
5908                return -ESRCH;
5909        }
5910
5911        /* Prevent p going away */
5912        get_task_struct(p);
5913        rcu_read_unlock();
5914
5915        if (p->flags & PF_NO_SETAFFINITY) {
5916                retval = -EINVAL;
5917                goto out_put_task;
5918        }
5919        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5920                retval = -ENOMEM;
5921                goto out_put_task;
5922        }
5923        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5924                retval = -ENOMEM;
5925                goto out_free_cpus_allowed;
5926        }
5927        retval = -EPERM;
5928        if (!check_same_owner(p)) {
5929                rcu_read_lock();
5930                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5931                        rcu_read_unlock();
5932                        goto out_free_new_mask;
5933                }
5934                rcu_read_unlock();
5935        }
5936
5937        retval = security_task_setscheduler(p);
5938        if (retval)
5939                goto out_free_new_mask;
5940
5941
5942        cpuset_cpus_allowed(p, cpus_allowed);
5943        cpumask_and(new_mask, in_mask, cpus_allowed);
5944
5945        /*
5946         * Since bandwidth control happens on root_domain basis,
5947         * if admission test is enabled, we only admit -deadline
5948         * tasks allowed to run on all the CPUs in the task's
5949         * root_domain.
5950         */
5951#ifdef CONFIG_SMP
5952        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5953                rcu_read_lock();
5954                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5955                        retval = -EBUSY;
5956                        rcu_read_unlock();
5957                        goto out_free_new_mask;
5958                }
5959                rcu_read_unlock();
5960        }
5961#endif
5962again:
5963        retval = __set_cpus_allowed_ptr(p, new_mask, true);
5964
5965        if (!retval) {
5966                cpuset_cpus_allowed(p, cpus_allowed);
5967                if (!cpumask_subset(new_mask, cpus_allowed)) {
5968                        /*
5969                         * We must have raced with a concurrent cpuset
5970                         * update. Just reset the cpus_allowed to the
5971                         * cpuset's cpus_allowed
5972                         */
5973                        cpumask_copy(new_mask, cpus_allowed);
5974                        goto again;
5975                }
5976        }
5977out_free_new_mask:
5978        free_cpumask_var(new_mask);
5979out_free_cpus_allowed:
5980        free_cpumask_var(cpus_allowed);
5981out_put_task:
5982        put_task_struct(p);
5983        return retval;
5984}
5985
5986static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5987                             struct cpumask *new_mask)
5988{
5989        if (len < cpumask_size())
5990                cpumask_clear(new_mask);
5991        else if (len > cpumask_size())
5992                len = cpumask_size();
5993
5994        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5995}
5996
5997/**
5998 * sys_sched_setaffinity - set the CPU affinity of a process
5999 * @pid: pid of the process
6000 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6001 * @user_mask_ptr: user-space pointer to the new CPU mask
6002 *
6003 * Return: 0 on success. An error code otherwise.
6004 */
6005SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6006                unsigned long __user *, user_mask_ptr)
6007{
6008        cpumask_var_t new_mask;
6009        int retval;
6010
6011        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6012                return -ENOMEM;
6013
6014        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6015        if (retval == 0)
6016                retval = sched_setaffinity(pid, new_mask);
6017        free_cpumask_var(new_mask);
6018        return retval;
6019}
6020
6021long sched_getaffinity(pid_t pid, struct cpumask *mask)
6022{
6023        struct task_struct *p;
6024        unsigned long flags;
6025        int retval;
6026
6027        rcu_read_lock();
6028
6029        retval = -ESRCH;
6030        p = find_process_by_pid(pid);
6031        if (!p)
6032                goto out_unlock;
6033
6034        retval = security_task_getscheduler(p);
6035        if (retval)
6036                goto out_unlock;
6037
6038        raw_spin_lock_irqsave(&p->pi_lock, flags);
6039        cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6040        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6041
6042out_unlock:
6043        rcu_read_unlock();
6044
6045        return retval;
6046}
6047
6048/**
6049 * sys_sched_getaffinity - get the CPU affinity of a process
6050 * @pid: pid of the process
6051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6052 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6053 *
6054 * Return: size of CPU mask copied to user_mask_ptr on success. An
6055 * error code otherwise.
6056 */
6057SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6058                unsigned long __user *, user_mask_ptr)
6059{
6060        int ret;
6061        cpumask_var_t mask;
6062
6063        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6064                return -EINVAL;
6065        if (len & (sizeof(unsigned long)-1))
6066                return -EINVAL;
6067
6068        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6069                return -ENOMEM;
6070
6071        ret = sched_getaffinity(pid, mask);
6072        if (ret == 0) {
6073                unsigned int retlen = min(len, cpumask_size());
6074
6075                if (copy_to_user(user_mask_ptr, mask, retlen))
6076                        ret = -EFAULT;
6077                else
6078                        ret = retlen;
6079        }
6080        free_cpumask_var(mask);
6081
6082        return ret;
6083}
6084
6085/**
6086 * sys_sched_yield - yield the current processor to other threads.
6087 *
6088 * This function yields the current CPU to other tasks. If there are no
6089 * other threads running on this CPU then this function will return.
6090 *
6091 * Return: 0.
6092 */
6093static void do_sched_yield(void)
6094{
6095        struct rq_flags rf;
6096        struct rq *rq;
6097
6098        rq = this_rq_lock_irq(&rf);
6099
6100        schedstat_inc(rq->yld_count);
6101        current->sched_class->yield_task(rq);
6102
6103        /*
6104         * Since we are going to call schedule() anyway, there's
6105         * no need to preempt or enable interrupts:
6106         */
6107        preempt_disable();
6108        rq_unlock(rq, &rf);
6109        sched_preempt_enable_no_resched();
6110
6111        schedule();
6112}
6113
6114SYSCALL_DEFINE0(sched_yield)
6115{
6116        do_sched_yield();
6117        return 0;
6118}
6119
6120#ifndef CONFIG_PREEMPTION
6121int __sched _cond_resched(void)
6122{
6123        if (should_resched(0)) {
6124                preempt_schedule_common();
6125                return 1;
6126        }
6127        rcu_all_qs();
6128        return 0;
6129}
6130EXPORT_SYMBOL(_cond_resched);
6131#endif
6132
6133/*
6134 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6135 * call schedule, and on return reacquire the lock.
6136 *
6137 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6138 * operations here to prevent schedule() from being called twice (once via
6139 * spin_unlock(), once by hand).
6140 */
6141int __cond_resched_lock(spinlock_t *lock)
6142{
6143        int resched = should_resched(PREEMPT_LOCK_OFFSET);
6144        int ret = 0;
6145
6146        lockdep_assert_held(lock);
6147
6148        if (spin_needbreak(lock) || resched) {
6149                spin_unlock(lock);
6150                if (resched)
6151                        preempt_schedule_common();
6152                else
6153                        cpu_relax();
6154                ret = 1;
6155                spin_lock(lock);
6156        }
6157        return ret;
6158}
6159EXPORT_SYMBOL(__cond_resched_lock);
6160
6161/**
6162 * yield - yield the current processor to other threads.
6163 *
6164 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6165 *
6166 * The scheduler is at all times free to pick the calling task as the most
6167 * eligible task to run, if removing the yield() call from your code breaks
6168 * it, its already broken.
6169 *
6170 * Typical broken usage is:
6171 *
6172 * while (!event)
6173 *      yield();
6174 *
6175 * where one assumes that yield() will let 'the other' process run that will
6176 * make event true. If the current task is a SCHED_FIFO task that will never
6177 * happen. Never use yield() as a progress guarantee!!
6178 *
6179 * If you want to use yield() to wait for something, use wait_event().
6180 * If you want to use yield() to be 'nice' for others, use cond_resched().
6181 * If you still want to use yield(), do not!
6182 */
6183void __sched yield(void)
6184{
6185        set_current_state(TASK_RUNNING);
6186        do_sched_yield();
6187}
6188EXPORT_SYMBOL(yield);
6189
6190/**
6191 * yield_to - yield the current processor to another thread in
6192 * your thread group, or accelerate that thread toward the
6193 * processor it's on.
6194 * @p: target task
6195 * @preempt: whether task preemption is allowed or not
6196 *
6197 * It's the caller's job to ensure that the target task struct
6198 * can't go away on us before we can do any checks.
6199 *
6200 * Return:
6201 *      true (>0) if we indeed boosted the target task.
6202 *      false (0) if we failed to boost the target.
6203 *      -ESRCH if there's no task to yield to.
6204 */
6205int __sched yield_to(struct task_struct *p, bool preempt)
6206{
6207        struct task_struct *curr = current;
6208        struct rq *rq, *p_rq;
6209        unsigned long flags;
6210        int yielded = 0;
6211
6212        local_irq_save(flags);
6213        rq = this_rq();
6214
6215again:
6216        p_rq = task_rq(p);
6217        /*
6218         * If we're the only runnable task on the rq and target rq also
6219         * has only one task, there's absolutely no point in yielding.
6220         */
6221        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6222                yielded = -ESRCH;
6223                goto out_irq;
6224        }
6225
6226        double_rq_lock(rq, p_rq);
6227        if (task_rq(p) != p_rq) {
6228                double_rq_unlock(rq, p_rq);
6229                goto again;
6230        }
6231
6232        if (!curr->sched_class->yield_to_task)
6233                goto out_unlock;
6234
6235        if (curr->sched_class != p->sched_class)
6236                goto out_unlock;
6237
6238        if (task_running(p_rq, p) || p->state)
6239                goto out_unlock;
6240
6241        yielded = curr->sched_class->yield_to_task(rq, p);
6242        if (yielded) {
6243                schedstat_inc(rq->yld_count);
6244                /*
6245                 * Make p's CPU reschedule; pick_next_entity takes care of
6246                 * fairness.
6247                 */
6248                if (preempt && rq != p_rq)
6249                        resched_curr(p_rq);
6250        }
6251
6252out_unlock:
6253        double_rq_unlock(rq, p_rq);
6254out_irq:
6255        local_irq_restore(flags);
6256
6257        if (yielded > 0)
6258                schedule();
6259
6260        return yielded;
6261}
6262EXPORT_SYMBOL_GPL(yield_to);
6263
6264int io_schedule_prepare(void)
6265{
6266        int old_iowait = current->in_iowait;
6267
6268        current->in_iowait = 1;
6269        blk_schedule_flush_plug(current);
6270
6271        return old_iowait;
6272}
6273
6274void io_schedule_finish(int token)
6275{
6276        current->in_iowait = token;
6277}
6278
6279/*
6280 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6281 * that process accounting knows that this is a task in IO wait state.
6282 */
6283long __sched io_schedule_timeout(long timeout)
6284{
6285        int token;
6286        long ret;
6287
6288        token = io_schedule_prepare();
6289        ret = schedule_timeout(timeout);
6290        io_schedule_finish(token);
6291
6292        return ret;
6293}
6294EXPORT_SYMBOL(io_schedule_timeout);
6295
6296void __sched io_schedule(void)
6297{
6298        int token;
6299
6300        token = io_schedule_prepare();
6301        schedule();
6302        io_schedule_finish(token);
6303}
6304EXPORT_SYMBOL(io_schedule);
6305
6306/**
6307 * sys_sched_get_priority_max - return maximum RT priority.
6308 * @policy: scheduling class.
6309 *
6310 * Return: On success, this syscall returns the maximum
6311 * rt_priority that can be used by a given scheduling class.
6312 * On failure, a negative error code is returned.
6313 */
6314SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6315{
6316        int ret = -EINVAL;
6317
6318        switch (policy) {
6319        case SCHED_FIFO:
6320        case SCHED_RR:
6321                ret = MAX_USER_RT_PRIO-1;
6322                break;
6323        case SCHED_DEADLINE:
6324        case SCHED_NORMAL:
6325        case SCHED_BATCH:
6326        case SCHED_IDLE:
6327                ret = 0;
6328                break;
6329        }
6330        return ret;
6331}
6332
6333/**
6334 * sys_sched_get_priority_min - return minimum RT priority.
6335 * @policy: scheduling class.
6336 *
6337 * Return: On success, this syscall returns the minimum
6338 * rt_priority that can be used by a given scheduling class.
6339 * On failure, a negative error code is returned.
6340 */
6341SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6342{
6343        int ret = -EINVAL;
6344
6345        switch (policy) {
6346        case SCHED_FIFO:
6347        case SCHED_RR:
6348                ret = 1;
6349                break;
6350        case SCHED_DEADLINE:
6351        case SCHED_NORMAL:
6352        case SCHED_BATCH:
6353        case SCHED_IDLE:
6354                ret = 0;
6355        }
6356        return ret;
6357}
6358
6359static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6360{
6361        struct task_struct *p;
6362        unsigned int time_slice;
6363        struct rq_flags rf;
6364        struct rq *rq;
6365        int retval;
6366
6367        if (pid < 0)
6368                return -EINVAL;
6369
6370        retval = -ESRCH;
6371        rcu_read_lock();
6372        p = find_process_by_pid(pid);
6373        if (!p)
6374                goto out_unlock;
6375
6376        retval = security_task_getscheduler(p);
6377        if (retval)
6378                goto out_unlock;
6379
6380        rq = task_rq_lock(p, &rf);
6381        time_slice = 0;
6382        if (p->sched_class->get_rr_interval)
6383                time_slice = p->sched_class->get_rr_interval(rq, p);
6384        task_rq_unlock(rq, p, &rf);
6385
6386        rcu_read_unlock();
6387        jiffies_to_timespec64(time_slice, t);
6388        return 0;
6389
6390out_unlock:
6391        rcu_read_unlock();
6392        return retval;
6393}
6394
6395/**
6396 * sys_sched_rr_get_interval - return the default timeslice of a process.
6397 * @pid: pid of the process.
6398 * @interval: userspace pointer to the timeslice value.
6399 *
6400 * this syscall writes the default timeslice value of a given process
6401 * into the user-space timespec buffer. A value of '0' means infinity.
6402 *
6403 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6404 * an error code.
6405 */
6406SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6407                struct __kernel_timespec __user *, interval)
6408{
6409        struct timespec64 t;
6410        int retval = sched_rr_get_interval(pid, &t);
6411
6412        if (retval == 0)
6413                retval = put_timespec64(&t, interval);
6414
6415        return retval;
6416}
6417
6418#ifdef CONFIG_COMPAT_32BIT_TIME
6419SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6420                struct old_timespec32 __user *, interval)
6421{
6422        struct timespec64 t;
6423        int retval = sched_rr_get_interval(pid, &t);
6424
6425        if (retval == 0)
6426                retval = put_old_timespec32(&t, interval);
6427        return retval;
6428}
6429#endif
6430
6431void sched_show_task(struct task_struct *p)
6432{
6433        unsigned long free = 0;
6434        int ppid;
6435
6436        if (!try_get_task_stack(p))
6437                return;
6438
6439        pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6440
6441        if (p->state == TASK_RUNNING)
6442                pr_cont("  running task    ");
6443#ifdef CONFIG_DEBUG_STACK_USAGE
6444        free = stack_not_used(p);
6445#endif
6446        ppid = 0;
6447        rcu_read_lock();
6448        if (pid_alive(p))
6449                ppid = task_pid_nr(rcu_dereference(p->real_parent));
6450        rcu_read_unlock();
6451        pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6452                free, task_pid_nr(p), ppid,
6453                (unsigned long)task_thread_info(p)->flags);
6454
6455        print_worker_info(KERN_INFO, p);
6456        show_stack(p, NULL, KERN_INFO);
6457        put_task_stack(p);
6458}
6459EXPORT_SYMBOL_GPL(sched_show_task);
6460
6461static inline bool
6462state_filter_match(unsigned long state_filter, struct task_struct *p)
6463{
6464        /* no filter, everything matches */
6465        if (!state_filter)
6466                return true;
6467
6468        /* filter, but doesn't match */
6469        if (!(p->state & state_filter))
6470                return false;
6471
6472        /*
6473         * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6474         * TASK_KILLABLE).
6475         */
6476        if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6477                return false;
6478
6479        return true;
6480}
6481
6482
6483void show_state_filter(unsigned long state_filter)
6484{
6485        struct task_struct *g, *p;
6486
6487        rcu_read_lock();
6488        for_each_process_thread(g, p) {
6489                /*
6490                 * reset the NMI-timeout, listing all files on a slow
6491                 * console might take a lot of time:
6492                 * Also, reset softlockup watchdogs on all CPUs, because
6493                 * another CPU might be blocked waiting for us to process
6494                 * an IPI.
6495                 */
6496                touch_nmi_watchdog();
6497                touch_all_softlockup_watchdogs();
6498                if (state_filter_match(state_filter, p))
6499                        sched_show_task(p);
6500        }
6501
6502#ifdef CONFIG_SCHED_DEBUG
6503        if (!state_filter)
6504                sysrq_sched_debug_show();
6505#endif
6506        rcu_read_unlock();
6507        /*
6508         * Only show locks if all tasks are dumped:
6509         */
6510        if (!state_filter)
6511                debug_show_all_locks();
6512}
6513
6514/**
6515 * init_idle - set up an idle thread for a given CPU
6516 * @idle: task in question
6517 * @cpu: CPU the idle task belongs to
6518 *
6519 * NOTE: this function does not set the idle thread's NEED_RESCHED
6520 * flag, to make booting more robust.
6521 */
6522void init_idle(struct task_struct *idle, int cpu)
6523{
6524        struct rq *rq = cpu_rq(cpu);
6525        unsigned long flags;
6526
6527        __sched_fork(0, idle);
6528
6529        raw_spin_lock_irqsave(&idle->pi_lock, flags);
6530        raw_spin_lock(&rq->lock);
6531
6532        idle->state = TASK_RUNNING;
6533        idle->se.exec_start = sched_clock();
6534        idle->flags |= PF_IDLE;
6535
6536        scs_task_reset(idle);
6537        kasan_unpoison_task_stack(idle);
6538
6539#ifdef CONFIG_SMP
6540        /*
6541         * Its possible that init_idle() gets called multiple times on a task,
6542         * in that case do_set_cpus_allowed() will not do the right thing.
6543         *
6544         * And since this is boot we can forgo the serialization.
6545         */
6546        set_cpus_allowed_common(idle, cpumask_of(cpu));
6547#endif
6548        /*
6549         * We're having a chicken and egg problem, even though we are
6550         * holding rq->lock, the CPU isn't yet set to this CPU so the
6551         * lockdep check in task_group() will fail.
6552         *
6553         * Similar case to sched_fork(). / Alternatively we could
6554         * use task_rq_lock() here and obtain the other rq->lock.
6555         *
6556         * Silence PROVE_RCU
6557         */
6558        rcu_read_lock();
6559        __set_task_cpu(idle, cpu);
6560        rcu_read_unlock();
6561
6562        rq->idle = idle;
6563        rcu_assign_pointer(rq->curr, idle);
6564        idle->on_rq = TASK_ON_RQ_QUEUED;
6565#ifdef CONFIG_SMP
6566        idle->on_cpu = 1;
6567#endif
6568        raw_spin_unlock(&rq->lock);
6569        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6570
6571        /* Set the preempt count _outside_ the spinlocks! */
6572        init_idle_preempt_count(idle, cpu);
6573
6574        /*
6575         * The idle tasks have their own, simple scheduling class:
6576         */
6577        idle->sched_class = &idle_sched_class;
6578        ftrace_graph_init_idle_task(idle, cpu);
6579        vtime_init_idle(idle, cpu);
6580#ifdef CONFIG_SMP
6581        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6582#endif
6583}
6584
6585#ifdef CONFIG_SMP
6586
6587int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6588                              const struct cpumask *trial)
6589{
6590        int ret = 1;
6591
6592        if (!cpumask_weight(cur))
6593                return ret;
6594
6595        ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6596
6597        return ret;
6598}
6599
6600int task_can_attach(struct task_struct *p,
6601                    const struct cpumask *cs_cpus_allowed)
6602{
6603        int ret = 0;
6604
6605        /*
6606         * Kthreads which disallow setaffinity shouldn't be moved
6607         * to a new cpuset; we don't want to change their CPU
6608         * affinity and isolating such threads by their set of
6609         * allowed nodes is unnecessary.  Thus, cpusets are not
6610         * applicable for such threads.  This prevents checking for
6611         * success of set_cpus_allowed_ptr() on all attached tasks
6612         * before cpus_mask may be changed.
6613         */
6614        if (p->flags & PF_NO_SETAFFINITY) {
6615                ret = -EINVAL;
6616                goto out;
6617        }
6618
6619        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6620                                              cs_cpus_allowed))
6621                ret = dl_task_can_attach(p, cs_cpus_allowed);
6622
6623out:
6624        return ret;
6625}
6626
6627bool sched_smp_initialized __read_mostly;
6628
6629#ifdef CONFIG_NUMA_BALANCING
6630/* Migrate current task p to target_cpu */
6631int migrate_task_to(struct task_struct *p, int target_cpu)
6632{
6633        struct migration_arg arg = { p, target_cpu };
6634        int curr_cpu = task_cpu(p);
6635
6636        if (curr_cpu == target_cpu)
6637                return 0;
6638
6639        if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6640                return -EINVAL;
6641
6642        /* TODO: This is not properly updating schedstats */
6643
6644        trace_sched_move_numa(p, curr_cpu, target_cpu);
6645        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6646}
6647
6648/*
6649 * Requeue a task on a given node and accurately track the number of NUMA
6650 * tasks on the runqueues
6651 */
6652void sched_setnuma(struct task_struct *p, int nid)
6653{
6654        bool queued, running;
6655        struct rq_flags rf;
6656        struct rq *rq;
6657
6658        rq = task_rq_lock(p, &rf);
6659        queued = task_on_rq_queued(p);
6660        running = task_current(rq, p);
6661
6662        if (queued)
6663                dequeue_task(rq, p, DEQUEUE_SAVE);
6664        if (running)
6665                put_prev_task(rq, p);
6666
6667        p->numa_preferred_nid = nid;
6668
6669        if (queued)
6670                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6671        if (running)
6672                set_next_task(rq, p);
6673        task_rq_unlock(rq, p, &rf);
6674}
6675#endif /* CONFIG_NUMA_BALANCING */
6676
6677#ifdef CONFIG_HOTPLUG_CPU
6678/*
6679 * Ensure that the idle task is using init_mm right before its CPU goes
6680 * offline.
6681 */
6682void idle_task_exit(void)
6683{
6684        struct mm_struct *mm = current->active_mm;
6685
6686        BUG_ON(cpu_online(smp_processor_id()));
6687        BUG_ON(current != this_rq()->idle);
6688
6689        if (mm != &init_mm) {
6690                switch_mm(mm, &init_mm, current);
6691                finish_arch_post_lock_switch();
6692        }
6693
6694        /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6695}
6696
6697/*
6698 * Since this CPU is going 'away' for a while, fold any nr_active delta
6699 * we might have. Assumes we're called after migrate_tasks() so that the
6700 * nr_active count is stable. We need to take the teardown thread which
6701 * is calling this into account, so we hand in adjust = 1 to the load
6702 * calculation.
6703 *
6704 * Also see the comment "Global load-average calculations".
6705 */
6706static void calc_load_migrate(struct rq *rq)
6707{
6708        long delta = calc_load_fold_active(rq, 1);
6709        if (delta)
6710                atomic_long_add(delta, &calc_load_tasks);
6711}
6712
6713static struct task_struct *__pick_migrate_task(struct rq *rq)
6714{
6715        const struct sched_class *class;
6716        struct task_struct *next;
6717
6718        for_each_class(class) {
6719                next = class->pick_next_task(rq);
6720                if (next) {
6721                        next->sched_class->put_prev_task(rq, next);
6722                        return next;
6723                }
6724        }
6725
6726        /* The idle class should always have a runnable task */
6727        BUG();
6728}
6729
6730/*
6731 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6732 * try_to_wake_up()->select_task_rq().
6733 *
6734 * Called with rq->lock held even though we'er in stop_machine() and
6735 * there's no concurrency possible, we hold the required locks anyway
6736 * because of lock validation efforts.
6737 */
6738static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6739{
6740        struct rq *rq = dead_rq;
6741        struct task_struct *next, *stop = rq->stop;
6742        struct rq_flags orf = *rf;
6743        int dest_cpu;
6744
6745        /*
6746         * Fudge the rq selection such that the below task selection loop
6747         * doesn't get stuck on the currently eligible stop task.
6748         *
6749         * We're currently inside stop_machine() and the rq is either stuck
6750         * in the stop_machine_cpu_stop() loop, or we're executing this code,
6751         * either way we should never end up calling schedule() until we're
6752         * done here.
6753         */
6754        rq->stop = NULL;
6755
6756        /*
6757         * put_prev_task() and pick_next_task() sched
6758         * class method both need to have an up-to-date
6759         * value of rq->clock[_task]
6760         */
6761        update_rq_clock(rq);
6762
6763        for (;;) {
6764                /*
6765                 * There's this thread running, bail when that's the only
6766                 * remaining thread:
6767                 */
6768                if (rq->nr_running == 1)
6769                        break;
6770
6771                next = __pick_migrate_task(rq);
6772
6773                /*
6774                 * Rules for changing task_struct::cpus_mask are holding
6775                 * both pi_lock and rq->lock, such that holding either
6776                 * stabilizes the mask.
6777                 *
6778                 * Drop rq->lock is not quite as disastrous as it usually is
6779                 * because !cpu_active at this point, which means load-balance
6780                 * will not interfere. Also, stop-machine.
6781                 */
6782                rq_unlock(rq, rf);
6783                raw_spin_lock(&next->pi_lock);
6784                rq_relock(rq, rf);
6785
6786                /*
6787                 * Since we're inside stop-machine, _nothing_ should have
6788                 * changed the task, WARN if weird stuff happened, because in
6789                 * that case the above rq->lock drop is a fail too.
6790                 */
6791                if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6792                        raw_spin_unlock(&next->pi_lock);
6793                        continue;
6794                }
6795
6796                /* Find suitable destination for @next, with force if needed. */
6797                dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6798                rq = __migrate_task(rq, rf, next, dest_cpu);
6799                if (rq != dead_rq) {
6800                        rq_unlock(rq, rf);
6801                        rq = dead_rq;
6802                        *rf = orf;
6803                        rq_relock(rq, rf);
6804                }
6805                raw_spin_unlock(&next->pi_lock);
6806        }
6807
6808        rq->stop = stop;
6809}
6810#endif /* CONFIG_HOTPLUG_CPU */
6811
6812void set_rq_online(struct rq *rq)
6813{
6814        if (!rq->online) {
6815                const struct sched_class *class;
6816
6817                cpumask_set_cpu(rq->cpu, rq->rd->online);
6818                rq->online = 1;
6819
6820                for_each_class(class) {
6821                        if (class->rq_online)
6822                                class->rq_online(rq);
6823                }
6824        }
6825}
6826
6827void set_rq_offline(struct rq *rq)
6828{
6829        if (rq->online) {
6830                const struct sched_class *class;
6831
6832                for_each_class(class) {
6833                        if (class->rq_offline)
6834                                class->rq_offline(rq);
6835                }
6836
6837                cpumask_clear_cpu(rq->cpu, rq->rd->online);
6838                rq->online = 0;
6839        }
6840}
6841
6842/*
6843 * used to mark begin/end of suspend/resume:
6844 */
6845static int num_cpus_frozen;
6846
6847/*
6848 * Update cpusets according to cpu_active mask.  If cpusets are
6849 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6850 * around partition_sched_domains().
6851 *
6852 * If we come here as part of a suspend/resume, don't touch cpusets because we
6853 * want to restore it back to its original state upon resume anyway.
6854 */
6855static void cpuset_cpu_active(void)
6856{
6857        if (cpuhp_tasks_frozen) {
6858                /*
6859                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6860                 * resume sequence. As long as this is not the last online
6861                 * operation in the resume sequence, just build a single sched
6862                 * domain, ignoring cpusets.
6863                 */
6864                partition_sched_domains(1, NULL, NULL);
6865                if (--num_cpus_frozen)
6866                        return;
6867                /*
6868                 * This is the last CPU online operation. So fall through and
6869                 * restore the original sched domains by considering the
6870                 * cpuset configurations.
6871                 */
6872                cpuset_force_rebuild();
6873        }
6874        cpuset_update_active_cpus();
6875}
6876
6877static int cpuset_cpu_inactive(unsigned int cpu)
6878{
6879        if (!cpuhp_tasks_frozen) {
6880                if (dl_cpu_busy(cpu))
6881                        return -EBUSY;
6882                cpuset_update_active_cpus();
6883        } else {
6884                num_cpus_frozen++;
6885                partition_sched_domains(1, NULL, NULL);
6886        }
6887        return 0;
6888}
6889
6890int sched_cpu_activate(unsigned int cpu)
6891{
6892        struct rq *rq = cpu_rq(cpu);
6893        struct rq_flags rf;
6894
6895#ifdef CONFIG_SCHED_SMT
6896        /*
6897         * When going up, increment the number of cores with SMT present.
6898         */
6899        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6900                static_branch_inc_cpuslocked(&sched_smt_present);
6901#endif
6902        set_cpu_active(cpu, true);
6903
6904        if (sched_smp_initialized) {
6905                sched_domains_numa_masks_set(cpu);
6906                cpuset_cpu_active();
6907        }
6908
6909        /*
6910         * Put the rq online, if not already. This happens:
6911         *
6912         * 1) In the early boot process, because we build the real domains
6913         *    after all CPUs have been brought up.
6914         *
6915         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6916         *    domains.
6917         */
6918        rq_lock_irqsave(rq, &rf);
6919        if (rq->rd) {
6920                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6921                set_rq_online(rq);
6922        }
6923        rq_unlock_irqrestore(rq, &rf);
6924
6925        return 0;
6926}
6927
6928int sched_cpu_deactivate(unsigned int cpu)
6929{
6930        int ret;
6931
6932        set_cpu_active(cpu, false);
6933        /*
6934         * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6935         * users of this state to go away such that all new such users will
6936         * observe it.
6937         *
6938         * Do sync before park smpboot threads to take care the rcu boost case.
6939         */
6940        synchronize_rcu();
6941
6942#ifdef CONFIG_SCHED_SMT
6943        /*
6944         * When going down, decrement the number of cores with SMT present.
6945         */
6946        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6947                static_branch_dec_cpuslocked(&sched_smt_present);
6948#endif
6949
6950        if (!sched_smp_initialized)
6951                return 0;
6952
6953        ret = cpuset_cpu_inactive(cpu);
6954        if (ret) {
6955                set_cpu_active(cpu, true);
6956                return ret;
6957        }
6958        sched_domains_numa_masks_clear(cpu);
6959        return 0;
6960}
6961
6962static void sched_rq_cpu_starting(unsigned int cpu)
6963{
6964        struct rq *rq = cpu_rq(cpu);
6965
6966        rq->calc_load_update = calc_load_update;
6967        update_max_interval();
6968}
6969
6970int sched_cpu_starting(unsigned int cpu)
6971{
6972        sched_rq_cpu_starting(cpu);
6973        sched_tick_start(cpu);
6974        return 0;
6975}
6976
6977#ifdef CONFIG_HOTPLUG_CPU
6978int sched_cpu_dying(unsigned int cpu)
6979{
6980        struct rq *rq = cpu_rq(cpu);
6981        struct rq_flags rf;
6982
6983        /* Handle pending wakeups and then migrate everything off */
6984        sched_tick_stop(cpu);
6985
6986        rq_lock_irqsave(rq, &rf);
6987        if (rq->rd) {
6988                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6989                set_rq_offline(rq);
6990        }
6991        migrate_tasks(rq, &rf);
6992        BUG_ON(rq->nr_running != 1);
6993        rq_unlock_irqrestore(rq, &rf);
6994
6995        calc_load_migrate(rq);
6996        update_max_interval();
6997        nohz_balance_exit_idle(rq);
6998        hrtick_clear(rq);
6999        return 0;
7000}
7001#endif
7002
7003void __init sched_init_smp(void)
7004{
7005        sched_init_numa();
7006
7007        /*
7008         * There's no userspace yet to cause hotplug operations; hence all the
7009         * CPU masks are stable and all blatant races in the below code cannot
7010         * happen.
7011         */
7012        mutex_lock(&sched_domains_mutex);
7013        sched_init_domains(cpu_active_mask);
7014        mutex_unlock(&sched_domains_mutex);
7015
7016        /* Move init over to a non-isolated CPU */
7017        if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7018                BUG();
7019        sched_init_granularity();
7020
7021        init_sched_rt_class();
7022        init_sched_dl_class();
7023
7024        sched_smp_initialized = true;
7025}
7026
7027static int __init migration_init(void)
7028{
7029        sched_cpu_starting(smp_processor_id());
7030        return 0;
7031}
7032early_initcall(migration_init);
7033
7034#else
7035void __init sched_init_smp(void)
7036{
7037        sched_init_granularity();
7038}
7039#endif /* CONFIG_SMP */
7040
7041int in_sched_functions(unsigned long addr)
7042{
7043        return in_lock_functions(addr) ||
7044                (addr >= (unsigned long)__sched_text_start
7045                && addr < (unsigned long)__sched_text_end);
7046}
7047
7048#ifdef CONFIG_CGROUP_SCHED
7049/*
7050 * Default task group.
7051 * Every task in system belongs to this group at bootup.
7052 */
7053struct task_group root_task_group;
7054LIST_HEAD(task_groups);
7055
7056/* Cacheline aligned slab cache for task_group */
7057static struct kmem_cache *task_group_cache __read_mostly;
7058#endif
7059
7060DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7061DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7062
7063void __init sched_init(void)
7064{
7065        unsigned long ptr = 0;
7066        int i;
7067
7068        /* Make sure the linker didn't screw up */
7069        BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7070               &fair_sched_class + 1 != &rt_sched_class ||
7071               &rt_sched_class + 1   != &dl_sched_class);
7072#ifdef CONFIG_SMP
7073        BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7074#endif
7075
7076        wait_bit_init();
7077
7078#ifdef CONFIG_FAIR_GROUP_SCHED
7079        ptr += 2 * nr_cpu_ids * sizeof(void **);
7080#endif
7081#ifdef CONFIG_RT_GROUP_SCHED
7082        ptr += 2 * nr_cpu_ids * sizeof(void **);
7083#endif
7084        if (ptr) {
7085                ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7086
7087#ifdef CONFIG_FAIR_GROUP_SCHED
7088                root_task_group.se = (struct sched_entity **)ptr;
7089                ptr += nr_cpu_ids * sizeof(void **);
7090
7091                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7092                ptr += nr_cpu_ids * sizeof(void **);
7093
7094                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7095                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7096#endif /* CONFIG_FAIR_GROUP_SCHED */
7097#ifdef CONFIG_RT_GROUP_SCHED
7098                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7099                ptr += nr_cpu_ids * sizeof(void **);
7100
7101                root_task_group.rt_rq = (struct rt_rq **)ptr;
7102                ptr += nr_cpu_ids * sizeof(void **);
7103
7104#endif /* CONFIG_RT_GROUP_SCHED */
7105        }
7106#ifdef CONFIG_CPUMASK_OFFSTACK
7107        for_each_possible_cpu(i) {
7108                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7109                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7110                per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7111                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7112        }
7113#endif /* CONFIG_CPUMASK_OFFSTACK */
7114
7115        init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7116        init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7117
7118#ifdef CONFIG_SMP
7119        init_defrootdomain();
7120#endif
7121
7122#ifdef CONFIG_RT_GROUP_SCHED
7123        init_rt_bandwidth(&root_task_group.rt_bandwidth,
7124                        global_rt_period(), global_rt_runtime());
7125#endif /* CONFIG_RT_GROUP_SCHED */
7126
7127#ifdef CONFIG_CGROUP_SCHED
7128        task_group_cache = KMEM_CACHE(task_group, 0);
7129
7130        list_add(&root_task_group.list, &task_groups);
7131        INIT_LIST_HEAD(&root_task_group.children);
7132        INIT_LIST_HEAD(&root_task_group.siblings);
7133        autogroup_init(&init_task);
7134#endif /* CONFIG_CGROUP_SCHED */
7135
7136        for_each_possible_cpu(i) {
7137                struct rq *rq;
7138
7139                rq = cpu_rq(i);
7140                raw_spin_lock_init(&rq->lock);
7141                rq->nr_running = 0;
7142                rq->calc_load_active = 0;
7143                rq->calc_load_update = jiffies + LOAD_FREQ;
7144                init_cfs_rq(&rq->cfs);
7145                init_rt_rq(&rq->rt);
7146                init_dl_rq(&rq->dl);
7147#ifdef CONFIG_FAIR_GROUP_SCHED
7148                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7149                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7150                /*
7151                 * How much CPU bandwidth does root_task_group get?
7152                 *
7153                 * In case of task-groups formed thr' the cgroup filesystem, it
7154                 * gets 100% of the CPU resources in the system. This overall
7155                 * system CPU resource is divided among the tasks of
7156                 * root_task_group and its child task-groups in a fair manner,
7157                 * based on each entity's (task or task-group's) weight
7158                 * (se->load.weight).
7159                 *
7160                 * In other words, if root_task_group has 10 tasks of weight
7161                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7162                 * then A0's share of the CPU resource is:
7163                 *
7164                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7165                 *
7166                 * We achieve this by letting root_task_group's tasks sit
7167                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7168                 */
7169                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7170#endif /* CONFIG_FAIR_GROUP_SCHED */
7171
7172                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7173#ifdef CONFIG_RT_GROUP_SCHED
7174                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7175#endif
7176#ifdef CONFIG_SMP
7177                rq->sd = NULL;
7178                rq->rd = NULL;
7179                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7180                rq->balance_callback = NULL;
7181                rq->active_balance = 0;
7182                rq->next_balance = jiffies;
7183                rq->push_cpu = 0;
7184                rq->cpu = i;
7185                rq->online = 0;
7186                rq->idle_stamp = 0;
7187                rq->avg_idle = 2*sysctl_sched_migration_cost;
7188                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7189
7190                INIT_LIST_HEAD(&rq->cfs_tasks);
7191
7192                rq_attach_root(rq, &def_root_domain);
7193#ifdef CONFIG_NO_HZ_COMMON
7194                rq->last_blocked_load_update_tick = jiffies;
7195                atomic_set(&rq->nohz_flags, 0);
7196
7197                rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7198#endif
7199#endif /* CONFIG_SMP */
7200                hrtick_rq_init(rq);
7201                atomic_set(&rq->nr_iowait, 0);
7202        }
7203
7204        set_load_weight(&init_task, false);
7205
7206        /*
7207         * The boot idle thread does lazy MMU switching as well:
7208         */
7209        mmgrab(&init_mm);
7210        enter_lazy_tlb(&init_mm, current);
7211
7212        /*
7213         * Make us the idle thread. Technically, schedule() should not be
7214         * called from this thread, however somewhere below it might be,
7215         * but because we are the idle thread, we just pick up running again
7216         * when this runqueue becomes "idle".
7217         */
7218        init_idle(current, smp_processor_id());
7219
7220        calc_load_update = jiffies + LOAD_FREQ;
7221
7222#ifdef CONFIG_SMP
7223        idle_thread_set_boot_cpu();
7224#endif
7225        init_sched_fair_class();
7226
7227        init_schedstats();
7228
7229        psi_init();
7230
7231        init_uclamp();
7232
7233        scheduler_running = 1;
7234}
7235
7236#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7237static inline int preempt_count_equals(int preempt_offset)
7238{
7239        int nested = preempt_count() + rcu_preempt_depth();
7240
7241        return (nested == preempt_offset);
7242}
7243
7244void __might_sleep(const char *file, int line, int preempt_offset)
7245{
7246        /*
7247         * Blocking primitives will set (and therefore destroy) current->state,
7248         * since we will exit with TASK_RUNNING make sure we enter with it,
7249         * otherwise we will destroy state.
7250         */
7251        WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7252                        "do not call blocking ops when !TASK_RUNNING; "
7253                        "state=%lx set at [<%p>] %pS\n",
7254                        current->state,
7255                        (void *)current->task_state_change,
7256                        (void *)current->task_state_change);
7257
7258        ___might_sleep(file, line, preempt_offset);
7259}
7260EXPORT_SYMBOL(__might_sleep);
7261
7262void ___might_sleep(const char *file, int line, int preempt_offset)
7263{
7264        /* Ratelimiting timestamp: */
7265        static unsigned long prev_jiffy;
7266
7267        unsigned long preempt_disable_ip;
7268
7269        /* WARN_ON_ONCE() by default, no rate limit required: */
7270        rcu_sleep_check();
7271
7272        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7273             !is_idle_task(current) && !current->non_block_count) ||
7274            system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7275            oops_in_progress)
7276                return;
7277
7278        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7279                return;
7280        prev_jiffy = jiffies;
7281
7282        /* Save this before calling printk(), since that will clobber it: */
7283        preempt_disable_ip = get_preempt_disable_ip(current);
7284
7285        printk(KERN_ERR
7286                "BUG: sleeping function called from invalid context at %s:%d\n",
7287                        file, line);
7288        printk(KERN_ERR
7289                "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7290                        in_atomic(), irqs_disabled(), current->non_block_count,
7291                        current->pid, current->comm);
7292
7293        if (task_stack_end_corrupted(current))
7294                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7295
7296        debug_show_held_locks(current);
7297        if (irqs_disabled())
7298                print_irqtrace_events(current);
7299        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7300            && !preempt_count_equals(preempt_offset)) {
7301                pr_err("Preemption disabled at:");
7302                print_ip_sym(KERN_ERR, preempt_disable_ip);
7303        }
7304        dump_stack();
7305        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7306}
7307EXPORT_SYMBOL(___might_sleep);
7308
7309void __cant_sleep(const char *file, int line, int preempt_offset)
7310{
7311        static unsigned long prev_jiffy;
7312
7313        if (irqs_disabled())
7314                return;
7315
7316        if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7317                return;
7318
7319        if (preempt_count() > preempt_offset)
7320                return;
7321
7322        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7323                return;
7324        prev_jiffy = jiffies;
7325
7326        printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7327        printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7328                        in_atomic(), irqs_disabled(),
7329                        current->pid, current->comm);
7330
7331        debug_show_held_locks(current);
7332        dump_stack();
7333        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7334}
7335EXPORT_SYMBOL_GPL(__cant_sleep);
7336#endif
7337
7338#ifdef CONFIG_MAGIC_SYSRQ
7339void normalize_rt_tasks(void)
7340{
7341        struct task_struct *g, *p;
7342        struct sched_attr attr = {
7343                .sched_policy = SCHED_NORMAL,
7344        };
7345
7346        read_lock(&tasklist_lock);
7347        for_each_process_thread(g, p) {
7348                /*
7349                 * Only normalize user tasks:
7350                 */
7351                if (p->flags & PF_KTHREAD)
7352                        continue;
7353
7354                p->se.exec_start = 0;
7355                schedstat_set(p->se.statistics.wait_start,  0);
7356                schedstat_set(p->se.statistics.sleep_start, 0);
7357                schedstat_set(p->se.statistics.block_start, 0);
7358
7359                if (!dl_task(p) && !rt_task(p)) {
7360                        /*
7361                         * Renice negative nice level userspace
7362                         * tasks back to 0:
7363                         */
7364                        if (task_nice(p) < 0)
7365                                set_user_nice(p, 0);
7366                        continue;
7367                }
7368
7369                __sched_setscheduler(p, &attr, false, false);
7370        }
7371        read_unlock(&tasklist_lock);
7372}
7373
7374#endif /* CONFIG_MAGIC_SYSRQ */
7375
7376#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7377/*
7378 * These functions are only useful for the IA64 MCA handling, or kdb.
7379 *
7380 * They can only be called when the whole system has been
7381 * stopped - every CPU needs to be quiescent, and no scheduling
7382 * activity can take place. Using them for anything else would
7383 * be a serious bug, and as a result, they aren't even visible
7384 * under any other configuration.
7385 */
7386
7387/**
7388 * curr_task - return the current task for a given CPU.
7389 * @cpu: the processor in question.
7390 *
7391 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7392 *
7393 * Return: The current task for @cpu.
7394 */
7395struct task_struct *curr_task(int cpu)
7396{
7397        return cpu_curr(cpu);
7398}
7399
7400#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7401
7402#ifdef CONFIG_IA64
7403/**
7404 * ia64_set_curr_task - set the current task for a given CPU.
7405 * @cpu: the processor in question.
7406 * @p: the task pointer to set.
7407 *
7408 * Description: This function must only be used when non-maskable interrupts
7409 * are serviced on a separate stack. It allows the architecture to switch the
7410 * notion of the current task on a CPU in a non-blocking manner. This function
7411 * must be called with all CPU's synchronized, and interrupts disabled, the
7412 * and caller must save the original value of the current task (see
7413 * curr_task() above) and restore that value before reenabling interrupts and
7414 * re-starting the system.
7415 *
7416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7417 */
7418void ia64_set_curr_task(int cpu, struct task_struct *p)
7419{
7420        cpu_curr(cpu) = p;
7421}
7422
7423#endif
7424
7425#ifdef CONFIG_CGROUP_SCHED
7426/* task_group_lock serializes the addition/removal of task groups */
7427static DEFINE_SPINLOCK(task_group_lock);
7428
7429static inline void alloc_uclamp_sched_group(struct task_group *tg,
7430                                            struct task_group *parent)
7431{
7432#ifdef CONFIG_UCLAMP_TASK_GROUP
7433        enum uclamp_id clamp_id;
7434
7435        for_each_clamp_id(clamp_id) {
7436                uclamp_se_set(&tg->uclamp_req[clamp_id],
7437                              uclamp_none(clamp_id), false);
7438                tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7439        }
7440#endif
7441}
7442
7443static void sched_free_group(struct task_group *tg)
7444{
7445        free_fair_sched_group(tg);
7446        free_rt_sched_group(tg);
7447        autogroup_free(tg);
7448        kmem_cache_free(task_group_cache, tg);
7449}
7450
7451/* allocate runqueue etc for a new task group */
7452struct task_group *sched_create_group(struct task_group *parent)
7453{
7454        struct task_group *tg;
7455
7456        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7457        if (!tg)
7458                return ERR_PTR(-ENOMEM);
7459
7460        if (!alloc_fair_sched_group(tg, parent))
7461                goto err;
7462
7463        if (!alloc_rt_sched_group(tg, parent))
7464                goto err;
7465
7466        alloc_uclamp_sched_group(tg, parent);
7467
7468        return tg;
7469
7470err:
7471        sched_free_group(tg);
7472        return ERR_PTR(-ENOMEM);
7473}
7474
7475void sched_online_group(struct task_group *tg, struct task_group *parent)
7476{
7477        unsigned long flags;
7478
7479        spin_lock_irqsave(&task_group_lock, flags);
7480        list_add_rcu(&tg->list, &task_groups);
7481
7482        /* Root should already exist: */
7483        WARN_ON(!parent);
7484
7485        tg->parent = parent;
7486        INIT_LIST_HEAD(&tg->children);
7487        list_add_rcu(&tg->siblings, &parent->children);
7488        spin_unlock_irqrestore(&task_group_lock, flags);
7489
7490        online_fair_sched_group(tg);
7491}
7492
7493/* rcu callback to free various structures associated with a task group */
7494static void sched_free_group_rcu(struct rcu_head *rhp)
7495{
7496        /* Now it should be safe to free those cfs_rqs: */
7497        sched_free_group(container_of(rhp, struct task_group, rcu));
7498}
7499
7500void sched_destroy_group(struct task_group *tg)
7501{
7502        /* Wait for possible concurrent references to cfs_rqs complete: */
7503        call_rcu(&tg->rcu, sched_free_group_rcu);
7504}
7505
7506void sched_offline_group(struct task_group *tg)
7507{
7508        unsigned long flags;
7509
7510        /* End participation in shares distribution: */
7511        unregister_fair_sched_group(tg);
7512
7513        spin_lock_irqsave(&task_group_lock, flags);
7514        list_del_rcu(&tg->list);
7515        list_del_rcu(&tg->siblings);
7516        spin_unlock_irqrestore(&task_group_lock, flags);
7517}
7518
7519static void sched_change_group(struct task_struct *tsk, int type)
7520{
7521        struct task_group *tg;
7522
7523        /*
7524         * All callers are synchronized by task_rq_lock(); we do not use RCU
7525         * which is pointless here. Thus, we pass "true" to task_css_check()
7526         * to prevent lockdep warnings.
7527         */
7528        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7529                          struct task_group, css);
7530        tg = autogroup_task_group(tsk, tg);
7531        tsk->sched_task_group = tg;
7532
7533#ifdef CONFIG_FAIR_GROUP_SCHED
7534        if (tsk->sched_class->task_change_group)
7535                tsk->sched_class->task_change_group(tsk, type);
7536        else
7537#endif
7538                set_task_rq(tsk, task_cpu(tsk));
7539}
7540
7541/*
7542 * Change task's runqueue when it moves between groups.
7543 *
7544 * The caller of this function should have put the task in its new group by
7545 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7546 * its new group.
7547 */
7548void sched_move_task(struct task_struct *tsk)
7549{
7550        int queued, running, queue_flags =
7551                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7552        struct rq_flags rf;
7553        struct rq *rq;
7554
7555        rq = task_rq_lock(tsk, &rf);
7556        update_rq_clock(rq);
7557
7558        running = task_current(rq, tsk);
7559        queued = task_on_rq_queued(tsk);
7560
7561        if (queued)
7562                dequeue_task(rq, tsk, queue_flags);
7563        if (running)
7564                put_prev_task(rq, tsk);
7565
7566        sched_change_group(tsk, TASK_MOVE_GROUP);
7567
7568        if (queued)
7569                enqueue_task(rq, tsk, queue_flags);
7570        if (running) {
7571                set_next_task(rq, tsk);
7572                /*
7573                 * After changing group, the running task may have joined a
7574                 * throttled one but it's still the running task. Trigger a
7575                 * resched to make sure that task can still run.
7576                 */
7577                resched_curr(rq);
7578        }
7579
7580        task_rq_unlock(rq, tsk, &rf);
7581}
7582
7583static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7584{
7585        return css ? container_of(css, struct task_group, css) : NULL;
7586}
7587
7588static struct cgroup_subsys_state *
7589cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7590{
7591        struct task_group *parent = css_tg(parent_css);
7592        struct task_group *tg;
7593
7594        if (!parent) {
7595                /* This is early initialization for the top cgroup */
7596                return &root_task_group.css;
7597        }
7598
7599        tg = sched_create_group(parent);
7600        if (IS_ERR(tg))
7601                return ERR_PTR(-ENOMEM);
7602
7603        return &tg->css;
7604}
7605
7606/* Expose task group only after completing cgroup initialization */
7607static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7608{
7609        struct task_group *tg = css_tg(css);
7610        struct task_group *parent = css_tg(css->parent);
7611
7612        if (parent)
7613                sched_online_group(tg, parent);
7614
7615#ifdef CONFIG_UCLAMP_TASK_GROUP
7616        /* Propagate the effective uclamp value for the new group */
7617        cpu_util_update_eff(css);
7618#endif
7619
7620        return 0;
7621}
7622
7623static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7624{
7625        struct task_group *tg = css_tg(css);
7626
7627        sched_offline_group(tg);
7628}
7629
7630static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631{
7632        struct task_group *tg = css_tg(css);
7633
7634        /*
7635         * Relies on the RCU grace period between css_released() and this.
7636         */
7637        sched_free_group(tg);
7638}
7639
7640/*
7641 * This is called before wake_up_new_task(), therefore we really only
7642 * have to set its group bits, all the other stuff does not apply.
7643 */
7644static void cpu_cgroup_fork(struct task_struct *task)
7645{
7646        struct rq_flags rf;
7647        struct rq *rq;
7648
7649        rq = task_rq_lock(task, &rf);
7650
7651        update_rq_clock(rq);
7652        sched_change_group(task, TASK_SET_GROUP);
7653
7654        task_rq_unlock(rq, task, &rf);
7655}
7656
7657static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7658{
7659        struct task_struct *task;
7660        struct cgroup_subsys_state *css;
7661        int ret = 0;
7662
7663        cgroup_taskset_for_each(task, css, tset) {
7664#ifdef CONFIG_RT_GROUP_SCHED
7665                if (!sched_rt_can_attach(css_tg(css), task))
7666                        return -EINVAL;
7667#endif
7668                /*
7669                 * Serialize against wake_up_new_task() such that if its
7670                 * running, we're sure to observe its full state.
7671                 */
7672                raw_spin_lock_irq(&task->pi_lock);
7673                /*
7674                 * Avoid calling sched_move_task() before wake_up_new_task()
7675                 * has happened. This would lead to problems with PELT, due to
7676                 * move wanting to detach+attach while we're not attached yet.
7677                 */
7678                if (task->state == TASK_NEW)
7679                        ret = -EINVAL;
7680                raw_spin_unlock_irq(&task->pi_lock);
7681
7682                if (ret)
7683                        break;
7684        }
7685        return ret;
7686}
7687
7688static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7689{
7690        struct task_struct *task;
7691        struct cgroup_subsys_state *css;
7692
7693        cgroup_taskset_for_each(task, css, tset)
7694                sched_move_task(task);
7695}
7696
7697#ifdef CONFIG_UCLAMP_TASK_GROUP
7698static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7699{
7700        struct cgroup_subsys_state *top_css = css;
7701        struct uclamp_se *uc_parent = NULL;
7702        struct uclamp_se *uc_se = NULL;
7703        unsigned int eff[UCLAMP_CNT];
7704        enum uclamp_id clamp_id;
7705        unsigned int clamps;
7706
7707        css_for_each_descendant_pre(css, top_css) {
7708                uc_parent = css_tg(css)->parent
7709                        ? css_tg(css)->parent->uclamp : NULL;
7710
7711                for_each_clamp_id(clamp_id) {
7712                        /* Assume effective clamps matches requested clamps */
7713                        eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7714                        /* Cap effective clamps with parent's effective clamps */
7715                        if (uc_parent &&
7716                            eff[clamp_id] > uc_parent[clamp_id].value) {
7717                                eff[clamp_id] = uc_parent[clamp_id].value;
7718                        }
7719                }
7720                /* Ensure protection is always capped by limit */
7721                eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7722
7723                /* Propagate most restrictive effective clamps */
7724                clamps = 0x0;
7725                uc_se = css_tg(css)->uclamp;
7726                for_each_clamp_id(clamp_id) {
7727                        if (eff[clamp_id] == uc_se[clamp_id].value)
7728                                continue;
7729                        uc_se[clamp_id].value = eff[clamp_id];
7730                        uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7731                        clamps |= (0x1 << clamp_id);
7732                }
7733                if (!clamps) {
7734                        css = css_rightmost_descendant(css);
7735                        continue;
7736                }
7737
7738                /* Immediately update descendants RUNNABLE tasks */
7739                uclamp_update_active_tasks(css, clamps);
7740        }
7741}
7742
7743/*
7744 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7745 * C expression. Since there is no way to convert a macro argument (N) into a
7746 * character constant, use two levels of macros.
7747 */
7748#define _POW10(exp) ((unsigned int)1e##exp)
7749#define POW10(exp) _POW10(exp)
7750
7751struct uclamp_request {
7752#define UCLAMP_PERCENT_SHIFT    2
7753#define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
7754        s64 percent;
7755        u64 util;
7756        int ret;
7757};
7758
7759static inline struct uclamp_request
7760capacity_from_percent(char *buf)
7761{
7762        struct uclamp_request req = {
7763                .percent = UCLAMP_PERCENT_SCALE,
7764                .util = SCHED_CAPACITY_SCALE,
7765                .ret = 0,
7766        };
7767
7768        buf = strim(buf);
7769        if (strcmp(buf, "max")) {
7770                req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7771                                             &req.percent);
7772                if (req.ret)
7773                        return req;
7774                if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7775                        req.ret = -ERANGE;
7776                        return req;
7777                }
7778
7779                req.util = req.percent << SCHED_CAPACITY_SHIFT;
7780                req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7781        }
7782
7783        return req;
7784}
7785
7786static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7787                                size_t nbytes, loff_t off,
7788                                enum uclamp_id clamp_id)
7789{
7790        struct uclamp_request req;
7791        struct task_group *tg;
7792
7793        req = capacity_from_percent(buf);
7794        if (req.ret)
7795                return req.ret;
7796
7797        static_branch_enable(&sched_uclamp_used);
7798
7799        mutex_lock(&uclamp_mutex);
7800        rcu_read_lock();
7801
7802        tg = css_tg(of_css(of));
7803        if (tg->uclamp_req[clamp_id].value != req.util)
7804                uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7805
7806        /*
7807         * Because of not recoverable conversion rounding we keep track of the
7808         * exact requested value
7809         */
7810        tg->uclamp_pct[clamp_id] = req.percent;
7811
7812        /* Update effective clamps to track the most restrictive value */
7813        cpu_util_update_eff(of_css(of));
7814
7815        rcu_read_unlock();
7816        mutex_unlock(&uclamp_mutex);
7817
7818        return nbytes;
7819}
7820
7821static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7822                                    char *buf, size_t nbytes,
7823                                    loff_t off)
7824{
7825        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7826}
7827
7828static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7829                                    char *buf, size_t nbytes,
7830                                    loff_t off)
7831{
7832        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7833}
7834
7835static inline void cpu_uclamp_print(struct seq_file *sf,
7836                                    enum uclamp_id clamp_id)
7837{
7838        struct task_group *tg;
7839        u64 util_clamp;
7840        u64 percent;
7841        u32 rem;
7842
7843        rcu_read_lock();
7844        tg = css_tg(seq_css(sf));
7845        util_clamp = tg->uclamp_req[clamp_id].value;
7846        rcu_read_unlock();
7847
7848        if (util_clamp == SCHED_CAPACITY_SCALE) {
7849                seq_puts(sf, "max\n");
7850                return;
7851        }
7852
7853        percent = tg->uclamp_pct[clamp_id];
7854        percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7855        seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7856}
7857
7858static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7859{
7860        cpu_uclamp_print(sf, UCLAMP_MIN);
7861        return 0;
7862}
7863
7864static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7865{
7866        cpu_uclamp_print(sf, UCLAMP_MAX);
7867        return 0;
7868}
7869#endif /* CONFIG_UCLAMP_TASK_GROUP */
7870
7871#ifdef CONFIG_FAIR_GROUP_SCHED
7872static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7873                                struct cftype *cftype, u64 shareval)
7874{
7875        if (shareval > scale_load_down(ULONG_MAX))
7876                shareval = MAX_SHARES;
7877        return sched_group_set_shares(css_tg(css), scale_load(shareval));
7878}
7879
7880static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7881                               struct cftype *cft)
7882{
7883        struct task_group *tg = css_tg(css);
7884
7885        return (u64) scale_load_down(tg->shares);
7886}
7887
7888#ifdef CONFIG_CFS_BANDWIDTH
7889static DEFINE_MUTEX(cfs_constraints_mutex);
7890
7891const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7892static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7893/* More than 203 days if BW_SHIFT equals 20. */
7894static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7895
7896static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7897
7898static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7899{
7900        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7901        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902
7903        if (tg == &root_task_group)
7904                return -EINVAL;
7905
7906        /*
7907         * Ensure we have at some amount of bandwidth every period.  This is
7908         * to prevent reaching a state of large arrears when throttled via
7909         * entity_tick() resulting in prolonged exit starvation.
7910         */
7911        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7912                return -EINVAL;
7913
7914        /*
7915         * Likewise, bound things on the otherside by preventing insane quota
7916         * periods.  This also allows us to normalize in computing quota
7917         * feasibility.
7918         */
7919        if (period > max_cfs_quota_period)
7920                return -EINVAL;
7921
7922        /*
7923         * Bound quota to defend quota against overflow during bandwidth shift.
7924         */
7925        if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7926                return -EINVAL;
7927
7928        /*
7929         * Prevent race between setting of cfs_rq->runtime_enabled and
7930         * unthrottle_offline_cfs_rqs().
7931         */
7932        get_online_cpus();
7933        mutex_lock(&cfs_constraints_mutex);
7934        ret = __cfs_schedulable(tg, period, quota);
7935        if (ret)
7936                goto out_unlock;
7937
7938        runtime_enabled = quota != RUNTIME_INF;
7939        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7940        /*
7941         * If we need to toggle cfs_bandwidth_used, off->on must occur
7942         * before making related changes, and on->off must occur afterwards
7943         */
7944        if (runtime_enabled && !runtime_was_enabled)
7945                cfs_bandwidth_usage_inc();
7946        raw_spin_lock_irq(&cfs_b->lock);
7947        cfs_b->period = ns_to_ktime(period);
7948        cfs_b->quota = quota;
7949
7950        __refill_cfs_bandwidth_runtime(cfs_b);
7951
7952        /* Restart the period timer (if active) to handle new period expiry: */
7953        if (runtime_enabled)
7954                start_cfs_bandwidth(cfs_b);
7955
7956        raw_spin_unlock_irq(&cfs_b->lock);
7957
7958        for_each_online_cpu(i) {
7959                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7960                struct rq *rq = cfs_rq->rq;
7961                struct rq_flags rf;
7962
7963                rq_lock_irq(rq, &rf);
7964                cfs_rq->runtime_enabled = runtime_enabled;
7965                cfs_rq->runtime_remaining = 0;
7966
7967                if (cfs_rq->throttled)
7968                        unthrottle_cfs_rq(cfs_rq);
7969                rq_unlock_irq(rq, &rf);
7970        }
7971        if (runtime_was_enabled && !runtime_enabled)
7972                cfs_bandwidth_usage_dec();
7973out_unlock:
7974        mutex_unlock(&cfs_constraints_mutex);
7975        put_online_cpus();
7976
7977        return ret;
7978}
7979
7980static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7981{
7982        u64 quota, period;
7983
7984        period = ktime_to_ns(tg->cfs_bandwidth.period);
7985        if (cfs_quota_us < 0)
7986                quota = RUNTIME_INF;
7987        else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7988                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7989        else
7990                return -EINVAL;
7991
7992        return tg_set_cfs_bandwidth(tg, period, quota);
7993}
7994
7995static long tg_get_cfs_quota(struct task_group *tg)
7996{
7997        u64 quota_us;
7998
7999        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8000                return -1;
8001
8002        quota_us = tg->cfs_bandwidth.quota;
8003        do_div(quota_us, NSEC_PER_USEC);
8004
8005        return quota_us;
8006}
8007
8008static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8009{
8010        u64 quota, period;
8011
8012        if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8013                return -EINVAL;
8014
8015        period = (u64)cfs_period_us * NSEC_PER_USEC;
8016        quota = tg->cfs_bandwidth.quota;
8017
8018        return tg_set_cfs_bandwidth(tg, period, quota);
8019}
8020
8021static long tg_get_cfs_period(struct task_group *tg)
8022{
8023        u64 cfs_period_us;
8024
8025        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8026        do_div(cfs_period_us, NSEC_PER_USEC);
8027
8028        return cfs_period_us;
8029}
8030
8031static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8032                                  struct cftype *cft)
8033{
8034        return tg_get_cfs_quota(css_tg(css));
8035}
8036
8037static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8038                                   struct cftype *cftype, s64 cfs_quota_us)
8039{
8040        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8041}
8042
8043static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8044                                   struct cftype *cft)
8045{
8046        return tg_get_cfs_period(css_tg(css));
8047}
8048
8049static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8050                                    struct cftype *cftype, u64 cfs_period_us)
8051{
8052        return tg_set_cfs_period(css_tg(css), cfs_period_us);
8053}
8054
8055struct cfs_schedulable_data {
8056        struct task_group *tg;
8057        u64 period, quota;
8058};
8059
8060/*
8061 * normalize group quota/period to be quota/max_period
8062 * note: units are usecs
8063 */
8064static u64 normalize_cfs_quota(struct task_group *tg,
8065                               struct cfs_schedulable_data *d)
8066{
8067        u64 quota, period;
8068
8069        if (tg == d->tg) {
8070                period = d->period;
8071                quota = d->quota;
8072        } else {
8073                period = tg_get_cfs_period(tg);
8074                quota = tg_get_cfs_quota(tg);
8075        }
8076
8077        /* note: these should typically be equivalent */
8078        if (quota == RUNTIME_INF || quota == -1)
8079                return RUNTIME_INF;
8080
8081        return to_ratio(period, quota);
8082}
8083
8084static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8085{
8086        struct cfs_schedulable_data *d = data;
8087        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8088        s64 quota = 0, parent_quota = -1;
8089
8090        if (!tg->parent) {
8091                quota = RUNTIME_INF;
8092        } else {
8093                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8094
8095                quota = normalize_cfs_quota(tg, d);
8096                parent_quota = parent_b->hierarchical_quota;
8097
8098                /*
8099                 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8100                 * always take the min.  On cgroup1, only inherit when no
8101                 * limit is set:
8102                 */
8103                if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8104                        quota = min(quota, parent_quota);
8105                } else {
8106                        if (quota == RUNTIME_INF)
8107                                quota = parent_quota;
8108                        else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8109                                return -EINVAL;
8110                }
8111        }
8112        cfs_b->hierarchical_quota = quota;
8113
8114        return 0;
8115}
8116
8117static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8118{
8119        int ret;
8120        struct cfs_schedulable_data data = {
8121                .tg = tg,
8122                .period = period,
8123                .quota = quota,
8124        };
8125
8126        if (quota != RUNTIME_INF) {
8127                do_div(data.period, NSEC_PER_USEC);
8128                do_div(data.quota, NSEC_PER_USEC);
8129        }
8130
8131        rcu_read_lock();
8132        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8133        rcu_read_unlock();
8134
8135        return ret;
8136}
8137
8138static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8139{
8140        struct task_group *tg = css_tg(seq_css(sf));
8141        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8142
8143        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8144        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8145        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8146
8147        if (schedstat_enabled() && tg != &root_task_group) {
8148                u64 ws = 0;
8149                int i;
8150
8151                for_each_possible_cpu(i)
8152                        ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8153
8154                seq_printf(sf, "wait_sum %llu\n", ws);
8155        }
8156
8157        return 0;
8158}
8159#endif /* CONFIG_CFS_BANDWIDTH */
8160#endif /* CONFIG_FAIR_GROUP_SCHED */
8161
8162#ifdef CONFIG_RT_GROUP_SCHED
8163static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8164                                struct cftype *cft, s64 val)
8165{
8166        return sched_group_set_rt_runtime(css_tg(css), val);
8167}
8168
8169static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8170                               struct cftype *cft)
8171{
8172        return sched_group_rt_runtime(css_tg(css));
8173}
8174
8175static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8176                                    struct cftype *cftype, u64 rt_period_us)
8177{
8178        return sched_group_set_rt_period(css_tg(css), rt_period_us);
8179}
8180
8181static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8182                                   struct cftype *cft)
8183{
8184        return sched_group_rt_period(css_tg(css));
8185}
8186#endif /* CONFIG_RT_GROUP_SCHED */
8187
8188static struct cftype cpu_legacy_files[] = {
8189#ifdef CONFIG_FAIR_GROUP_SCHED
8190        {
8191                .name = "shares",
8192                .read_u64 = cpu_shares_read_u64,
8193                .write_u64 = cpu_shares_write_u64,
8194        },
8195#endif
8196#ifdef CONFIG_CFS_BANDWIDTH
8197        {
8198                .name = "cfs_quota_us",
8199                .read_s64 = cpu_cfs_quota_read_s64,
8200                .write_s64 = cpu_cfs_quota_write_s64,
8201        },
8202        {
8203                .name = "cfs_period_us",
8204                .read_u64 = cpu_cfs_period_read_u64,
8205                .write_u64 = cpu_cfs_period_write_u64,
8206        },
8207        {
8208                .name = "stat",
8209                .seq_show = cpu_cfs_stat_show,
8210        },
8211#endif
8212#ifdef CONFIG_RT_GROUP_SCHED
8213        {
8214                .name = "rt_runtime_us",
8215                .read_s64 = cpu_rt_runtime_read,
8216                .write_s64 = cpu_rt_runtime_write,
8217        },
8218        {
8219                .name = "rt_period_us",
8220                .read_u64 = cpu_rt_period_read_uint,
8221                .write_u64 = cpu_rt_period_write_uint,
8222        },
8223#endif
8224#ifdef CONFIG_UCLAMP_TASK_GROUP
8225        {
8226                .name = "uclamp.min",
8227                .flags = CFTYPE_NOT_ON_ROOT,
8228                .seq_show = cpu_uclamp_min_show,
8229                .write = cpu_uclamp_min_write,
8230        },
8231        {
8232                .name = "uclamp.max",
8233                .flags = CFTYPE_NOT_ON_ROOT,
8234                .seq_show = cpu_uclamp_max_show,
8235                .write = cpu_uclamp_max_write,
8236        },
8237#endif
8238        { }     /* Terminate */
8239};
8240
8241static int cpu_extra_stat_show(struct seq_file *sf,
8242                               struct cgroup_subsys_state *css)
8243{
8244#ifdef CONFIG_CFS_BANDWIDTH
8245        {
8246                struct task_group *tg = css_tg(css);
8247                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8248                u64 throttled_usec;
8249
8250                throttled_usec = cfs_b->throttled_time;
8251                do_div(throttled_usec, NSEC_PER_USEC);
8252
8253                seq_printf(sf, "nr_periods %d\n"
8254                           "nr_throttled %d\n"
8255                           "throttled_usec %llu\n",
8256                           cfs_b->nr_periods, cfs_b->nr_throttled,
8257                           throttled_usec);
8258        }
8259#endif
8260        return 0;
8261}
8262
8263#ifdef CONFIG_FAIR_GROUP_SCHED
8264static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8265                               struct cftype *cft)
8266{
8267        struct task_group *tg = css_tg(css);
8268        u64 weight = scale_load_down(tg->shares);
8269
8270        return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8271}
8272
8273static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8274                                struct cftype *cft, u64 weight)
8275{
8276        /*
8277         * cgroup weight knobs should use the common MIN, DFL and MAX
8278         * values which are 1, 100 and 10000 respectively.  While it loses
8279         * a bit of range on both ends, it maps pretty well onto the shares
8280         * value used by scheduler and the round-trip conversions preserve
8281         * the original value over the entire range.
8282         */
8283        if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8284                return -ERANGE;
8285
8286        weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8287
8288        return sched_group_set_shares(css_tg(css), scale_load(weight));
8289}
8290
8291static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8292                                    struct cftype *cft)
8293{
8294        unsigned long weight = scale_load_down(css_tg(css)->shares);
8295        int last_delta = INT_MAX;
8296        int prio, delta;
8297
8298        /* find the closest nice value to the current weight */
8299        for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8300                delta = abs(sched_prio_to_weight[prio] - weight);
8301                if (delta >= last_delta)
8302                        break;
8303                last_delta = delta;
8304        }
8305
8306        return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8307}
8308
8309static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8310                                     struct cftype *cft, s64 nice)
8311{
8312        unsigned long weight;
8313        int idx;
8314
8315        if (nice < MIN_NICE || nice > MAX_NICE)
8316                return -ERANGE;
8317
8318        idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8319        idx = array_index_nospec(idx, 40);
8320        weight = sched_prio_to_weight[idx];
8321
8322        return sched_group_set_shares(css_tg(css), scale_load(weight));
8323}
8324#endif
8325
8326static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8327                                                  long period, long quota)
8328{
8329        if (quota < 0)
8330                seq_puts(sf, "max");
8331        else
8332                seq_printf(sf, "%ld", quota);
8333
8334        seq_printf(sf, " %ld\n", period);
8335}
8336
8337/* caller should put the current value in *@periodp before calling */
8338static int __maybe_unused cpu_period_quota_parse(char *buf,
8339                                                 u64 *periodp, u64 *quotap)
8340{
8341        char tok[21];   /* U64_MAX */
8342
8343        if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8344                return -EINVAL;
8345
8346        *periodp *= NSEC_PER_USEC;
8347
8348        if (sscanf(tok, "%llu", quotap))
8349                *quotap *= NSEC_PER_USEC;
8350        else if (!strcmp(tok, "max"))
8351                *quotap = RUNTIME_INF;
8352        else
8353                return -EINVAL;
8354
8355        return 0;
8356}
8357
8358#ifdef CONFIG_CFS_BANDWIDTH
8359static int cpu_max_show(struct seq_file *sf, void *v)
8360{
8361        struct task_group *tg = css_tg(seq_css(sf));
8362
8363        cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8364        return 0;
8365}
8366
8367static ssize_t cpu_max_write(struct kernfs_open_file *of,
8368                             char *buf, size_t nbytes, loff_t off)
8369{
8370        struct task_group *tg = css_tg(of_css(of));
8371        u64 period = tg_get_cfs_period(tg);
8372        u64 quota;
8373        int ret;
8374
8375        ret = cpu_period_quota_parse(buf, &period, &quota);
8376        if (!ret)
8377                ret = tg_set_cfs_bandwidth(tg, period, quota);
8378        return ret ?: nbytes;
8379}
8380#endif
8381
8382static struct cftype cpu_files[] = {
8383#ifdef CONFIG_FAIR_GROUP_SCHED
8384        {
8385                .name = "weight",
8386                .flags = CFTYPE_NOT_ON_ROOT,
8387                .read_u64 = cpu_weight_read_u64,
8388                .write_u64 = cpu_weight_write_u64,
8389        },
8390        {
8391                .name = "weight.nice",
8392                .flags = CFTYPE_NOT_ON_ROOT,
8393                .read_s64 = cpu_weight_nice_read_s64,
8394                .write_s64 = cpu_weight_nice_write_s64,
8395        },
8396#endif
8397#ifdef CONFIG_CFS_BANDWIDTH
8398        {
8399                .name = "max",
8400                .flags = CFTYPE_NOT_ON_ROOT,
8401                .seq_show = cpu_max_show,
8402                .write = cpu_max_write,
8403        },
8404#endif
8405#ifdef CONFIG_UCLAMP_TASK_GROUP
8406        {
8407                .name = "uclamp.min",
8408                .flags = CFTYPE_NOT_ON_ROOT,
8409                .seq_show = cpu_uclamp_min_show,
8410                .write = cpu_uclamp_min_write,
8411        },
8412        {
8413                .name = "uclamp.max",
8414                .flags = CFTYPE_NOT_ON_ROOT,
8415                .seq_show = cpu_uclamp_max_show,
8416                .write = cpu_uclamp_max_write,
8417        },
8418#endif
8419        { }     /* terminate */
8420};
8421
8422struct cgroup_subsys cpu_cgrp_subsys = {
8423        .css_alloc      = cpu_cgroup_css_alloc,
8424        .css_online     = cpu_cgroup_css_online,
8425        .css_released   = cpu_cgroup_css_released,
8426        .css_free       = cpu_cgroup_css_free,
8427        .css_extra_stat_show = cpu_extra_stat_show,
8428        .fork           = cpu_cgroup_fork,
8429        .can_attach     = cpu_cgroup_can_attach,
8430        .attach         = cpu_cgroup_attach,
8431        .legacy_cftypes = cpu_legacy_files,
8432        .dfl_cftypes    = cpu_files,
8433        .early_init     = true,
8434        .threaded       = true,
8435};
8436
8437#endif  /* CONFIG_CGROUP_SCHED */
8438
8439void dump_cpu_task(int cpu)
8440{
8441        pr_info("Task dump for CPU %d:\n", cpu);
8442        sched_show_task(cpu_curr(cpu));
8443}
8444
8445/*
8446 * Nice levels are multiplicative, with a gentle 10% change for every
8447 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8448 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8449 * that remained on nice 0.
8450 *
8451 * The "10% effect" is relative and cumulative: from _any_ nice level,
8452 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8453 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8454 * If a task goes up by ~10% and another task goes down by ~10% then
8455 * the relative distance between them is ~25%.)
8456 */
8457const int sched_prio_to_weight[40] = {
8458 /* -20 */     88761,     71755,     56483,     46273,     36291,
8459 /* -15 */     29154,     23254,     18705,     14949,     11916,
8460 /* -10 */      9548,      7620,      6100,      4904,      3906,
8461 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8462 /*   0 */      1024,       820,       655,       526,       423,
8463 /*   5 */       335,       272,       215,       172,       137,
8464 /*  10 */       110,        87,        70,        56,        45,
8465 /*  15 */        36,        29,        23,        18,        15,
8466};
8467
8468/*
8469 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8470 *
8471 * In cases where the weight does not change often, we can use the
8472 * precalculated inverse to speed up arithmetics by turning divisions
8473 * into multiplications:
8474 */
8475const u32 sched_prio_to_wmult[40] = {
8476 /* -20 */     48388,     59856,     76040,     92818,    118348,
8477 /* -15 */    147320,    184698,    229616,    287308,    360437,
8478 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8479 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8480 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8481 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8482 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8483 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8484};
8485
8486void call_trace_sched_update_nr_running(struct rq *rq, int count)
8487{
8488        trace_sched_update_nr_running_tp(rq, count);
8489}
8490