linux/kernel/time/clocksource.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:       pointer to mult variable
  24 * @shift:      pointer to shift variable
  25 * @from:       frequency to convert from
  26 * @to:         frequency to convert to
  27 * @maxsec:     guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47        u64 tmp;
  48        u32 sft, sftacc= 32;
  49
  50        /*
  51         * Calculate the shift factor which is limiting the conversion
  52         * range:
  53         */
  54        tmp = ((u64)maxsec * from) >> 32;
  55        while (tmp) {
  56                tmp >>=1;
  57                sftacc--;
  58        }
  59
  60        /*
  61         * Find the conversion shift/mult pair which has the best
  62         * accuracy and fits the maxsec conversion range:
  63         */
  64        for (sft = 32; sft > 0; sft--) {
  65                tmp = (u64) to << sft;
  66                tmp += from / 2;
  67                do_div(tmp, from);
  68                if ((tmp >> sftacc) == 0)
  69                        break;
  70        }
  71        *mult = tmp;
  72        *shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *      currently selected clocksource.
  79 * suspend_clocksource:
  80 *      used to calculate the suspend time.
  81 * clocksource_list:
  82 *      linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *      protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *      Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110        spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115        spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129        /*
 130         * We cannot directly run clocksource_watchdog_kthread() here, because
 131         * clocksource_select() calls timekeeping_notify() which uses
 132         * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133         * lock inversions wrt CPU hotplug.
 134         *
 135         * Also, we only ever run this work once or twice during the lifetime
 136         * of the kernel, so there is no point in creating a more permanent
 137         * kthread for this.
 138         *
 139         * If kthread_run fails the next watchdog scan over the
 140         * watchdog_list will find the unstable clock again.
 141         */
 142        kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147        cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148        cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150        /*
 151         * If the clocksource is registered clocksource_watchdog_kthread() will
 152         * re-rate and re-select.
 153         */
 154        if (list_empty(&cs->list)) {
 155                cs->rating = 0;
 156                return;
 157        }
 158
 159        if (cs->mark_unstable)
 160                cs->mark_unstable(cs);
 161
 162        /* kick clocksource_watchdog_kthread() */
 163        if (finished_booting)
 164                schedule_work(&watchdog_work);
 165}
 166
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:         clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176        unsigned long flags;
 177
 178        spin_lock_irqsave(&watchdog_lock, flags);
 179        if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180                if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181                        list_add(&cs->wd_list, &watchdog_list);
 182                __clocksource_unstable(cs);
 183        }
 184        spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189        struct clocksource *cs;
 190        u64 csnow, wdnow, cslast, wdlast, delta;
 191        int64_t wd_nsec, cs_nsec;
 192        int next_cpu, reset_pending;
 193
 194        spin_lock(&watchdog_lock);
 195        if (!watchdog_running)
 196                goto out;
 197
 198        reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200        list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202                /* Clocksource already marked unstable? */
 203                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204                        if (finished_booting)
 205                                schedule_work(&watchdog_work);
 206                        continue;
 207                }
 208
 209                local_irq_disable();
 210                csnow = cs->read(cs);
 211                wdnow = watchdog->read(watchdog);
 212                local_irq_enable();
 213
 214                /* Clocksource initialized ? */
 215                if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216                    atomic_read(&watchdog_reset_pending)) {
 217                        cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218                        cs->wd_last = wdnow;
 219                        cs->cs_last = csnow;
 220                        continue;
 221                }
 222
 223                delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224                wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225                                             watchdog->shift);
 226
 227                delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228                cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229                wdlast = cs->wd_last; /* save these in case we print them */
 230                cslast = cs->cs_last;
 231                cs->cs_last = csnow;
 232                cs->wd_last = wdnow;
 233
 234                if (atomic_read(&watchdog_reset_pending))
 235                        continue;
 236
 237                /* Check the deviation from the watchdog clocksource. */
 238                if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239                        pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240                                smp_processor_id(), cs->name);
 241                        pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242                                watchdog->name, wdnow, wdlast, watchdog->mask);
 243                        pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244                                cs->name, csnow, cslast, cs->mask);
 245                        __clocksource_unstable(cs);
 246                        continue;
 247                }
 248
 249                if (cs == curr_clocksource && cs->tick_stable)
 250                        cs->tick_stable(cs);
 251
 252                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253                    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254                    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255                        /* Mark it valid for high-res. */
 256                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258                        /*
 259                         * clocksource_done_booting() will sort it if
 260                         * finished_booting is not set yet.
 261                         */
 262                        if (!finished_booting)
 263                                continue;
 264
 265                        /*
 266                         * If this is not the current clocksource let
 267                         * the watchdog thread reselect it. Due to the
 268                         * change to high res this clocksource might
 269                         * be preferred now. If it is the current
 270                         * clocksource let the tick code know about
 271                         * that change.
 272                         */
 273                        if (cs != curr_clocksource) {
 274                                cs->flags |= CLOCK_SOURCE_RESELECT;
 275                                schedule_work(&watchdog_work);
 276                        } else {
 277                                tick_clock_notify();
 278                        }
 279                }
 280        }
 281
 282        /*
 283         * We only clear the watchdog_reset_pending, when we did a
 284         * full cycle through all clocksources.
 285         */
 286        if (reset_pending)
 287                atomic_dec(&watchdog_reset_pending);
 288
 289        /*
 290         * Cycle through CPUs to check if the CPUs stay synchronized
 291         * to each other.
 292         */
 293        next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294        if (next_cpu >= nr_cpu_ids)
 295                next_cpu = cpumask_first(cpu_online_mask);
 296
 297        /*
 298         * Arm timer if not already pending: could race with concurrent
 299         * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 300         */
 301        if (!timer_pending(&watchdog_timer)) {
 302                watchdog_timer.expires += WATCHDOG_INTERVAL;
 303                add_timer_on(&watchdog_timer, next_cpu);
 304        }
 305out:
 306        spin_unlock(&watchdog_lock);
 307}
 308
 309static inline void clocksource_start_watchdog(void)
 310{
 311        if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 312                return;
 313        timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 314        watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 315        add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 316        watchdog_running = 1;
 317}
 318
 319static inline void clocksource_stop_watchdog(void)
 320{
 321        if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 322                return;
 323        del_timer(&watchdog_timer);
 324        watchdog_running = 0;
 325}
 326
 327static inline void clocksource_reset_watchdog(void)
 328{
 329        struct clocksource *cs;
 330
 331        list_for_each_entry(cs, &watchdog_list, wd_list)
 332                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 333}
 334
 335static void clocksource_resume_watchdog(void)
 336{
 337        atomic_inc(&watchdog_reset_pending);
 338}
 339
 340static void clocksource_enqueue_watchdog(struct clocksource *cs)
 341{
 342        INIT_LIST_HEAD(&cs->wd_list);
 343
 344        if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 345                /* cs is a clocksource to be watched. */
 346                list_add(&cs->wd_list, &watchdog_list);
 347                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 348        } else {
 349                /* cs is a watchdog. */
 350                if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 351                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 352        }
 353}
 354
 355static void clocksource_select_watchdog(bool fallback)
 356{
 357        struct clocksource *cs, *old_wd;
 358        unsigned long flags;
 359
 360        spin_lock_irqsave(&watchdog_lock, flags);
 361        /* save current watchdog */
 362        old_wd = watchdog;
 363        if (fallback)
 364                watchdog = NULL;
 365
 366        list_for_each_entry(cs, &clocksource_list, list) {
 367                /* cs is a clocksource to be watched. */
 368                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 369                        continue;
 370
 371                /* Skip current if we were requested for a fallback. */
 372                if (fallback && cs == old_wd)
 373                        continue;
 374
 375                /* Pick the best watchdog. */
 376                if (!watchdog || cs->rating > watchdog->rating)
 377                        watchdog = cs;
 378        }
 379        /* If we failed to find a fallback restore the old one. */
 380        if (!watchdog)
 381                watchdog = old_wd;
 382
 383        /* If we changed the watchdog we need to reset cycles. */
 384        if (watchdog != old_wd)
 385                clocksource_reset_watchdog();
 386
 387        /* Check if the watchdog timer needs to be started. */
 388        clocksource_start_watchdog();
 389        spin_unlock_irqrestore(&watchdog_lock, flags);
 390}
 391
 392static void clocksource_dequeue_watchdog(struct clocksource *cs)
 393{
 394        if (cs != watchdog) {
 395                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 396                        /* cs is a watched clocksource. */
 397                        list_del_init(&cs->wd_list);
 398                        /* Check if the watchdog timer needs to be stopped. */
 399                        clocksource_stop_watchdog();
 400                }
 401        }
 402}
 403
 404static int __clocksource_watchdog_kthread(void)
 405{
 406        struct clocksource *cs, *tmp;
 407        unsigned long flags;
 408        int select = 0;
 409
 410        spin_lock_irqsave(&watchdog_lock, flags);
 411        list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 412                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 413                        list_del_init(&cs->wd_list);
 414                        __clocksource_change_rating(cs, 0);
 415                        select = 1;
 416                }
 417                if (cs->flags & CLOCK_SOURCE_RESELECT) {
 418                        cs->flags &= ~CLOCK_SOURCE_RESELECT;
 419                        select = 1;
 420                }
 421        }
 422        /* Check if the watchdog timer needs to be stopped. */
 423        clocksource_stop_watchdog();
 424        spin_unlock_irqrestore(&watchdog_lock, flags);
 425
 426        return select;
 427}
 428
 429static int clocksource_watchdog_kthread(void *data)
 430{
 431        mutex_lock(&clocksource_mutex);
 432        if (__clocksource_watchdog_kthread())
 433                clocksource_select();
 434        mutex_unlock(&clocksource_mutex);
 435        return 0;
 436}
 437
 438static bool clocksource_is_watchdog(struct clocksource *cs)
 439{
 440        return cs == watchdog;
 441}
 442
 443#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 444
 445static void clocksource_enqueue_watchdog(struct clocksource *cs)
 446{
 447        if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 448                cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 449}
 450
 451static void clocksource_select_watchdog(bool fallback) { }
 452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 453static inline void clocksource_resume_watchdog(void) { }
 454static inline int __clocksource_watchdog_kthread(void) { return 0; }
 455static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 456void clocksource_mark_unstable(struct clocksource *cs) { }
 457
 458static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 459static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 460
 461#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 462
 463static bool clocksource_is_suspend(struct clocksource *cs)
 464{
 465        return cs == suspend_clocksource;
 466}
 467
 468static void __clocksource_suspend_select(struct clocksource *cs)
 469{
 470        /*
 471         * Skip the clocksource which will be stopped in suspend state.
 472         */
 473        if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 474                return;
 475
 476        /*
 477         * The nonstop clocksource can be selected as the suspend clocksource to
 478         * calculate the suspend time, so it should not supply suspend/resume
 479         * interfaces to suspend the nonstop clocksource when system suspends.
 480         */
 481        if (cs->suspend || cs->resume) {
 482                pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 483                        cs->name);
 484        }
 485
 486        /* Pick the best rating. */
 487        if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 488                suspend_clocksource = cs;
 489}
 490
 491/**
 492 * clocksource_suspend_select - Select the best clocksource for suspend timing
 493 * @fallback:   if select a fallback clocksource
 494 */
 495static void clocksource_suspend_select(bool fallback)
 496{
 497        struct clocksource *cs, *old_suspend;
 498
 499        old_suspend = suspend_clocksource;
 500        if (fallback)
 501                suspend_clocksource = NULL;
 502
 503        list_for_each_entry(cs, &clocksource_list, list) {
 504                /* Skip current if we were requested for a fallback. */
 505                if (fallback && cs == old_suspend)
 506                        continue;
 507
 508                __clocksource_suspend_select(cs);
 509        }
 510}
 511
 512/**
 513 * clocksource_start_suspend_timing - Start measuring the suspend timing
 514 * @cs:                 current clocksource from timekeeping
 515 * @start_cycles:       current cycles from timekeeping
 516 *
 517 * This function will save the start cycle values of suspend timer to calculate
 518 * the suspend time when resuming system.
 519 *
 520 * This function is called late in the suspend process from timekeeping_suspend(),
 521 * that means processes are freezed, non-boot cpus and interrupts are disabled
 522 * now. It is therefore possible to start the suspend timer without taking the
 523 * clocksource mutex.
 524 */
 525void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 526{
 527        if (!suspend_clocksource)
 528                return;
 529
 530        /*
 531         * If current clocksource is the suspend timer, we should use the
 532         * tkr_mono.cycle_last value as suspend_start to avoid same reading
 533         * from suspend timer.
 534         */
 535        if (clocksource_is_suspend(cs)) {
 536                suspend_start = start_cycles;
 537                return;
 538        }
 539
 540        if (suspend_clocksource->enable &&
 541            suspend_clocksource->enable(suspend_clocksource)) {
 542                pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 543                return;
 544        }
 545
 546        suspend_start = suspend_clocksource->read(suspend_clocksource);
 547}
 548
 549/**
 550 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 551 * @cs:         current clocksource from timekeeping
 552 * @cycle_now:  current cycles from timekeeping
 553 *
 554 * This function will calculate the suspend time from suspend timer.
 555 *
 556 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 557 *
 558 * This function is called early in the resume process from timekeeping_resume(),
 559 * that means there is only one cpu, no processes are running and the interrupts
 560 * are disabled. It is therefore possible to stop the suspend timer without
 561 * taking the clocksource mutex.
 562 */
 563u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 564{
 565        u64 now, delta, nsec = 0;
 566
 567        if (!suspend_clocksource)
 568                return 0;
 569
 570        /*
 571         * If current clocksource is the suspend timer, we should use the
 572         * tkr_mono.cycle_last value from timekeeping as current cycle to
 573         * avoid same reading from suspend timer.
 574         */
 575        if (clocksource_is_suspend(cs))
 576                now = cycle_now;
 577        else
 578                now = suspend_clocksource->read(suspend_clocksource);
 579
 580        if (now > suspend_start) {
 581                delta = clocksource_delta(now, suspend_start,
 582                                          suspend_clocksource->mask);
 583                nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 584                                       suspend_clocksource->shift);
 585        }
 586
 587        /*
 588         * Disable the suspend timer to save power if current clocksource is
 589         * not the suspend timer.
 590         */
 591        if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 592                suspend_clocksource->disable(suspend_clocksource);
 593
 594        return nsec;
 595}
 596
 597/**
 598 * clocksource_suspend - suspend the clocksource(s)
 599 */
 600void clocksource_suspend(void)
 601{
 602        struct clocksource *cs;
 603
 604        list_for_each_entry_reverse(cs, &clocksource_list, list)
 605                if (cs->suspend)
 606                        cs->suspend(cs);
 607}
 608
 609/**
 610 * clocksource_resume - resume the clocksource(s)
 611 */
 612void clocksource_resume(void)
 613{
 614        struct clocksource *cs;
 615
 616        list_for_each_entry(cs, &clocksource_list, list)
 617                if (cs->resume)
 618                        cs->resume(cs);
 619
 620        clocksource_resume_watchdog();
 621}
 622
 623/**
 624 * clocksource_touch_watchdog - Update watchdog
 625 *
 626 * Update the watchdog after exception contexts such as kgdb so as not
 627 * to incorrectly trip the watchdog. This might fail when the kernel
 628 * was stopped in code which holds watchdog_lock.
 629 */
 630void clocksource_touch_watchdog(void)
 631{
 632        clocksource_resume_watchdog();
 633}
 634
 635/**
 636 * clocksource_max_adjustment- Returns max adjustment amount
 637 * @cs:         Pointer to clocksource
 638 *
 639 */
 640static u32 clocksource_max_adjustment(struct clocksource *cs)
 641{
 642        u64 ret;
 643        /*
 644         * We won't try to correct for more than 11% adjustments (110,000 ppm),
 645         */
 646        ret = (u64)cs->mult * 11;
 647        do_div(ret,100);
 648        return (u32)ret;
 649}
 650
 651/**
 652 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 653 * @mult:       cycle to nanosecond multiplier
 654 * @shift:      cycle to nanosecond divisor (power of two)
 655 * @maxadj:     maximum adjustment value to mult (~11%)
 656 * @mask:       bitmask for two's complement subtraction of non 64 bit counters
 657 * @max_cyc:    maximum cycle value before potential overflow (does not include
 658 *              any safety margin)
 659 *
 660 * NOTE: This function includes a safety margin of 50%, in other words, we
 661 * return half the number of nanoseconds the hardware counter can technically
 662 * cover. This is done so that we can potentially detect problems caused by
 663 * delayed timers or bad hardware, which might result in time intervals that
 664 * are larger than what the math used can handle without overflows.
 665 */
 666u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 667{
 668        u64 max_nsecs, max_cycles;
 669
 670        /*
 671         * Calculate the maximum number of cycles that we can pass to the
 672         * cyc2ns() function without overflowing a 64-bit result.
 673         */
 674        max_cycles = ULLONG_MAX;
 675        do_div(max_cycles, mult+maxadj);
 676
 677        /*
 678         * The actual maximum number of cycles we can defer the clocksource is
 679         * determined by the minimum of max_cycles and mask.
 680         * Note: Here we subtract the maxadj to make sure we don't sleep for
 681         * too long if there's a large negative adjustment.
 682         */
 683        max_cycles = min(max_cycles, mask);
 684        max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 685
 686        /* return the max_cycles value as well if requested */
 687        if (max_cyc)
 688                *max_cyc = max_cycles;
 689
 690        /* Return 50% of the actual maximum, so we can detect bad values */
 691        max_nsecs >>= 1;
 692
 693        return max_nsecs;
 694}
 695
 696/**
 697 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 698 * @cs:         Pointer to clocksource to be updated
 699 *
 700 */
 701static inline void clocksource_update_max_deferment(struct clocksource *cs)
 702{
 703        cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 704                                                cs->maxadj, cs->mask,
 705                                                &cs->max_cycles);
 706}
 707
 708#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 709
 710static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 711{
 712        struct clocksource *cs;
 713
 714        if (!finished_booting || list_empty(&clocksource_list))
 715                return NULL;
 716
 717        /*
 718         * We pick the clocksource with the highest rating. If oneshot
 719         * mode is active, we pick the highres valid clocksource with
 720         * the best rating.
 721         */
 722        list_for_each_entry(cs, &clocksource_list, list) {
 723                if (skipcur && cs == curr_clocksource)
 724                        continue;
 725                if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 726                        continue;
 727                return cs;
 728        }
 729        return NULL;
 730}
 731
 732static void __clocksource_select(bool skipcur)
 733{
 734        bool oneshot = tick_oneshot_mode_active();
 735        struct clocksource *best, *cs;
 736
 737        /* Find the best suitable clocksource */
 738        best = clocksource_find_best(oneshot, skipcur);
 739        if (!best)
 740                return;
 741
 742        if (!strlen(override_name))
 743                goto found;
 744
 745        /* Check for the override clocksource. */
 746        list_for_each_entry(cs, &clocksource_list, list) {
 747                if (skipcur && cs == curr_clocksource)
 748                        continue;
 749                if (strcmp(cs->name, override_name) != 0)
 750                        continue;
 751                /*
 752                 * Check to make sure we don't switch to a non-highres
 753                 * capable clocksource if the tick code is in oneshot
 754                 * mode (highres or nohz)
 755                 */
 756                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 757                        /* Override clocksource cannot be used. */
 758                        if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 759                                pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 760                                        cs->name);
 761                                override_name[0] = 0;
 762                        } else {
 763                                /*
 764                                 * The override cannot be currently verified.
 765                                 * Deferring to let the watchdog check.
 766                                 */
 767                                pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 768                                        cs->name);
 769                        }
 770                } else
 771                        /* Override clocksource can be used. */
 772                        best = cs;
 773                break;
 774        }
 775
 776found:
 777        if (curr_clocksource != best && !timekeeping_notify(best)) {
 778                pr_info("Switched to clocksource %s\n", best->name);
 779                curr_clocksource = best;
 780        }
 781}
 782
 783/**
 784 * clocksource_select - Select the best clocksource available
 785 *
 786 * Private function. Must hold clocksource_mutex when called.
 787 *
 788 * Select the clocksource with the best rating, or the clocksource,
 789 * which is selected by userspace override.
 790 */
 791static void clocksource_select(void)
 792{
 793        __clocksource_select(false);
 794}
 795
 796static void clocksource_select_fallback(void)
 797{
 798        __clocksource_select(true);
 799}
 800
 801#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 802static inline void clocksource_select(void) { }
 803static inline void clocksource_select_fallback(void) { }
 804
 805#endif
 806
 807/*
 808 * clocksource_done_booting - Called near the end of core bootup
 809 *
 810 * Hack to avoid lots of clocksource churn at boot time.
 811 * We use fs_initcall because we want this to start before
 812 * device_initcall but after subsys_initcall.
 813 */
 814static int __init clocksource_done_booting(void)
 815{
 816        mutex_lock(&clocksource_mutex);
 817        curr_clocksource = clocksource_default_clock();
 818        finished_booting = 1;
 819        /*
 820         * Run the watchdog first to eliminate unstable clock sources
 821         */
 822        __clocksource_watchdog_kthread();
 823        clocksource_select();
 824        mutex_unlock(&clocksource_mutex);
 825        return 0;
 826}
 827fs_initcall(clocksource_done_booting);
 828
 829/*
 830 * Enqueue the clocksource sorted by rating
 831 */
 832static void clocksource_enqueue(struct clocksource *cs)
 833{
 834        struct list_head *entry = &clocksource_list;
 835        struct clocksource *tmp;
 836
 837        list_for_each_entry(tmp, &clocksource_list, list) {
 838                /* Keep track of the place, where to insert */
 839                if (tmp->rating < cs->rating)
 840                        break;
 841                entry = &tmp->list;
 842        }
 843        list_add(&cs->list, entry);
 844}
 845
 846/**
 847 * __clocksource_update_freq_scale - Used update clocksource with new freq
 848 * @cs:         clocksource to be registered
 849 * @scale:      Scale factor multiplied against freq to get clocksource hz
 850 * @freq:       clocksource frequency (cycles per second) divided by scale
 851 *
 852 * This should only be called from the clocksource->enable() method.
 853 *
 854 * This *SHOULD NOT* be called directly! Please use the
 855 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 856 * functions.
 857 */
 858void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 859{
 860        u64 sec;
 861
 862        /*
 863         * Default clocksources are *special* and self-define their mult/shift.
 864         * But, you're not special, so you should specify a freq value.
 865         */
 866        if (freq) {
 867                /*
 868                 * Calc the maximum number of seconds which we can run before
 869                 * wrapping around. For clocksources which have a mask > 32-bit
 870                 * we need to limit the max sleep time to have a good
 871                 * conversion precision. 10 minutes is still a reasonable
 872                 * amount. That results in a shift value of 24 for a
 873                 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 874                 * ~ 0.06ppm granularity for NTP.
 875                 */
 876                sec = cs->mask;
 877                do_div(sec, freq);
 878                do_div(sec, scale);
 879                if (!sec)
 880                        sec = 1;
 881                else if (sec > 600 && cs->mask > UINT_MAX)
 882                        sec = 600;
 883
 884                clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 885                                       NSEC_PER_SEC / scale, sec * scale);
 886        }
 887        /*
 888         * Ensure clocksources that have large 'mult' values don't overflow
 889         * when adjusted.
 890         */
 891        cs->maxadj = clocksource_max_adjustment(cs);
 892        while (freq && ((cs->mult + cs->maxadj < cs->mult)
 893                || (cs->mult - cs->maxadj > cs->mult))) {
 894                cs->mult >>= 1;
 895                cs->shift--;
 896                cs->maxadj = clocksource_max_adjustment(cs);
 897        }
 898
 899        /*
 900         * Only warn for *special* clocksources that self-define
 901         * their mult/shift values and don't specify a freq.
 902         */
 903        WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 904                "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 905                cs->name);
 906
 907        clocksource_update_max_deferment(cs);
 908
 909        pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 910                cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 911}
 912EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 913
 914/**
 915 * __clocksource_register_scale - Used to install new clocksources
 916 * @cs:         clocksource to be registered
 917 * @scale:      Scale factor multiplied against freq to get clocksource hz
 918 * @freq:       clocksource frequency (cycles per second) divided by scale
 919 *
 920 * Returns -EBUSY if registration fails, zero otherwise.
 921 *
 922 * This *SHOULD NOT* be called directly! Please use the
 923 * clocksource_register_hz() or clocksource_register_khz helper functions.
 924 */
 925int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 926{
 927        unsigned long flags;
 928
 929        clocksource_arch_init(cs);
 930
 931        if (cs->vdso_clock_mode < 0 ||
 932            cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
 933                pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
 934                        cs->name, cs->vdso_clock_mode);
 935                cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 936        }
 937
 938        /* Initialize mult/shift and max_idle_ns */
 939        __clocksource_update_freq_scale(cs, scale, freq);
 940
 941        /* Add clocksource to the clocksource list */
 942        mutex_lock(&clocksource_mutex);
 943
 944        clocksource_watchdog_lock(&flags);
 945        clocksource_enqueue(cs);
 946        clocksource_enqueue_watchdog(cs);
 947        clocksource_watchdog_unlock(&flags);
 948
 949        clocksource_select();
 950        clocksource_select_watchdog(false);
 951        __clocksource_suspend_select(cs);
 952        mutex_unlock(&clocksource_mutex);
 953        return 0;
 954}
 955EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 956
 957static void __clocksource_change_rating(struct clocksource *cs, int rating)
 958{
 959        list_del(&cs->list);
 960        cs->rating = rating;
 961        clocksource_enqueue(cs);
 962}
 963
 964/**
 965 * clocksource_change_rating - Change the rating of a registered clocksource
 966 * @cs:         clocksource to be changed
 967 * @rating:     new rating
 968 */
 969void clocksource_change_rating(struct clocksource *cs, int rating)
 970{
 971        unsigned long flags;
 972
 973        mutex_lock(&clocksource_mutex);
 974        clocksource_watchdog_lock(&flags);
 975        __clocksource_change_rating(cs, rating);
 976        clocksource_watchdog_unlock(&flags);
 977
 978        clocksource_select();
 979        clocksource_select_watchdog(false);
 980        clocksource_suspend_select(false);
 981        mutex_unlock(&clocksource_mutex);
 982}
 983EXPORT_SYMBOL(clocksource_change_rating);
 984
 985/*
 986 * Unbind clocksource @cs. Called with clocksource_mutex held
 987 */
 988static int clocksource_unbind(struct clocksource *cs)
 989{
 990        unsigned long flags;
 991
 992        if (clocksource_is_watchdog(cs)) {
 993                /* Select and try to install a replacement watchdog. */
 994                clocksource_select_watchdog(true);
 995                if (clocksource_is_watchdog(cs))
 996                        return -EBUSY;
 997        }
 998
 999        if (cs == curr_clocksource) {
1000                /* Select and try to install a replacement clock source */
1001                clocksource_select_fallback();
1002                if (curr_clocksource == cs)
1003                        return -EBUSY;
1004        }
1005
1006        if (clocksource_is_suspend(cs)) {
1007                /*
1008                 * Select and try to install a replacement suspend clocksource.
1009                 * If no replacement suspend clocksource, we will just let the
1010                 * clocksource go and have no suspend clocksource.
1011                 */
1012                clocksource_suspend_select(true);
1013        }
1014
1015        clocksource_watchdog_lock(&flags);
1016        clocksource_dequeue_watchdog(cs);
1017        list_del_init(&cs->list);
1018        clocksource_watchdog_unlock(&flags);
1019
1020        return 0;
1021}
1022
1023/**
1024 * clocksource_unregister - remove a registered clocksource
1025 * @cs: clocksource to be unregistered
1026 */
1027int clocksource_unregister(struct clocksource *cs)
1028{
1029        int ret = 0;
1030
1031        mutex_lock(&clocksource_mutex);
1032        if (!list_empty(&cs->list))
1033                ret = clocksource_unbind(cs);
1034        mutex_unlock(&clocksource_mutex);
1035        return ret;
1036}
1037EXPORT_SYMBOL(clocksource_unregister);
1038
1039#ifdef CONFIG_SYSFS
1040/**
1041 * current_clocksource_show - sysfs interface for current clocksource
1042 * @dev:        unused
1043 * @attr:       unused
1044 * @buf:        char buffer to be filled with clocksource list
1045 *
1046 * Provides sysfs interface for listing current clocksource.
1047 */
1048static ssize_t current_clocksource_show(struct device *dev,
1049                                        struct device_attribute *attr,
1050                                        char *buf)
1051{
1052        ssize_t count = 0;
1053
1054        mutex_lock(&clocksource_mutex);
1055        count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1056        mutex_unlock(&clocksource_mutex);
1057
1058        return count;
1059}
1060
1061ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1062{
1063        size_t ret = cnt;
1064
1065        /* strings from sysfs write are not 0 terminated! */
1066        if (!cnt || cnt >= CS_NAME_LEN)
1067                return -EINVAL;
1068
1069        /* strip of \n: */
1070        if (buf[cnt-1] == '\n')
1071                cnt--;
1072        if (cnt > 0)
1073                memcpy(dst, buf, cnt);
1074        dst[cnt] = 0;
1075        return ret;
1076}
1077
1078/**
1079 * current_clocksource_store - interface for manually overriding clocksource
1080 * @dev:        unused
1081 * @attr:       unused
1082 * @buf:        name of override clocksource
1083 * @count:      length of buffer
1084 *
1085 * Takes input from sysfs interface for manually overriding the default
1086 * clocksource selection.
1087 */
1088static ssize_t current_clocksource_store(struct device *dev,
1089                                         struct device_attribute *attr,
1090                                         const char *buf, size_t count)
1091{
1092        ssize_t ret;
1093
1094        mutex_lock(&clocksource_mutex);
1095
1096        ret = sysfs_get_uname(buf, override_name, count);
1097        if (ret >= 0)
1098                clocksource_select();
1099
1100        mutex_unlock(&clocksource_mutex);
1101
1102        return ret;
1103}
1104static DEVICE_ATTR_RW(current_clocksource);
1105
1106/**
1107 * unbind_clocksource_store - interface for manually unbinding clocksource
1108 * @dev:        unused
1109 * @attr:       unused
1110 * @buf:        unused
1111 * @count:      length of buffer
1112 *
1113 * Takes input from sysfs interface for manually unbinding a clocksource.
1114 */
1115static ssize_t unbind_clocksource_store(struct device *dev,
1116                                        struct device_attribute *attr,
1117                                        const char *buf, size_t count)
1118{
1119        struct clocksource *cs;
1120        char name[CS_NAME_LEN];
1121        ssize_t ret;
1122
1123        ret = sysfs_get_uname(buf, name, count);
1124        if (ret < 0)
1125                return ret;
1126
1127        ret = -ENODEV;
1128        mutex_lock(&clocksource_mutex);
1129        list_for_each_entry(cs, &clocksource_list, list) {
1130                if (strcmp(cs->name, name))
1131                        continue;
1132                ret = clocksource_unbind(cs);
1133                break;
1134        }
1135        mutex_unlock(&clocksource_mutex);
1136
1137        return ret ? ret : count;
1138}
1139static DEVICE_ATTR_WO(unbind_clocksource);
1140
1141/**
1142 * available_clocksource_show - sysfs interface for listing clocksource
1143 * @dev:        unused
1144 * @attr:       unused
1145 * @buf:        char buffer to be filled with clocksource list
1146 *
1147 * Provides sysfs interface for listing registered clocksources
1148 */
1149static ssize_t available_clocksource_show(struct device *dev,
1150                                          struct device_attribute *attr,
1151                                          char *buf)
1152{
1153        struct clocksource *src;
1154        ssize_t count = 0;
1155
1156        mutex_lock(&clocksource_mutex);
1157        list_for_each_entry(src, &clocksource_list, list) {
1158                /*
1159                 * Don't show non-HRES clocksource if the tick code is
1160                 * in one shot mode (highres=on or nohz=on)
1161                 */
1162                if (!tick_oneshot_mode_active() ||
1163                    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1164                        count += snprintf(buf + count,
1165                                  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1166                                  "%s ", src->name);
1167        }
1168        mutex_unlock(&clocksource_mutex);
1169
1170        count += snprintf(buf + count,
1171                          max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1172
1173        return count;
1174}
1175static DEVICE_ATTR_RO(available_clocksource);
1176
1177static struct attribute *clocksource_attrs[] = {
1178        &dev_attr_current_clocksource.attr,
1179        &dev_attr_unbind_clocksource.attr,
1180        &dev_attr_available_clocksource.attr,
1181        NULL
1182};
1183ATTRIBUTE_GROUPS(clocksource);
1184
1185static struct bus_type clocksource_subsys = {
1186        .name = "clocksource",
1187        .dev_name = "clocksource",
1188};
1189
1190static struct device device_clocksource = {
1191        .id     = 0,
1192        .bus    = &clocksource_subsys,
1193        .groups = clocksource_groups,
1194};
1195
1196static int __init init_clocksource_sysfs(void)
1197{
1198        int error = subsys_system_register(&clocksource_subsys, NULL);
1199
1200        if (!error)
1201                error = device_register(&device_clocksource);
1202
1203        return error;
1204}
1205
1206device_initcall(init_clocksource_sysfs);
1207#endif /* CONFIG_SYSFS */
1208
1209/**
1210 * boot_override_clocksource - boot clock override
1211 * @str:        override name
1212 *
1213 * Takes a clocksource= boot argument and uses it
1214 * as the clocksource override name.
1215 */
1216static int __init boot_override_clocksource(char* str)
1217{
1218        mutex_lock(&clocksource_mutex);
1219        if (str)
1220                strlcpy(override_name, str, sizeof(override_name));
1221        mutex_unlock(&clocksource_mutex);
1222        return 1;
1223}
1224
1225__setup("clocksource=", boot_override_clocksource);
1226
1227/**
1228 * boot_override_clock - Compatibility layer for deprecated boot option
1229 * @str:        override name
1230 *
1231 * DEPRECATED! Takes a clock= boot argument and uses it
1232 * as the clocksource override name
1233 */
1234static int __init boot_override_clock(char* str)
1235{
1236        if (!strcmp(str, "pmtmr")) {
1237                pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1238                return boot_override_clocksource("acpi_pm");
1239        }
1240        pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1241        return boot_override_clocksource(str);
1242}
1243
1244__setup("clock=", boot_override_clock);
1245