linux/kernel/time/tick-common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains the base functions to manage periodic tick
   4 * related events.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
   9 */
  10#include <linux/cpu.h>
  11#include <linux/err.h>
  12#include <linux/hrtimer.h>
  13#include <linux/interrupt.h>
  14#include <linux/nmi.h>
  15#include <linux/percpu.h>
  16#include <linux/profile.h>
  17#include <linux/sched.h>
  18#include <linux/module.h>
  19#include <trace/events/power.h>
  20
  21#include <asm/irq_regs.h>
  22
  23#include "tick-internal.h"
  24
  25/*
  26 * Tick devices
  27 */
  28DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  29/*
  30 * Tick next event: keeps track of the tick time
  31 */
  32ktime_t tick_next_period;
  33ktime_t tick_period;
  34
  35/*
  36 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
  37 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
  38 * variable has two functions:
  39 *
  40 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
  41 *    timekeeping lock all at once. Only the CPU which is assigned to do the
  42 *    update is handling it.
  43 *
  44 * 2) Hand off the duty in the NOHZ idle case by setting the value to
  45 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
  46 *    at it will take over and keep the time keeping alive.  The handover
  47 *    procedure also covers cpu hotplug.
  48 */
  49int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  50#ifdef CONFIG_NO_HZ_FULL
  51/*
  52 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
  53 * tick_do_timer_cpu and it should be taken over by an eligible secondary
  54 * when one comes online.
  55 */
  56static int tick_do_timer_boot_cpu __read_mostly = -1;
  57#endif
  58
  59/*
  60 * Debugging: see timer_list.c
  61 */
  62struct tick_device *tick_get_device(int cpu)
  63{
  64        return &per_cpu(tick_cpu_device, cpu);
  65}
  66
  67/**
  68 * tick_is_oneshot_available - check for a oneshot capable event device
  69 */
  70int tick_is_oneshot_available(void)
  71{
  72        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  73
  74        if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
  75                return 0;
  76        if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  77                return 1;
  78        return tick_broadcast_oneshot_available();
  79}
  80
  81/*
  82 * Periodic tick
  83 */
  84static void tick_periodic(int cpu)
  85{
  86        if (tick_do_timer_cpu == cpu) {
  87                raw_spin_lock(&jiffies_lock);
  88                write_seqcount_begin(&jiffies_seq);
  89
  90                /* Keep track of the next tick event */
  91                tick_next_period = ktime_add(tick_next_period, tick_period);
  92
  93                do_timer(1);
  94                write_seqcount_end(&jiffies_seq);
  95                raw_spin_unlock(&jiffies_lock);
  96                update_wall_time();
  97        }
  98
  99        update_process_times(user_mode(get_irq_regs()));
 100        profile_tick(CPU_PROFILING);
 101}
 102
 103/*
 104 * Event handler for periodic ticks
 105 */
 106void tick_handle_periodic(struct clock_event_device *dev)
 107{
 108        int cpu = smp_processor_id();
 109        ktime_t next = dev->next_event;
 110
 111        tick_periodic(cpu);
 112
 113#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
 114        /*
 115         * The cpu might have transitioned to HIGHRES or NOHZ mode via
 116         * update_process_times() -> run_local_timers() ->
 117         * hrtimer_run_queues().
 118         */
 119        if (dev->event_handler != tick_handle_periodic)
 120                return;
 121#endif
 122
 123        if (!clockevent_state_oneshot(dev))
 124                return;
 125        for (;;) {
 126                /*
 127                 * Setup the next period for devices, which do not have
 128                 * periodic mode:
 129                 */
 130                next = ktime_add(next, tick_period);
 131
 132                if (!clockevents_program_event(dev, next, false))
 133                        return;
 134                /*
 135                 * Have to be careful here. If we're in oneshot mode,
 136                 * before we call tick_periodic() in a loop, we need
 137                 * to be sure we're using a real hardware clocksource.
 138                 * Otherwise we could get trapped in an infinite
 139                 * loop, as the tick_periodic() increments jiffies,
 140                 * which then will increment time, possibly causing
 141                 * the loop to trigger again and again.
 142                 */
 143                if (timekeeping_valid_for_hres())
 144                        tick_periodic(cpu);
 145        }
 146}
 147
 148/*
 149 * Setup the device for a periodic tick
 150 */
 151void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
 152{
 153        tick_set_periodic_handler(dev, broadcast);
 154
 155        /* Broadcast setup ? */
 156        if (!tick_device_is_functional(dev))
 157                return;
 158
 159        if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
 160            !tick_broadcast_oneshot_active()) {
 161                clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
 162        } else {
 163                unsigned int seq;
 164                ktime_t next;
 165
 166                do {
 167                        seq = read_seqcount_begin(&jiffies_seq);
 168                        next = tick_next_period;
 169                } while (read_seqcount_retry(&jiffies_seq, seq));
 170
 171                clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 172
 173                for (;;) {
 174                        if (!clockevents_program_event(dev, next, false))
 175                                return;
 176                        next = ktime_add(next, tick_period);
 177                }
 178        }
 179}
 180
 181#ifdef CONFIG_NO_HZ_FULL
 182static void giveup_do_timer(void *info)
 183{
 184        int cpu = *(unsigned int *)info;
 185
 186        WARN_ON(tick_do_timer_cpu != smp_processor_id());
 187
 188        tick_do_timer_cpu = cpu;
 189}
 190
 191static void tick_take_do_timer_from_boot(void)
 192{
 193        int cpu = smp_processor_id();
 194        int from = tick_do_timer_boot_cpu;
 195
 196        if (from >= 0 && from != cpu)
 197                smp_call_function_single(from, giveup_do_timer, &cpu, 1);
 198}
 199#endif
 200
 201/*
 202 * Setup the tick device
 203 */
 204static void tick_setup_device(struct tick_device *td,
 205                              struct clock_event_device *newdev, int cpu,
 206                              const struct cpumask *cpumask)
 207{
 208        void (*handler)(struct clock_event_device *) = NULL;
 209        ktime_t next_event = 0;
 210
 211        /*
 212         * First device setup ?
 213         */
 214        if (!td->evtdev) {
 215                /*
 216                 * If no cpu took the do_timer update, assign it to
 217                 * this cpu:
 218                 */
 219                if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
 220                        tick_do_timer_cpu = cpu;
 221
 222                        tick_next_period = ktime_get();
 223                        tick_period = NSEC_PER_SEC / HZ;
 224#ifdef CONFIG_NO_HZ_FULL
 225                        /*
 226                         * The boot CPU may be nohz_full, in which case set
 227                         * tick_do_timer_boot_cpu so the first housekeeping
 228                         * secondary that comes up will take do_timer from
 229                         * us.
 230                         */
 231                        if (tick_nohz_full_cpu(cpu))
 232                                tick_do_timer_boot_cpu = cpu;
 233
 234                } else if (tick_do_timer_boot_cpu != -1 &&
 235                                                !tick_nohz_full_cpu(cpu)) {
 236                        tick_take_do_timer_from_boot();
 237                        tick_do_timer_boot_cpu = -1;
 238                        WARN_ON(tick_do_timer_cpu != cpu);
 239#endif
 240                }
 241
 242                /*
 243                 * Startup in periodic mode first.
 244                 */
 245                td->mode = TICKDEV_MODE_PERIODIC;
 246        } else {
 247                handler = td->evtdev->event_handler;
 248                next_event = td->evtdev->next_event;
 249                td->evtdev->event_handler = clockevents_handle_noop;
 250        }
 251
 252        td->evtdev = newdev;
 253
 254        /*
 255         * When the device is not per cpu, pin the interrupt to the
 256         * current cpu:
 257         */
 258        if (!cpumask_equal(newdev->cpumask, cpumask))
 259                irq_set_affinity(newdev->irq, cpumask);
 260
 261        /*
 262         * When global broadcasting is active, check if the current
 263         * device is registered as a placeholder for broadcast mode.
 264         * This allows us to handle this x86 misfeature in a generic
 265         * way. This function also returns !=0 when we keep the
 266         * current active broadcast state for this CPU.
 267         */
 268        if (tick_device_uses_broadcast(newdev, cpu))
 269                return;
 270
 271        if (td->mode == TICKDEV_MODE_PERIODIC)
 272                tick_setup_periodic(newdev, 0);
 273        else
 274                tick_setup_oneshot(newdev, handler, next_event);
 275}
 276
 277void tick_install_replacement(struct clock_event_device *newdev)
 278{
 279        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 280        int cpu = smp_processor_id();
 281
 282        clockevents_exchange_device(td->evtdev, newdev);
 283        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 284        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 285                tick_oneshot_notify();
 286}
 287
 288static bool tick_check_percpu(struct clock_event_device *curdev,
 289                              struct clock_event_device *newdev, int cpu)
 290{
 291        if (!cpumask_test_cpu(cpu, newdev->cpumask))
 292                return false;
 293        if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 294                return true;
 295        /* Check if irq affinity can be set */
 296        if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
 297                return false;
 298        /* Prefer an existing cpu local device */
 299        if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
 300                return false;
 301        return true;
 302}
 303
 304static bool tick_check_preferred(struct clock_event_device *curdev,
 305                                 struct clock_event_device *newdev)
 306{
 307        /* Prefer oneshot capable device */
 308        if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
 309                if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
 310                        return false;
 311                if (tick_oneshot_mode_active())
 312                        return false;
 313        }
 314
 315        /*
 316         * Use the higher rated one, but prefer a CPU local device with a lower
 317         * rating than a non-CPU local device
 318         */
 319        return !curdev ||
 320                newdev->rating > curdev->rating ||
 321               !cpumask_equal(curdev->cpumask, newdev->cpumask);
 322}
 323
 324/*
 325 * Check whether the new device is a better fit than curdev. curdev
 326 * can be NULL !
 327 */
 328bool tick_check_replacement(struct clock_event_device *curdev,
 329                            struct clock_event_device *newdev)
 330{
 331        if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
 332                return false;
 333
 334        return tick_check_preferred(curdev, newdev);
 335}
 336
 337/*
 338 * Check, if the new registered device should be used. Called with
 339 * clockevents_lock held and interrupts disabled.
 340 */
 341void tick_check_new_device(struct clock_event_device *newdev)
 342{
 343        struct clock_event_device *curdev;
 344        struct tick_device *td;
 345        int cpu;
 346
 347        cpu = smp_processor_id();
 348        td = &per_cpu(tick_cpu_device, cpu);
 349        curdev = td->evtdev;
 350
 351        /* cpu local device ? */
 352        if (!tick_check_percpu(curdev, newdev, cpu))
 353                goto out_bc;
 354
 355        /* Preference decision */
 356        if (!tick_check_preferred(curdev, newdev))
 357                goto out_bc;
 358
 359        if (!try_module_get(newdev->owner))
 360                return;
 361
 362        /*
 363         * Replace the eventually existing device by the new
 364         * device. If the current device is the broadcast device, do
 365         * not give it back to the clockevents layer !
 366         */
 367        if (tick_is_broadcast_device(curdev)) {
 368                clockevents_shutdown(curdev);
 369                curdev = NULL;
 370        }
 371        clockevents_exchange_device(curdev, newdev);
 372        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 373        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 374                tick_oneshot_notify();
 375        return;
 376
 377out_bc:
 378        /*
 379         * Can the new device be used as a broadcast device ?
 380         */
 381        tick_install_broadcast_device(newdev);
 382}
 383
 384/**
 385 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
 386 * @state:      The target state (enter/exit)
 387 *
 388 * The system enters/leaves a state, where affected devices might stop
 389 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
 390 *
 391 * Called with interrupts disabled, so clockevents_lock is not
 392 * required here because the local clock event device cannot go away
 393 * under us.
 394 */
 395int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 396{
 397        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 398
 399        if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
 400                return 0;
 401
 402        return __tick_broadcast_oneshot_control(state);
 403}
 404EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
 405
 406#ifdef CONFIG_HOTPLUG_CPU
 407/*
 408 * Transfer the do_timer job away from a dying cpu.
 409 *
 410 * Called with interrupts disabled. Not locking required. If
 411 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
 412 */
 413void tick_handover_do_timer(void)
 414{
 415        if (tick_do_timer_cpu == smp_processor_id()) {
 416                int cpu = cpumask_first(cpu_online_mask);
 417
 418                tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
 419                        TICK_DO_TIMER_NONE;
 420        }
 421}
 422
 423/*
 424 * Shutdown an event device on a given cpu:
 425 *
 426 * This is called on a life CPU, when a CPU is dead. So we cannot
 427 * access the hardware device itself.
 428 * We just set the mode and remove it from the lists.
 429 */
 430void tick_shutdown(unsigned int cpu)
 431{
 432        struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
 433        struct clock_event_device *dev = td->evtdev;
 434
 435        td->mode = TICKDEV_MODE_PERIODIC;
 436        if (dev) {
 437                /*
 438                 * Prevent that the clock events layer tries to call
 439                 * the set mode function!
 440                 */
 441                clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
 442                clockevents_exchange_device(dev, NULL);
 443                dev->event_handler = clockevents_handle_noop;
 444                td->evtdev = NULL;
 445        }
 446}
 447#endif
 448
 449/**
 450 * tick_suspend_local - Suspend the local tick device
 451 *
 452 * Called from the local cpu for freeze with interrupts disabled.
 453 *
 454 * No locks required. Nothing can change the per cpu device.
 455 */
 456void tick_suspend_local(void)
 457{
 458        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 459
 460        clockevents_shutdown(td->evtdev);
 461}
 462
 463/**
 464 * tick_resume_local - Resume the local tick device
 465 *
 466 * Called from the local CPU for unfreeze or XEN resume magic.
 467 *
 468 * No locks required. Nothing can change the per cpu device.
 469 */
 470void tick_resume_local(void)
 471{
 472        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 473        bool broadcast = tick_resume_check_broadcast();
 474
 475        clockevents_tick_resume(td->evtdev);
 476        if (!broadcast) {
 477                if (td->mode == TICKDEV_MODE_PERIODIC)
 478                        tick_setup_periodic(td->evtdev, 0);
 479                else
 480                        tick_resume_oneshot();
 481        }
 482}
 483
 484/**
 485 * tick_suspend - Suspend the tick and the broadcast device
 486 *
 487 * Called from syscore_suspend() via timekeeping_suspend with only one
 488 * CPU online and interrupts disabled or from tick_unfreeze() under
 489 * tick_freeze_lock.
 490 *
 491 * No locks required. Nothing can change the per cpu device.
 492 */
 493void tick_suspend(void)
 494{
 495        tick_suspend_local();
 496        tick_suspend_broadcast();
 497}
 498
 499/**
 500 * tick_resume - Resume the tick and the broadcast device
 501 *
 502 * Called from syscore_resume() via timekeeping_resume with only one
 503 * CPU online and interrupts disabled.
 504 *
 505 * No locks required. Nothing can change the per cpu device.
 506 */
 507void tick_resume(void)
 508{
 509        tick_resume_broadcast();
 510        tick_resume_local();
 511}
 512
 513#ifdef CONFIG_SUSPEND
 514static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
 515static unsigned int tick_freeze_depth;
 516
 517/**
 518 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
 519 *
 520 * Check if this is the last online CPU executing the function and if so,
 521 * suspend timekeeping.  Otherwise suspend the local tick.
 522 *
 523 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
 524 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
 525 */
 526void tick_freeze(void)
 527{
 528        raw_spin_lock(&tick_freeze_lock);
 529
 530        tick_freeze_depth++;
 531        if (tick_freeze_depth == num_online_cpus()) {
 532                trace_suspend_resume(TPS("timekeeping_freeze"),
 533                                     smp_processor_id(), true);
 534                system_state = SYSTEM_SUSPEND;
 535                sched_clock_suspend();
 536                timekeeping_suspend();
 537        } else {
 538                tick_suspend_local();
 539        }
 540
 541        raw_spin_unlock(&tick_freeze_lock);
 542}
 543
 544/**
 545 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
 546 *
 547 * Check if this is the first CPU executing the function and if so, resume
 548 * timekeeping.  Otherwise resume the local tick.
 549 *
 550 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
 551 * Interrupts must not be enabled after the preceding %tick_freeze().
 552 */
 553void tick_unfreeze(void)
 554{
 555        raw_spin_lock(&tick_freeze_lock);
 556
 557        if (tick_freeze_depth == num_online_cpus()) {
 558                timekeeping_resume();
 559                sched_clock_resume();
 560                system_state = SYSTEM_RUNNING;
 561                trace_suspend_resume(TPS("timekeeping_freeze"),
 562                                     smp_processor_id(), false);
 563        } else {
 564                touch_softlockup_watchdog();
 565                tick_resume_local();
 566        }
 567
 568        tick_freeze_depth--;
 569
 570        raw_spin_unlock(&tick_freeze_lock);
 571}
 572#endif /* CONFIG_SUSPEND */
 573
 574/**
 575 * tick_init - initialize the tick control
 576 */
 577void __init tick_init(void)
 578{
 579        tick_broadcast_init();
 580        tick_nohz_init();
 581}
 582