linux/kernel/trace/bpf_trace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_perf_event.h>
  10#include <linux/btf.h>
  11#include <linux/filter.h>
  12#include <linux/uaccess.h>
  13#include <linux/ctype.h>
  14#include <linux/kprobes.h>
  15#include <linux/spinlock.h>
  16#include <linux/syscalls.h>
  17#include <linux/error-injection.h>
  18#include <linux/btf_ids.h>
  19
  20#include <uapi/linux/bpf.h>
  21#include <uapi/linux/btf.h>
  22
  23#include <asm/tlb.h>
  24
  25#include "trace_probe.h"
  26#include "trace.h"
  27
  28#define CREATE_TRACE_POINTS
  29#include "bpf_trace.h"
  30
  31#define bpf_event_rcu_dereference(p)                                    \
  32        rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  33
  34#ifdef CONFIG_MODULES
  35struct bpf_trace_module {
  36        struct module *module;
  37        struct list_head list;
  38};
  39
  40static LIST_HEAD(bpf_trace_modules);
  41static DEFINE_MUTEX(bpf_module_mutex);
  42
  43static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  44{
  45        struct bpf_raw_event_map *btp, *ret = NULL;
  46        struct bpf_trace_module *btm;
  47        unsigned int i;
  48
  49        mutex_lock(&bpf_module_mutex);
  50        list_for_each_entry(btm, &bpf_trace_modules, list) {
  51                for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  52                        btp = &btm->module->bpf_raw_events[i];
  53                        if (!strcmp(btp->tp->name, name)) {
  54                                if (try_module_get(btm->module))
  55                                        ret = btp;
  56                                goto out;
  57                        }
  58                }
  59        }
  60out:
  61        mutex_unlock(&bpf_module_mutex);
  62        return ret;
  63}
  64#else
  65static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  66{
  67        return NULL;
  68}
  69#endif /* CONFIG_MODULES */
  70
  71u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  72u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  73
  74static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
  75                                  u64 flags, const struct btf **btf,
  76                                  s32 *btf_id);
  77
  78/**
  79 * trace_call_bpf - invoke BPF program
  80 * @call: tracepoint event
  81 * @ctx: opaque context pointer
  82 *
  83 * kprobe handlers execute BPF programs via this helper.
  84 * Can be used from static tracepoints in the future.
  85 *
  86 * Return: BPF programs always return an integer which is interpreted by
  87 * kprobe handler as:
  88 * 0 - return from kprobe (event is filtered out)
  89 * 1 - store kprobe event into ring buffer
  90 * Other values are reserved and currently alias to 1
  91 */
  92unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  93{
  94        unsigned int ret;
  95
  96        if (in_nmi()) /* not supported yet */
  97                return 1;
  98
  99        cant_sleep();
 100
 101        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 102                /*
 103                 * since some bpf program is already running on this cpu,
 104                 * don't call into another bpf program (same or different)
 105                 * and don't send kprobe event into ring-buffer,
 106                 * so return zero here
 107                 */
 108                ret = 0;
 109                goto out;
 110        }
 111
 112        /*
 113         * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 114         * to all call sites, we did a bpf_prog_array_valid() there to check
 115         * whether call->prog_array is empty or not, which is
 116         * a heurisitc to speed up execution.
 117         *
 118         * If bpf_prog_array_valid() fetched prog_array was
 119         * non-NULL, we go into trace_call_bpf() and do the actual
 120         * proper rcu_dereference() under RCU lock.
 121         * If it turns out that prog_array is NULL then, we bail out.
 122         * For the opposite, if the bpf_prog_array_valid() fetched pointer
 123         * was NULL, you'll skip the prog_array with the risk of missing
 124         * out of events when it was updated in between this and the
 125         * rcu_dereference() which is accepted risk.
 126         */
 127        ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 128
 129 out:
 130        __this_cpu_dec(bpf_prog_active);
 131
 132        return ret;
 133}
 134
 135#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 136BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 137{
 138        regs_set_return_value(regs, rc);
 139        override_function_with_return(regs);
 140        return 0;
 141}
 142
 143static const struct bpf_func_proto bpf_override_return_proto = {
 144        .func           = bpf_override_return,
 145        .gpl_only       = true,
 146        .ret_type       = RET_INTEGER,
 147        .arg1_type      = ARG_PTR_TO_CTX,
 148        .arg2_type      = ARG_ANYTHING,
 149};
 150#endif
 151
 152static __always_inline int
 153bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 154{
 155        int ret;
 156
 157        ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 158        if (unlikely(ret < 0))
 159                memset(dst, 0, size);
 160        return ret;
 161}
 162
 163BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 164           const void __user *, unsafe_ptr)
 165{
 166        return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 167}
 168
 169const struct bpf_func_proto bpf_probe_read_user_proto = {
 170        .func           = bpf_probe_read_user,
 171        .gpl_only       = true,
 172        .ret_type       = RET_INTEGER,
 173        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 174        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 175        .arg3_type      = ARG_ANYTHING,
 176};
 177
 178static __always_inline int
 179bpf_probe_read_user_str_common(void *dst, u32 size,
 180                               const void __user *unsafe_ptr)
 181{
 182        int ret;
 183
 184        /*
 185         * NB: We rely on strncpy_from_user() not copying junk past the NUL
 186         * terminator into `dst`.
 187         *
 188         * strncpy_from_user() does long-sized strides in the fast path. If the
 189         * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
 190         * then there could be junk after the NUL in `dst`. If user takes `dst`
 191         * and keys a hash map with it, then semantically identical strings can
 192         * occupy multiple entries in the map.
 193         */
 194        ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 195        if (unlikely(ret < 0))
 196                memset(dst, 0, size);
 197        return ret;
 198}
 199
 200BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 201           const void __user *, unsafe_ptr)
 202{
 203        return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 204}
 205
 206const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 207        .func           = bpf_probe_read_user_str,
 208        .gpl_only       = true,
 209        .ret_type       = RET_INTEGER,
 210        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 211        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 212        .arg3_type      = ARG_ANYTHING,
 213};
 214
 215static __always_inline int
 216bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 217{
 218        int ret = security_locked_down(LOCKDOWN_BPF_READ);
 219
 220        if (unlikely(ret < 0))
 221                goto fail;
 222        ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 223        if (unlikely(ret < 0))
 224                goto fail;
 225        return ret;
 226fail:
 227        memset(dst, 0, size);
 228        return ret;
 229}
 230
 231BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 232           const void *, unsafe_ptr)
 233{
 234        return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 235}
 236
 237const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 238        .func           = bpf_probe_read_kernel,
 239        .gpl_only       = true,
 240        .ret_type       = RET_INTEGER,
 241        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 242        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 243        .arg3_type      = ARG_ANYTHING,
 244};
 245
 246static __always_inline int
 247bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 248{
 249        int ret = security_locked_down(LOCKDOWN_BPF_READ);
 250
 251        if (unlikely(ret < 0))
 252                goto fail;
 253
 254        /*
 255         * The strncpy_from_kernel_nofault() call will likely not fill the
 256         * entire buffer, but that's okay in this circumstance as we're probing
 257         * arbitrary memory anyway similar to bpf_probe_read_*() and might
 258         * as well probe the stack. Thus, memory is explicitly cleared
 259         * only in error case, so that improper users ignoring return
 260         * code altogether don't copy garbage; otherwise length of string
 261         * is returned that can be used for bpf_perf_event_output() et al.
 262         */
 263        ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 264        if (unlikely(ret < 0))
 265                goto fail;
 266
 267        return ret;
 268fail:
 269        memset(dst, 0, size);
 270        return ret;
 271}
 272
 273BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 274           const void *, unsafe_ptr)
 275{
 276        return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 277}
 278
 279const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 280        .func           = bpf_probe_read_kernel_str,
 281        .gpl_only       = true,
 282        .ret_type       = RET_INTEGER,
 283        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 284        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 285        .arg3_type      = ARG_ANYTHING,
 286};
 287
 288#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 289BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 290           const void *, unsafe_ptr)
 291{
 292        if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 293                return bpf_probe_read_user_common(dst, size,
 294                                (__force void __user *)unsafe_ptr);
 295        }
 296        return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 297}
 298
 299static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 300        .func           = bpf_probe_read_compat,
 301        .gpl_only       = true,
 302        .ret_type       = RET_INTEGER,
 303        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 304        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 305        .arg3_type      = ARG_ANYTHING,
 306};
 307
 308BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 309           const void *, unsafe_ptr)
 310{
 311        if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 312                return bpf_probe_read_user_str_common(dst, size,
 313                                (__force void __user *)unsafe_ptr);
 314        }
 315        return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 316}
 317
 318static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 319        .func           = bpf_probe_read_compat_str,
 320        .gpl_only       = true,
 321        .ret_type       = RET_INTEGER,
 322        .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
 323        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
 324        .arg3_type      = ARG_ANYTHING,
 325};
 326#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 327
 328BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 329           u32, size)
 330{
 331        /*
 332         * Ensure we're in user context which is safe for the helper to
 333         * run. This helper has no business in a kthread.
 334         *
 335         * access_ok() should prevent writing to non-user memory, but in
 336         * some situations (nommu, temporary switch, etc) access_ok() does
 337         * not provide enough validation, hence the check on KERNEL_DS.
 338         *
 339         * nmi_uaccess_okay() ensures the probe is not run in an interim
 340         * state, when the task or mm are switched. This is specifically
 341         * required to prevent the use of temporary mm.
 342         */
 343
 344        if (unlikely(in_interrupt() ||
 345                     current->flags & (PF_KTHREAD | PF_EXITING)))
 346                return -EPERM;
 347        if (unlikely(uaccess_kernel()))
 348                return -EPERM;
 349        if (unlikely(!nmi_uaccess_okay()))
 350                return -EPERM;
 351
 352        return copy_to_user_nofault(unsafe_ptr, src, size);
 353}
 354
 355static const struct bpf_func_proto bpf_probe_write_user_proto = {
 356        .func           = bpf_probe_write_user,
 357        .gpl_only       = true,
 358        .ret_type       = RET_INTEGER,
 359        .arg1_type      = ARG_ANYTHING,
 360        .arg2_type      = ARG_PTR_TO_MEM,
 361        .arg3_type      = ARG_CONST_SIZE,
 362};
 363
 364static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 365{
 366        if (!capable(CAP_SYS_ADMIN))
 367                return NULL;
 368
 369        pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 370                            current->comm, task_pid_nr(current));
 371
 372        return &bpf_probe_write_user_proto;
 373}
 374
 375static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 376                size_t bufsz)
 377{
 378        void __user *user_ptr = (__force void __user *)unsafe_ptr;
 379
 380        buf[0] = 0;
 381
 382        switch (fmt_ptype) {
 383        case 's':
 384#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 385                if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 386                        strncpy_from_user_nofault(buf, user_ptr, bufsz);
 387                        break;
 388                }
 389                fallthrough;
 390#endif
 391        case 'k':
 392                strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 393                break;
 394        case 'u':
 395                strncpy_from_user_nofault(buf, user_ptr, bufsz);
 396                break;
 397        }
 398}
 399
 400static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 401
 402#define BPF_TRACE_PRINTK_SIZE   1024
 403
 404static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
 405{
 406        static char buf[BPF_TRACE_PRINTK_SIZE];
 407        unsigned long flags;
 408        va_list ap;
 409        int ret;
 410
 411        raw_spin_lock_irqsave(&trace_printk_lock, flags);
 412        va_start(ap, fmt);
 413        ret = vsnprintf(buf, sizeof(buf), fmt, ap);
 414        va_end(ap);
 415        /* vsnprintf() will not append null for zero-length strings */
 416        if (ret == 0)
 417                buf[0] = '\0';
 418        trace_bpf_trace_printk(buf);
 419        raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 420
 421        return ret;
 422}
 423
 424/*
 425 * Only limited trace_printk() conversion specifiers allowed:
 426 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
 427 */
 428BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 429           u64, arg2, u64, arg3)
 430{
 431        int i, mod[3] = {}, fmt_cnt = 0;
 432        char buf[64], fmt_ptype;
 433        void *unsafe_ptr = NULL;
 434        bool str_seen = false;
 435
 436        /*
 437         * bpf_check()->check_func_arg()->check_stack_boundary()
 438         * guarantees that fmt points to bpf program stack,
 439         * fmt_size bytes of it were initialized and fmt_size > 0
 440         */
 441        if (fmt[--fmt_size] != 0)
 442                return -EINVAL;
 443
 444        /* check format string for allowed specifiers */
 445        for (i = 0; i < fmt_size; i++) {
 446                if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
 447                        return -EINVAL;
 448
 449                if (fmt[i] != '%')
 450                        continue;
 451
 452                if (fmt_cnt >= 3)
 453                        return -EINVAL;
 454
 455                /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 456                i++;
 457                if (fmt[i] == 'l') {
 458                        mod[fmt_cnt]++;
 459                        i++;
 460                } else if (fmt[i] == 'p') {
 461                        mod[fmt_cnt]++;
 462                        if ((fmt[i + 1] == 'k' ||
 463                             fmt[i + 1] == 'u') &&
 464                            fmt[i + 2] == 's') {
 465                                fmt_ptype = fmt[i + 1];
 466                                i += 2;
 467                                goto fmt_str;
 468                        }
 469
 470                        if (fmt[i + 1] == 'B') {
 471                                i++;
 472                                goto fmt_next;
 473                        }
 474
 475                        /* disallow any further format extensions */
 476                        if (fmt[i + 1] != 0 &&
 477                            !isspace(fmt[i + 1]) &&
 478                            !ispunct(fmt[i + 1]))
 479                                return -EINVAL;
 480
 481                        goto fmt_next;
 482                } else if (fmt[i] == 's') {
 483                        mod[fmt_cnt]++;
 484                        fmt_ptype = fmt[i];
 485fmt_str:
 486                        if (str_seen)
 487                                /* allow only one '%s' per fmt string */
 488                                return -EINVAL;
 489                        str_seen = true;
 490
 491                        if (fmt[i + 1] != 0 &&
 492                            !isspace(fmt[i + 1]) &&
 493                            !ispunct(fmt[i + 1]))
 494                                return -EINVAL;
 495
 496                        switch (fmt_cnt) {
 497                        case 0:
 498                                unsafe_ptr = (void *)(long)arg1;
 499                                arg1 = (long)buf;
 500                                break;
 501                        case 1:
 502                                unsafe_ptr = (void *)(long)arg2;
 503                                arg2 = (long)buf;
 504                                break;
 505                        case 2:
 506                                unsafe_ptr = (void *)(long)arg3;
 507                                arg3 = (long)buf;
 508                                break;
 509                        }
 510
 511                        bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
 512                                        sizeof(buf));
 513                        goto fmt_next;
 514                }
 515
 516                if (fmt[i] == 'l') {
 517                        mod[fmt_cnt]++;
 518                        i++;
 519                }
 520
 521                if (fmt[i] != 'i' && fmt[i] != 'd' &&
 522                    fmt[i] != 'u' && fmt[i] != 'x')
 523                        return -EINVAL;
 524fmt_next:
 525                fmt_cnt++;
 526        }
 527
 528/* Horrid workaround for getting va_list handling working with different
 529 * argument type combinations generically for 32 and 64 bit archs.
 530 */
 531#define __BPF_TP_EMIT() __BPF_ARG3_TP()
 532#define __BPF_TP(...)                                                   \
 533        bpf_do_trace_printk(fmt, ##__VA_ARGS__)
 534
 535#define __BPF_ARG1_TP(...)                                              \
 536        ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))        \
 537          ? __BPF_TP(arg1, ##__VA_ARGS__)                               \
 538          : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))    \
 539              ? __BPF_TP((long)arg1, ##__VA_ARGS__)                     \
 540              : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
 541
 542#define __BPF_ARG2_TP(...)                                              \
 543        ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))        \
 544          ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)                          \
 545          : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))    \
 546              ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)                \
 547              : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
 548
 549#define __BPF_ARG3_TP(...)                                              \
 550        ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))        \
 551          ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)                          \
 552          : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))    \
 553              ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)                \
 554              : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
 555
 556        return __BPF_TP_EMIT();
 557}
 558
 559static const struct bpf_func_proto bpf_trace_printk_proto = {
 560        .func           = bpf_trace_printk,
 561        .gpl_only       = true,
 562        .ret_type       = RET_INTEGER,
 563        .arg1_type      = ARG_PTR_TO_MEM,
 564        .arg2_type      = ARG_CONST_SIZE,
 565};
 566
 567const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 568{
 569        /*
 570         * This program might be calling bpf_trace_printk,
 571         * so enable the associated bpf_trace/bpf_trace_printk event.
 572         * Repeat this each time as it is possible a user has
 573         * disabled bpf_trace_printk events.  By loading a program
 574         * calling bpf_trace_printk() however the user has expressed
 575         * the intent to see such events.
 576         */
 577        if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 578                pr_warn_ratelimited("could not enable bpf_trace_printk events");
 579
 580        return &bpf_trace_printk_proto;
 581}
 582
 583#define MAX_SEQ_PRINTF_VARARGS          12
 584#define MAX_SEQ_PRINTF_MAX_MEMCPY       6
 585#define MAX_SEQ_PRINTF_STR_LEN          128
 586
 587struct bpf_seq_printf_buf {
 588        char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
 589};
 590static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
 591static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
 592
 593BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 594           const void *, data, u32, data_len)
 595{
 596        int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
 597        int i, buf_used, copy_size, num_args;
 598        u64 params[MAX_SEQ_PRINTF_VARARGS];
 599        struct bpf_seq_printf_buf *bufs;
 600        const u64 *args = data;
 601
 602        buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
 603        if (WARN_ON_ONCE(buf_used > 1)) {
 604                err = -EBUSY;
 605                goto out;
 606        }
 607
 608        bufs = this_cpu_ptr(&bpf_seq_printf_buf);
 609
 610        /*
 611         * bpf_check()->check_func_arg()->check_stack_boundary()
 612         * guarantees that fmt points to bpf program stack,
 613         * fmt_size bytes of it were initialized and fmt_size > 0
 614         */
 615        if (fmt[--fmt_size] != 0)
 616                goto out;
 617
 618        if (data_len & 7)
 619                goto out;
 620
 621        for (i = 0; i < fmt_size; i++) {
 622                if (fmt[i] == '%') {
 623                        if (fmt[i + 1] == '%')
 624                                i++;
 625                        else if (!data || !data_len)
 626                                goto out;
 627                }
 628        }
 629
 630        num_args = data_len / 8;
 631
 632        /* check format string for allowed specifiers */
 633        for (i = 0; i < fmt_size; i++) {
 634                /* only printable ascii for now. */
 635                if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 636                        err = -EINVAL;
 637                        goto out;
 638                }
 639
 640                if (fmt[i] != '%')
 641                        continue;
 642
 643                if (fmt[i + 1] == '%') {
 644                        i++;
 645                        continue;
 646                }
 647
 648                if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
 649                        err = -E2BIG;
 650                        goto out;
 651                }
 652
 653                if (fmt_cnt >= num_args) {
 654                        err = -EINVAL;
 655                        goto out;
 656                }
 657
 658                /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 659                i++;
 660
 661                /* skip optional "[0 +-][num]" width formating field */
 662                while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 663                       fmt[i] == ' ')
 664                        i++;
 665                if (fmt[i] >= '1' && fmt[i] <= '9') {
 666                        i++;
 667                        while (fmt[i] >= '0' && fmt[i] <= '9')
 668                                i++;
 669                }
 670
 671                if (fmt[i] == 's') {
 672                        void *unsafe_ptr;
 673
 674                        /* try our best to copy */
 675                        if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 676                                err = -E2BIG;
 677                                goto out;
 678                        }
 679
 680                        unsafe_ptr = (void *)(long)args[fmt_cnt];
 681                        err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 682                                        unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
 683                        if (err < 0)
 684                                bufs->buf[memcpy_cnt][0] = '\0';
 685                        params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 686
 687                        fmt_cnt++;
 688                        memcpy_cnt++;
 689                        continue;
 690                }
 691
 692                if (fmt[i] == 'p') {
 693                        if (fmt[i + 1] == 0 ||
 694                            fmt[i + 1] == 'K' ||
 695                            fmt[i + 1] == 'x' ||
 696                            fmt[i + 1] == 'B') {
 697                                /* just kernel pointers */
 698                                params[fmt_cnt] = args[fmt_cnt];
 699                                fmt_cnt++;
 700                                continue;
 701                        }
 702
 703                        /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 704                        if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
 705                                err = -EINVAL;
 706                                goto out;
 707                        }
 708                        if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
 709                                err = -EINVAL;
 710                                goto out;
 711                        }
 712
 713                        if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 714                                err = -E2BIG;
 715                                goto out;
 716                        }
 717
 718
 719                        copy_size = (fmt[i + 2] == '4') ? 4 : 16;
 720
 721                        err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 722                                                (void *) (long) args[fmt_cnt],
 723                                                copy_size);
 724                        if (err < 0)
 725                                memset(bufs->buf[memcpy_cnt], 0, copy_size);
 726                        params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 727
 728                        i += 2;
 729                        fmt_cnt++;
 730                        memcpy_cnt++;
 731                        continue;
 732                }
 733
 734                if (fmt[i] == 'l') {
 735                        i++;
 736                        if (fmt[i] == 'l')
 737                                i++;
 738                }
 739
 740                if (fmt[i] != 'i' && fmt[i] != 'd' &&
 741                    fmt[i] != 'u' && fmt[i] != 'x' &&
 742                    fmt[i] != 'X') {
 743                        err = -EINVAL;
 744                        goto out;
 745                }
 746
 747                params[fmt_cnt] = args[fmt_cnt];
 748                fmt_cnt++;
 749        }
 750
 751        /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
 752         * all of them to seq_printf().
 753         */
 754        seq_printf(m, fmt, params[0], params[1], params[2], params[3],
 755                   params[4], params[5], params[6], params[7], params[8],
 756                   params[9], params[10], params[11]);
 757
 758        err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
 759out:
 760        this_cpu_dec(bpf_seq_printf_buf_used);
 761        return err;
 762}
 763
 764BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
 765
 766static const struct bpf_func_proto bpf_seq_printf_proto = {
 767        .func           = bpf_seq_printf,
 768        .gpl_only       = true,
 769        .ret_type       = RET_INTEGER,
 770        .arg1_type      = ARG_PTR_TO_BTF_ID,
 771        .arg1_btf_id    = &btf_seq_file_ids[0],
 772        .arg2_type      = ARG_PTR_TO_MEM,
 773        .arg3_type      = ARG_CONST_SIZE,
 774        .arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
 775        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 776};
 777
 778BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 779{
 780        return seq_write(m, data, len) ? -EOVERFLOW : 0;
 781}
 782
 783static const struct bpf_func_proto bpf_seq_write_proto = {
 784        .func           = bpf_seq_write,
 785        .gpl_only       = true,
 786        .ret_type       = RET_INTEGER,
 787        .arg1_type      = ARG_PTR_TO_BTF_ID,
 788        .arg1_btf_id    = &btf_seq_file_ids[0],
 789        .arg2_type      = ARG_PTR_TO_MEM,
 790        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
 791};
 792
 793BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
 794           u32, btf_ptr_size, u64, flags)
 795{
 796        const struct btf *btf;
 797        s32 btf_id;
 798        int ret;
 799
 800        ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 801        if (ret)
 802                return ret;
 803
 804        return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
 805}
 806
 807static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
 808        .func           = bpf_seq_printf_btf,
 809        .gpl_only       = true,
 810        .ret_type       = RET_INTEGER,
 811        .arg1_type      = ARG_PTR_TO_BTF_ID,
 812        .arg1_btf_id    = &btf_seq_file_ids[0],
 813        .arg2_type      = ARG_PTR_TO_MEM,
 814        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
 815        .arg4_type      = ARG_ANYTHING,
 816};
 817
 818static __always_inline int
 819get_map_perf_counter(struct bpf_map *map, u64 flags,
 820                     u64 *value, u64 *enabled, u64 *running)
 821{
 822        struct bpf_array *array = container_of(map, struct bpf_array, map);
 823        unsigned int cpu = smp_processor_id();
 824        u64 index = flags & BPF_F_INDEX_MASK;
 825        struct bpf_event_entry *ee;
 826
 827        if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 828                return -EINVAL;
 829        if (index == BPF_F_CURRENT_CPU)
 830                index = cpu;
 831        if (unlikely(index >= array->map.max_entries))
 832                return -E2BIG;
 833
 834        ee = READ_ONCE(array->ptrs[index]);
 835        if (!ee)
 836                return -ENOENT;
 837
 838        return perf_event_read_local(ee->event, value, enabled, running);
 839}
 840
 841BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 842{
 843        u64 value = 0;
 844        int err;
 845
 846        err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 847        /*
 848         * this api is ugly since we miss [-22..-2] range of valid
 849         * counter values, but that's uapi
 850         */
 851        if (err)
 852                return err;
 853        return value;
 854}
 855
 856static const struct bpf_func_proto bpf_perf_event_read_proto = {
 857        .func           = bpf_perf_event_read,
 858        .gpl_only       = true,
 859        .ret_type       = RET_INTEGER,
 860        .arg1_type      = ARG_CONST_MAP_PTR,
 861        .arg2_type      = ARG_ANYTHING,
 862};
 863
 864BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 865           struct bpf_perf_event_value *, buf, u32, size)
 866{
 867        int err = -EINVAL;
 868
 869        if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 870                goto clear;
 871        err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 872                                   &buf->running);
 873        if (unlikely(err))
 874                goto clear;
 875        return 0;
 876clear:
 877        memset(buf, 0, size);
 878        return err;
 879}
 880
 881static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 882        .func           = bpf_perf_event_read_value,
 883        .gpl_only       = true,
 884        .ret_type       = RET_INTEGER,
 885        .arg1_type      = ARG_CONST_MAP_PTR,
 886        .arg2_type      = ARG_ANYTHING,
 887        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
 888        .arg4_type      = ARG_CONST_SIZE,
 889};
 890
 891static __always_inline u64
 892__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 893                        u64 flags, struct perf_sample_data *sd)
 894{
 895        struct bpf_array *array = container_of(map, struct bpf_array, map);
 896        unsigned int cpu = smp_processor_id();
 897        u64 index = flags & BPF_F_INDEX_MASK;
 898        struct bpf_event_entry *ee;
 899        struct perf_event *event;
 900
 901        if (index == BPF_F_CURRENT_CPU)
 902                index = cpu;
 903        if (unlikely(index >= array->map.max_entries))
 904                return -E2BIG;
 905
 906        ee = READ_ONCE(array->ptrs[index]);
 907        if (!ee)
 908                return -ENOENT;
 909
 910        event = ee->event;
 911        if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 912                     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 913                return -EINVAL;
 914
 915        if (unlikely(event->oncpu != cpu))
 916                return -EOPNOTSUPP;
 917
 918        return perf_event_output(event, sd, regs);
 919}
 920
 921/*
 922 * Support executing tracepoints in normal, irq, and nmi context that each call
 923 * bpf_perf_event_output
 924 */
 925struct bpf_trace_sample_data {
 926        struct perf_sample_data sds[3];
 927};
 928
 929static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 930static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 931BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 932           u64, flags, void *, data, u64, size)
 933{
 934        struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 935        int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 936        struct perf_raw_record raw = {
 937                .frag = {
 938                        .size = size,
 939                        .data = data,
 940                },
 941        };
 942        struct perf_sample_data *sd;
 943        int err;
 944
 945        if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 946                err = -EBUSY;
 947                goto out;
 948        }
 949
 950        sd = &sds->sds[nest_level - 1];
 951
 952        if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 953                err = -EINVAL;
 954                goto out;
 955        }
 956
 957        perf_sample_data_init(sd, 0, 0);
 958        sd->raw = &raw;
 959
 960        err = __bpf_perf_event_output(regs, map, flags, sd);
 961
 962out:
 963        this_cpu_dec(bpf_trace_nest_level);
 964        return err;
 965}
 966
 967static const struct bpf_func_proto bpf_perf_event_output_proto = {
 968        .func           = bpf_perf_event_output,
 969        .gpl_only       = true,
 970        .ret_type       = RET_INTEGER,
 971        .arg1_type      = ARG_PTR_TO_CTX,
 972        .arg2_type      = ARG_CONST_MAP_PTR,
 973        .arg3_type      = ARG_ANYTHING,
 974        .arg4_type      = ARG_PTR_TO_MEM,
 975        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 976};
 977
 978static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 979struct bpf_nested_pt_regs {
 980        struct pt_regs regs[3];
 981};
 982static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 983static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 984
 985u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 986                     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 987{
 988        int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 989        struct perf_raw_frag frag = {
 990                .copy           = ctx_copy,
 991                .size           = ctx_size,
 992                .data           = ctx,
 993        };
 994        struct perf_raw_record raw = {
 995                .frag = {
 996                        {
 997                                .next   = ctx_size ? &frag : NULL,
 998                        },
 999                        .size   = meta_size,
1000                        .data   = meta,
1001                },
1002        };
1003        struct perf_sample_data *sd;
1004        struct pt_regs *regs;
1005        u64 ret;
1006
1007        if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
1008                ret = -EBUSY;
1009                goto out;
1010        }
1011        sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
1012        regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
1013
1014        perf_fetch_caller_regs(regs);
1015        perf_sample_data_init(sd, 0, 0);
1016        sd->raw = &raw;
1017
1018        ret = __bpf_perf_event_output(regs, map, flags, sd);
1019out:
1020        this_cpu_dec(bpf_event_output_nest_level);
1021        return ret;
1022}
1023
1024BPF_CALL_0(bpf_get_current_task)
1025{
1026        return (long) current;
1027}
1028
1029const struct bpf_func_proto bpf_get_current_task_proto = {
1030        .func           = bpf_get_current_task,
1031        .gpl_only       = true,
1032        .ret_type       = RET_INTEGER,
1033};
1034
1035BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
1036{
1037        struct bpf_array *array = container_of(map, struct bpf_array, map);
1038        struct cgroup *cgrp;
1039
1040        if (unlikely(idx >= array->map.max_entries))
1041                return -E2BIG;
1042
1043        cgrp = READ_ONCE(array->ptrs[idx]);
1044        if (unlikely(!cgrp))
1045                return -EAGAIN;
1046
1047        return task_under_cgroup_hierarchy(current, cgrp);
1048}
1049
1050static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1051        .func           = bpf_current_task_under_cgroup,
1052        .gpl_only       = false,
1053        .ret_type       = RET_INTEGER,
1054        .arg1_type      = ARG_CONST_MAP_PTR,
1055        .arg2_type      = ARG_ANYTHING,
1056};
1057
1058struct send_signal_irq_work {
1059        struct irq_work irq_work;
1060        struct task_struct *task;
1061        u32 sig;
1062        enum pid_type type;
1063};
1064
1065static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1066
1067static void do_bpf_send_signal(struct irq_work *entry)
1068{
1069        struct send_signal_irq_work *work;
1070
1071        work = container_of(entry, struct send_signal_irq_work, irq_work);
1072        group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1073}
1074
1075static int bpf_send_signal_common(u32 sig, enum pid_type type)
1076{
1077        struct send_signal_irq_work *work = NULL;
1078
1079        /* Similar to bpf_probe_write_user, task needs to be
1080         * in a sound condition and kernel memory access be
1081         * permitted in order to send signal to the current
1082         * task.
1083         */
1084        if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1085                return -EPERM;
1086        if (unlikely(uaccess_kernel()))
1087                return -EPERM;
1088        if (unlikely(!nmi_uaccess_okay()))
1089                return -EPERM;
1090
1091        if (irqs_disabled()) {
1092                /* Do an early check on signal validity. Otherwise,
1093                 * the error is lost in deferred irq_work.
1094                 */
1095                if (unlikely(!valid_signal(sig)))
1096                        return -EINVAL;
1097
1098                work = this_cpu_ptr(&send_signal_work);
1099                if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1100                        return -EBUSY;
1101
1102                /* Add the current task, which is the target of sending signal,
1103                 * to the irq_work. The current task may change when queued
1104                 * irq works get executed.
1105                 */
1106                work->task = current;
1107                work->sig = sig;
1108                work->type = type;
1109                irq_work_queue(&work->irq_work);
1110                return 0;
1111        }
1112
1113        return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1114}
1115
1116BPF_CALL_1(bpf_send_signal, u32, sig)
1117{
1118        return bpf_send_signal_common(sig, PIDTYPE_TGID);
1119}
1120
1121static const struct bpf_func_proto bpf_send_signal_proto = {
1122        .func           = bpf_send_signal,
1123        .gpl_only       = false,
1124        .ret_type       = RET_INTEGER,
1125        .arg1_type      = ARG_ANYTHING,
1126};
1127
1128BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1129{
1130        return bpf_send_signal_common(sig, PIDTYPE_PID);
1131}
1132
1133static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1134        .func           = bpf_send_signal_thread,
1135        .gpl_only       = false,
1136        .ret_type       = RET_INTEGER,
1137        .arg1_type      = ARG_ANYTHING,
1138};
1139
1140BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
1141{
1142        long len;
1143        char *p;
1144
1145        if (!sz)
1146                return 0;
1147
1148        p = d_path(path, buf, sz);
1149        if (IS_ERR(p)) {
1150                len = PTR_ERR(p);
1151        } else {
1152                len = buf + sz - p;
1153                memmove(buf, p, len);
1154        }
1155
1156        return len;
1157}
1158
1159BTF_SET_START(btf_allowlist_d_path)
1160#ifdef CONFIG_SECURITY
1161BTF_ID(func, security_file_permission)
1162BTF_ID(func, security_inode_getattr)
1163BTF_ID(func, security_file_open)
1164#endif
1165#ifdef CONFIG_SECURITY_PATH
1166BTF_ID(func, security_path_truncate)
1167#endif
1168BTF_ID(func, vfs_truncate)
1169BTF_ID(func, vfs_fallocate)
1170BTF_ID(func, dentry_open)
1171BTF_ID(func, vfs_getattr)
1172BTF_ID(func, filp_close)
1173BTF_SET_END(btf_allowlist_d_path)
1174
1175static bool bpf_d_path_allowed(const struct bpf_prog *prog)
1176{
1177        return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
1178}
1179
1180BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
1181
1182static const struct bpf_func_proto bpf_d_path_proto = {
1183        .func           = bpf_d_path,
1184        .gpl_only       = false,
1185        .ret_type       = RET_INTEGER,
1186        .arg1_type      = ARG_PTR_TO_BTF_ID,
1187        .arg1_btf_id    = &bpf_d_path_btf_ids[0],
1188        .arg2_type      = ARG_PTR_TO_MEM,
1189        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1190        .allowed        = bpf_d_path_allowed,
1191};
1192
1193#define BTF_F_ALL       (BTF_F_COMPACT  | BTF_F_NONAME | \
1194                         BTF_F_PTR_RAW | BTF_F_ZERO)
1195
1196static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
1197                                  u64 flags, const struct btf **btf,
1198                                  s32 *btf_id)
1199{
1200        const struct btf_type *t;
1201
1202        if (unlikely(flags & ~(BTF_F_ALL)))
1203                return -EINVAL;
1204
1205        if (btf_ptr_size != sizeof(struct btf_ptr))
1206                return -EINVAL;
1207
1208        *btf = bpf_get_btf_vmlinux();
1209
1210        if (IS_ERR_OR_NULL(*btf))
1211                return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
1212
1213        if (ptr->type_id > 0)
1214                *btf_id = ptr->type_id;
1215        else
1216                return -EINVAL;
1217
1218        if (*btf_id > 0)
1219                t = btf_type_by_id(*btf, *btf_id);
1220        if (*btf_id <= 0 || !t)
1221                return -ENOENT;
1222
1223        return 0;
1224}
1225
1226BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1227           u32, btf_ptr_size, u64, flags)
1228{
1229        const struct btf *btf;
1230        s32 btf_id;
1231        int ret;
1232
1233        ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1234        if (ret)
1235                return ret;
1236
1237        return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1238                                      flags);
1239}
1240
1241const struct bpf_func_proto bpf_snprintf_btf_proto = {
1242        .func           = bpf_snprintf_btf,
1243        .gpl_only       = false,
1244        .ret_type       = RET_INTEGER,
1245        .arg1_type      = ARG_PTR_TO_MEM,
1246        .arg2_type      = ARG_CONST_SIZE,
1247        .arg3_type      = ARG_PTR_TO_MEM,
1248        .arg4_type      = ARG_CONST_SIZE,
1249        .arg5_type      = ARG_ANYTHING,
1250};
1251
1252const struct bpf_func_proto *
1253bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1254{
1255        switch (func_id) {
1256        case BPF_FUNC_map_lookup_elem:
1257                return &bpf_map_lookup_elem_proto;
1258        case BPF_FUNC_map_update_elem:
1259                return &bpf_map_update_elem_proto;
1260        case BPF_FUNC_map_delete_elem:
1261                return &bpf_map_delete_elem_proto;
1262        case BPF_FUNC_map_push_elem:
1263                return &bpf_map_push_elem_proto;
1264        case BPF_FUNC_map_pop_elem:
1265                return &bpf_map_pop_elem_proto;
1266        case BPF_FUNC_map_peek_elem:
1267                return &bpf_map_peek_elem_proto;
1268        case BPF_FUNC_ktime_get_ns:
1269                return &bpf_ktime_get_ns_proto;
1270        case BPF_FUNC_ktime_get_boot_ns:
1271                return &bpf_ktime_get_boot_ns_proto;
1272        case BPF_FUNC_tail_call:
1273                return &bpf_tail_call_proto;
1274        case BPF_FUNC_get_current_pid_tgid:
1275                return &bpf_get_current_pid_tgid_proto;
1276        case BPF_FUNC_get_current_task:
1277                return &bpf_get_current_task_proto;
1278        case BPF_FUNC_get_current_uid_gid:
1279                return &bpf_get_current_uid_gid_proto;
1280        case BPF_FUNC_get_current_comm:
1281                return &bpf_get_current_comm_proto;
1282        case BPF_FUNC_trace_printk:
1283                return bpf_get_trace_printk_proto();
1284        case BPF_FUNC_get_smp_processor_id:
1285                return &bpf_get_smp_processor_id_proto;
1286        case BPF_FUNC_get_numa_node_id:
1287                return &bpf_get_numa_node_id_proto;
1288        case BPF_FUNC_perf_event_read:
1289                return &bpf_perf_event_read_proto;
1290        case BPF_FUNC_probe_write_user:
1291                return bpf_get_probe_write_proto();
1292        case BPF_FUNC_current_task_under_cgroup:
1293                return &bpf_current_task_under_cgroup_proto;
1294        case BPF_FUNC_get_prandom_u32:
1295                return &bpf_get_prandom_u32_proto;
1296        case BPF_FUNC_probe_read_user:
1297                return &bpf_probe_read_user_proto;
1298        case BPF_FUNC_probe_read_kernel:
1299                return &bpf_probe_read_kernel_proto;
1300        case BPF_FUNC_probe_read_user_str:
1301                return &bpf_probe_read_user_str_proto;
1302        case BPF_FUNC_probe_read_kernel_str:
1303                return &bpf_probe_read_kernel_str_proto;
1304#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1305        case BPF_FUNC_probe_read:
1306                return &bpf_probe_read_compat_proto;
1307        case BPF_FUNC_probe_read_str:
1308                return &bpf_probe_read_compat_str_proto;
1309#endif
1310#ifdef CONFIG_CGROUPS
1311        case BPF_FUNC_get_current_cgroup_id:
1312                return &bpf_get_current_cgroup_id_proto;
1313#endif
1314        case BPF_FUNC_send_signal:
1315                return &bpf_send_signal_proto;
1316        case BPF_FUNC_send_signal_thread:
1317                return &bpf_send_signal_thread_proto;
1318        case BPF_FUNC_perf_event_read_value:
1319                return &bpf_perf_event_read_value_proto;
1320        case BPF_FUNC_get_ns_current_pid_tgid:
1321                return &bpf_get_ns_current_pid_tgid_proto;
1322        case BPF_FUNC_ringbuf_output:
1323                return &bpf_ringbuf_output_proto;
1324        case BPF_FUNC_ringbuf_reserve:
1325                return &bpf_ringbuf_reserve_proto;
1326        case BPF_FUNC_ringbuf_submit:
1327                return &bpf_ringbuf_submit_proto;
1328        case BPF_FUNC_ringbuf_discard:
1329                return &bpf_ringbuf_discard_proto;
1330        case BPF_FUNC_ringbuf_query:
1331                return &bpf_ringbuf_query_proto;
1332        case BPF_FUNC_jiffies64:
1333                return &bpf_jiffies64_proto;
1334        case BPF_FUNC_get_task_stack:
1335                return &bpf_get_task_stack_proto;
1336        case BPF_FUNC_copy_from_user:
1337                return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1338        case BPF_FUNC_snprintf_btf:
1339                return &bpf_snprintf_btf_proto;
1340        case BPF_FUNC_per_cpu_ptr:
1341                return &bpf_per_cpu_ptr_proto;
1342        case BPF_FUNC_this_cpu_ptr:
1343                return &bpf_this_cpu_ptr_proto;
1344        default:
1345                return NULL;
1346        }
1347}
1348
1349static const struct bpf_func_proto *
1350kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1351{
1352        switch (func_id) {
1353        case BPF_FUNC_perf_event_output:
1354                return &bpf_perf_event_output_proto;
1355        case BPF_FUNC_get_stackid:
1356                return &bpf_get_stackid_proto;
1357        case BPF_FUNC_get_stack:
1358                return &bpf_get_stack_proto;
1359#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1360        case BPF_FUNC_override_return:
1361                return &bpf_override_return_proto;
1362#endif
1363        default:
1364                return bpf_tracing_func_proto(func_id, prog);
1365        }
1366}
1367
1368/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1369static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1370                                        const struct bpf_prog *prog,
1371                                        struct bpf_insn_access_aux *info)
1372{
1373        if (off < 0 || off >= sizeof(struct pt_regs))
1374                return false;
1375        if (type != BPF_READ)
1376                return false;
1377        if (off % size != 0)
1378                return false;
1379        /*
1380         * Assertion for 32 bit to make sure last 8 byte access
1381         * (BPF_DW) to the last 4 byte member is disallowed.
1382         */
1383        if (off + size > sizeof(struct pt_regs))
1384                return false;
1385
1386        return true;
1387}
1388
1389const struct bpf_verifier_ops kprobe_verifier_ops = {
1390        .get_func_proto  = kprobe_prog_func_proto,
1391        .is_valid_access = kprobe_prog_is_valid_access,
1392};
1393
1394const struct bpf_prog_ops kprobe_prog_ops = {
1395};
1396
1397BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1398           u64, flags, void *, data, u64, size)
1399{
1400        struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1401
1402        /*
1403         * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1404         * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1405         * from there and call the same bpf_perf_event_output() helper inline.
1406         */
1407        return ____bpf_perf_event_output(regs, map, flags, data, size);
1408}
1409
1410static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1411        .func           = bpf_perf_event_output_tp,
1412        .gpl_only       = true,
1413        .ret_type       = RET_INTEGER,
1414        .arg1_type      = ARG_PTR_TO_CTX,
1415        .arg2_type      = ARG_CONST_MAP_PTR,
1416        .arg3_type      = ARG_ANYTHING,
1417        .arg4_type      = ARG_PTR_TO_MEM,
1418        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1419};
1420
1421BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1422           u64, flags)
1423{
1424        struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1425
1426        /*
1427         * Same comment as in bpf_perf_event_output_tp(), only that this time
1428         * the other helper's function body cannot be inlined due to being
1429         * external, thus we need to call raw helper function.
1430         */
1431        return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1432                               flags, 0, 0);
1433}
1434
1435static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1436        .func           = bpf_get_stackid_tp,
1437        .gpl_only       = true,
1438        .ret_type       = RET_INTEGER,
1439        .arg1_type      = ARG_PTR_TO_CTX,
1440        .arg2_type      = ARG_CONST_MAP_PTR,
1441        .arg3_type      = ARG_ANYTHING,
1442};
1443
1444BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1445           u64, flags)
1446{
1447        struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1448
1449        return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1450                             (unsigned long) size, flags, 0);
1451}
1452
1453static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1454        .func           = bpf_get_stack_tp,
1455        .gpl_only       = true,
1456        .ret_type       = RET_INTEGER,
1457        .arg1_type      = ARG_PTR_TO_CTX,
1458        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1459        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1460        .arg4_type      = ARG_ANYTHING,
1461};
1462
1463static const struct bpf_func_proto *
1464tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1465{
1466        switch (func_id) {
1467        case BPF_FUNC_perf_event_output:
1468                return &bpf_perf_event_output_proto_tp;
1469        case BPF_FUNC_get_stackid:
1470                return &bpf_get_stackid_proto_tp;
1471        case BPF_FUNC_get_stack:
1472                return &bpf_get_stack_proto_tp;
1473        default:
1474                return bpf_tracing_func_proto(func_id, prog);
1475        }
1476}
1477
1478static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1479                                    const struct bpf_prog *prog,
1480                                    struct bpf_insn_access_aux *info)
1481{
1482        if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1483                return false;
1484        if (type != BPF_READ)
1485                return false;
1486        if (off % size != 0)
1487                return false;
1488
1489        BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1490        return true;
1491}
1492
1493const struct bpf_verifier_ops tracepoint_verifier_ops = {
1494        .get_func_proto  = tp_prog_func_proto,
1495        .is_valid_access = tp_prog_is_valid_access,
1496};
1497
1498const struct bpf_prog_ops tracepoint_prog_ops = {
1499};
1500
1501BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1502           struct bpf_perf_event_value *, buf, u32, size)
1503{
1504        int err = -EINVAL;
1505
1506        if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1507                goto clear;
1508        err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1509                                    &buf->running);
1510        if (unlikely(err))
1511                goto clear;
1512        return 0;
1513clear:
1514        memset(buf, 0, size);
1515        return err;
1516}
1517
1518static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1519         .func           = bpf_perf_prog_read_value,
1520         .gpl_only       = true,
1521         .ret_type       = RET_INTEGER,
1522         .arg1_type      = ARG_PTR_TO_CTX,
1523         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1524         .arg3_type      = ARG_CONST_SIZE,
1525};
1526
1527BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1528           void *, buf, u32, size, u64, flags)
1529{
1530#ifndef CONFIG_X86
1531        return -ENOENT;
1532#else
1533        static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1534        struct perf_branch_stack *br_stack = ctx->data->br_stack;
1535        u32 to_copy;
1536
1537        if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1538                return -EINVAL;
1539
1540        if (unlikely(!br_stack))
1541                return -EINVAL;
1542
1543        if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1544                return br_stack->nr * br_entry_size;
1545
1546        if (!buf || (size % br_entry_size != 0))
1547                return -EINVAL;
1548
1549        to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1550        memcpy(buf, br_stack->entries, to_copy);
1551
1552        return to_copy;
1553#endif
1554}
1555
1556static const struct bpf_func_proto bpf_read_branch_records_proto = {
1557        .func           = bpf_read_branch_records,
1558        .gpl_only       = true,
1559        .ret_type       = RET_INTEGER,
1560        .arg1_type      = ARG_PTR_TO_CTX,
1561        .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1562        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1563        .arg4_type      = ARG_ANYTHING,
1564};
1565
1566static const struct bpf_func_proto *
1567pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1568{
1569        switch (func_id) {
1570        case BPF_FUNC_perf_event_output:
1571                return &bpf_perf_event_output_proto_tp;
1572        case BPF_FUNC_get_stackid:
1573                return &bpf_get_stackid_proto_pe;
1574        case BPF_FUNC_get_stack:
1575                return &bpf_get_stack_proto_pe;
1576        case BPF_FUNC_perf_prog_read_value:
1577                return &bpf_perf_prog_read_value_proto;
1578        case BPF_FUNC_read_branch_records:
1579                return &bpf_read_branch_records_proto;
1580        default:
1581                return bpf_tracing_func_proto(func_id, prog);
1582        }
1583}
1584
1585/*
1586 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1587 * to avoid potential recursive reuse issue when/if tracepoints are added
1588 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1589 *
1590 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1591 * in normal, irq, and nmi context.
1592 */
1593struct bpf_raw_tp_regs {
1594        struct pt_regs regs[3];
1595};
1596static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1597static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1598static struct pt_regs *get_bpf_raw_tp_regs(void)
1599{
1600        struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1601        int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1602
1603        if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1604                this_cpu_dec(bpf_raw_tp_nest_level);
1605                return ERR_PTR(-EBUSY);
1606        }
1607
1608        return &tp_regs->regs[nest_level - 1];
1609}
1610
1611static void put_bpf_raw_tp_regs(void)
1612{
1613        this_cpu_dec(bpf_raw_tp_nest_level);
1614}
1615
1616BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1617           struct bpf_map *, map, u64, flags, void *, data, u64, size)
1618{
1619        struct pt_regs *regs = get_bpf_raw_tp_regs();
1620        int ret;
1621
1622        if (IS_ERR(regs))
1623                return PTR_ERR(regs);
1624
1625        perf_fetch_caller_regs(regs);
1626        ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1627
1628        put_bpf_raw_tp_regs();
1629        return ret;
1630}
1631
1632static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1633        .func           = bpf_perf_event_output_raw_tp,
1634        .gpl_only       = true,
1635        .ret_type       = RET_INTEGER,
1636        .arg1_type      = ARG_PTR_TO_CTX,
1637        .arg2_type      = ARG_CONST_MAP_PTR,
1638        .arg3_type      = ARG_ANYTHING,
1639        .arg4_type      = ARG_PTR_TO_MEM,
1640        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1641};
1642
1643extern const struct bpf_func_proto bpf_skb_output_proto;
1644extern const struct bpf_func_proto bpf_xdp_output_proto;
1645
1646BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1647           struct bpf_map *, map, u64, flags)
1648{
1649        struct pt_regs *regs = get_bpf_raw_tp_regs();
1650        int ret;
1651
1652        if (IS_ERR(regs))
1653                return PTR_ERR(regs);
1654
1655        perf_fetch_caller_regs(regs);
1656        /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1657        ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1658                              flags, 0, 0);
1659        put_bpf_raw_tp_regs();
1660        return ret;
1661}
1662
1663static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1664        .func           = bpf_get_stackid_raw_tp,
1665        .gpl_only       = true,
1666        .ret_type       = RET_INTEGER,
1667        .arg1_type      = ARG_PTR_TO_CTX,
1668        .arg2_type      = ARG_CONST_MAP_PTR,
1669        .arg3_type      = ARG_ANYTHING,
1670};
1671
1672BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1673           void *, buf, u32, size, u64, flags)
1674{
1675        struct pt_regs *regs = get_bpf_raw_tp_regs();
1676        int ret;
1677
1678        if (IS_ERR(regs))
1679                return PTR_ERR(regs);
1680
1681        perf_fetch_caller_regs(regs);
1682        ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1683                            (unsigned long) size, flags, 0);
1684        put_bpf_raw_tp_regs();
1685        return ret;
1686}
1687
1688static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1689        .func           = bpf_get_stack_raw_tp,
1690        .gpl_only       = true,
1691        .ret_type       = RET_INTEGER,
1692        .arg1_type      = ARG_PTR_TO_CTX,
1693        .arg2_type      = ARG_PTR_TO_MEM,
1694        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1695        .arg4_type      = ARG_ANYTHING,
1696};
1697
1698static const struct bpf_func_proto *
1699raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1700{
1701        switch (func_id) {
1702        case BPF_FUNC_perf_event_output:
1703                return &bpf_perf_event_output_proto_raw_tp;
1704        case BPF_FUNC_get_stackid:
1705                return &bpf_get_stackid_proto_raw_tp;
1706        case BPF_FUNC_get_stack:
1707                return &bpf_get_stack_proto_raw_tp;
1708        default:
1709                return bpf_tracing_func_proto(func_id, prog);
1710        }
1711}
1712
1713const struct bpf_func_proto *
1714tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1715{
1716        switch (func_id) {
1717#ifdef CONFIG_NET
1718        case BPF_FUNC_skb_output:
1719                return &bpf_skb_output_proto;
1720        case BPF_FUNC_xdp_output:
1721                return &bpf_xdp_output_proto;
1722        case BPF_FUNC_skc_to_tcp6_sock:
1723                return &bpf_skc_to_tcp6_sock_proto;
1724        case BPF_FUNC_skc_to_tcp_sock:
1725                return &bpf_skc_to_tcp_sock_proto;
1726        case BPF_FUNC_skc_to_tcp_timewait_sock:
1727                return &bpf_skc_to_tcp_timewait_sock_proto;
1728        case BPF_FUNC_skc_to_tcp_request_sock:
1729                return &bpf_skc_to_tcp_request_sock_proto;
1730        case BPF_FUNC_skc_to_udp6_sock:
1731                return &bpf_skc_to_udp6_sock_proto;
1732#endif
1733        case BPF_FUNC_seq_printf:
1734                return prog->expected_attach_type == BPF_TRACE_ITER ?
1735                       &bpf_seq_printf_proto :
1736                       NULL;
1737        case BPF_FUNC_seq_write:
1738                return prog->expected_attach_type == BPF_TRACE_ITER ?
1739                       &bpf_seq_write_proto :
1740                       NULL;
1741        case BPF_FUNC_seq_printf_btf:
1742                return prog->expected_attach_type == BPF_TRACE_ITER ?
1743                       &bpf_seq_printf_btf_proto :
1744                       NULL;
1745        case BPF_FUNC_d_path:
1746                return &bpf_d_path_proto;
1747        default:
1748                return raw_tp_prog_func_proto(func_id, prog);
1749        }
1750}
1751
1752static bool raw_tp_prog_is_valid_access(int off, int size,
1753                                        enum bpf_access_type type,
1754                                        const struct bpf_prog *prog,
1755                                        struct bpf_insn_access_aux *info)
1756{
1757        if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1758                return false;
1759        if (type != BPF_READ)
1760                return false;
1761        if (off % size != 0)
1762                return false;
1763        return true;
1764}
1765
1766static bool tracing_prog_is_valid_access(int off, int size,
1767                                         enum bpf_access_type type,
1768                                         const struct bpf_prog *prog,
1769                                         struct bpf_insn_access_aux *info)
1770{
1771        if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1772                return false;
1773        if (type != BPF_READ)
1774                return false;
1775        if (off % size != 0)
1776                return false;
1777        return btf_ctx_access(off, size, type, prog, info);
1778}
1779
1780int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1781                                     const union bpf_attr *kattr,
1782                                     union bpf_attr __user *uattr)
1783{
1784        return -ENOTSUPP;
1785}
1786
1787const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1788        .get_func_proto  = raw_tp_prog_func_proto,
1789        .is_valid_access = raw_tp_prog_is_valid_access,
1790};
1791
1792const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1793#ifdef CONFIG_NET
1794        .test_run = bpf_prog_test_run_raw_tp,
1795#endif
1796};
1797
1798const struct bpf_verifier_ops tracing_verifier_ops = {
1799        .get_func_proto  = tracing_prog_func_proto,
1800        .is_valid_access = tracing_prog_is_valid_access,
1801};
1802
1803const struct bpf_prog_ops tracing_prog_ops = {
1804        .test_run = bpf_prog_test_run_tracing,
1805};
1806
1807static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1808                                                 enum bpf_access_type type,
1809                                                 const struct bpf_prog *prog,
1810                                                 struct bpf_insn_access_aux *info)
1811{
1812        if (off == 0) {
1813                if (size != sizeof(u64) || type != BPF_READ)
1814                        return false;
1815                info->reg_type = PTR_TO_TP_BUFFER;
1816        }
1817        return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1818}
1819
1820const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1821        .get_func_proto  = raw_tp_prog_func_proto,
1822        .is_valid_access = raw_tp_writable_prog_is_valid_access,
1823};
1824
1825const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1826};
1827
1828static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1829                                    const struct bpf_prog *prog,
1830                                    struct bpf_insn_access_aux *info)
1831{
1832        const int size_u64 = sizeof(u64);
1833
1834        if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1835                return false;
1836        if (type != BPF_READ)
1837                return false;
1838        if (off % size != 0) {
1839                if (sizeof(unsigned long) != 4)
1840                        return false;
1841                if (size != 8)
1842                        return false;
1843                if (off % size != 4)
1844                        return false;
1845        }
1846
1847        switch (off) {
1848        case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1849                bpf_ctx_record_field_size(info, size_u64);
1850                if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1851                        return false;
1852                break;
1853        case bpf_ctx_range(struct bpf_perf_event_data, addr):
1854                bpf_ctx_record_field_size(info, size_u64);
1855                if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1856                        return false;
1857                break;
1858        default:
1859                if (size != sizeof(long))
1860                        return false;
1861        }
1862
1863        return true;
1864}
1865
1866static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1867                                      const struct bpf_insn *si,
1868                                      struct bpf_insn *insn_buf,
1869                                      struct bpf_prog *prog, u32 *target_size)
1870{
1871        struct bpf_insn *insn = insn_buf;
1872
1873        switch (si->off) {
1874        case offsetof(struct bpf_perf_event_data, sample_period):
1875                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1876                                                       data), si->dst_reg, si->src_reg,
1877                                      offsetof(struct bpf_perf_event_data_kern, data));
1878                *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1879                                      bpf_target_off(struct perf_sample_data, period, 8,
1880                                                     target_size));
1881                break;
1882        case offsetof(struct bpf_perf_event_data, addr):
1883                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1884                                                       data), si->dst_reg, si->src_reg,
1885                                      offsetof(struct bpf_perf_event_data_kern, data));
1886                *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1887                                      bpf_target_off(struct perf_sample_data, addr, 8,
1888                                                     target_size));
1889                break;
1890        default:
1891                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1892                                                       regs), si->dst_reg, si->src_reg,
1893                                      offsetof(struct bpf_perf_event_data_kern, regs));
1894                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1895                                      si->off);
1896                break;
1897        }
1898
1899        return insn - insn_buf;
1900}
1901
1902const struct bpf_verifier_ops perf_event_verifier_ops = {
1903        .get_func_proto         = pe_prog_func_proto,
1904        .is_valid_access        = pe_prog_is_valid_access,
1905        .convert_ctx_access     = pe_prog_convert_ctx_access,
1906};
1907
1908const struct bpf_prog_ops perf_event_prog_ops = {
1909};
1910
1911static DEFINE_MUTEX(bpf_event_mutex);
1912
1913#define BPF_TRACE_MAX_PROGS 64
1914
1915int perf_event_attach_bpf_prog(struct perf_event *event,
1916                               struct bpf_prog *prog)
1917{
1918        struct bpf_prog_array *old_array;
1919        struct bpf_prog_array *new_array;
1920        int ret = -EEXIST;
1921
1922        /*
1923         * Kprobe override only works if they are on the function entry,
1924         * and only if they are on the opt-in list.
1925         */
1926        if (prog->kprobe_override &&
1927            (!trace_kprobe_on_func_entry(event->tp_event) ||
1928             !trace_kprobe_error_injectable(event->tp_event)))
1929                return -EINVAL;
1930
1931        mutex_lock(&bpf_event_mutex);
1932
1933        if (event->prog)
1934                goto unlock;
1935
1936        old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1937        if (old_array &&
1938            bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1939                ret = -E2BIG;
1940                goto unlock;
1941        }
1942
1943        ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1944        if (ret < 0)
1945                goto unlock;
1946
1947        /* set the new array to event->tp_event and set event->prog */
1948        event->prog = prog;
1949        rcu_assign_pointer(event->tp_event->prog_array, new_array);
1950        bpf_prog_array_free(old_array);
1951
1952unlock:
1953        mutex_unlock(&bpf_event_mutex);
1954        return ret;
1955}
1956
1957void perf_event_detach_bpf_prog(struct perf_event *event)
1958{
1959        struct bpf_prog_array *old_array;
1960        struct bpf_prog_array *new_array;
1961        int ret;
1962
1963        mutex_lock(&bpf_event_mutex);
1964
1965        if (!event->prog)
1966                goto unlock;
1967
1968        old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1969        ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1970        if (ret == -ENOENT)
1971                goto unlock;
1972        if (ret < 0) {
1973                bpf_prog_array_delete_safe(old_array, event->prog);
1974        } else {
1975                rcu_assign_pointer(event->tp_event->prog_array, new_array);
1976                bpf_prog_array_free(old_array);
1977        }
1978
1979        bpf_prog_put(event->prog);
1980        event->prog = NULL;
1981
1982unlock:
1983        mutex_unlock(&bpf_event_mutex);
1984}
1985
1986int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1987{
1988        struct perf_event_query_bpf __user *uquery = info;
1989        struct perf_event_query_bpf query = {};
1990        struct bpf_prog_array *progs;
1991        u32 *ids, prog_cnt, ids_len;
1992        int ret;
1993
1994        if (!perfmon_capable())
1995                return -EPERM;
1996        if (event->attr.type != PERF_TYPE_TRACEPOINT)
1997                return -EINVAL;
1998        if (copy_from_user(&query, uquery, sizeof(query)))
1999                return -EFAULT;
2000
2001        ids_len = query.ids_len;
2002        if (ids_len > BPF_TRACE_MAX_PROGS)
2003                return -E2BIG;
2004        ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2005        if (!ids)
2006                return -ENOMEM;
2007        /*
2008         * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2009         * is required when user only wants to check for uquery->prog_cnt.
2010         * There is no need to check for it since the case is handled
2011         * gracefully in bpf_prog_array_copy_info.
2012         */
2013
2014        mutex_lock(&bpf_event_mutex);
2015        progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2016        ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2017        mutex_unlock(&bpf_event_mutex);
2018
2019        if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2020            copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2021                ret = -EFAULT;
2022
2023        kfree(ids);
2024        return ret;
2025}
2026
2027extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2028extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2029
2030struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2031{
2032        struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2033
2034        for (; btp < __stop__bpf_raw_tp; btp++) {
2035                if (!strcmp(btp->tp->name, name))
2036                        return btp;
2037        }
2038
2039        return bpf_get_raw_tracepoint_module(name);
2040}
2041
2042void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2043{
2044        struct module *mod = __module_address((unsigned long)btp);
2045
2046        if (mod)
2047                module_put(mod);
2048}
2049
2050static __always_inline
2051void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2052{
2053        cant_sleep();
2054        rcu_read_lock();
2055        (void) BPF_PROG_RUN(prog, args);
2056        rcu_read_unlock();
2057}
2058
2059#define UNPACK(...)                     __VA_ARGS__
2060#define REPEAT_1(FN, DL, X, ...)        FN(X)
2061#define REPEAT_2(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2062#define REPEAT_3(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2063#define REPEAT_4(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2064#define REPEAT_5(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2065#define REPEAT_6(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2066#define REPEAT_7(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2067#define REPEAT_8(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2068#define REPEAT_9(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2069#define REPEAT_10(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2070#define REPEAT_11(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2071#define REPEAT_12(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2072#define REPEAT(X, FN, DL, ...)          REPEAT_##X(FN, DL, __VA_ARGS__)
2073
2074#define SARG(X)         u64 arg##X
2075#define COPY(X)         args[X] = arg##X
2076
2077#define __DL_COM        (,)
2078#define __DL_SEM        (;)
2079
2080#define __SEQ_0_11      0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2081
2082#define BPF_TRACE_DEFN_x(x)                                             \
2083        void bpf_trace_run##x(struct bpf_prog *prog,                    \
2084                              REPEAT(x, SARG, __DL_COM, __SEQ_0_11))    \
2085        {                                                               \
2086                u64 args[x];                                            \
2087                REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);                  \
2088                __bpf_trace_run(prog, args);                            \
2089        }                                                               \
2090        EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2091BPF_TRACE_DEFN_x(1);
2092BPF_TRACE_DEFN_x(2);
2093BPF_TRACE_DEFN_x(3);
2094BPF_TRACE_DEFN_x(4);
2095BPF_TRACE_DEFN_x(5);
2096BPF_TRACE_DEFN_x(6);
2097BPF_TRACE_DEFN_x(7);
2098BPF_TRACE_DEFN_x(8);
2099BPF_TRACE_DEFN_x(9);
2100BPF_TRACE_DEFN_x(10);
2101BPF_TRACE_DEFN_x(11);
2102BPF_TRACE_DEFN_x(12);
2103
2104static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2105{
2106        struct tracepoint *tp = btp->tp;
2107
2108        /*
2109         * check that program doesn't access arguments beyond what's
2110         * available in this tracepoint
2111         */
2112        if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2113                return -EINVAL;
2114
2115        if (prog->aux->max_tp_access > btp->writable_size)
2116                return -EINVAL;
2117
2118        return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
2119}
2120
2121int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2122{
2123        return __bpf_probe_register(btp, prog);
2124}
2125
2126int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2127{
2128        return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2129}
2130
2131int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2132                            u32 *fd_type, const char **buf,
2133                            u64 *probe_offset, u64 *probe_addr)
2134{
2135        bool is_tracepoint, is_syscall_tp;
2136        struct bpf_prog *prog;
2137        int flags, err = 0;
2138
2139        prog = event->prog;
2140        if (!prog)
2141                return -ENOENT;
2142
2143        /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2144        if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2145                return -EOPNOTSUPP;
2146
2147        *prog_id = prog->aux->id;
2148        flags = event->tp_event->flags;
2149        is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2150        is_syscall_tp = is_syscall_trace_event(event->tp_event);
2151
2152        if (is_tracepoint || is_syscall_tp) {
2153                *buf = is_tracepoint ? event->tp_event->tp->name
2154                                     : event->tp_event->name;
2155                *fd_type = BPF_FD_TYPE_TRACEPOINT;
2156                *probe_offset = 0x0;
2157                *probe_addr = 0x0;
2158        } else {
2159                /* kprobe/uprobe */
2160                err = -EOPNOTSUPP;
2161#ifdef CONFIG_KPROBE_EVENTS
2162                if (flags & TRACE_EVENT_FL_KPROBE)
2163                        err = bpf_get_kprobe_info(event, fd_type, buf,
2164                                                  probe_offset, probe_addr,
2165                                                  event->attr.type == PERF_TYPE_TRACEPOINT);
2166#endif
2167#ifdef CONFIG_UPROBE_EVENTS
2168                if (flags & TRACE_EVENT_FL_UPROBE)
2169                        err = bpf_get_uprobe_info(event, fd_type, buf,
2170                                                  probe_offset,
2171                                                  event->attr.type == PERF_TYPE_TRACEPOINT);
2172#endif
2173        }
2174
2175        return err;
2176}
2177
2178static int __init send_signal_irq_work_init(void)
2179{
2180        int cpu;
2181        struct send_signal_irq_work *work;
2182
2183        for_each_possible_cpu(cpu) {
2184                work = per_cpu_ptr(&send_signal_work, cpu);
2185                init_irq_work(&work->irq_work, do_bpf_send_signal);
2186        }
2187        return 0;
2188}
2189
2190subsys_initcall(send_signal_irq_work_init);
2191
2192#ifdef CONFIG_MODULES
2193static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2194                            void *module)
2195{
2196        struct bpf_trace_module *btm, *tmp;
2197        struct module *mod = module;
2198        int ret = 0;
2199
2200        if (mod->num_bpf_raw_events == 0 ||
2201            (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2202                goto out;
2203
2204        mutex_lock(&bpf_module_mutex);
2205
2206        switch (op) {
2207        case MODULE_STATE_COMING:
2208                btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2209                if (btm) {
2210                        btm->module = module;
2211                        list_add(&btm->list, &bpf_trace_modules);
2212                } else {
2213                        ret = -ENOMEM;
2214                }
2215                break;
2216        case MODULE_STATE_GOING:
2217                list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2218                        if (btm->module == module) {
2219                                list_del(&btm->list);
2220                                kfree(btm);
2221                                break;
2222                        }
2223                }
2224                break;
2225        }
2226
2227        mutex_unlock(&bpf_module_mutex);
2228
2229out:
2230        return notifier_from_errno(ret);
2231}
2232
2233static struct notifier_block bpf_module_nb = {
2234        .notifier_call = bpf_event_notify,
2235};
2236
2237static int __init bpf_event_init(void)
2238{
2239        register_module_notifier(&bpf_module_nb);
2240        return 0;
2241}
2242
2243fs_initcall(bpf_event_init);
2244#endif /* CONFIG_MODULES */
2245