linux/lib/assoc_array.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Generic associative array implementation.
   3 *
   4 * See Documentation/core-api/assoc_array.rst for information.
   5 *
   6 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   7 * Written by David Howells (dhowells@redhat.com)
   8 */
   9//#define DEBUG
  10#include <linux/rcupdate.h>
  11#include <linux/slab.h>
  12#include <linux/err.h>
  13#include <linux/assoc_array_priv.h>
  14
  15/*
  16 * Iterate over an associative array.  The caller must hold the RCU read lock
  17 * or better.
  18 */
  19static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
  20                                       const struct assoc_array_ptr *stop,
  21                                       int (*iterator)(const void *leaf,
  22                                                       void *iterator_data),
  23                                       void *iterator_data)
  24{
  25        const struct assoc_array_shortcut *shortcut;
  26        const struct assoc_array_node *node;
  27        const struct assoc_array_ptr *cursor, *ptr, *parent;
  28        unsigned long has_meta;
  29        int slot, ret;
  30
  31        cursor = root;
  32
  33begin_node:
  34        if (assoc_array_ptr_is_shortcut(cursor)) {
  35                /* Descend through a shortcut */
  36                shortcut = assoc_array_ptr_to_shortcut(cursor);
  37                cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
  38        }
  39
  40        node = assoc_array_ptr_to_node(cursor);
  41        slot = 0;
  42
  43        /* We perform two passes of each node.
  44         *
  45         * The first pass does all the leaves in this node.  This means we
  46         * don't miss any leaves if the node is split up by insertion whilst
  47         * we're iterating over the branches rooted here (we may, however, see
  48         * some leaves twice).
  49         */
  50        has_meta = 0;
  51        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  52                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
  53                has_meta |= (unsigned long)ptr;
  54                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
  55                        /* We need a barrier between the read of the pointer,
  56                         * which is supplied by the above READ_ONCE().
  57                         */
  58                        /* Invoke the callback */
  59                        ret = iterator(assoc_array_ptr_to_leaf(ptr),
  60                                       iterator_data);
  61                        if (ret)
  62                                return ret;
  63                }
  64        }
  65
  66        /* The second pass attends to all the metadata pointers.  If we follow
  67         * one of these we may find that we don't come back here, but rather go
  68         * back to a replacement node with the leaves in a different layout.
  69         *
  70         * We are guaranteed to make progress, however, as the slot number for
  71         * a particular portion of the key space cannot change - and we
  72         * continue at the back pointer + 1.
  73         */
  74        if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
  75                goto finished_node;
  76        slot = 0;
  77
  78continue_node:
  79        node = assoc_array_ptr_to_node(cursor);
  80        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  81                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
  82                if (assoc_array_ptr_is_meta(ptr)) {
  83                        cursor = ptr;
  84                        goto begin_node;
  85                }
  86        }
  87
  88finished_node:
  89        /* Move up to the parent (may need to skip back over a shortcut) */
  90        parent = READ_ONCE(node->back_pointer); /* Address dependency. */
  91        slot = node->parent_slot;
  92        if (parent == stop)
  93                return 0;
  94
  95        if (assoc_array_ptr_is_shortcut(parent)) {
  96                shortcut = assoc_array_ptr_to_shortcut(parent);
  97                cursor = parent;
  98                parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
  99                slot = shortcut->parent_slot;
 100                if (parent == stop)
 101                        return 0;
 102        }
 103
 104        /* Ascend to next slot in parent node */
 105        cursor = parent;
 106        slot++;
 107        goto continue_node;
 108}
 109
 110/**
 111 * assoc_array_iterate - Pass all objects in the array to a callback
 112 * @array: The array to iterate over.
 113 * @iterator: The callback function.
 114 * @iterator_data: Private data for the callback function.
 115 *
 116 * Iterate over all the objects in an associative array.  Each one will be
 117 * presented to the iterator function.
 118 *
 119 * If the array is being modified concurrently with the iteration then it is
 120 * possible that some objects in the array will be passed to the iterator
 121 * callback more than once - though every object should be passed at least
 122 * once.  If this is undesirable then the caller must lock against modification
 123 * for the duration of this function.
 124 *
 125 * The function will return 0 if no objects were in the array or else it will
 126 * return the result of the last iterator function called.  Iteration stops
 127 * immediately if any call to the iteration function results in a non-zero
 128 * return.
 129 *
 130 * The caller should hold the RCU read lock or better if concurrent
 131 * modification is possible.
 132 */
 133int assoc_array_iterate(const struct assoc_array *array,
 134                        int (*iterator)(const void *object,
 135                                        void *iterator_data),
 136                        void *iterator_data)
 137{
 138        struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
 139
 140        if (!root)
 141                return 0;
 142        return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
 143}
 144
 145enum assoc_array_walk_status {
 146        assoc_array_walk_tree_empty,
 147        assoc_array_walk_found_terminal_node,
 148        assoc_array_walk_found_wrong_shortcut,
 149};
 150
 151struct assoc_array_walk_result {
 152        struct {
 153                struct assoc_array_node *node;  /* Node in which leaf might be found */
 154                int             level;
 155                int             slot;
 156        } terminal_node;
 157        struct {
 158                struct assoc_array_shortcut *shortcut;
 159                int             level;
 160                int             sc_level;
 161                unsigned long   sc_segments;
 162                unsigned long   dissimilarity;
 163        } wrong_shortcut;
 164};
 165
 166/*
 167 * Navigate through the internal tree looking for the closest node to the key.
 168 */
 169static enum assoc_array_walk_status
 170assoc_array_walk(const struct assoc_array *array,
 171                 const struct assoc_array_ops *ops,
 172                 const void *index_key,
 173                 struct assoc_array_walk_result *result)
 174{
 175        struct assoc_array_shortcut *shortcut;
 176        struct assoc_array_node *node;
 177        struct assoc_array_ptr *cursor, *ptr;
 178        unsigned long sc_segments, dissimilarity;
 179        unsigned long segments;
 180        int level, sc_level, next_sc_level;
 181        int slot;
 182
 183        pr_devel("-->%s()\n", __func__);
 184
 185        cursor = READ_ONCE(array->root);  /* Address dependency. */
 186        if (!cursor)
 187                return assoc_array_walk_tree_empty;
 188
 189        level = 0;
 190
 191        /* Use segments from the key for the new leaf to navigate through the
 192         * internal tree, skipping through nodes and shortcuts that are on
 193         * route to the destination.  Eventually we'll come to a slot that is
 194         * either empty or contains a leaf at which point we've found a node in
 195         * which the leaf we're looking for might be found or into which it
 196         * should be inserted.
 197         */
 198jumped:
 199        segments = ops->get_key_chunk(index_key, level);
 200        pr_devel("segments[%d]: %lx\n", level, segments);
 201
 202        if (assoc_array_ptr_is_shortcut(cursor))
 203                goto follow_shortcut;
 204
 205consider_node:
 206        node = assoc_array_ptr_to_node(cursor);
 207        slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 208        slot &= ASSOC_ARRAY_FAN_MASK;
 209        ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
 210
 211        pr_devel("consider slot %x [ix=%d type=%lu]\n",
 212                 slot, level, (unsigned long)ptr & 3);
 213
 214        if (!assoc_array_ptr_is_meta(ptr)) {
 215                /* The node doesn't have a node/shortcut pointer in the slot
 216                 * corresponding to the index key that we have to follow.
 217                 */
 218                result->terminal_node.node = node;
 219                result->terminal_node.level = level;
 220                result->terminal_node.slot = slot;
 221                pr_devel("<--%s() = terminal_node\n", __func__);
 222                return assoc_array_walk_found_terminal_node;
 223        }
 224
 225        if (assoc_array_ptr_is_node(ptr)) {
 226                /* There is a pointer to a node in the slot corresponding to
 227                 * this index key segment, so we need to follow it.
 228                 */
 229                cursor = ptr;
 230                level += ASSOC_ARRAY_LEVEL_STEP;
 231                if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
 232                        goto consider_node;
 233                goto jumped;
 234        }
 235
 236        /* There is a shortcut in the slot corresponding to the index key
 237         * segment.  We follow the shortcut if its partial index key matches
 238         * this leaf's.  Otherwise we need to split the shortcut.
 239         */
 240        cursor = ptr;
 241follow_shortcut:
 242        shortcut = assoc_array_ptr_to_shortcut(cursor);
 243        pr_devel("shortcut to %d\n", shortcut->skip_to_level);
 244        sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
 245        BUG_ON(sc_level > shortcut->skip_to_level);
 246
 247        do {
 248                /* Check the leaf against the shortcut's index key a word at a
 249                 * time, trimming the final word (the shortcut stores the index
 250                 * key completely from the root to the shortcut's target).
 251                 */
 252                if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
 253                        segments = ops->get_key_chunk(index_key, sc_level);
 254
 255                sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
 256                dissimilarity = segments ^ sc_segments;
 257
 258                if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
 259                        /* Trim segments that are beyond the shortcut */
 260                        int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 261                        dissimilarity &= ~(ULONG_MAX << shift);
 262                        next_sc_level = shortcut->skip_to_level;
 263                } else {
 264                        next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
 265                        next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 266                }
 267
 268                if (dissimilarity != 0) {
 269                        /* This shortcut points elsewhere */
 270                        result->wrong_shortcut.shortcut = shortcut;
 271                        result->wrong_shortcut.level = level;
 272                        result->wrong_shortcut.sc_level = sc_level;
 273                        result->wrong_shortcut.sc_segments = sc_segments;
 274                        result->wrong_shortcut.dissimilarity = dissimilarity;
 275                        return assoc_array_walk_found_wrong_shortcut;
 276                }
 277
 278                sc_level = next_sc_level;
 279        } while (sc_level < shortcut->skip_to_level);
 280
 281        /* The shortcut matches the leaf's index to this point. */
 282        cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
 283        if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
 284                level = sc_level;
 285                goto jumped;
 286        } else {
 287                level = sc_level;
 288                goto consider_node;
 289        }
 290}
 291
 292/**
 293 * assoc_array_find - Find an object by index key
 294 * @array: The associative array to search.
 295 * @ops: The operations to use.
 296 * @index_key: The key to the object.
 297 *
 298 * Find an object in an associative array by walking through the internal tree
 299 * to the node that should contain the object and then searching the leaves
 300 * there.  NULL is returned if the requested object was not found in the array.
 301 *
 302 * The caller must hold the RCU read lock or better.
 303 */
 304void *assoc_array_find(const struct assoc_array *array,
 305                       const struct assoc_array_ops *ops,
 306                       const void *index_key)
 307{
 308        struct assoc_array_walk_result result;
 309        const struct assoc_array_node *node;
 310        const struct assoc_array_ptr *ptr;
 311        const void *leaf;
 312        int slot;
 313
 314        if (assoc_array_walk(array, ops, index_key, &result) !=
 315            assoc_array_walk_found_terminal_node)
 316                return NULL;
 317
 318        node = result.terminal_node.node;
 319
 320        /* If the target key is available to us, it's has to be pointed to by
 321         * the terminal node.
 322         */
 323        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 324                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
 325                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 326                        /* We need a barrier between the read of the pointer
 327                         * and dereferencing the pointer - but only if we are
 328                         * actually going to dereference it.
 329                         */
 330                        leaf = assoc_array_ptr_to_leaf(ptr);
 331                        if (ops->compare_object(leaf, index_key))
 332                                return (void *)leaf;
 333                }
 334        }
 335
 336        return NULL;
 337}
 338
 339/*
 340 * Destructively iterate over an associative array.  The caller must prevent
 341 * other simultaneous accesses.
 342 */
 343static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
 344                                        const struct assoc_array_ops *ops)
 345{
 346        struct assoc_array_shortcut *shortcut;
 347        struct assoc_array_node *node;
 348        struct assoc_array_ptr *cursor, *parent = NULL;
 349        int slot = -1;
 350
 351        pr_devel("-->%s()\n", __func__);
 352
 353        cursor = root;
 354        if (!cursor) {
 355                pr_devel("empty\n");
 356                return;
 357        }
 358
 359move_to_meta:
 360        if (assoc_array_ptr_is_shortcut(cursor)) {
 361                /* Descend through a shortcut */
 362                pr_devel("[%d] shortcut\n", slot);
 363                BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
 364                shortcut = assoc_array_ptr_to_shortcut(cursor);
 365                BUG_ON(shortcut->back_pointer != parent);
 366                BUG_ON(slot != -1 && shortcut->parent_slot != slot);
 367                parent = cursor;
 368                cursor = shortcut->next_node;
 369                slot = -1;
 370                BUG_ON(!assoc_array_ptr_is_node(cursor));
 371        }
 372
 373        pr_devel("[%d] node\n", slot);
 374        node = assoc_array_ptr_to_node(cursor);
 375        BUG_ON(node->back_pointer != parent);
 376        BUG_ON(slot != -1 && node->parent_slot != slot);
 377        slot = 0;
 378
 379continue_node:
 380        pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
 381        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 382                struct assoc_array_ptr *ptr = node->slots[slot];
 383                if (!ptr)
 384                        continue;
 385                if (assoc_array_ptr_is_meta(ptr)) {
 386                        parent = cursor;
 387                        cursor = ptr;
 388                        goto move_to_meta;
 389                }
 390
 391                if (ops) {
 392                        pr_devel("[%d] free leaf\n", slot);
 393                        ops->free_object(assoc_array_ptr_to_leaf(ptr));
 394                }
 395        }
 396
 397        parent = node->back_pointer;
 398        slot = node->parent_slot;
 399        pr_devel("free node\n");
 400        kfree(node);
 401        if (!parent)
 402                return; /* Done */
 403
 404        /* Move back up to the parent (may need to free a shortcut on
 405         * the way up) */
 406        if (assoc_array_ptr_is_shortcut(parent)) {
 407                shortcut = assoc_array_ptr_to_shortcut(parent);
 408                BUG_ON(shortcut->next_node != cursor);
 409                cursor = parent;
 410                parent = shortcut->back_pointer;
 411                slot = shortcut->parent_slot;
 412                pr_devel("free shortcut\n");
 413                kfree(shortcut);
 414                if (!parent)
 415                        return;
 416
 417                BUG_ON(!assoc_array_ptr_is_node(parent));
 418        }
 419
 420        /* Ascend to next slot in parent node */
 421        pr_devel("ascend to %p[%d]\n", parent, slot);
 422        cursor = parent;
 423        node = assoc_array_ptr_to_node(cursor);
 424        slot++;
 425        goto continue_node;
 426}
 427
 428/**
 429 * assoc_array_destroy - Destroy an associative array
 430 * @array: The array to destroy.
 431 * @ops: The operations to use.
 432 *
 433 * Discard all metadata and free all objects in an associative array.  The
 434 * array will be empty and ready to use again upon completion.  This function
 435 * cannot fail.
 436 *
 437 * The caller must prevent all other accesses whilst this takes place as no
 438 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 439 * accesses to continue.  On the other hand, no memory allocation is required.
 440 */
 441void assoc_array_destroy(struct assoc_array *array,
 442                         const struct assoc_array_ops *ops)
 443{
 444        assoc_array_destroy_subtree(array->root, ops);
 445        array->root = NULL;
 446}
 447
 448/*
 449 * Handle insertion into an empty tree.
 450 */
 451static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
 452{
 453        struct assoc_array_node *new_n0;
 454
 455        pr_devel("-->%s()\n", __func__);
 456
 457        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 458        if (!new_n0)
 459                return false;
 460
 461        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 462        edit->leaf_p = &new_n0->slots[0];
 463        edit->adjust_count_on = new_n0;
 464        edit->set[0].ptr = &edit->array->root;
 465        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 466
 467        pr_devel("<--%s() = ok [no root]\n", __func__);
 468        return true;
 469}
 470
 471/*
 472 * Handle insertion into a terminal node.
 473 */
 474static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
 475                                                  const struct assoc_array_ops *ops,
 476                                                  const void *index_key,
 477                                                  struct assoc_array_walk_result *result)
 478{
 479        struct assoc_array_shortcut *shortcut, *new_s0;
 480        struct assoc_array_node *node, *new_n0, *new_n1, *side;
 481        struct assoc_array_ptr *ptr;
 482        unsigned long dissimilarity, base_seg, blank;
 483        size_t keylen;
 484        bool have_meta;
 485        int level, diff;
 486        int slot, next_slot, free_slot, i, j;
 487
 488        node    = result->terminal_node.node;
 489        level   = result->terminal_node.level;
 490        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
 491
 492        pr_devel("-->%s()\n", __func__);
 493
 494        /* We arrived at a node which doesn't have an onward node or shortcut
 495         * pointer that we have to follow.  This means that (a) the leaf we
 496         * want must go here (either by insertion or replacement) or (b) we
 497         * need to split this node and insert in one of the fragments.
 498         */
 499        free_slot = -1;
 500
 501        /* Firstly, we have to check the leaves in this node to see if there's
 502         * a matching one we should replace in place.
 503         */
 504        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 505                ptr = node->slots[i];
 506                if (!ptr) {
 507                        free_slot = i;
 508                        continue;
 509                }
 510                if (assoc_array_ptr_is_leaf(ptr) &&
 511                    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
 512                                        index_key)) {
 513                        pr_devel("replace in slot %d\n", i);
 514                        edit->leaf_p = &node->slots[i];
 515                        edit->dead_leaf = node->slots[i];
 516                        pr_devel("<--%s() = ok [replace]\n", __func__);
 517                        return true;
 518                }
 519        }
 520
 521        /* If there is a free slot in this node then we can just insert the
 522         * leaf here.
 523         */
 524        if (free_slot >= 0) {
 525                pr_devel("insert in free slot %d\n", free_slot);
 526                edit->leaf_p = &node->slots[free_slot];
 527                edit->adjust_count_on = node;
 528                pr_devel("<--%s() = ok [insert]\n", __func__);
 529                return true;
 530        }
 531
 532        /* The node has no spare slots - so we're either going to have to split
 533         * it or insert another node before it.
 534         *
 535         * Whatever, we're going to need at least two new nodes - so allocate
 536         * those now.  We may also need a new shortcut, but we deal with that
 537         * when we need it.
 538         */
 539        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 540        if (!new_n0)
 541                return false;
 542        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 543        new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 544        if (!new_n1)
 545                return false;
 546        edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
 547
 548        /* We need to find out how similar the leaves are. */
 549        pr_devel("no spare slots\n");
 550        have_meta = false;
 551        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 552                ptr = node->slots[i];
 553                if (assoc_array_ptr_is_meta(ptr)) {
 554                        edit->segment_cache[i] = 0xff;
 555                        have_meta = true;
 556                        continue;
 557                }
 558                base_seg = ops->get_object_key_chunk(
 559                        assoc_array_ptr_to_leaf(ptr), level);
 560                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 561                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 562        }
 563
 564        if (have_meta) {
 565                pr_devel("have meta\n");
 566                goto split_node;
 567        }
 568
 569        /* The node contains only leaves */
 570        dissimilarity = 0;
 571        base_seg = edit->segment_cache[0];
 572        for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
 573                dissimilarity |= edit->segment_cache[i] ^ base_seg;
 574
 575        pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
 576
 577        if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
 578                /* The old leaves all cluster in the same slot.  We will need
 579                 * to insert a shortcut if the new node wants to cluster with them.
 580                 */
 581                if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
 582                        goto all_leaves_cluster_together;
 583
 584                /* Otherwise all the old leaves cluster in the same slot, but
 585                 * the new leaf wants to go into a different slot - so we
 586                 * create a new node (n0) to hold the new leaf and a pointer to
 587                 * a new node (n1) holding all the old leaves.
 588                 *
 589                 * This can be done by falling through to the node splitting
 590                 * path.
 591                 */
 592                pr_devel("present leaves cluster but not new leaf\n");
 593        }
 594
 595split_node:
 596        pr_devel("split node\n");
 597
 598        /* We need to split the current node.  The node must contain anything
 599         * from a single leaf (in the one leaf case, this leaf will cluster
 600         * with the new leaf) and the rest meta-pointers, to all leaves, some
 601         * of which may cluster.
 602         *
 603         * It won't contain the case in which all the current leaves plus the
 604         * new leaves want to cluster in the same slot.
 605         *
 606         * We need to expel at least two leaves out of a set consisting of the
 607         * leaves in the node and the new leaf.  The current meta pointers can
 608         * just be copied as they shouldn't cluster with any of the leaves.
 609         *
 610         * We need a new node (n0) to replace the current one and a new node to
 611         * take the expelled nodes (n1).
 612         */
 613        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 614        new_n0->back_pointer = node->back_pointer;
 615        new_n0->parent_slot = node->parent_slot;
 616        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 617        new_n1->parent_slot = -1; /* Need to calculate this */
 618
 619do_split_node:
 620        pr_devel("do_split_node\n");
 621
 622        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 623        new_n1->nr_leaves_on_branch = 0;
 624
 625        /* Begin by finding two matching leaves.  There have to be at least two
 626         * that match - even if there are meta pointers - because any leaf that
 627         * would match a slot with a meta pointer in it must be somewhere
 628         * behind that meta pointer and cannot be here.  Further, given N
 629         * remaining leaf slots, we now have N+1 leaves to go in them.
 630         */
 631        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 632                slot = edit->segment_cache[i];
 633                if (slot != 0xff)
 634                        for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
 635                                if (edit->segment_cache[j] == slot)
 636                                        goto found_slot_for_multiple_occupancy;
 637        }
 638found_slot_for_multiple_occupancy:
 639        pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
 640        BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
 641        BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
 642        BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
 643
 644        new_n1->parent_slot = slot;
 645
 646        /* Metadata pointers cannot change slot */
 647        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 648                if (assoc_array_ptr_is_meta(node->slots[i]))
 649                        new_n0->slots[i] = node->slots[i];
 650                else
 651                        new_n0->slots[i] = NULL;
 652        BUG_ON(new_n0->slots[slot] != NULL);
 653        new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
 654
 655        /* Filter the leaf pointers between the new nodes */
 656        free_slot = -1;
 657        next_slot = 0;
 658        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 659                if (assoc_array_ptr_is_meta(node->slots[i]))
 660                        continue;
 661                if (edit->segment_cache[i] == slot) {
 662                        new_n1->slots[next_slot++] = node->slots[i];
 663                        new_n1->nr_leaves_on_branch++;
 664                } else {
 665                        do {
 666                                free_slot++;
 667                        } while (new_n0->slots[free_slot] != NULL);
 668                        new_n0->slots[free_slot] = node->slots[i];
 669                }
 670        }
 671
 672        pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
 673
 674        if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
 675                do {
 676                        free_slot++;
 677                } while (new_n0->slots[free_slot] != NULL);
 678                edit->leaf_p = &new_n0->slots[free_slot];
 679                edit->adjust_count_on = new_n0;
 680        } else {
 681                edit->leaf_p = &new_n1->slots[next_slot++];
 682                edit->adjust_count_on = new_n1;
 683        }
 684
 685        BUG_ON(next_slot <= 1);
 686
 687        edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
 688        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 689                if (edit->segment_cache[i] == 0xff) {
 690                        ptr = node->slots[i];
 691                        BUG_ON(assoc_array_ptr_is_leaf(ptr));
 692                        if (assoc_array_ptr_is_node(ptr)) {
 693                                side = assoc_array_ptr_to_node(ptr);
 694                                edit->set_backpointers[i] = &side->back_pointer;
 695                        } else {
 696                                shortcut = assoc_array_ptr_to_shortcut(ptr);
 697                                edit->set_backpointers[i] = &shortcut->back_pointer;
 698                        }
 699                }
 700        }
 701
 702        ptr = node->back_pointer;
 703        if (!ptr)
 704                edit->set[0].ptr = &edit->array->root;
 705        else if (assoc_array_ptr_is_node(ptr))
 706                edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
 707        else
 708                edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
 709        edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 710        pr_devel("<--%s() = ok [split node]\n", __func__);
 711        return true;
 712
 713all_leaves_cluster_together:
 714        /* All the leaves, new and old, want to cluster together in this node
 715         * in the same slot, so we have to replace this node with a shortcut to
 716         * skip over the identical parts of the key and then place a pair of
 717         * nodes, one inside the other, at the end of the shortcut and
 718         * distribute the keys between them.
 719         *
 720         * Firstly we need to work out where the leaves start diverging as a
 721         * bit position into their keys so that we know how big the shortcut
 722         * needs to be.
 723         *
 724         * We only need to make a single pass of N of the N+1 leaves because if
 725         * any keys differ between themselves at bit X then at least one of
 726         * them must also differ with the base key at bit X or before.
 727         */
 728        pr_devel("all leaves cluster together\n");
 729        diff = INT_MAX;
 730        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 731                int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
 732                                          index_key);
 733                if (x < diff) {
 734                        BUG_ON(x < 0);
 735                        diff = x;
 736                }
 737        }
 738        BUG_ON(diff == INT_MAX);
 739        BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
 740
 741        keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 742        keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 743
 744        new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 745                         keylen * sizeof(unsigned long), GFP_KERNEL);
 746        if (!new_s0)
 747                return false;
 748        edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
 749
 750        edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 751        new_s0->back_pointer = node->back_pointer;
 752        new_s0->parent_slot = node->parent_slot;
 753        new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 754        new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 755        new_n0->parent_slot = 0;
 756        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 757        new_n1->parent_slot = -1; /* Need to calculate this */
 758
 759        new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 760        pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
 761        BUG_ON(level <= 0);
 762
 763        for (i = 0; i < keylen; i++)
 764                new_s0->index_key[i] =
 765                        ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
 766
 767        if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) {
 768                blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 769                pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
 770                new_s0->index_key[keylen - 1] &= ~blank;
 771        }
 772
 773        /* This now reduces to a node splitting exercise for which we'll need
 774         * to regenerate the disparity table.
 775         */
 776        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 777                ptr = node->slots[i];
 778                base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
 779                                                     level);
 780                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 781                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 782        }
 783
 784        base_seg = ops->get_key_chunk(index_key, level);
 785        base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 786        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
 787        goto do_split_node;
 788}
 789
 790/*
 791 * Handle insertion into the middle of a shortcut.
 792 */
 793static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
 794                                            const struct assoc_array_ops *ops,
 795                                            struct assoc_array_walk_result *result)
 796{
 797        struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
 798        struct assoc_array_node *node, *new_n0, *side;
 799        unsigned long sc_segments, dissimilarity, blank;
 800        size_t keylen;
 801        int level, sc_level, diff;
 802        int sc_slot;
 803
 804        shortcut        = result->wrong_shortcut.shortcut;
 805        level           = result->wrong_shortcut.level;
 806        sc_level        = result->wrong_shortcut.sc_level;
 807        sc_segments     = result->wrong_shortcut.sc_segments;
 808        dissimilarity   = result->wrong_shortcut.dissimilarity;
 809
 810        pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
 811                 __func__, level, dissimilarity, sc_level);
 812
 813        /* We need to split a shortcut and insert a node between the two
 814         * pieces.  Zero-length pieces will be dispensed with entirely.
 815         *
 816         * First of all, we need to find out in which level the first
 817         * difference was.
 818         */
 819        diff = __ffs(dissimilarity);
 820        diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 821        diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
 822        pr_devel("diff=%d\n", diff);
 823
 824        if (!shortcut->back_pointer) {
 825                edit->set[0].ptr = &edit->array->root;
 826        } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
 827                node = assoc_array_ptr_to_node(shortcut->back_pointer);
 828                edit->set[0].ptr = &node->slots[shortcut->parent_slot];
 829        } else {
 830                BUG();
 831        }
 832
 833        edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
 834
 835        /* Create a new node now since we're going to need it anyway */
 836        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 837        if (!new_n0)
 838                return false;
 839        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 840        edit->adjust_count_on = new_n0;
 841
 842        /* Insert a new shortcut before the new node if this segment isn't of
 843         * zero length - otherwise we just connect the new node directly to the
 844         * parent.
 845         */
 846        level += ASSOC_ARRAY_LEVEL_STEP;
 847        if (diff > level) {
 848                pr_devel("pre-shortcut %d...%d\n", level, diff);
 849                keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 850                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 851
 852                new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 853                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 854                if (!new_s0)
 855                        return false;
 856                edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
 857                edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 858                new_s0->back_pointer = shortcut->back_pointer;
 859                new_s0->parent_slot = shortcut->parent_slot;
 860                new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 861                new_s0->skip_to_level = diff;
 862
 863                new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 864                new_n0->parent_slot = 0;
 865
 866                memcpy(new_s0->index_key, shortcut->index_key,
 867                       keylen * sizeof(unsigned long));
 868
 869                blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 870                pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
 871                new_s0->index_key[keylen - 1] &= ~blank;
 872        } else {
 873                pr_devel("no pre-shortcut\n");
 874                edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 875                new_n0->back_pointer = shortcut->back_pointer;
 876                new_n0->parent_slot = shortcut->parent_slot;
 877        }
 878
 879        side = assoc_array_ptr_to_node(shortcut->next_node);
 880        new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
 881
 882        /* We need to know which slot in the new node is going to take a
 883         * metadata pointer.
 884         */
 885        sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 886        sc_slot &= ASSOC_ARRAY_FAN_MASK;
 887
 888        pr_devel("new slot %lx >> %d -> %d\n",
 889                 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
 890
 891        /* Determine whether we need to follow the new node with a replacement
 892         * for the current shortcut.  We could in theory reuse the current
 893         * shortcut if its parent slot number doesn't change - but that's a
 894         * 1-in-16 chance so not worth expending the code upon.
 895         */
 896        level = diff + ASSOC_ARRAY_LEVEL_STEP;
 897        if (level < shortcut->skip_to_level) {
 898                pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
 899                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 900                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 901
 902                new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
 903                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 904                if (!new_s1)
 905                        return false;
 906                edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
 907
 908                new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
 909                new_s1->parent_slot = sc_slot;
 910                new_s1->next_node = shortcut->next_node;
 911                new_s1->skip_to_level = shortcut->skip_to_level;
 912
 913                new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
 914
 915                memcpy(new_s1->index_key, shortcut->index_key,
 916                       keylen * sizeof(unsigned long));
 917
 918                edit->set[1].ptr = &side->back_pointer;
 919                edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
 920        } else {
 921                pr_devel("no post-shortcut\n");
 922
 923                /* We don't have to replace the pointed-to node as long as we
 924                 * use memory barriers to make sure the parent slot number is
 925                 * changed before the back pointer (the parent slot number is
 926                 * irrelevant to the old parent shortcut).
 927                 */
 928                new_n0->slots[sc_slot] = shortcut->next_node;
 929                edit->set_parent_slot[0].p = &side->parent_slot;
 930                edit->set_parent_slot[0].to = sc_slot;
 931                edit->set[1].ptr = &side->back_pointer;
 932                edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 933        }
 934
 935        /* Install the new leaf in a spare slot in the new node. */
 936        if (sc_slot == 0)
 937                edit->leaf_p = &new_n0->slots[1];
 938        else
 939                edit->leaf_p = &new_n0->slots[0];
 940
 941        pr_devel("<--%s() = ok [split shortcut]\n", __func__);
 942        return edit;
 943}
 944
 945/**
 946 * assoc_array_insert - Script insertion of an object into an associative array
 947 * @array: The array to insert into.
 948 * @ops: The operations to use.
 949 * @index_key: The key to insert at.
 950 * @object: The object to insert.
 951 *
 952 * Precalculate and preallocate a script for the insertion or replacement of an
 953 * object in an associative array.  This results in an edit script that can
 954 * either be applied or cancelled.
 955 *
 956 * The function returns a pointer to an edit script or -ENOMEM.
 957 *
 958 * The caller should lock against other modifications and must continue to hold
 959 * the lock until assoc_array_apply_edit() has been called.
 960 *
 961 * Accesses to the tree may take place concurrently with this function,
 962 * provided they hold the RCU read lock.
 963 */
 964struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
 965                                            const struct assoc_array_ops *ops,
 966                                            const void *index_key,
 967                                            void *object)
 968{
 969        struct assoc_array_walk_result result;
 970        struct assoc_array_edit *edit;
 971
 972        pr_devel("-->%s()\n", __func__);
 973
 974        /* The leaf pointer we're given must not have the bottom bit set as we
 975         * use those for type-marking the pointer.  NULL pointers are also not
 976         * allowed as they indicate an empty slot but we have to allow them
 977         * here as they can be updated later.
 978         */
 979        BUG_ON(assoc_array_ptr_is_meta(object));
 980
 981        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 982        if (!edit)
 983                return ERR_PTR(-ENOMEM);
 984        edit->array = array;
 985        edit->ops = ops;
 986        edit->leaf = assoc_array_leaf_to_ptr(object);
 987        edit->adjust_count_by = 1;
 988
 989        switch (assoc_array_walk(array, ops, index_key, &result)) {
 990        case assoc_array_walk_tree_empty:
 991                /* Allocate a root node if there isn't one yet */
 992                if (!assoc_array_insert_in_empty_tree(edit))
 993                        goto enomem;
 994                return edit;
 995
 996        case assoc_array_walk_found_terminal_node:
 997                /* We found a node that doesn't have a node/shortcut pointer in
 998                 * the slot corresponding to the index key that we have to
 999                 * follow.
1000                 */
1001                if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1002                                                           &result))
1003                        goto enomem;
1004                return edit;
1005
1006        case assoc_array_walk_found_wrong_shortcut:
1007                /* We found a shortcut that didn't match our key in a slot we
1008                 * needed to follow.
1009                 */
1010                if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1011                        goto enomem;
1012                return edit;
1013        }
1014
1015enomem:
1016        /* Clean up after an out of memory error */
1017        pr_devel("enomem\n");
1018        assoc_array_cancel_edit(edit);
1019        return ERR_PTR(-ENOMEM);
1020}
1021
1022/**
1023 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1024 * @edit: The edit script to modify.
1025 * @object: The object pointer to set.
1026 *
1027 * Change the object to be inserted in an edit script.  The object pointed to
1028 * by the old object is not freed.  This must be done prior to applying the
1029 * script.
1030 */
1031void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1032{
1033        BUG_ON(!object);
1034        edit->leaf = assoc_array_leaf_to_ptr(object);
1035}
1036
1037struct assoc_array_delete_collapse_context {
1038        struct assoc_array_node *node;
1039        const void              *skip_leaf;
1040        int                     slot;
1041};
1042
1043/*
1044 * Subtree collapse to node iterator.
1045 */
1046static int assoc_array_delete_collapse_iterator(const void *leaf,
1047                                                void *iterator_data)
1048{
1049        struct assoc_array_delete_collapse_context *collapse = iterator_data;
1050
1051        if (leaf == collapse->skip_leaf)
1052                return 0;
1053
1054        BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1055
1056        collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1057        return 0;
1058}
1059
1060/**
1061 * assoc_array_delete - Script deletion of an object from an associative array
1062 * @array: The array to search.
1063 * @ops: The operations to use.
1064 * @index_key: The key to the object.
1065 *
1066 * Precalculate and preallocate a script for the deletion of an object from an
1067 * associative array.  This results in an edit script that can either be
1068 * applied or cancelled.
1069 *
1070 * The function returns a pointer to an edit script if the object was found,
1071 * NULL if the object was not found or -ENOMEM.
1072 *
1073 * The caller should lock against other modifications and must continue to hold
1074 * the lock until assoc_array_apply_edit() has been called.
1075 *
1076 * Accesses to the tree may take place concurrently with this function,
1077 * provided they hold the RCU read lock.
1078 */
1079struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1080                                            const struct assoc_array_ops *ops,
1081                                            const void *index_key)
1082{
1083        struct assoc_array_delete_collapse_context collapse;
1084        struct assoc_array_walk_result result;
1085        struct assoc_array_node *node, *new_n0;
1086        struct assoc_array_edit *edit;
1087        struct assoc_array_ptr *ptr;
1088        bool has_meta;
1089        int slot, i;
1090
1091        pr_devel("-->%s()\n", __func__);
1092
1093        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1094        if (!edit)
1095                return ERR_PTR(-ENOMEM);
1096        edit->array = array;
1097        edit->ops = ops;
1098        edit->adjust_count_by = -1;
1099
1100        switch (assoc_array_walk(array, ops, index_key, &result)) {
1101        case assoc_array_walk_found_terminal_node:
1102                /* We found a node that should contain the leaf we've been
1103                 * asked to remove - *if* it's in the tree.
1104                 */
1105                pr_devel("terminal_node\n");
1106                node = result.terminal_node.node;
1107
1108                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1109                        ptr = node->slots[slot];
1110                        if (ptr &&
1111                            assoc_array_ptr_is_leaf(ptr) &&
1112                            ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1113                                                index_key))
1114                                goto found_leaf;
1115                }
1116                /* fall through */
1117        case assoc_array_walk_tree_empty:
1118        case assoc_array_walk_found_wrong_shortcut:
1119        default:
1120                assoc_array_cancel_edit(edit);
1121                pr_devel("not found\n");
1122                return NULL;
1123        }
1124
1125found_leaf:
1126        BUG_ON(array->nr_leaves_on_tree <= 0);
1127
1128        /* In the simplest form of deletion we just clear the slot and release
1129         * the leaf after a suitable interval.
1130         */
1131        edit->dead_leaf = node->slots[slot];
1132        edit->set[0].ptr = &node->slots[slot];
1133        edit->set[0].to = NULL;
1134        edit->adjust_count_on = node;
1135
1136        /* If that concludes erasure of the last leaf, then delete the entire
1137         * internal array.
1138         */
1139        if (array->nr_leaves_on_tree == 1) {
1140                edit->set[1].ptr = &array->root;
1141                edit->set[1].to = NULL;
1142                edit->adjust_count_on = NULL;
1143                edit->excised_subtree = array->root;
1144                pr_devel("all gone\n");
1145                return edit;
1146        }
1147
1148        /* However, we'd also like to clear up some metadata blocks if we
1149         * possibly can.
1150         *
1151         * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1152         * leaves in it, then attempt to collapse it - and attempt to
1153         * recursively collapse up the tree.
1154         *
1155         * We could also try and collapse in partially filled subtrees to take
1156         * up space in this node.
1157         */
1158        if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1159                struct assoc_array_node *parent, *grandparent;
1160                struct assoc_array_ptr *ptr;
1161
1162                /* First of all, we need to know if this node has metadata so
1163                 * that we don't try collapsing if all the leaves are already
1164                 * here.
1165                 */
1166                has_meta = false;
1167                for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1168                        ptr = node->slots[i];
1169                        if (assoc_array_ptr_is_meta(ptr)) {
1170                                has_meta = true;
1171                                break;
1172                        }
1173                }
1174
1175                pr_devel("leaves: %ld [m=%d]\n",
1176                         node->nr_leaves_on_branch - 1, has_meta);
1177
1178                /* Look further up the tree to see if we can collapse this node
1179                 * into a more proximal node too.
1180                 */
1181                parent = node;
1182        collapse_up:
1183                pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1184
1185                ptr = parent->back_pointer;
1186                if (!ptr)
1187                        goto do_collapse;
1188                if (assoc_array_ptr_is_shortcut(ptr)) {
1189                        struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1190                        ptr = s->back_pointer;
1191                        if (!ptr)
1192                                goto do_collapse;
1193                }
1194
1195                grandparent = assoc_array_ptr_to_node(ptr);
1196                if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1197                        parent = grandparent;
1198                        goto collapse_up;
1199                }
1200
1201        do_collapse:
1202                /* There's no point collapsing if the original node has no meta
1203                 * pointers to discard and if we didn't merge into one of that
1204                 * node's ancestry.
1205                 */
1206                if (has_meta || parent != node) {
1207                        node = parent;
1208
1209                        /* Create a new node to collapse into */
1210                        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1211                        if (!new_n0)
1212                                goto enomem;
1213                        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1214
1215                        new_n0->back_pointer = node->back_pointer;
1216                        new_n0->parent_slot = node->parent_slot;
1217                        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1218                        edit->adjust_count_on = new_n0;
1219
1220                        collapse.node = new_n0;
1221                        collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1222                        collapse.slot = 0;
1223                        assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1224                                                    node->back_pointer,
1225                                                    assoc_array_delete_collapse_iterator,
1226                                                    &collapse);
1227                        pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1228                        BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1229
1230                        if (!node->back_pointer) {
1231                                edit->set[1].ptr = &array->root;
1232                        } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1233                                BUG();
1234                        } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1235                                struct assoc_array_node *p =
1236                                        assoc_array_ptr_to_node(node->back_pointer);
1237                                edit->set[1].ptr = &p->slots[node->parent_slot];
1238                        } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1239                                struct assoc_array_shortcut *s =
1240                                        assoc_array_ptr_to_shortcut(node->back_pointer);
1241                                edit->set[1].ptr = &s->next_node;
1242                        }
1243                        edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1244                        edit->excised_subtree = assoc_array_node_to_ptr(node);
1245                }
1246        }
1247
1248        return edit;
1249
1250enomem:
1251        /* Clean up after an out of memory error */
1252        pr_devel("enomem\n");
1253        assoc_array_cancel_edit(edit);
1254        return ERR_PTR(-ENOMEM);
1255}
1256
1257/**
1258 * assoc_array_clear - Script deletion of all objects from an associative array
1259 * @array: The array to clear.
1260 * @ops: The operations to use.
1261 *
1262 * Precalculate and preallocate a script for the deletion of all the objects
1263 * from an associative array.  This results in an edit script that can either
1264 * be applied or cancelled.
1265 *
1266 * The function returns a pointer to an edit script if there are objects to be
1267 * deleted, NULL if there are no objects in the array or -ENOMEM.
1268 *
1269 * The caller should lock against other modifications and must continue to hold
1270 * the lock until assoc_array_apply_edit() has been called.
1271 *
1272 * Accesses to the tree may take place concurrently with this function,
1273 * provided they hold the RCU read lock.
1274 */
1275struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1276                                           const struct assoc_array_ops *ops)
1277{
1278        struct assoc_array_edit *edit;
1279
1280        pr_devel("-->%s()\n", __func__);
1281
1282        if (!array->root)
1283                return NULL;
1284
1285        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1286        if (!edit)
1287                return ERR_PTR(-ENOMEM);
1288        edit->array = array;
1289        edit->ops = ops;
1290        edit->set[1].ptr = &array->root;
1291        edit->set[1].to = NULL;
1292        edit->excised_subtree = array->root;
1293        edit->ops_for_excised_subtree = ops;
1294        pr_devel("all gone\n");
1295        return edit;
1296}
1297
1298/*
1299 * Handle the deferred destruction after an applied edit.
1300 */
1301static void assoc_array_rcu_cleanup(struct rcu_head *head)
1302{
1303        struct assoc_array_edit *edit =
1304                container_of(head, struct assoc_array_edit, rcu);
1305        int i;
1306
1307        pr_devel("-->%s()\n", __func__);
1308
1309        if (edit->dead_leaf)
1310                edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1311        for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1312                if (edit->excised_meta[i])
1313                        kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1314
1315        if (edit->excised_subtree) {
1316                BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1317                if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1318                        struct assoc_array_node *n =
1319                                assoc_array_ptr_to_node(edit->excised_subtree);
1320                        n->back_pointer = NULL;
1321                } else {
1322                        struct assoc_array_shortcut *s =
1323                                assoc_array_ptr_to_shortcut(edit->excised_subtree);
1324                        s->back_pointer = NULL;
1325                }
1326                assoc_array_destroy_subtree(edit->excised_subtree,
1327                                            edit->ops_for_excised_subtree);
1328        }
1329
1330        kfree(edit);
1331}
1332
1333/**
1334 * assoc_array_apply_edit - Apply an edit script to an associative array
1335 * @edit: The script to apply.
1336 *
1337 * Apply an edit script to an associative array to effect an insertion,
1338 * deletion or clearance.  As the edit script includes preallocated memory,
1339 * this is guaranteed not to fail.
1340 *
1341 * The edit script, dead objects and dead metadata will be scheduled for
1342 * destruction after an RCU grace period to permit those doing read-only
1343 * accesses on the array to continue to do so under the RCU read lock whilst
1344 * the edit is taking place.
1345 */
1346void assoc_array_apply_edit(struct assoc_array_edit *edit)
1347{
1348        struct assoc_array_shortcut *shortcut;
1349        struct assoc_array_node *node;
1350        struct assoc_array_ptr *ptr;
1351        int i;
1352
1353        pr_devel("-->%s()\n", __func__);
1354
1355        smp_wmb();
1356        if (edit->leaf_p)
1357                *edit->leaf_p = edit->leaf;
1358
1359        smp_wmb();
1360        for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1361                if (edit->set_parent_slot[i].p)
1362                        *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1363
1364        smp_wmb();
1365        for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1366                if (edit->set_backpointers[i])
1367                        *edit->set_backpointers[i] = edit->set_backpointers_to;
1368
1369        smp_wmb();
1370        for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1371                if (edit->set[i].ptr)
1372                        *edit->set[i].ptr = edit->set[i].to;
1373
1374        if (edit->array->root == NULL) {
1375                edit->array->nr_leaves_on_tree = 0;
1376        } else if (edit->adjust_count_on) {
1377                node = edit->adjust_count_on;
1378                for (;;) {
1379                        node->nr_leaves_on_branch += edit->adjust_count_by;
1380
1381                        ptr = node->back_pointer;
1382                        if (!ptr)
1383                                break;
1384                        if (assoc_array_ptr_is_shortcut(ptr)) {
1385                                shortcut = assoc_array_ptr_to_shortcut(ptr);
1386                                ptr = shortcut->back_pointer;
1387                                if (!ptr)
1388                                        break;
1389                        }
1390                        BUG_ON(!assoc_array_ptr_is_node(ptr));
1391                        node = assoc_array_ptr_to_node(ptr);
1392                }
1393
1394                edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1395        }
1396
1397        call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1398}
1399
1400/**
1401 * assoc_array_cancel_edit - Discard an edit script.
1402 * @edit: The script to discard.
1403 *
1404 * Free an edit script and all the preallocated data it holds without making
1405 * any changes to the associative array it was intended for.
1406 *
1407 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1408 * that was to be inserted.  That is left to the caller.
1409 */
1410void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1411{
1412        struct assoc_array_ptr *ptr;
1413        int i;
1414
1415        pr_devel("-->%s()\n", __func__);
1416
1417        /* Clean up after an out of memory error */
1418        for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1419                ptr = edit->new_meta[i];
1420                if (ptr) {
1421                        if (assoc_array_ptr_is_node(ptr))
1422                                kfree(assoc_array_ptr_to_node(ptr));
1423                        else
1424                                kfree(assoc_array_ptr_to_shortcut(ptr));
1425                }
1426        }
1427        kfree(edit);
1428}
1429
1430/**
1431 * assoc_array_gc - Garbage collect an associative array.
1432 * @array: The array to clean.
1433 * @ops: The operations to use.
1434 * @iterator: A callback function to pass judgement on each object.
1435 * @iterator_data: Private data for the callback function.
1436 *
1437 * Collect garbage from an associative array and pack down the internal tree to
1438 * save memory.
1439 *
1440 * The iterator function is asked to pass judgement upon each object in the
1441 * array.  If it returns false, the object is discard and if it returns true,
1442 * the object is kept.  If it returns true, it must increment the object's
1443 * usage count (or whatever it needs to do to retain it) before returning.
1444 *
1445 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1446 * latter case, the array is not changed.
1447 *
1448 * The caller should lock against other modifications and must continue to hold
1449 * the lock until assoc_array_apply_edit() has been called.
1450 *
1451 * Accesses to the tree may take place concurrently with this function,
1452 * provided they hold the RCU read lock.
1453 */
1454int assoc_array_gc(struct assoc_array *array,
1455                   const struct assoc_array_ops *ops,
1456                   bool (*iterator)(void *object, void *iterator_data),
1457                   void *iterator_data)
1458{
1459        struct assoc_array_shortcut *shortcut, *new_s;
1460        struct assoc_array_node *node, *new_n;
1461        struct assoc_array_edit *edit;
1462        struct assoc_array_ptr *cursor, *ptr;
1463        struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1464        unsigned long nr_leaves_on_tree;
1465        int keylen, slot, nr_free, next_slot, i;
1466
1467        pr_devel("-->%s()\n", __func__);
1468
1469        if (!array->root)
1470                return 0;
1471
1472        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1473        if (!edit)
1474                return -ENOMEM;
1475        edit->array = array;
1476        edit->ops = ops;
1477        edit->ops_for_excised_subtree = ops;
1478        edit->set[0].ptr = &array->root;
1479        edit->excised_subtree = array->root;
1480
1481        new_root = new_parent = NULL;
1482        new_ptr_pp = &new_root;
1483        cursor = array->root;
1484
1485descend:
1486        /* If this point is a shortcut, then we need to duplicate it and
1487         * advance the target cursor.
1488         */
1489        if (assoc_array_ptr_is_shortcut(cursor)) {
1490                shortcut = assoc_array_ptr_to_shortcut(cursor);
1491                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1492                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1493                new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1494                                keylen * sizeof(unsigned long), GFP_KERNEL);
1495                if (!new_s)
1496                        goto enomem;
1497                pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1498                memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1499                                         keylen * sizeof(unsigned long)));
1500                new_s->back_pointer = new_parent;
1501                new_s->parent_slot = shortcut->parent_slot;
1502                *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1503                new_ptr_pp = &new_s->next_node;
1504                cursor = shortcut->next_node;
1505        }
1506
1507        /* Duplicate the node at this position */
1508        node = assoc_array_ptr_to_node(cursor);
1509        new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1510        if (!new_n)
1511                goto enomem;
1512        pr_devel("dup node %p -> %p\n", node, new_n);
1513        new_n->back_pointer = new_parent;
1514        new_n->parent_slot = node->parent_slot;
1515        *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1516        new_ptr_pp = NULL;
1517        slot = 0;
1518
1519continue_node:
1520        /* Filter across any leaves and gc any subtrees */
1521        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1522                ptr = node->slots[slot];
1523                if (!ptr)
1524                        continue;
1525
1526                if (assoc_array_ptr_is_leaf(ptr)) {
1527                        if (iterator(assoc_array_ptr_to_leaf(ptr),
1528                                     iterator_data))
1529                                /* The iterator will have done any reference
1530                                 * counting on the object for us.
1531                                 */
1532                                new_n->slots[slot] = ptr;
1533                        continue;
1534                }
1535
1536                new_ptr_pp = &new_n->slots[slot];
1537                cursor = ptr;
1538                goto descend;
1539        }
1540
1541        pr_devel("-- compress node %p --\n", new_n);
1542
1543        /* Count up the number of empty slots in this node and work out the
1544         * subtree leaf count.
1545         */
1546        new_n->nr_leaves_on_branch = 0;
1547        nr_free = 0;
1548        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1549                ptr = new_n->slots[slot];
1550                if (!ptr)
1551                        nr_free++;
1552                else if (assoc_array_ptr_is_leaf(ptr))
1553                        new_n->nr_leaves_on_branch++;
1554        }
1555        pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1556
1557        /* See what we can fold in */
1558        next_slot = 0;
1559        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1560                struct assoc_array_shortcut *s;
1561                struct assoc_array_node *child;
1562
1563                ptr = new_n->slots[slot];
1564                if (!ptr || assoc_array_ptr_is_leaf(ptr))
1565                        continue;
1566
1567                s = NULL;
1568                if (assoc_array_ptr_is_shortcut(ptr)) {
1569                        s = assoc_array_ptr_to_shortcut(ptr);
1570                        ptr = s->next_node;
1571                }
1572
1573                child = assoc_array_ptr_to_node(ptr);
1574                new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1575
1576                if (child->nr_leaves_on_branch <= nr_free + 1) {
1577                        /* Fold the child node into this one */
1578                        pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1579                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1580                                 next_slot);
1581
1582                        /* We would already have reaped an intervening shortcut
1583                         * on the way back up the tree.
1584                         */
1585                        BUG_ON(s);
1586
1587                        new_n->slots[slot] = NULL;
1588                        nr_free++;
1589                        if (slot < next_slot)
1590                                next_slot = slot;
1591                        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1592                                struct assoc_array_ptr *p = child->slots[i];
1593                                if (!p)
1594                                        continue;
1595                                BUG_ON(assoc_array_ptr_is_meta(p));
1596                                while (new_n->slots[next_slot])
1597                                        next_slot++;
1598                                BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1599                                new_n->slots[next_slot++] = p;
1600                                nr_free--;
1601                        }
1602                        kfree(child);
1603                } else {
1604                        pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1605                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1606                                 next_slot);
1607                }
1608        }
1609
1610        pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1611
1612        nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1613
1614        /* Excise this node if it is singly occupied by a shortcut */
1615        if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1616                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1617                        if ((ptr = new_n->slots[slot]))
1618                                break;
1619
1620                if (assoc_array_ptr_is_meta(ptr) &&
1621                    assoc_array_ptr_is_shortcut(ptr)) {
1622                        pr_devel("excise node %p with 1 shortcut\n", new_n);
1623                        new_s = assoc_array_ptr_to_shortcut(ptr);
1624                        new_parent = new_n->back_pointer;
1625                        slot = new_n->parent_slot;
1626                        kfree(new_n);
1627                        if (!new_parent) {
1628                                new_s->back_pointer = NULL;
1629                                new_s->parent_slot = 0;
1630                                new_root = ptr;
1631                                goto gc_complete;
1632                        }
1633
1634                        if (assoc_array_ptr_is_shortcut(new_parent)) {
1635                                /* We can discard any preceding shortcut also */
1636                                struct assoc_array_shortcut *s =
1637                                        assoc_array_ptr_to_shortcut(new_parent);
1638
1639                                pr_devel("excise preceding shortcut\n");
1640
1641                                new_parent = new_s->back_pointer = s->back_pointer;
1642                                slot = new_s->parent_slot = s->parent_slot;
1643                                kfree(s);
1644                                if (!new_parent) {
1645                                        new_s->back_pointer = NULL;
1646                                        new_s->parent_slot = 0;
1647                                        new_root = ptr;
1648                                        goto gc_complete;
1649                                }
1650                        }
1651
1652                        new_s->back_pointer = new_parent;
1653                        new_s->parent_slot = slot;
1654                        new_n = assoc_array_ptr_to_node(new_parent);
1655                        new_n->slots[slot] = ptr;
1656                        goto ascend_old_tree;
1657                }
1658        }
1659
1660        /* Excise any shortcuts we might encounter that point to nodes that
1661         * only contain leaves.
1662         */
1663        ptr = new_n->back_pointer;
1664        if (!ptr)
1665                goto gc_complete;
1666
1667        if (assoc_array_ptr_is_shortcut(ptr)) {
1668                new_s = assoc_array_ptr_to_shortcut(ptr);
1669                new_parent = new_s->back_pointer;
1670                slot = new_s->parent_slot;
1671
1672                if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1673                        struct assoc_array_node *n;
1674
1675                        pr_devel("excise shortcut\n");
1676                        new_n->back_pointer = new_parent;
1677                        new_n->parent_slot = slot;
1678                        kfree(new_s);
1679                        if (!new_parent) {
1680                                new_root = assoc_array_node_to_ptr(new_n);
1681                                goto gc_complete;
1682                        }
1683
1684                        n = assoc_array_ptr_to_node(new_parent);
1685                        n->slots[slot] = assoc_array_node_to_ptr(new_n);
1686                }
1687        } else {
1688                new_parent = ptr;
1689        }
1690        new_n = assoc_array_ptr_to_node(new_parent);
1691
1692ascend_old_tree:
1693        ptr = node->back_pointer;
1694        if (assoc_array_ptr_is_shortcut(ptr)) {
1695                shortcut = assoc_array_ptr_to_shortcut(ptr);
1696                slot = shortcut->parent_slot;
1697                cursor = shortcut->back_pointer;
1698                if (!cursor)
1699                        goto gc_complete;
1700        } else {
1701                slot = node->parent_slot;
1702                cursor = ptr;
1703        }
1704        BUG_ON(!cursor);
1705        node = assoc_array_ptr_to_node(cursor);
1706        slot++;
1707        goto continue_node;
1708
1709gc_complete:
1710        edit->set[0].to = new_root;
1711        assoc_array_apply_edit(edit);
1712        array->nr_leaves_on_tree = nr_leaves_on_tree;
1713        return 0;
1714
1715enomem:
1716        pr_devel("enomem\n");
1717        assoc_array_destroy_subtree(new_root, edit->ops);
1718        kfree(edit);
1719        return -ENOMEM;
1720}
1721