linux/mm/mlock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *      linux/mm/mlock.c
   4 *
   5 *  (C) Copyright 1995 Linus Torvalds
   6 *  (C) Copyright 2002 Christoph Hellwig
   7 */
   8
   9#include <linux/capability.h>
  10#include <linux/mman.h>
  11#include <linux/mm.h>
  12#include <linux/sched/user.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mempolicy.h>
  18#include <linux/syscalls.h>
  19#include <linux/sched.h>
  20#include <linux/export.h>
  21#include <linux/rmap.h>
  22#include <linux/mmzone.h>
  23#include <linux/hugetlb.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26
  27#include "internal.h"
  28
  29bool can_do_mlock(void)
  30{
  31        if (rlimit(RLIMIT_MEMLOCK) != 0)
  32                return true;
  33        if (capable(CAP_IPC_LOCK))
  34                return true;
  35        return false;
  36}
  37EXPORT_SYMBOL(can_do_mlock);
  38
  39/*
  40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  41 * in vmscan and, possibly, the fault path; and to support semi-accurate
  42 * statistics.
  43 *
  44 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  46 * The unevictable list is an LRU sibling list to the [in]active lists.
  47 * PageUnevictable is set to indicate the unevictable state.
  48 *
  49 * When lazy mlocking via vmscan, it is important to ensure that the
  50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  51 * may have mlocked a page that is being munlocked. So lazy mlock must take
  52 * the mmap_lock for read, and verify that the vma really is locked
  53 * (see mm/rmap.c).
  54 */
  55
  56/*
  57 *  LRU accounting for clear_page_mlock()
  58 */
  59void clear_page_mlock(struct page *page)
  60{
  61        int nr_pages;
  62
  63        if (!TestClearPageMlocked(page))
  64                return;
  65
  66        nr_pages = thp_nr_pages(page);
  67        mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
  68        count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  69        /*
  70         * The previous TestClearPageMlocked() corresponds to the smp_mb()
  71         * in __pagevec_lru_add_fn().
  72         *
  73         * See __pagevec_lru_add_fn for more explanation.
  74         */
  75        if (!isolate_lru_page(page)) {
  76                putback_lru_page(page);
  77        } else {
  78                /*
  79                 * We lost the race. the page already moved to evictable list.
  80                 */
  81                if (PageUnevictable(page))
  82                        count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
  83        }
  84}
  85
  86/*
  87 * Mark page as mlocked if not already.
  88 * If page on LRU, isolate and putback to move to unevictable list.
  89 */
  90void mlock_vma_page(struct page *page)
  91{
  92        /* Serialize with page migration */
  93        BUG_ON(!PageLocked(page));
  94
  95        VM_BUG_ON_PAGE(PageTail(page), page);
  96        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  97
  98        if (!TestSetPageMlocked(page)) {
  99                int nr_pages = thp_nr_pages(page);
 100
 101                mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 102                count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 103                if (!isolate_lru_page(page))
 104                        putback_lru_page(page);
 105        }
 106}
 107
 108/*
 109 * Isolate a page from LRU with optional get_page() pin.
 110 * Assumes lru_lock already held and page already pinned.
 111 */
 112static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 113{
 114        if (PageLRU(page)) {
 115                struct lruvec *lruvec;
 116
 117                lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
 118                if (getpage)
 119                        get_page(page);
 120                ClearPageLRU(page);
 121                del_page_from_lru_list(page, lruvec, page_lru(page));
 122                return true;
 123        }
 124
 125        return false;
 126}
 127
 128/*
 129 * Finish munlock after successful page isolation
 130 *
 131 * Page must be locked. This is a wrapper for try_to_munlock()
 132 * and putback_lru_page() with munlock accounting.
 133 */
 134static void __munlock_isolated_page(struct page *page)
 135{
 136        /*
 137         * Optimization: if the page was mapped just once, that's our mapping
 138         * and we don't need to check all the other vmas.
 139         */
 140        if (page_mapcount(page) > 1)
 141                try_to_munlock(page);
 142
 143        /* Did try_to_unlock() succeed or punt? */
 144        if (!PageMlocked(page))
 145                count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
 146
 147        putback_lru_page(page);
 148}
 149
 150/*
 151 * Accounting for page isolation fail during munlock
 152 *
 153 * Performs accounting when page isolation fails in munlock. There is nothing
 154 * else to do because it means some other task has already removed the page
 155 * from the LRU. putback_lru_page() will take care of removing the page from
 156 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 157 * the page back to the unevictable list if some other vma has it mlocked.
 158 */
 159static void __munlock_isolation_failed(struct page *page)
 160{
 161        int nr_pages = thp_nr_pages(page);
 162
 163        if (PageUnevictable(page))
 164                __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
 165        else
 166                __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
 167}
 168
 169/**
 170 * munlock_vma_page - munlock a vma page
 171 * @page: page to be unlocked, either a normal page or THP page head
 172 *
 173 * returns the size of the page as a page mask (0 for normal page,
 174 *         HPAGE_PMD_NR - 1 for THP head page)
 175 *
 176 * called from munlock()/munmap() path with page supposedly on the LRU.
 177 * When we munlock a page, because the vma where we found the page is being
 178 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 179 * page locked so that we can leave it on the unevictable lru list and not
 180 * bother vmscan with it.  However, to walk the page's rmap list in
 181 * try_to_munlock() we must isolate the page from the LRU.  If some other
 182 * task has removed the page from the LRU, we won't be able to do that.
 183 * So we clear the PageMlocked as we might not get another chance.  If we
 184 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 185 * [page_referenced()/try_to_unmap()] to deal with.
 186 */
 187unsigned int munlock_vma_page(struct page *page)
 188{
 189        int nr_pages;
 190        pg_data_t *pgdat = page_pgdat(page);
 191
 192        /* For try_to_munlock() and to serialize with page migration */
 193        BUG_ON(!PageLocked(page));
 194
 195        VM_BUG_ON_PAGE(PageTail(page), page);
 196
 197        /*
 198         * Serialize with any parallel __split_huge_page_refcount() which
 199         * might otherwise copy PageMlocked to part of the tail pages before
 200         * we clear it in the head page. It also stabilizes thp_nr_pages().
 201         */
 202        spin_lock_irq(&pgdat->lru_lock);
 203
 204        if (!TestClearPageMlocked(page)) {
 205                /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
 206                nr_pages = 1;
 207                goto unlock_out;
 208        }
 209
 210        nr_pages = thp_nr_pages(page);
 211        __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 212
 213        if (__munlock_isolate_lru_page(page, true)) {
 214                spin_unlock_irq(&pgdat->lru_lock);
 215                __munlock_isolated_page(page);
 216                goto out;
 217        }
 218        __munlock_isolation_failed(page);
 219
 220unlock_out:
 221        spin_unlock_irq(&pgdat->lru_lock);
 222
 223out:
 224        return nr_pages - 1;
 225}
 226
 227/*
 228 * convert get_user_pages() return value to posix mlock() error
 229 */
 230static int __mlock_posix_error_return(long retval)
 231{
 232        if (retval == -EFAULT)
 233                retval = -ENOMEM;
 234        else if (retval == -ENOMEM)
 235                retval = -EAGAIN;
 236        return retval;
 237}
 238
 239/*
 240 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 241 *
 242 * The fast path is available only for evictable pages with single mapping.
 243 * Then we can bypass the per-cpu pvec and get better performance.
 244 * when mapcount > 1 we need try_to_munlock() which can fail.
 245 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 246 * avoid leaving evictable page in unevictable list.
 247 *
 248 * In case of success, @page is added to @pvec and @pgrescued is incremented
 249 * in case that the page was previously unevictable. @page is also unlocked.
 250 */
 251static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 252                int *pgrescued)
 253{
 254        VM_BUG_ON_PAGE(PageLRU(page), page);
 255        VM_BUG_ON_PAGE(!PageLocked(page), page);
 256
 257        if (page_mapcount(page) <= 1 && page_evictable(page)) {
 258                pagevec_add(pvec, page);
 259                if (TestClearPageUnevictable(page))
 260                        (*pgrescued)++;
 261                unlock_page(page);
 262                return true;
 263        }
 264
 265        return false;
 266}
 267
 268/*
 269 * Putback multiple evictable pages to the LRU
 270 *
 271 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 272 * the pages might have meanwhile become unevictable but that is OK.
 273 */
 274static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 275{
 276        count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 277        /*
 278         *__pagevec_lru_add() calls release_pages() so we don't call
 279         * put_page() explicitly
 280         */
 281        __pagevec_lru_add(pvec);
 282        count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 283}
 284
 285/*
 286 * Munlock a batch of pages from the same zone
 287 *
 288 * The work is split to two main phases. First phase clears the Mlocked flag
 289 * and attempts to isolate the pages, all under a single zone lru lock.
 290 * The second phase finishes the munlock only for pages where isolation
 291 * succeeded.
 292 *
 293 * Note that the pagevec may be modified during the process.
 294 */
 295static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 296{
 297        int i;
 298        int nr = pagevec_count(pvec);
 299        int delta_munlocked = -nr;
 300        struct pagevec pvec_putback;
 301        int pgrescued = 0;
 302
 303        pagevec_init(&pvec_putback);
 304
 305        /* Phase 1: page isolation */
 306        spin_lock_irq(&zone->zone_pgdat->lru_lock);
 307        for (i = 0; i < nr; i++) {
 308                struct page *page = pvec->pages[i];
 309
 310                if (TestClearPageMlocked(page)) {
 311                        /*
 312                         * We already have pin from follow_page_mask()
 313                         * so we can spare the get_page() here.
 314                         */
 315                        if (__munlock_isolate_lru_page(page, false))
 316                                continue;
 317                        else
 318                                __munlock_isolation_failed(page);
 319                } else {
 320                        delta_munlocked++;
 321                }
 322
 323                /*
 324                 * We won't be munlocking this page in the next phase
 325                 * but we still need to release the follow_page_mask()
 326                 * pin. We cannot do it under lru_lock however. If it's
 327                 * the last pin, __page_cache_release() would deadlock.
 328                 */
 329                pagevec_add(&pvec_putback, pvec->pages[i]);
 330                pvec->pages[i] = NULL;
 331        }
 332        __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 333        spin_unlock_irq(&zone->zone_pgdat->lru_lock);
 334
 335        /* Now we can release pins of pages that we are not munlocking */
 336        pagevec_release(&pvec_putback);
 337
 338        /* Phase 2: page munlock */
 339        for (i = 0; i < nr; i++) {
 340                struct page *page = pvec->pages[i];
 341
 342                if (page) {
 343                        lock_page(page);
 344                        if (!__putback_lru_fast_prepare(page, &pvec_putback,
 345                                        &pgrescued)) {
 346                                /*
 347                                 * Slow path. We don't want to lose the last
 348                                 * pin before unlock_page()
 349                                 */
 350                                get_page(page); /* for putback_lru_page() */
 351                                __munlock_isolated_page(page);
 352                                unlock_page(page);
 353                                put_page(page); /* from follow_page_mask() */
 354                        }
 355                }
 356        }
 357
 358        /*
 359         * Phase 3: page putback for pages that qualified for the fast path
 360         * This will also call put_page() to return pin from follow_page_mask()
 361         */
 362        if (pagevec_count(&pvec_putback))
 363                __putback_lru_fast(&pvec_putback, pgrescued);
 364}
 365
 366/*
 367 * Fill up pagevec for __munlock_pagevec using pte walk
 368 *
 369 * The function expects that the struct page corresponding to @start address is
 370 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 371 *
 372 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 373 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 374 * pages also get pinned.
 375 *
 376 * Returns the address of the next page that should be scanned. This equals
 377 * @start + PAGE_SIZE when no page could be added by the pte walk.
 378 */
 379static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 380                        struct vm_area_struct *vma, struct zone *zone,
 381                        unsigned long start, unsigned long end)
 382{
 383        pte_t *pte;
 384        spinlock_t *ptl;
 385
 386        /*
 387         * Initialize pte walk starting at the already pinned page where we
 388         * are sure that there is a pte, as it was pinned under the same
 389         * mmap_lock write op.
 390         */
 391        pte = get_locked_pte(vma->vm_mm, start, &ptl);
 392        /* Make sure we do not cross the page table boundary */
 393        end = pgd_addr_end(start, end);
 394        end = p4d_addr_end(start, end);
 395        end = pud_addr_end(start, end);
 396        end = pmd_addr_end(start, end);
 397
 398        /* The page next to the pinned page is the first we will try to get */
 399        start += PAGE_SIZE;
 400        while (start < end) {
 401                struct page *page = NULL;
 402                pte++;
 403                if (pte_present(*pte))
 404                        page = vm_normal_page(vma, start, *pte);
 405                /*
 406                 * Break if page could not be obtained or the page's node+zone does not
 407                 * match
 408                 */
 409                if (!page || page_zone(page) != zone)
 410                        break;
 411
 412                /*
 413                 * Do not use pagevec for PTE-mapped THP,
 414                 * munlock_vma_pages_range() will handle them.
 415                 */
 416                if (PageTransCompound(page))
 417                        break;
 418
 419                get_page(page);
 420                /*
 421                 * Increase the address that will be returned *before* the
 422                 * eventual break due to pvec becoming full by adding the page
 423                 */
 424                start += PAGE_SIZE;
 425                if (pagevec_add(pvec, page) == 0)
 426                        break;
 427        }
 428        pte_unmap_unlock(pte, ptl);
 429        return start;
 430}
 431
 432/*
 433 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 434 * @vma - vma containing range to be munlock()ed.
 435 * @start - start address in @vma of the range
 436 * @end - end of range in @vma.
 437 *
 438 *  For mremap(), munmap() and exit().
 439 *
 440 * Called with @vma VM_LOCKED.
 441 *
 442 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 443 * deal with this.
 444 *
 445 * We don't save and restore VM_LOCKED here because pages are
 446 * still on lru.  In unmap path, pages might be scanned by reclaim
 447 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 448 * free them.  This will result in freeing mlocked pages.
 449 */
 450void munlock_vma_pages_range(struct vm_area_struct *vma,
 451                             unsigned long start, unsigned long end)
 452{
 453        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 454
 455        while (start < end) {
 456                struct page *page;
 457                unsigned int page_mask = 0;
 458                unsigned long page_increm;
 459                struct pagevec pvec;
 460                struct zone *zone;
 461
 462                pagevec_init(&pvec);
 463                /*
 464                 * Although FOLL_DUMP is intended for get_dump_page(),
 465                 * it just so happens that its special treatment of the
 466                 * ZERO_PAGE (returning an error instead of doing get_page)
 467                 * suits munlock very well (and if somehow an abnormal page
 468                 * has sneaked into the range, we won't oops here: great).
 469                 */
 470                page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 471
 472                if (page && !IS_ERR(page)) {
 473                        if (PageTransTail(page)) {
 474                                VM_BUG_ON_PAGE(PageMlocked(page), page);
 475                                put_page(page); /* follow_page_mask() */
 476                        } else if (PageTransHuge(page)) {
 477                                lock_page(page);
 478                                /*
 479                                 * Any THP page found by follow_page_mask() may
 480                                 * have gotten split before reaching
 481                                 * munlock_vma_page(), so we need to compute
 482                                 * the page_mask here instead.
 483                                 */
 484                                page_mask = munlock_vma_page(page);
 485                                unlock_page(page);
 486                                put_page(page); /* follow_page_mask() */
 487                        } else {
 488                                /*
 489                                 * Non-huge pages are handled in batches via
 490                                 * pagevec. The pin from follow_page_mask()
 491                                 * prevents them from collapsing by THP.
 492                                 */
 493                                pagevec_add(&pvec, page);
 494                                zone = page_zone(page);
 495
 496                                /*
 497                                 * Try to fill the rest of pagevec using fast
 498                                 * pte walk. This will also update start to
 499                                 * the next page to process. Then munlock the
 500                                 * pagevec.
 501                                 */
 502                                start = __munlock_pagevec_fill(&pvec, vma,
 503                                                zone, start, end);
 504                                __munlock_pagevec(&pvec, zone);
 505                                goto next;
 506                        }
 507                }
 508                page_increm = 1 + page_mask;
 509                start += page_increm * PAGE_SIZE;
 510next:
 511                cond_resched();
 512        }
 513}
 514
 515/*
 516 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 517 *
 518 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 519 * munlock is a no-op.  However, for some special vmas, we go ahead and
 520 * populate the ptes.
 521 *
 522 * For vmas that pass the filters, merge/split as appropriate.
 523 */
 524static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 525        unsigned long start, unsigned long end, vm_flags_t newflags)
 526{
 527        struct mm_struct *mm = vma->vm_mm;
 528        pgoff_t pgoff;
 529        int nr_pages;
 530        int ret = 0;
 531        int lock = !!(newflags & VM_LOCKED);
 532        vm_flags_t old_flags = vma->vm_flags;
 533
 534        if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 535            is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
 536            vma_is_dax(vma))
 537                /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 538                goto out;
 539
 540        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 541        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 542                          vma->vm_file, pgoff, vma_policy(vma),
 543                          vma->vm_userfaultfd_ctx);
 544        if (*prev) {
 545                vma = *prev;
 546                goto success;
 547        }
 548
 549        if (start != vma->vm_start) {
 550                ret = split_vma(mm, vma, start, 1);
 551                if (ret)
 552                        goto out;
 553        }
 554
 555        if (end != vma->vm_end) {
 556                ret = split_vma(mm, vma, end, 0);
 557                if (ret)
 558                        goto out;
 559        }
 560
 561success:
 562        /*
 563         * Keep track of amount of locked VM.
 564         */
 565        nr_pages = (end - start) >> PAGE_SHIFT;
 566        if (!lock)
 567                nr_pages = -nr_pages;
 568        else if (old_flags & VM_LOCKED)
 569                nr_pages = 0;
 570        mm->locked_vm += nr_pages;
 571
 572        /*
 573         * vm_flags is protected by the mmap_lock held in write mode.
 574         * It's okay if try_to_unmap_one unmaps a page just after we
 575         * set VM_LOCKED, populate_vma_page_range will bring it back.
 576         */
 577
 578        if (lock)
 579                vma->vm_flags = newflags;
 580        else
 581                munlock_vma_pages_range(vma, start, end);
 582
 583out:
 584        *prev = vma;
 585        return ret;
 586}
 587
 588static int apply_vma_lock_flags(unsigned long start, size_t len,
 589                                vm_flags_t flags)
 590{
 591        unsigned long nstart, end, tmp;
 592        struct vm_area_struct * vma, * prev;
 593        int error;
 594
 595        VM_BUG_ON(offset_in_page(start));
 596        VM_BUG_ON(len != PAGE_ALIGN(len));
 597        end = start + len;
 598        if (end < start)
 599                return -EINVAL;
 600        if (end == start)
 601                return 0;
 602        vma = find_vma(current->mm, start);
 603        if (!vma || vma->vm_start > start)
 604                return -ENOMEM;
 605
 606        prev = vma->vm_prev;
 607        if (start > vma->vm_start)
 608                prev = vma;
 609
 610        for (nstart = start ; ; ) {
 611                vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 612
 613                newflags |= flags;
 614
 615                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 616                tmp = vma->vm_end;
 617                if (tmp > end)
 618                        tmp = end;
 619                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 620                if (error)
 621                        break;
 622                nstart = tmp;
 623                if (nstart < prev->vm_end)
 624                        nstart = prev->vm_end;
 625                if (nstart >= end)
 626                        break;
 627
 628                vma = prev->vm_next;
 629                if (!vma || vma->vm_start != nstart) {
 630                        error = -ENOMEM;
 631                        break;
 632                }
 633        }
 634        return error;
 635}
 636
 637/*
 638 * Go through vma areas and sum size of mlocked
 639 * vma pages, as return value.
 640 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
 641 * is also counted.
 642 * Return value: previously mlocked page counts
 643 */
 644static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
 645                unsigned long start, size_t len)
 646{
 647        struct vm_area_struct *vma;
 648        unsigned long count = 0;
 649
 650        if (mm == NULL)
 651                mm = current->mm;
 652
 653        vma = find_vma(mm, start);
 654        if (vma == NULL)
 655                vma = mm->mmap;
 656
 657        for (; vma ; vma = vma->vm_next) {
 658                if (start >= vma->vm_end)
 659                        continue;
 660                if (start + len <=  vma->vm_start)
 661                        break;
 662                if (vma->vm_flags & VM_LOCKED) {
 663                        if (start > vma->vm_start)
 664                                count -= (start - vma->vm_start);
 665                        if (start + len < vma->vm_end) {
 666                                count += start + len - vma->vm_start;
 667                                break;
 668                        }
 669                        count += vma->vm_end - vma->vm_start;
 670                }
 671        }
 672
 673        return count >> PAGE_SHIFT;
 674}
 675
 676static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 677{
 678        unsigned long locked;
 679        unsigned long lock_limit;
 680        int error = -ENOMEM;
 681
 682        start = untagged_addr(start);
 683
 684        if (!can_do_mlock())
 685                return -EPERM;
 686
 687        len = PAGE_ALIGN(len + (offset_in_page(start)));
 688        start &= PAGE_MASK;
 689
 690        lock_limit = rlimit(RLIMIT_MEMLOCK);
 691        lock_limit >>= PAGE_SHIFT;
 692        locked = len >> PAGE_SHIFT;
 693
 694        if (mmap_write_lock_killable(current->mm))
 695                return -EINTR;
 696
 697        locked += current->mm->locked_vm;
 698        if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
 699                /*
 700                 * It is possible that the regions requested intersect with
 701                 * previously mlocked areas, that part area in "mm->locked_vm"
 702                 * should not be counted to new mlock increment count. So check
 703                 * and adjust locked count if necessary.
 704                 */
 705                locked -= count_mm_mlocked_page_nr(current->mm,
 706                                start, len);
 707        }
 708
 709        /* check against resource limits */
 710        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 711                error = apply_vma_lock_flags(start, len, flags);
 712
 713        mmap_write_unlock(current->mm);
 714        if (error)
 715                return error;
 716
 717        error = __mm_populate(start, len, 0);
 718        if (error)
 719                return __mlock_posix_error_return(error);
 720        return 0;
 721}
 722
 723SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 724{
 725        return do_mlock(start, len, VM_LOCKED);
 726}
 727
 728SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 729{
 730        vm_flags_t vm_flags = VM_LOCKED;
 731
 732        if (flags & ~MLOCK_ONFAULT)
 733                return -EINVAL;
 734
 735        if (flags & MLOCK_ONFAULT)
 736                vm_flags |= VM_LOCKONFAULT;
 737
 738        return do_mlock(start, len, vm_flags);
 739}
 740
 741SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 742{
 743        int ret;
 744
 745        start = untagged_addr(start);
 746
 747        len = PAGE_ALIGN(len + (offset_in_page(start)));
 748        start &= PAGE_MASK;
 749
 750        if (mmap_write_lock_killable(current->mm))
 751                return -EINTR;
 752        ret = apply_vma_lock_flags(start, len, 0);
 753        mmap_write_unlock(current->mm);
 754
 755        return ret;
 756}
 757
 758/*
 759 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 760 * and translate into the appropriate modifications to mm->def_flags and/or the
 761 * flags for all current VMAs.
 762 *
 763 * There are a couple of subtleties with this.  If mlockall() is called multiple
 764 * times with different flags, the values do not necessarily stack.  If mlockall
 765 * is called once including the MCL_FUTURE flag and then a second time without
 766 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 767 */
 768static int apply_mlockall_flags(int flags)
 769{
 770        struct vm_area_struct * vma, * prev = NULL;
 771        vm_flags_t to_add = 0;
 772
 773        current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 774        if (flags & MCL_FUTURE) {
 775                current->mm->def_flags |= VM_LOCKED;
 776
 777                if (flags & MCL_ONFAULT)
 778                        current->mm->def_flags |= VM_LOCKONFAULT;
 779
 780                if (!(flags & MCL_CURRENT))
 781                        goto out;
 782        }
 783
 784        if (flags & MCL_CURRENT) {
 785                to_add |= VM_LOCKED;
 786                if (flags & MCL_ONFAULT)
 787                        to_add |= VM_LOCKONFAULT;
 788        }
 789
 790        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 791                vm_flags_t newflags;
 792
 793                newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 794                newflags |= to_add;
 795
 796                /* Ignore errors */
 797                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 798                cond_resched();
 799        }
 800out:
 801        return 0;
 802}
 803
 804SYSCALL_DEFINE1(mlockall, int, flags)
 805{
 806        unsigned long lock_limit;
 807        int ret;
 808
 809        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
 810            flags == MCL_ONFAULT)
 811                return -EINVAL;
 812
 813        if (!can_do_mlock())
 814                return -EPERM;
 815
 816        lock_limit = rlimit(RLIMIT_MEMLOCK);
 817        lock_limit >>= PAGE_SHIFT;
 818
 819        if (mmap_write_lock_killable(current->mm))
 820                return -EINTR;
 821
 822        ret = -ENOMEM;
 823        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 824            capable(CAP_IPC_LOCK))
 825                ret = apply_mlockall_flags(flags);
 826        mmap_write_unlock(current->mm);
 827        if (!ret && (flags & MCL_CURRENT))
 828                mm_populate(0, TASK_SIZE);
 829
 830        return ret;
 831}
 832
 833SYSCALL_DEFINE0(munlockall)
 834{
 835        int ret;
 836
 837        if (mmap_write_lock_killable(current->mm))
 838                return -EINTR;
 839        ret = apply_mlockall_flags(0);
 840        mmap_write_unlock(current->mm);
 841        return ret;
 842}
 843
 844/*
 845 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 846 * shm segments) get accounted against the user_struct instead.
 847 */
 848static DEFINE_SPINLOCK(shmlock_user_lock);
 849
 850int user_shm_lock(size_t size, struct user_struct *user)
 851{
 852        unsigned long lock_limit, locked;
 853        int allowed = 0;
 854
 855        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 856        lock_limit = rlimit(RLIMIT_MEMLOCK);
 857        if (lock_limit == RLIM_INFINITY)
 858                allowed = 1;
 859        lock_limit >>= PAGE_SHIFT;
 860        spin_lock(&shmlock_user_lock);
 861        if (!allowed &&
 862            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 863                goto out;
 864        get_uid(user);
 865        user->locked_shm += locked;
 866        allowed = 1;
 867out:
 868        spin_unlock(&shmlock_user_lock);
 869        return allowed;
 870}
 871
 872void user_shm_unlock(size_t size, struct user_struct *user)
 873{
 874        spin_lock(&shmlock_user_lock);
 875        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 876        spin_unlock(&shmlock_user_lock);
 877        free_uid(user);
 878}
 879