linux/mm/sparse.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * sparse memory mappings.
   4 */
   5#include <linux/mm.h>
   6#include <linux/slab.h>
   7#include <linux/mmzone.h>
   8#include <linux/memblock.h>
   9#include <linux/compiler.h>
  10#include <linux/highmem.h>
  11#include <linux/export.h>
  12#include <linux/spinlock.h>
  13#include <linux/vmalloc.h>
  14#include <linux/swap.h>
  15#include <linux/swapops.h>
  16
  17#include "internal.h"
  18#include <asm/dma.h>
  19
  20/*
  21 * Permanent SPARSEMEM data:
  22 *
  23 * 1) mem_section       - memory sections, mem_map's for valid memory
  24 */
  25#ifdef CONFIG_SPARSEMEM_EXTREME
  26struct mem_section **mem_section;
  27#else
  28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  29        ____cacheline_internodealigned_in_smp;
  30#endif
  31EXPORT_SYMBOL(mem_section);
  32
  33#ifdef NODE_NOT_IN_PAGE_FLAGS
  34/*
  35 * If we did not store the node number in the page then we have to
  36 * do a lookup in the section_to_node_table in order to find which
  37 * node the page belongs to.
  38 */
  39#if MAX_NUMNODES <= 256
  40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  41#else
  42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  43#endif
  44
  45int page_to_nid(const struct page *page)
  46{
  47        return section_to_node_table[page_to_section(page)];
  48}
  49EXPORT_SYMBOL(page_to_nid);
  50
  51static void set_section_nid(unsigned long section_nr, int nid)
  52{
  53        section_to_node_table[section_nr] = nid;
  54}
  55#else /* !NODE_NOT_IN_PAGE_FLAGS */
  56static inline void set_section_nid(unsigned long section_nr, int nid)
  57{
  58}
  59#endif
  60
  61#ifdef CONFIG_SPARSEMEM_EXTREME
  62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  63{
  64        struct mem_section *section = NULL;
  65        unsigned long array_size = SECTIONS_PER_ROOT *
  66                                   sizeof(struct mem_section);
  67
  68        if (slab_is_available()) {
  69                section = kzalloc_node(array_size, GFP_KERNEL, nid);
  70        } else {
  71                section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
  72                                              nid);
  73                if (!section)
  74                        panic("%s: Failed to allocate %lu bytes nid=%d\n",
  75                              __func__, array_size, nid);
  76        }
  77
  78        return section;
  79}
  80
  81static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  82{
  83        unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  84        struct mem_section *section;
  85
  86        /*
  87         * An existing section is possible in the sub-section hotplug
  88         * case. First hot-add instantiates, follow-on hot-add reuses
  89         * the existing section.
  90         *
  91         * The mem_hotplug_lock resolves the apparent race below.
  92         */
  93        if (mem_section[root])
  94                return 0;
  95
  96        section = sparse_index_alloc(nid);
  97        if (!section)
  98                return -ENOMEM;
  99
 100        mem_section[root] = section;
 101
 102        return 0;
 103}
 104#else /* !SPARSEMEM_EXTREME */
 105static inline int sparse_index_init(unsigned long section_nr, int nid)
 106{
 107        return 0;
 108}
 109#endif
 110
 111#ifdef CONFIG_SPARSEMEM_EXTREME
 112unsigned long __section_nr(struct mem_section *ms)
 113{
 114        unsigned long root_nr;
 115        struct mem_section *root = NULL;
 116
 117        for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 118                root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 119                if (!root)
 120                        continue;
 121
 122                if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 123                     break;
 124        }
 125
 126        VM_BUG_ON(!root);
 127
 128        return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 129}
 130#else
 131unsigned long __section_nr(struct mem_section *ms)
 132{
 133        return (unsigned long)(ms - mem_section[0]);
 134}
 135#endif
 136
 137/*
 138 * During early boot, before section_mem_map is used for an actual
 139 * mem_map, we use section_mem_map to store the section's NUMA
 140 * node.  This keeps us from having to use another data structure.  The
 141 * node information is cleared just before we store the real mem_map.
 142 */
 143static inline unsigned long sparse_encode_early_nid(int nid)
 144{
 145        return (nid << SECTION_NID_SHIFT);
 146}
 147
 148static inline int sparse_early_nid(struct mem_section *section)
 149{
 150        return (section->section_mem_map >> SECTION_NID_SHIFT);
 151}
 152
 153/* Validate the physical addressing limitations of the model */
 154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 155                                                unsigned long *end_pfn)
 156{
 157        unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 158
 159        /*
 160         * Sanity checks - do not allow an architecture to pass
 161         * in larger pfns than the maximum scope of sparsemem:
 162         */
 163        if (*start_pfn > max_sparsemem_pfn) {
 164                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 165                        "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 166                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 167                WARN_ON_ONCE(1);
 168                *start_pfn = max_sparsemem_pfn;
 169                *end_pfn = max_sparsemem_pfn;
 170        } else if (*end_pfn > max_sparsemem_pfn) {
 171                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 172                        "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 173                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 174                WARN_ON_ONCE(1);
 175                *end_pfn = max_sparsemem_pfn;
 176        }
 177}
 178
 179/*
 180 * There are a number of times that we loop over NR_MEM_SECTIONS,
 181 * looking for section_present() on each.  But, when we have very
 182 * large physical address spaces, NR_MEM_SECTIONS can also be
 183 * very large which makes the loops quite long.
 184 *
 185 * Keeping track of this gives us an easy way to break out of
 186 * those loops early.
 187 */
 188unsigned long __highest_present_section_nr;
 189static void section_mark_present(struct mem_section *ms)
 190{
 191        unsigned long section_nr = __section_nr(ms);
 192
 193        if (section_nr > __highest_present_section_nr)
 194                __highest_present_section_nr = section_nr;
 195
 196        ms->section_mem_map |= SECTION_MARKED_PRESENT;
 197}
 198
 199#define for_each_present_section_nr(start, section_nr)          \
 200        for (section_nr = next_present_section_nr(start-1);     \
 201             ((section_nr != -1) &&                             \
 202              (section_nr <= __highest_present_section_nr));    \
 203             section_nr = next_present_section_nr(section_nr))
 204
 205static inline unsigned long first_present_section_nr(void)
 206{
 207        return next_present_section_nr(-1);
 208}
 209
 210#ifdef CONFIG_SPARSEMEM_VMEMMAP
 211static void subsection_mask_set(unsigned long *map, unsigned long pfn,
 212                unsigned long nr_pages)
 213{
 214        int idx = subsection_map_index(pfn);
 215        int end = subsection_map_index(pfn + nr_pages - 1);
 216
 217        bitmap_set(map, idx, end - idx + 1);
 218}
 219
 220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
 221{
 222        int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
 223        unsigned long nr, start_sec = pfn_to_section_nr(pfn);
 224
 225        if (!nr_pages)
 226                return;
 227
 228        for (nr = start_sec; nr <= end_sec; nr++) {
 229                struct mem_section *ms;
 230                unsigned long pfns;
 231
 232                pfns = min(nr_pages, PAGES_PER_SECTION
 233                                - (pfn & ~PAGE_SECTION_MASK));
 234                ms = __nr_to_section(nr);
 235                subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
 236
 237                pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
 238                                pfns, subsection_map_index(pfn),
 239                                subsection_map_index(pfn + pfns - 1));
 240
 241                pfn += pfns;
 242                nr_pages -= pfns;
 243        }
 244}
 245#else
 246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
 247{
 248}
 249#endif
 250
 251/* Record a memory area against a node. */
 252static void __init memory_present(int nid, unsigned long start, unsigned long end)
 253{
 254        unsigned long pfn;
 255
 256#ifdef CONFIG_SPARSEMEM_EXTREME
 257        if (unlikely(!mem_section)) {
 258                unsigned long size, align;
 259
 260                size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
 261                align = 1 << (INTERNODE_CACHE_SHIFT);
 262                mem_section = memblock_alloc(size, align);
 263                if (!mem_section)
 264                        panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 265                              __func__, size, align);
 266        }
 267#endif
 268
 269        start &= PAGE_SECTION_MASK;
 270        mminit_validate_memmodel_limits(&start, &end);
 271        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 272                unsigned long section = pfn_to_section_nr(pfn);
 273                struct mem_section *ms;
 274
 275                sparse_index_init(section, nid);
 276                set_section_nid(section, nid);
 277
 278                ms = __nr_to_section(section);
 279                if (!ms->section_mem_map) {
 280                        ms->section_mem_map = sparse_encode_early_nid(nid) |
 281                                                        SECTION_IS_ONLINE;
 282                        section_mark_present(ms);
 283                }
 284        }
 285}
 286
 287/*
 288 * Mark all memblocks as present using memory_present().
 289 * This is a convenience function that is useful to mark all of the systems
 290 * memory as present during initialization.
 291 */
 292static void __init memblocks_present(void)
 293{
 294        unsigned long start, end;
 295        int i, nid;
 296
 297        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
 298                memory_present(nid, start, end);
 299}
 300
 301/*
 302 * Subtle, we encode the real pfn into the mem_map such that
 303 * the identity pfn - section_mem_map will return the actual
 304 * physical page frame number.
 305 */
 306static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 307{
 308        unsigned long coded_mem_map =
 309                (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 310        BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
 311        BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
 312        return coded_mem_map;
 313}
 314
 315#ifdef CONFIG_MEMORY_HOTPLUG
 316/*
 317 * Decode mem_map from the coded memmap
 318 */
 319struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 320{
 321        /* mask off the extra low bits of information */
 322        coded_mem_map &= SECTION_MAP_MASK;
 323        return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 324}
 325#endif /* CONFIG_MEMORY_HOTPLUG */
 326
 327static void __meminit sparse_init_one_section(struct mem_section *ms,
 328                unsigned long pnum, struct page *mem_map,
 329                struct mem_section_usage *usage, unsigned long flags)
 330{
 331        ms->section_mem_map &= ~SECTION_MAP_MASK;
 332        ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
 333                | SECTION_HAS_MEM_MAP | flags;
 334        ms->usage = usage;
 335}
 336
 337static unsigned long usemap_size(void)
 338{
 339        return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 340}
 341
 342size_t mem_section_usage_size(void)
 343{
 344        return sizeof(struct mem_section_usage) + usemap_size();
 345}
 346
 347#ifdef CONFIG_MEMORY_HOTREMOVE
 348static struct mem_section_usage * __init
 349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 350                                         unsigned long size)
 351{
 352        struct mem_section_usage *usage;
 353        unsigned long goal, limit;
 354        int nid;
 355        /*
 356         * A page may contain usemaps for other sections preventing the
 357         * page being freed and making a section unremovable while
 358         * other sections referencing the usemap remain active. Similarly,
 359         * a pgdat can prevent a section being removed. If section A
 360         * contains a pgdat and section B contains the usemap, both
 361         * sections become inter-dependent. This allocates usemaps
 362         * from the same section as the pgdat where possible to avoid
 363         * this problem.
 364         */
 365        goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 366        limit = goal + (1UL << PA_SECTION_SHIFT);
 367        nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 368again:
 369        usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
 370        if (!usage && limit) {
 371                limit = 0;
 372                goto again;
 373        }
 374        return usage;
 375}
 376
 377static void __init check_usemap_section_nr(int nid,
 378                struct mem_section_usage *usage)
 379{
 380        unsigned long usemap_snr, pgdat_snr;
 381        static unsigned long old_usemap_snr;
 382        static unsigned long old_pgdat_snr;
 383        struct pglist_data *pgdat = NODE_DATA(nid);
 384        int usemap_nid;
 385
 386        /* First call */
 387        if (!old_usemap_snr) {
 388                old_usemap_snr = NR_MEM_SECTIONS;
 389                old_pgdat_snr = NR_MEM_SECTIONS;
 390        }
 391
 392        usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
 393        pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 394        if (usemap_snr == pgdat_snr)
 395                return;
 396
 397        if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 398                /* skip redundant message */
 399                return;
 400
 401        old_usemap_snr = usemap_snr;
 402        old_pgdat_snr = pgdat_snr;
 403
 404        usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 405        if (usemap_nid != nid) {
 406                pr_info("node %d must be removed before remove section %ld\n",
 407                        nid, usemap_snr);
 408                return;
 409        }
 410        /*
 411         * There is a circular dependency.
 412         * Some platforms allow un-removable section because they will just
 413         * gather other removable sections for dynamic partitioning.
 414         * Just notify un-removable section's number here.
 415         */
 416        pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 417                usemap_snr, pgdat_snr, nid);
 418}
 419#else
 420static struct mem_section_usage * __init
 421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 422                                         unsigned long size)
 423{
 424        return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
 425}
 426
 427static void __init check_usemap_section_nr(int nid,
 428                struct mem_section_usage *usage)
 429{
 430}
 431#endif /* CONFIG_MEMORY_HOTREMOVE */
 432
 433#ifdef CONFIG_SPARSEMEM_VMEMMAP
 434static unsigned long __init section_map_size(void)
 435{
 436        return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
 437}
 438
 439#else
 440static unsigned long __init section_map_size(void)
 441{
 442        return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 443}
 444
 445struct page __init *__populate_section_memmap(unsigned long pfn,
 446                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 447{
 448        unsigned long size = section_map_size();
 449        struct page *map = sparse_buffer_alloc(size);
 450        phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 451
 452        if (map)
 453                return map;
 454
 455        map = memblock_alloc_try_nid_raw(size, size, addr,
 456                                          MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 457        if (!map)
 458                panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
 459                      __func__, size, PAGE_SIZE, nid, &addr);
 460
 461        return map;
 462}
 463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 464
 465static void *sparsemap_buf __meminitdata;
 466static void *sparsemap_buf_end __meminitdata;
 467
 468static inline void __meminit sparse_buffer_free(unsigned long size)
 469{
 470        WARN_ON(!sparsemap_buf || size == 0);
 471        memblock_free_early(__pa(sparsemap_buf), size);
 472}
 473
 474static void __init sparse_buffer_init(unsigned long size, int nid)
 475{
 476        phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 477        WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
 478        /*
 479         * Pre-allocated buffer is mainly used by __populate_section_memmap
 480         * and we want it to be properly aligned to the section size - this is
 481         * especially the case for VMEMMAP which maps memmap to PMDs
 482         */
 483        sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
 484                                        addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 485        sparsemap_buf_end = sparsemap_buf + size;
 486}
 487
 488static void __init sparse_buffer_fini(void)
 489{
 490        unsigned long size = sparsemap_buf_end - sparsemap_buf;
 491
 492        if (sparsemap_buf && size > 0)
 493                sparse_buffer_free(size);
 494        sparsemap_buf = NULL;
 495}
 496
 497void * __meminit sparse_buffer_alloc(unsigned long size)
 498{
 499        void *ptr = NULL;
 500
 501        if (sparsemap_buf) {
 502                ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
 503                if (ptr + size > sparsemap_buf_end)
 504                        ptr = NULL;
 505                else {
 506                        /* Free redundant aligned space */
 507                        if ((unsigned long)(ptr - sparsemap_buf) > 0)
 508                                sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
 509                        sparsemap_buf = ptr + size;
 510                }
 511        }
 512        return ptr;
 513}
 514
 515void __weak __meminit vmemmap_populate_print_last(void)
 516{
 517}
 518
 519/*
 520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 521 * And number of present sections in this node is map_count.
 522 */
 523static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
 524                                   unsigned long pnum_end,
 525                                   unsigned long map_count)
 526{
 527        struct mem_section_usage *usage;
 528        unsigned long pnum;
 529        struct page *map;
 530
 531        usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
 532                        mem_section_usage_size() * map_count);
 533        if (!usage) {
 534                pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
 535                goto failed;
 536        }
 537        sparse_buffer_init(map_count * section_map_size(), nid);
 538        for_each_present_section_nr(pnum_begin, pnum) {
 539                unsigned long pfn = section_nr_to_pfn(pnum);
 540
 541                if (pnum >= pnum_end)
 542                        break;
 543
 544                map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
 545                                nid, NULL);
 546                if (!map) {
 547                        pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
 548                               __func__, nid);
 549                        pnum_begin = pnum;
 550                        goto failed;
 551                }
 552                check_usemap_section_nr(nid, usage);
 553                sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
 554                                SECTION_IS_EARLY);
 555                usage = (void *) usage + mem_section_usage_size();
 556        }
 557        sparse_buffer_fini();
 558        return;
 559failed:
 560        /* We failed to allocate, mark all the following pnums as not present */
 561        for_each_present_section_nr(pnum_begin, pnum) {
 562                struct mem_section *ms;
 563
 564                if (pnum >= pnum_end)
 565                        break;
 566                ms = __nr_to_section(pnum);
 567                ms->section_mem_map = 0;
 568        }
 569}
 570
 571/*
 572 * Allocate the accumulated non-linear sections, allocate a mem_map
 573 * for each and record the physical to section mapping.
 574 */
 575void __init sparse_init(void)
 576{
 577        unsigned long pnum_end, pnum_begin, map_count = 1;
 578        int nid_begin;
 579
 580        memblocks_present();
 581
 582        pnum_begin = first_present_section_nr();
 583        nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
 584
 585        /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 586        set_pageblock_order();
 587
 588        for_each_present_section_nr(pnum_begin + 1, pnum_end) {
 589                int nid = sparse_early_nid(__nr_to_section(pnum_end));
 590
 591                if (nid == nid_begin) {
 592                        map_count++;
 593                        continue;
 594                }
 595                /* Init node with sections in range [pnum_begin, pnum_end) */
 596                sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 597                nid_begin = nid;
 598                pnum_begin = pnum_end;
 599                map_count = 1;
 600        }
 601        /* cover the last node */
 602        sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 603        vmemmap_populate_print_last();
 604}
 605
 606#ifdef CONFIG_MEMORY_HOTPLUG
 607
 608/* Mark all memory sections within the pfn range as online */
 609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 610{
 611        unsigned long pfn;
 612
 613        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 614                unsigned long section_nr = pfn_to_section_nr(pfn);
 615                struct mem_section *ms;
 616
 617                /* onlining code should never touch invalid ranges */
 618                if (WARN_ON(!valid_section_nr(section_nr)))
 619                        continue;
 620
 621                ms = __nr_to_section(section_nr);
 622                ms->section_mem_map |= SECTION_IS_ONLINE;
 623        }
 624}
 625
 626#ifdef CONFIG_MEMORY_HOTREMOVE
 627/* Mark all memory sections within the pfn range as offline */
 628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 629{
 630        unsigned long pfn;
 631
 632        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 633                unsigned long section_nr = pfn_to_section_nr(pfn);
 634                struct mem_section *ms;
 635
 636                /*
 637                 * TODO this needs some double checking. Offlining code makes
 638                 * sure to check pfn_valid but those checks might be just bogus
 639                 */
 640                if (WARN_ON(!valid_section_nr(section_nr)))
 641                        continue;
 642
 643                ms = __nr_to_section(section_nr);
 644                ms->section_mem_map &= ~SECTION_IS_ONLINE;
 645        }
 646}
 647#endif
 648
 649#ifdef CONFIG_SPARSEMEM_VMEMMAP
 650static struct page * __meminit populate_section_memmap(unsigned long pfn,
 651                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 652{
 653        return __populate_section_memmap(pfn, nr_pages, nid, altmap);
 654}
 655
 656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
 657                struct vmem_altmap *altmap)
 658{
 659        unsigned long start = (unsigned long) pfn_to_page(pfn);
 660        unsigned long end = start + nr_pages * sizeof(struct page);
 661
 662        vmemmap_free(start, end, altmap);
 663}
 664static void free_map_bootmem(struct page *memmap)
 665{
 666        unsigned long start = (unsigned long)memmap;
 667        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 668
 669        vmemmap_free(start, end, NULL);
 670}
 671
 672static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 673{
 674        DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
 675        DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
 676        struct mem_section *ms = __pfn_to_section(pfn);
 677        unsigned long *subsection_map = ms->usage
 678                ? &ms->usage->subsection_map[0] : NULL;
 679
 680        subsection_mask_set(map, pfn, nr_pages);
 681        if (subsection_map)
 682                bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
 683
 684        if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
 685                                "section already deactivated (%#lx + %ld)\n",
 686                                pfn, nr_pages))
 687                return -EINVAL;
 688
 689        bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
 690        return 0;
 691}
 692
 693static bool is_subsection_map_empty(struct mem_section *ms)
 694{
 695        return bitmap_empty(&ms->usage->subsection_map[0],
 696                            SUBSECTIONS_PER_SECTION);
 697}
 698
 699static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
 700{
 701        struct mem_section *ms = __pfn_to_section(pfn);
 702        DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
 703        unsigned long *subsection_map;
 704        int rc = 0;
 705
 706        subsection_mask_set(map, pfn, nr_pages);
 707
 708        subsection_map = &ms->usage->subsection_map[0];
 709
 710        if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
 711                rc = -EINVAL;
 712        else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
 713                rc = -EEXIST;
 714        else
 715                bitmap_or(subsection_map, map, subsection_map,
 716                                SUBSECTIONS_PER_SECTION);
 717
 718        return rc;
 719}
 720#else
 721struct page * __meminit populate_section_memmap(unsigned long pfn,
 722                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 723{
 724        return kvmalloc_node(array_size(sizeof(struct page),
 725                                        PAGES_PER_SECTION), GFP_KERNEL, nid);
 726}
 727
 728static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
 729                struct vmem_altmap *altmap)
 730{
 731        kvfree(pfn_to_page(pfn));
 732}
 733
 734static void free_map_bootmem(struct page *memmap)
 735{
 736        unsigned long maps_section_nr, removing_section_nr, i;
 737        unsigned long magic, nr_pages;
 738        struct page *page = virt_to_page(memmap);
 739
 740        nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 741                >> PAGE_SHIFT;
 742
 743        for (i = 0; i < nr_pages; i++, page++) {
 744                magic = (unsigned long) page->freelist;
 745
 746                BUG_ON(magic == NODE_INFO);
 747
 748                maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 749                removing_section_nr = page_private(page);
 750
 751                /*
 752                 * When this function is called, the removing section is
 753                 * logical offlined state. This means all pages are isolated
 754                 * from page allocator. If removing section's memmap is placed
 755                 * on the same section, it must not be freed.
 756                 * If it is freed, page allocator may allocate it which will
 757                 * be removed physically soon.
 758                 */
 759                if (maps_section_nr != removing_section_nr)
 760                        put_page_bootmem(page);
 761        }
 762}
 763
 764static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 765{
 766        return 0;
 767}
 768
 769static bool is_subsection_map_empty(struct mem_section *ms)
 770{
 771        return true;
 772}
 773
 774static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
 775{
 776        return 0;
 777}
 778#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 779
 780/*
 781 * To deactivate a memory region, there are 3 cases to handle across
 782 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
 783 *
 784 * 1. deactivation of a partial hot-added section (only possible in
 785 *    the SPARSEMEM_VMEMMAP=y case).
 786 *      a) section was present at memory init.
 787 *      b) section was hot-added post memory init.
 788 * 2. deactivation of a complete hot-added section.
 789 * 3. deactivation of a complete section from memory init.
 790 *
 791 * For 1, when subsection_map does not empty we will not be freeing the
 792 * usage map, but still need to free the vmemmap range.
 793 *
 794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
 795 */
 796static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
 797                struct vmem_altmap *altmap)
 798{
 799        struct mem_section *ms = __pfn_to_section(pfn);
 800        bool section_is_early = early_section(ms);
 801        struct page *memmap = NULL;
 802        bool empty;
 803
 804        if (clear_subsection_map(pfn, nr_pages))
 805                return;
 806
 807        empty = is_subsection_map_empty(ms);
 808        if (empty) {
 809                unsigned long section_nr = pfn_to_section_nr(pfn);
 810
 811                /*
 812                 * When removing an early section, the usage map is kept (as the
 813                 * usage maps of other sections fall into the same page). It
 814                 * will be re-used when re-adding the section - which is then no
 815                 * longer an early section. If the usage map is PageReserved, it
 816                 * was allocated during boot.
 817                 */
 818                if (!PageReserved(virt_to_page(ms->usage))) {
 819                        kfree(ms->usage);
 820                        ms->usage = NULL;
 821                }
 822                memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 823                /*
 824                 * Mark the section invalid so that valid_section()
 825                 * return false. This prevents code from dereferencing
 826                 * ms->usage array.
 827                 */
 828                ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
 829        }
 830
 831        /*
 832         * The memmap of early sections is always fully populated. See
 833         * section_activate() and pfn_valid() .
 834         */
 835        if (!section_is_early)
 836                depopulate_section_memmap(pfn, nr_pages, altmap);
 837        else if (memmap)
 838                free_map_bootmem(memmap);
 839
 840        if (empty)
 841                ms->section_mem_map = (unsigned long)NULL;
 842}
 843
 844static struct page * __meminit section_activate(int nid, unsigned long pfn,
 845                unsigned long nr_pages, struct vmem_altmap *altmap)
 846{
 847        struct mem_section *ms = __pfn_to_section(pfn);
 848        struct mem_section_usage *usage = NULL;
 849        struct page *memmap;
 850        int rc = 0;
 851
 852        if (!ms->usage) {
 853                usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
 854                if (!usage)
 855                        return ERR_PTR(-ENOMEM);
 856                ms->usage = usage;
 857        }
 858
 859        rc = fill_subsection_map(pfn, nr_pages);
 860        if (rc) {
 861                if (usage)
 862                        ms->usage = NULL;
 863                kfree(usage);
 864                return ERR_PTR(rc);
 865        }
 866
 867        /*
 868         * The early init code does not consider partially populated
 869         * initial sections, it simply assumes that memory will never be
 870         * referenced.  If we hot-add memory into such a section then we
 871         * do not need to populate the memmap and can simply reuse what
 872         * is already there.
 873         */
 874        if (nr_pages < PAGES_PER_SECTION && early_section(ms))
 875                return pfn_to_page(pfn);
 876
 877        memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
 878        if (!memmap) {
 879                section_deactivate(pfn, nr_pages, altmap);
 880                return ERR_PTR(-ENOMEM);
 881        }
 882
 883        return memmap;
 884}
 885
 886/**
 887 * sparse_add_section - add a memory section, or populate an existing one
 888 * @nid: The node to add section on
 889 * @start_pfn: start pfn of the memory range
 890 * @nr_pages: number of pfns to add in the section
 891 * @altmap: device page map
 892 *
 893 * This is only intended for hotplug.
 894 *
 895 * Note that only VMEMMAP supports sub-section aligned hotplug,
 896 * the proper alignment and size are gated by check_pfn_span().
 897 *
 898 *
 899 * Return:
 900 * * 0          - On success.
 901 * * -EEXIST    - Section has been present.
 902 * * -ENOMEM    - Out of memory.
 903 */
 904int __meminit sparse_add_section(int nid, unsigned long start_pfn,
 905                unsigned long nr_pages, struct vmem_altmap *altmap)
 906{
 907        unsigned long section_nr = pfn_to_section_nr(start_pfn);
 908        struct mem_section *ms;
 909        struct page *memmap;
 910        int ret;
 911
 912        ret = sparse_index_init(section_nr, nid);
 913        if (ret < 0)
 914                return ret;
 915
 916        memmap = section_activate(nid, start_pfn, nr_pages, altmap);
 917        if (IS_ERR(memmap))
 918                return PTR_ERR(memmap);
 919
 920        /*
 921         * Poison uninitialized struct pages in order to catch invalid flags
 922         * combinations.
 923         */
 924        page_init_poison(memmap, sizeof(struct page) * nr_pages);
 925
 926        ms = __nr_to_section(section_nr);
 927        set_section_nid(section_nr, nid);
 928        section_mark_present(ms);
 929
 930        /* Align memmap to section boundary in the subsection case */
 931        if (section_nr_to_pfn(section_nr) != start_pfn)
 932                memmap = pfn_to_page(section_nr_to_pfn(section_nr));
 933        sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
 934
 935        return 0;
 936}
 937
 938#ifdef CONFIG_MEMORY_FAILURE
 939static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 940{
 941        int i;
 942
 943        /*
 944         * A further optimization is to have per section refcounted
 945         * num_poisoned_pages.  But that would need more space per memmap, so
 946         * for now just do a quick global check to speed up this routine in the
 947         * absence of bad pages.
 948         */
 949        if (atomic_long_read(&num_poisoned_pages) == 0)
 950                return;
 951
 952        for (i = 0; i < nr_pages; i++) {
 953                if (PageHWPoison(&memmap[i])) {
 954                        num_poisoned_pages_dec();
 955                        ClearPageHWPoison(&memmap[i]);
 956                }
 957        }
 958}
 959#else
 960static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 961{
 962}
 963#endif
 964
 965void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
 966                unsigned long nr_pages, unsigned long map_offset,
 967                struct vmem_altmap *altmap)
 968{
 969        clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
 970                        nr_pages - map_offset);
 971        section_deactivate(pfn, nr_pages, altmap);
 972}
 973#endif /* CONFIG_MEMORY_HOTPLUG */
 974