linux/net/core/filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/types.h>
  22#include <linux/mm.h>
  23#include <linux/fcntl.h>
  24#include <linux/socket.h>
  25#include <linux/sock_diag.h>
  26#include <linux/in.h>
  27#include <linux/inet.h>
  28#include <linux/netdevice.h>
  29#include <linux/if_packet.h>
  30#include <linux/if_arp.h>
  31#include <linux/gfp.h>
  32#include <net/inet_common.h>
  33#include <net/ip.h>
  34#include <net/protocol.h>
  35#include <net/netlink.h>
  36#include <linux/skbuff.h>
  37#include <linux/skmsg.h>
  38#include <net/sock.h>
  39#include <net/flow_dissector.h>
  40#include <linux/errno.h>
  41#include <linux/timer.h>
  42#include <linux/uaccess.h>
  43#include <asm/unaligned.h>
  44#include <asm/cmpxchg.h>
  45#include <linux/filter.h>
  46#include <linux/ratelimit.h>
  47#include <linux/seccomp.h>
  48#include <linux/if_vlan.h>
  49#include <linux/bpf.h>
  50#include <linux/btf.h>
  51#include <net/sch_generic.h>
  52#include <net/cls_cgroup.h>
  53#include <net/dst_metadata.h>
  54#include <net/dst.h>
  55#include <net/sock_reuseport.h>
  56#include <net/busy_poll.h>
  57#include <net/tcp.h>
  58#include <net/xfrm.h>
  59#include <net/udp.h>
  60#include <linux/bpf_trace.h>
  61#include <net/xdp_sock.h>
  62#include <linux/inetdevice.h>
  63#include <net/inet_hashtables.h>
  64#include <net/inet6_hashtables.h>
  65#include <net/ip_fib.h>
  66#include <net/nexthop.h>
  67#include <net/flow.h>
  68#include <net/arp.h>
  69#include <net/ipv6.h>
  70#include <net/net_namespace.h>
  71#include <linux/seg6_local.h>
  72#include <net/seg6.h>
  73#include <net/seg6_local.h>
  74#include <net/lwtunnel.h>
  75#include <net/ipv6_stubs.h>
  76#include <net/bpf_sk_storage.h>
  77#include <net/transp_v6.h>
  78#include <linux/btf_ids.h>
  79#include <net/tls.h>
  80
  81static const struct bpf_func_proto *
  82bpf_sk_base_func_proto(enum bpf_func_id func_id);
  83
  84int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
  85{
  86        if (in_compat_syscall()) {
  87                struct compat_sock_fprog f32;
  88
  89                if (len != sizeof(f32))
  90                        return -EINVAL;
  91                if (copy_from_sockptr(&f32, src, sizeof(f32)))
  92                        return -EFAULT;
  93                memset(dst, 0, sizeof(*dst));
  94                dst->len = f32.len;
  95                dst->filter = compat_ptr(f32.filter);
  96        } else {
  97                if (len != sizeof(*dst))
  98                        return -EINVAL;
  99                if (copy_from_sockptr(dst, src, sizeof(*dst)))
 100                        return -EFAULT;
 101        }
 102
 103        return 0;
 104}
 105EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
 106
 107/**
 108 *      sk_filter_trim_cap - run a packet through a socket filter
 109 *      @sk: sock associated with &sk_buff
 110 *      @skb: buffer to filter
 111 *      @cap: limit on how short the eBPF program may trim the packet
 112 *
 113 * Run the eBPF program and then cut skb->data to correct size returned by
 114 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
 115 * than pkt_len we keep whole skb->data. This is the socket level
 116 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
 117 * be accepted or -EPERM if the packet should be tossed.
 118 *
 119 */
 120int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
 121{
 122        int err;
 123        struct sk_filter *filter;
 124
 125        /*
 126         * If the skb was allocated from pfmemalloc reserves, only
 127         * allow SOCK_MEMALLOC sockets to use it as this socket is
 128         * helping free memory
 129         */
 130        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
 131                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
 132                return -ENOMEM;
 133        }
 134        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
 135        if (err)
 136                return err;
 137
 138        err = security_sock_rcv_skb(sk, skb);
 139        if (err)
 140                return err;
 141
 142        rcu_read_lock();
 143        filter = rcu_dereference(sk->sk_filter);
 144        if (filter) {
 145                struct sock *save_sk = skb->sk;
 146                unsigned int pkt_len;
 147
 148                skb->sk = sk;
 149                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 150                skb->sk = save_sk;
 151                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 152        }
 153        rcu_read_unlock();
 154
 155        return err;
 156}
 157EXPORT_SYMBOL(sk_filter_trim_cap);
 158
 159BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
 160{
 161        return skb_get_poff(skb);
 162}
 163
 164BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 165{
 166        struct nlattr *nla;
 167
 168        if (skb_is_nonlinear(skb))
 169                return 0;
 170
 171        if (skb->len < sizeof(struct nlattr))
 172                return 0;
 173
 174        if (a > skb->len - sizeof(struct nlattr))
 175                return 0;
 176
 177        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 178        if (nla)
 179                return (void *) nla - (void *) skb->data;
 180
 181        return 0;
 182}
 183
 184BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 185{
 186        struct nlattr *nla;
 187
 188        if (skb_is_nonlinear(skb))
 189                return 0;
 190
 191        if (skb->len < sizeof(struct nlattr))
 192                return 0;
 193
 194        if (a > skb->len - sizeof(struct nlattr))
 195                return 0;
 196
 197        nla = (struct nlattr *) &skb->data[a];
 198        if (nla->nla_len > skb->len - a)
 199                return 0;
 200
 201        nla = nla_find_nested(nla, x);
 202        if (nla)
 203                return (void *) nla - (void *) skb->data;
 204
 205        return 0;
 206}
 207
 208BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
 209           data, int, headlen, int, offset)
 210{
 211        u8 tmp, *ptr;
 212        const int len = sizeof(tmp);
 213
 214        if (offset >= 0) {
 215                if (headlen - offset >= len)
 216                        return *(u8 *)(data + offset);
 217                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 218                        return tmp;
 219        } else {
 220                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 221                if (likely(ptr))
 222                        return *(u8 *)ptr;
 223        }
 224
 225        return -EFAULT;
 226}
 227
 228BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
 229           int, offset)
 230{
 231        return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
 232                                         offset);
 233}
 234
 235BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
 236           data, int, headlen, int, offset)
 237{
 238        u16 tmp, *ptr;
 239        const int len = sizeof(tmp);
 240
 241        if (offset >= 0) {
 242                if (headlen - offset >= len)
 243                        return get_unaligned_be16(data + offset);
 244                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 245                        return be16_to_cpu(tmp);
 246        } else {
 247                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 248                if (likely(ptr))
 249                        return get_unaligned_be16(ptr);
 250        }
 251
 252        return -EFAULT;
 253}
 254
 255BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
 256           int, offset)
 257{
 258        return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
 259                                          offset);
 260}
 261
 262BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
 263           data, int, headlen, int, offset)
 264{
 265        u32 tmp, *ptr;
 266        const int len = sizeof(tmp);
 267
 268        if (likely(offset >= 0)) {
 269                if (headlen - offset >= len)
 270                        return get_unaligned_be32(data + offset);
 271                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 272                        return be32_to_cpu(tmp);
 273        } else {
 274                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 275                if (likely(ptr))
 276                        return get_unaligned_be32(ptr);
 277        }
 278
 279        return -EFAULT;
 280}
 281
 282BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
 283           int, offset)
 284{
 285        return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
 286                                          offset);
 287}
 288
 289static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 290                              struct bpf_insn *insn_buf)
 291{
 292        struct bpf_insn *insn = insn_buf;
 293
 294        switch (skb_field) {
 295        case SKF_AD_MARK:
 296                BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
 297
 298                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 299                                      offsetof(struct sk_buff, mark));
 300                break;
 301
 302        case SKF_AD_PKTTYPE:
 303                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 304                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 305#ifdef __BIG_ENDIAN_BITFIELD
 306                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 307#endif
 308                break;
 309
 310        case SKF_AD_QUEUE:
 311                BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
 312
 313                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 314                                      offsetof(struct sk_buff, queue_mapping));
 315                break;
 316
 317        case SKF_AD_VLAN_TAG:
 318                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
 319
 320                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 321                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 322                                      offsetof(struct sk_buff, vlan_tci));
 323                break;
 324        case SKF_AD_VLAN_TAG_PRESENT:
 325                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
 326                if (PKT_VLAN_PRESENT_BIT)
 327                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
 328                if (PKT_VLAN_PRESENT_BIT < 7)
 329                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 330                break;
 331        }
 332
 333        return insn - insn_buf;
 334}
 335
 336static bool convert_bpf_extensions(struct sock_filter *fp,
 337                                   struct bpf_insn **insnp)
 338{
 339        struct bpf_insn *insn = *insnp;
 340        u32 cnt;
 341
 342        switch (fp->k) {
 343        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 344                BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
 345
 346                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 347                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 348                                      offsetof(struct sk_buff, protocol));
 349                /* A = ntohs(A) [emitting a nop or swap16] */
 350                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 351                break;
 352
 353        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 354                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 355                insn += cnt - 1;
 356                break;
 357
 358        case SKF_AD_OFF + SKF_AD_IFINDEX:
 359        case SKF_AD_OFF + SKF_AD_HATYPE:
 360                BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
 361                BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
 362
 363                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 364                                      BPF_REG_TMP, BPF_REG_CTX,
 365                                      offsetof(struct sk_buff, dev));
 366                /* if (tmp != 0) goto pc + 1 */
 367                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 368                *insn++ = BPF_EXIT_INSN();
 369                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 370                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 371                                            offsetof(struct net_device, ifindex));
 372                else
 373                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 374                                            offsetof(struct net_device, type));
 375                break;
 376
 377        case SKF_AD_OFF + SKF_AD_MARK:
 378                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 379                insn += cnt - 1;
 380                break;
 381
 382        case SKF_AD_OFF + SKF_AD_RXHASH:
 383                BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
 384
 385                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 386                                    offsetof(struct sk_buff, hash));
 387                break;
 388
 389        case SKF_AD_OFF + SKF_AD_QUEUE:
 390                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 391                insn += cnt - 1;
 392                break;
 393
 394        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 395                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 396                                         BPF_REG_A, BPF_REG_CTX, insn);
 397                insn += cnt - 1;
 398                break;
 399
 400        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 401                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 402                                         BPF_REG_A, BPF_REG_CTX, insn);
 403                insn += cnt - 1;
 404                break;
 405
 406        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 407                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
 408
 409                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 410                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 411                                      offsetof(struct sk_buff, vlan_proto));
 412                /* A = ntohs(A) [emitting a nop or swap16] */
 413                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 414                break;
 415
 416        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 417        case SKF_AD_OFF + SKF_AD_NLATTR:
 418        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 419        case SKF_AD_OFF + SKF_AD_CPU:
 420        case SKF_AD_OFF + SKF_AD_RANDOM:
 421                /* arg1 = CTX */
 422                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 423                /* arg2 = A */
 424                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 425                /* arg3 = X */
 426                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 427                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 428                switch (fp->k) {
 429                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 430                        *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
 431                        break;
 432                case SKF_AD_OFF + SKF_AD_NLATTR:
 433                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
 434                        break;
 435                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 436                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
 437                        break;
 438                case SKF_AD_OFF + SKF_AD_CPU:
 439                        *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
 440                        break;
 441                case SKF_AD_OFF + SKF_AD_RANDOM:
 442                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 443                        bpf_user_rnd_init_once();
 444                        break;
 445                }
 446                break;
 447
 448        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 449                /* A ^= X */
 450                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 451                break;
 452
 453        default:
 454                /* This is just a dummy call to avoid letting the compiler
 455                 * evict __bpf_call_base() as an optimization. Placed here
 456                 * where no-one bothers.
 457                 */
 458                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 459                return false;
 460        }
 461
 462        *insnp = insn;
 463        return true;
 464}
 465
 466static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
 467{
 468        const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
 469        int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
 470        bool endian = BPF_SIZE(fp->code) == BPF_H ||
 471                      BPF_SIZE(fp->code) == BPF_W;
 472        bool indirect = BPF_MODE(fp->code) == BPF_IND;
 473        const int ip_align = NET_IP_ALIGN;
 474        struct bpf_insn *insn = *insnp;
 475        int offset = fp->k;
 476
 477        if (!indirect &&
 478            ((unaligned_ok && offset >= 0) ||
 479             (!unaligned_ok && offset >= 0 &&
 480              offset + ip_align >= 0 &&
 481              offset + ip_align % size == 0))) {
 482                bool ldx_off_ok = offset <= S16_MAX;
 483
 484                *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
 485                if (offset)
 486                        *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
 487                *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
 488                                      size, 2 + endian + (!ldx_off_ok * 2));
 489                if (ldx_off_ok) {
 490                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 491                                              BPF_REG_D, offset);
 492                } else {
 493                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
 494                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
 495                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 496                                              BPF_REG_TMP, 0);
 497                }
 498                if (endian)
 499                        *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
 500                *insn++ = BPF_JMP_A(8);
 501        }
 502
 503        *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 504        *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
 505        *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
 506        if (!indirect) {
 507                *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
 508        } else {
 509                *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
 510                if (fp->k)
 511                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
 512        }
 513
 514        switch (BPF_SIZE(fp->code)) {
 515        case BPF_B:
 516                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
 517                break;
 518        case BPF_H:
 519                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
 520                break;
 521        case BPF_W:
 522                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
 523                break;
 524        default:
 525                return false;
 526        }
 527
 528        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
 529        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 530        *insn   = BPF_EXIT_INSN();
 531
 532        *insnp = insn;
 533        return true;
 534}
 535
 536/**
 537 *      bpf_convert_filter - convert filter program
 538 *      @prog: the user passed filter program
 539 *      @len: the length of the user passed filter program
 540 *      @new_prog: allocated 'struct bpf_prog' or NULL
 541 *      @new_len: pointer to store length of converted program
 542 *      @seen_ld_abs: bool whether we've seen ld_abs/ind
 543 *
 544 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 545 * style extended BPF (eBPF).
 546 * Conversion workflow:
 547 *
 548 * 1) First pass for calculating the new program length:
 549 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
 550 *
 551 * 2) 2nd pass to remap in two passes: 1st pass finds new
 552 *    jump offsets, 2nd pass remapping:
 553 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
 554 */
 555static int bpf_convert_filter(struct sock_filter *prog, int len,
 556                              struct bpf_prog *new_prog, int *new_len,
 557                              bool *seen_ld_abs)
 558{
 559        int new_flen = 0, pass = 0, target, i, stack_off;
 560        struct bpf_insn *new_insn, *first_insn = NULL;
 561        struct sock_filter *fp;
 562        int *addrs = NULL;
 563        u8 bpf_src;
 564
 565        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 566        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 567
 568        if (len <= 0 || len > BPF_MAXINSNS)
 569                return -EINVAL;
 570
 571        if (new_prog) {
 572                first_insn = new_prog->insnsi;
 573                addrs = kcalloc(len, sizeof(*addrs),
 574                                GFP_KERNEL | __GFP_NOWARN);
 575                if (!addrs)
 576                        return -ENOMEM;
 577        }
 578
 579do_pass:
 580        new_insn = first_insn;
 581        fp = prog;
 582
 583        /* Classic BPF related prologue emission. */
 584        if (new_prog) {
 585                /* Classic BPF expects A and X to be reset first. These need
 586                 * to be guaranteed to be the first two instructions.
 587                 */
 588                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 589                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 590
 591                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 592                 * In eBPF case it's done by the compiler, here we need to
 593                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 594                 */
 595                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 596                if (*seen_ld_abs) {
 597                        /* For packet access in classic BPF, cache skb->data
 598                         * in callee-saved BPF R8 and skb->len - skb->data_len
 599                         * (headlen) in BPF R9. Since classic BPF is read-only
 600                         * on CTX, we only need to cache it once.
 601                         */
 602                        *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
 603                                                  BPF_REG_D, BPF_REG_CTX,
 604                                                  offsetof(struct sk_buff, data));
 605                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
 606                                                  offsetof(struct sk_buff, len));
 607                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
 608                                                  offsetof(struct sk_buff, data_len));
 609                        *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
 610                }
 611        } else {
 612                new_insn += 3;
 613        }
 614
 615        for (i = 0; i < len; fp++, i++) {
 616                struct bpf_insn tmp_insns[32] = { };
 617                struct bpf_insn *insn = tmp_insns;
 618
 619                if (addrs)
 620                        addrs[i] = new_insn - first_insn;
 621
 622                switch (fp->code) {
 623                /* All arithmetic insns and skb loads map as-is. */
 624                case BPF_ALU | BPF_ADD | BPF_X:
 625                case BPF_ALU | BPF_ADD | BPF_K:
 626                case BPF_ALU | BPF_SUB | BPF_X:
 627                case BPF_ALU | BPF_SUB | BPF_K:
 628                case BPF_ALU | BPF_AND | BPF_X:
 629                case BPF_ALU | BPF_AND | BPF_K:
 630                case BPF_ALU | BPF_OR | BPF_X:
 631                case BPF_ALU | BPF_OR | BPF_K:
 632                case BPF_ALU | BPF_LSH | BPF_X:
 633                case BPF_ALU | BPF_LSH | BPF_K:
 634                case BPF_ALU | BPF_RSH | BPF_X:
 635                case BPF_ALU | BPF_RSH | BPF_K:
 636                case BPF_ALU | BPF_XOR | BPF_X:
 637                case BPF_ALU | BPF_XOR | BPF_K:
 638                case BPF_ALU | BPF_MUL | BPF_X:
 639                case BPF_ALU | BPF_MUL | BPF_K:
 640                case BPF_ALU | BPF_DIV | BPF_X:
 641                case BPF_ALU | BPF_DIV | BPF_K:
 642                case BPF_ALU | BPF_MOD | BPF_X:
 643                case BPF_ALU | BPF_MOD | BPF_K:
 644                case BPF_ALU | BPF_NEG:
 645                case BPF_LD | BPF_ABS | BPF_W:
 646                case BPF_LD | BPF_ABS | BPF_H:
 647                case BPF_LD | BPF_ABS | BPF_B:
 648                case BPF_LD | BPF_IND | BPF_W:
 649                case BPF_LD | BPF_IND | BPF_H:
 650                case BPF_LD | BPF_IND | BPF_B:
 651                        /* Check for overloaded BPF extension and
 652                         * directly convert it if found, otherwise
 653                         * just move on with mapping.
 654                         */
 655                        if (BPF_CLASS(fp->code) == BPF_LD &&
 656                            BPF_MODE(fp->code) == BPF_ABS &&
 657                            convert_bpf_extensions(fp, &insn))
 658                                break;
 659                        if (BPF_CLASS(fp->code) == BPF_LD &&
 660                            convert_bpf_ld_abs(fp, &insn)) {
 661                                *seen_ld_abs = true;
 662                                break;
 663                        }
 664
 665                        if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
 666                            fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
 667                                *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
 668                                /* Error with exception code on div/mod by 0.
 669                                 * For cBPF programs, this was always return 0.
 670                                 */
 671                                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
 672                                *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 673                                *insn++ = BPF_EXIT_INSN();
 674                        }
 675
 676                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 677                        break;
 678
 679                /* Jump transformation cannot use BPF block macros
 680                 * everywhere as offset calculation and target updates
 681                 * require a bit more work than the rest, i.e. jump
 682                 * opcodes map as-is, but offsets need adjustment.
 683                 */
 684
 685#define BPF_EMIT_JMP                                                    \
 686        do {                                                            \
 687                const s32 off_min = S16_MIN, off_max = S16_MAX;         \
 688                s32 off;                                                \
 689                                                                        \
 690                if (target >= len || target < 0)                        \
 691                        goto err;                                       \
 692                off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
 693                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 694                off -= insn - tmp_insns;                                \
 695                /* Reject anything not fitting into insn->off. */       \
 696                if (off < off_min || off > off_max)                     \
 697                        goto err;                                       \
 698                insn->off = off;                                        \
 699        } while (0)
 700
 701                case BPF_JMP | BPF_JA:
 702                        target = i + fp->k + 1;
 703                        insn->code = fp->code;
 704                        BPF_EMIT_JMP;
 705                        break;
 706
 707                case BPF_JMP | BPF_JEQ | BPF_K:
 708                case BPF_JMP | BPF_JEQ | BPF_X:
 709                case BPF_JMP | BPF_JSET | BPF_K:
 710                case BPF_JMP | BPF_JSET | BPF_X:
 711                case BPF_JMP | BPF_JGT | BPF_K:
 712                case BPF_JMP | BPF_JGT | BPF_X:
 713                case BPF_JMP | BPF_JGE | BPF_K:
 714                case BPF_JMP | BPF_JGE | BPF_X:
 715                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 716                                /* BPF immediates are signed, zero extend
 717                                 * immediate into tmp register and use it
 718                                 * in compare insn.
 719                                 */
 720                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 721
 722                                insn->dst_reg = BPF_REG_A;
 723                                insn->src_reg = BPF_REG_TMP;
 724                                bpf_src = BPF_X;
 725                        } else {
 726                                insn->dst_reg = BPF_REG_A;
 727                                insn->imm = fp->k;
 728                                bpf_src = BPF_SRC(fp->code);
 729                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 730                        }
 731
 732                        /* Common case where 'jump_false' is next insn. */
 733                        if (fp->jf == 0) {
 734                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 735                                target = i + fp->jt + 1;
 736                                BPF_EMIT_JMP;
 737                                break;
 738                        }
 739
 740                        /* Convert some jumps when 'jump_true' is next insn. */
 741                        if (fp->jt == 0) {
 742                                switch (BPF_OP(fp->code)) {
 743                                case BPF_JEQ:
 744                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 745                                        break;
 746                                case BPF_JGT:
 747                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 748                                        break;
 749                                case BPF_JGE:
 750                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 751                                        break;
 752                                default:
 753                                        goto jmp_rest;
 754                                }
 755
 756                                target = i + fp->jf + 1;
 757                                BPF_EMIT_JMP;
 758                                break;
 759                        }
 760jmp_rest:
 761                        /* Other jumps are mapped into two insns: Jxx and JA. */
 762                        target = i + fp->jt + 1;
 763                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 764                        BPF_EMIT_JMP;
 765                        insn++;
 766
 767                        insn->code = BPF_JMP | BPF_JA;
 768                        target = i + fp->jf + 1;
 769                        BPF_EMIT_JMP;
 770                        break;
 771
 772                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 773                case BPF_LDX | BPF_MSH | BPF_B: {
 774                        struct sock_filter tmp = {
 775                                .code   = BPF_LD | BPF_ABS | BPF_B,
 776                                .k      = fp->k,
 777                        };
 778
 779                        *seen_ld_abs = true;
 780
 781                        /* X = A */
 782                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 783                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 784                        convert_bpf_ld_abs(&tmp, &insn);
 785                        insn++;
 786                        /* A &= 0xf */
 787                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 788                        /* A <<= 2 */
 789                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 790                        /* tmp = X */
 791                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
 792                        /* X = A */
 793                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 794                        /* A = tmp */
 795                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 796                        break;
 797                }
 798                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 799                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 800                 */
 801                case BPF_RET | BPF_A:
 802                case BPF_RET | BPF_K:
 803                        if (BPF_RVAL(fp->code) == BPF_K)
 804                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 805                                                        0, fp->k);
 806                        *insn = BPF_EXIT_INSN();
 807                        break;
 808
 809                /* Store to stack. */
 810                case BPF_ST:
 811                case BPF_STX:
 812                        stack_off = fp->k * 4  + 4;
 813                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 814                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 815                                            -stack_off);
 816                        /* check_load_and_stores() verifies that classic BPF can
 817                         * load from stack only after write, so tracking
 818                         * stack_depth for ST|STX insns is enough
 819                         */
 820                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 821                                new_prog->aux->stack_depth = stack_off;
 822                        break;
 823
 824                /* Load from stack. */
 825                case BPF_LD | BPF_MEM:
 826                case BPF_LDX | BPF_MEM:
 827                        stack_off = fp->k * 4  + 4;
 828                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 829                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 830                                            -stack_off);
 831                        break;
 832
 833                /* A = K or X = K */
 834                case BPF_LD | BPF_IMM:
 835                case BPF_LDX | BPF_IMM:
 836                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 837                                              BPF_REG_A : BPF_REG_X, fp->k);
 838                        break;
 839
 840                /* X = A */
 841                case BPF_MISC | BPF_TAX:
 842                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 843                        break;
 844
 845                /* A = X */
 846                case BPF_MISC | BPF_TXA:
 847                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 848                        break;
 849
 850                /* A = skb->len or X = skb->len */
 851                case BPF_LD | BPF_W | BPF_LEN:
 852                case BPF_LDX | BPF_W | BPF_LEN:
 853                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 854                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 855                                            offsetof(struct sk_buff, len));
 856                        break;
 857
 858                /* Access seccomp_data fields. */
 859                case BPF_LDX | BPF_ABS | BPF_W:
 860                        /* A = *(u32 *) (ctx + K) */
 861                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 862                        break;
 863
 864                /* Unknown instruction. */
 865                default:
 866                        goto err;
 867                }
 868
 869                insn++;
 870                if (new_prog)
 871                        memcpy(new_insn, tmp_insns,
 872                               sizeof(*insn) * (insn - tmp_insns));
 873                new_insn += insn - tmp_insns;
 874        }
 875
 876        if (!new_prog) {
 877                /* Only calculating new length. */
 878                *new_len = new_insn - first_insn;
 879                if (*seen_ld_abs)
 880                        *new_len += 4; /* Prologue bits. */
 881                return 0;
 882        }
 883
 884        pass++;
 885        if (new_flen != new_insn - first_insn) {
 886                new_flen = new_insn - first_insn;
 887                if (pass > 2)
 888                        goto err;
 889                goto do_pass;
 890        }
 891
 892        kfree(addrs);
 893        BUG_ON(*new_len != new_flen);
 894        return 0;
 895err:
 896        kfree(addrs);
 897        return -EINVAL;
 898}
 899
 900/* Security:
 901 *
 902 * As we dont want to clear mem[] array for each packet going through
 903 * __bpf_prog_run(), we check that filter loaded by user never try to read
 904 * a cell if not previously written, and we check all branches to be sure
 905 * a malicious user doesn't try to abuse us.
 906 */
 907static int check_load_and_stores(const struct sock_filter *filter, int flen)
 908{
 909        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 910        int pc, ret = 0;
 911
 912        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 913
 914        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 915        if (!masks)
 916                return -ENOMEM;
 917
 918        memset(masks, 0xff, flen * sizeof(*masks));
 919
 920        for (pc = 0; pc < flen; pc++) {
 921                memvalid &= masks[pc];
 922
 923                switch (filter[pc].code) {
 924                case BPF_ST:
 925                case BPF_STX:
 926                        memvalid |= (1 << filter[pc].k);
 927                        break;
 928                case BPF_LD | BPF_MEM:
 929                case BPF_LDX | BPF_MEM:
 930                        if (!(memvalid & (1 << filter[pc].k))) {
 931                                ret = -EINVAL;
 932                                goto error;
 933                        }
 934                        break;
 935                case BPF_JMP | BPF_JA:
 936                        /* A jump must set masks on target */
 937                        masks[pc + 1 + filter[pc].k] &= memvalid;
 938                        memvalid = ~0;
 939                        break;
 940                case BPF_JMP | BPF_JEQ | BPF_K:
 941                case BPF_JMP | BPF_JEQ | BPF_X:
 942                case BPF_JMP | BPF_JGE | BPF_K:
 943                case BPF_JMP | BPF_JGE | BPF_X:
 944                case BPF_JMP | BPF_JGT | BPF_K:
 945                case BPF_JMP | BPF_JGT | BPF_X:
 946                case BPF_JMP | BPF_JSET | BPF_K:
 947                case BPF_JMP | BPF_JSET | BPF_X:
 948                        /* A jump must set masks on targets */
 949                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 950                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 951                        memvalid = ~0;
 952                        break;
 953                }
 954        }
 955error:
 956        kfree(masks);
 957        return ret;
 958}
 959
 960static bool chk_code_allowed(u16 code_to_probe)
 961{
 962        static const bool codes[] = {
 963                /* 32 bit ALU operations */
 964                [BPF_ALU | BPF_ADD | BPF_K] = true,
 965                [BPF_ALU | BPF_ADD | BPF_X] = true,
 966                [BPF_ALU | BPF_SUB | BPF_K] = true,
 967                [BPF_ALU | BPF_SUB | BPF_X] = true,
 968                [BPF_ALU | BPF_MUL | BPF_K] = true,
 969                [BPF_ALU | BPF_MUL | BPF_X] = true,
 970                [BPF_ALU | BPF_DIV | BPF_K] = true,
 971                [BPF_ALU | BPF_DIV | BPF_X] = true,
 972                [BPF_ALU | BPF_MOD | BPF_K] = true,
 973                [BPF_ALU | BPF_MOD | BPF_X] = true,
 974                [BPF_ALU | BPF_AND | BPF_K] = true,
 975                [BPF_ALU | BPF_AND | BPF_X] = true,
 976                [BPF_ALU | BPF_OR | BPF_K] = true,
 977                [BPF_ALU | BPF_OR | BPF_X] = true,
 978                [BPF_ALU | BPF_XOR | BPF_K] = true,
 979                [BPF_ALU | BPF_XOR | BPF_X] = true,
 980                [BPF_ALU | BPF_LSH | BPF_K] = true,
 981                [BPF_ALU | BPF_LSH | BPF_X] = true,
 982                [BPF_ALU | BPF_RSH | BPF_K] = true,
 983                [BPF_ALU | BPF_RSH | BPF_X] = true,
 984                [BPF_ALU | BPF_NEG] = true,
 985                /* Load instructions */
 986                [BPF_LD | BPF_W | BPF_ABS] = true,
 987                [BPF_LD | BPF_H | BPF_ABS] = true,
 988                [BPF_LD | BPF_B | BPF_ABS] = true,
 989                [BPF_LD | BPF_W | BPF_LEN] = true,
 990                [BPF_LD | BPF_W | BPF_IND] = true,
 991                [BPF_LD | BPF_H | BPF_IND] = true,
 992                [BPF_LD | BPF_B | BPF_IND] = true,
 993                [BPF_LD | BPF_IMM] = true,
 994                [BPF_LD | BPF_MEM] = true,
 995                [BPF_LDX | BPF_W | BPF_LEN] = true,
 996                [BPF_LDX | BPF_B | BPF_MSH] = true,
 997                [BPF_LDX | BPF_IMM] = true,
 998                [BPF_LDX | BPF_MEM] = true,
 999                /* Store instructions */
1000                [BPF_ST] = true,
1001                [BPF_STX] = true,
1002                /* Misc instructions */
1003                [BPF_MISC | BPF_TAX] = true,
1004                [BPF_MISC | BPF_TXA] = true,
1005                /* Return instructions */
1006                [BPF_RET | BPF_K] = true,
1007                [BPF_RET | BPF_A] = true,
1008                /* Jump instructions */
1009                [BPF_JMP | BPF_JA] = true,
1010                [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011                [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012                [BPF_JMP | BPF_JGE | BPF_K] = true,
1013                [BPF_JMP | BPF_JGE | BPF_X] = true,
1014                [BPF_JMP | BPF_JGT | BPF_K] = true,
1015                [BPF_JMP | BPF_JGT | BPF_X] = true,
1016                [BPF_JMP | BPF_JSET | BPF_K] = true,
1017                [BPF_JMP | BPF_JSET | BPF_X] = true,
1018        };
1019
1020        if (code_to_probe >= ARRAY_SIZE(codes))
1021                return false;
1022
1023        return codes[code_to_probe];
1024}
1025
1026static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027                                unsigned int flen)
1028{
1029        if (filter == NULL)
1030                return false;
1031        if (flen == 0 || flen > BPF_MAXINSNS)
1032                return false;
1033
1034        return true;
1035}
1036
1037/**
1038 *      bpf_check_classic - verify socket filter code
1039 *      @filter: filter to verify
1040 *      @flen: length of filter
1041 *
1042 * Check the user's filter code. If we let some ugly
1043 * filter code slip through kaboom! The filter must contain
1044 * no references or jumps that are out of range, no illegal
1045 * instructions, and must end with a RET instruction.
1046 *
1047 * All jumps are forward as they are not signed.
1048 *
1049 * Returns 0 if the rule set is legal or -EINVAL if not.
1050 */
1051static int bpf_check_classic(const struct sock_filter *filter,
1052                             unsigned int flen)
1053{
1054        bool anc_found;
1055        int pc;
1056
1057        /* Check the filter code now */
1058        for (pc = 0; pc < flen; pc++) {
1059                const struct sock_filter *ftest = &filter[pc];
1060
1061                /* May we actually operate on this code? */
1062                if (!chk_code_allowed(ftest->code))
1063                        return -EINVAL;
1064
1065                /* Some instructions need special checks */
1066                switch (ftest->code) {
1067                case BPF_ALU | BPF_DIV | BPF_K:
1068                case BPF_ALU | BPF_MOD | BPF_K:
1069                        /* Check for division by zero */
1070                        if (ftest->k == 0)
1071                                return -EINVAL;
1072                        break;
1073                case BPF_ALU | BPF_LSH | BPF_K:
1074                case BPF_ALU | BPF_RSH | BPF_K:
1075                        if (ftest->k >= 32)
1076                                return -EINVAL;
1077                        break;
1078                case BPF_LD | BPF_MEM:
1079                case BPF_LDX | BPF_MEM:
1080                case BPF_ST:
1081                case BPF_STX:
1082                        /* Check for invalid memory addresses */
1083                        if (ftest->k >= BPF_MEMWORDS)
1084                                return -EINVAL;
1085                        break;
1086                case BPF_JMP | BPF_JA:
1087                        /* Note, the large ftest->k might cause loops.
1088                         * Compare this with conditional jumps below,
1089                         * where offsets are limited. --ANK (981016)
1090                         */
1091                        if (ftest->k >= (unsigned int)(flen - pc - 1))
1092                                return -EINVAL;
1093                        break;
1094                case BPF_JMP | BPF_JEQ | BPF_K:
1095                case BPF_JMP | BPF_JEQ | BPF_X:
1096                case BPF_JMP | BPF_JGE | BPF_K:
1097                case BPF_JMP | BPF_JGE | BPF_X:
1098                case BPF_JMP | BPF_JGT | BPF_K:
1099                case BPF_JMP | BPF_JGT | BPF_X:
1100                case BPF_JMP | BPF_JSET | BPF_K:
1101                case BPF_JMP | BPF_JSET | BPF_X:
1102                        /* Both conditionals must be safe */
1103                        if (pc + ftest->jt + 1 >= flen ||
1104                            pc + ftest->jf + 1 >= flen)
1105                                return -EINVAL;
1106                        break;
1107                case BPF_LD | BPF_W | BPF_ABS:
1108                case BPF_LD | BPF_H | BPF_ABS:
1109                case BPF_LD | BPF_B | BPF_ABS:
1110                        anc_found = false;
1111                        if (bpf_anc_helper(ftest) & BPF_ANC)
1112                                anc_found = true;
1113                        /* Ancillary operation unknown or unsupported */
1114                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115                                return -EINVAL;
1116                }
1117        }
1118
1119        /* Last instruction must be a RET code */
1120        switch (filter[flen - 1].code) {
1121        case BPF_RET | BPF_K:
1122        case BPF_RET | BPF_A:
1123                return check_load_and_stores(filter, flen);
1124        }
1125
1126        return -EINVAL;
1127}
1128
1129static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130                                      const struct sock_fprog *fprog)
1131{
1132        unsigned int fsize = bpf_classic_proglen(fprog);
1133        struct sock_fprog_kern *fkprog;
1134
1135        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136        if (!fp->orig_prog)
1137                return -ENOMEM;
1138
1139        fkprog = fp->orig_prog;
1140        fkprog->len = fprog->len;
1141
1142        fkprog->filter = kmemdup(fp->insns, fsize,
1143                                 GFP_KERNEL | __GFP_NOWARN);
1144        if (!fkprog->filter) {
1145                kfree(fp->orig_prog);
1146                return -ENOMEM;
1147        }
1148
1149        return 0;
1150}
1151
1152static void bpf_release_orig_filter(struct bpf_prog *fp)
1153{
1154        struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156        if (fprog) {
1157                kfree(fprog->filter);
1158                kfree(fprog);
1159        }
1160}
1161
1162static void __bpf_prog_release(struct bpf_prog *prog)
1163{
1164        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165                bpf_prog_put(prog);
1166        } else {
1167                bpf_release_orig_filter(prog);
1168                bpf_prog_free(prog);
1169        }
1170}
1171
1172static void __sk_filter_release(struct sk_filter *fp)
1173{
1174        __bpf_prog_release(fp->prog);
1175        kfree(fp);
1176}
1177
1178/**
1179 *      sk_filter_release_rcu - Release a socket filter by rcu_head
1180 *      @rcu: rcu_head that contains the sk_filter to free
1181 */
1182static void sk_filter_release_rcu(struct rcu_head *rcu)
1183{
1184        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186        __sk_filter_release(fp);
1187}
1188
1189/**
1190 *      sk_filter_release - release a socket filter
1191 *      @fp: filter to remove
1192 *
1193 *      Remove a filter from a socket and release its resources.
1194 */
1195static void sk_filter_release(struct sk_filter *fp)
1196{
1197        if (refcount_dec_and_test(&fp->refcnt))
1198                call_rcu(&fp->rcu, sk_filter_release_rcu);
1199}
1200
1201void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202{
1203        u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205        atomic_sub(filter_size, &sk->sk_omem_alloc);
1206        sk_filter_release(fp);
1207}
1208
1209/* try to charge the socket memory if there is space available
1210 * return true on success
1211 */
1212static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213{
1214        u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216        /* same check as in sock_kmalloc() */
1217        if (filter_size <= sysctl_optmem_max &&
1218            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219                atomic_add(filter_size, &sk->sk_omem_alloc);
1220                return true;
1221        }
1222        return false;
1223}
1224
1225bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226{
1227        if (!refcount_inc_not_zero(&fp->refcnt))
1228                return false;
1229
1230        if (!__sk_filter_charge(sk, fp)) {
1231                sk_filter_release(fp);
1232                return false;
1233        }
1234        return true;
1235}
1236
1237static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238{
1239        struct sock_filter *old_prog;
1240        struct bpf_prog *old_fp;
1241        int err, new_len, old_len = fp->len;
1242        bool seen_ld_abs = false;
1243
1244        /* We are free to overwrite insns et al right here as it
1245         * won't be used at this point in time anymore internally
1246         * after the migration to the internal BPF instruction
1247         * representation.
1248         */
1249        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                     sizeof(struct bpf_insn));
1251
1252        /* Conversion cannot happen on overlapping memory areas,
1253         * so we need to keep the user BPF around until the 2nd
1254         * pass. At this time, the user BPF is stored in fp->insns.
1255         */
1256        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                           GFP_KERNEL | __GFP_NOWARN);
1258        if (!old_prog) {
1259                err = -ENOMEM;
1260                goto out_err;
1261        }
1262
1263        /* 1st pass: calculate the new program length. */
1264        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                 &seen_ld_abs);
1266        if (err)
1267                goto out_err_free;
1268
1269        /* Expand fp for appending the new filter representation. */
1270        old_fp = fp;
1271        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272        if (!fp) {
1273                /* The old_fp is still around in case we couldn't
1274                 * allocate new memory, so uncharge on that one.
1275                 */
1276                fp = old_fp;
1277                err = -ENOMEM;
1278                goto out_err_free;
1279        }
1280
1281        fp->len = new_len;
1282
1283        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284        err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                 &seen_ld_abs);
1286        if (err)
1287                /* 2nd bpf_convert_filter() can fail only if it fails
1288                 * to allocate memory, remapping must succeed. Note,
1289                 * that at this time old_fp has already been released
1290                 * by krealloc().
1291                 */
1292                goto out_err_free;
1293
1294        fp = bpf_prog_select_runtime(fp, &err);
1295        if (err)
1296                goto out_err_free;
1297
1298        kfree(old_prog);
1299        return fp;
1300
1301out_err_free:
1302        kfree(old_prog);
1303out_err:
1304        __bpf_prog_release(fp);
1305        return ERR_PTR(err);
1306}
1307
1308static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                           bpf_aux_classic_check_t trans)
1310{
1311        int err;
1312
1313        fp->bpf_func = NULL;
1314        fp->jited = 0;
1315
1316        err = bpf_check_classic(fp->insns, fp->len);
1317        if (err) {
1318                __bpf_prog_release(fp);
1319                return ERR_PTR(err);
1320        }
1321
1322        /* There might be additional checks and transformations
1323         * needed on classic filters, f.e. in case of seccomp.
1324         */
1325        if (trans) {
1326                err = trans(fp->insns, fp->len);
1327                if (err) {
1328                        __bpf_prog_release(fp);
1329                        return ERR_PTR(err);
1330                }
1331        }
1332
1333        /* Probe if we can JIT compile the filter and if so, do
1334         * the compilation of the filter.
1335         */
1336        bpf_jit_compile(fp);
1337
1338        /* JIT compiler couldn't process this filter, so do the
1339         * internal BPF translation for the optimized interpreter.
1340         */
1341        if (!fp->jited)
1342                fp = bpf_migrate_filter(fp);
1343
1344        return fp;
1345}
1346
1347/**
1348 *      bpf_prog_create - create an unattached filter
1349 *      @pfp: the unattached filter that is created
1350 *      @fprog: the filter program
1351 *
1352 * Create a filter independent of any socket. We first run some
1353 * sanity checks on it to make sure it does not explode on us later.
1354 * If an error occurs or there is insufficient memory for the filter
1355 * a negative errno code is returned. On success the return is zero.
1356 */
1357int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358{
1359        unsigned int fsize = bpf_classic_proglen(fprog);
1360        struct bpf_prog *fp;
1361
1362        /* Make sure new filter is there and in the right amounts. */
1363        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                return -EINVAL;
1365
1366        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367        if (!fp)
1368                return -ENOMEM;
1369
1370        memcpy(fp->insns, fprog->filter, fsize);
1371
1372        fp->len = fprog->len;
1373        /* Since unattached filters are not copied back to user
1374         * space through sk_get_filter(), we do not need to hold
1375         * a copy here, and can spare us the work.
1376         */
1377        fp->orig_prog = NULL;
1378
1379        /* bpf_prepare_filter() already takes care of freeing
1380         * memory in case something goes wrong.
1381         */
1382        fp = bpf_prepare_filter(fp, NULL);
1383        if (IS_ERR(fp))
1384                return PTR_ERR(fp);
1385
1386        *pfp = fp;
1387        return 0;
1388}
1389EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391/**
1392 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393 *      @pfp: the unattached filter that is created
1394 *      @fprog: the filter program
1395 *      @trans: post-classic verifier transformation handler
1396 *      @save_orig: save classic BPF program
1397 *
1398 * This function effectively does the same as bpf_prog_create(), only
1399 * that it builds up its insns buffer from user space provided buffer.
1400 * It also allows for passing a bpf_aux_classic_check_t handler.
1401 */
1402int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                              bpf_aux_classic_check_t trans, bool save_orig)
1404{
1405        unsigned int fsize = bpf_classic_proglen(fprog);
1406        struct bpf_prog *fp;
1407        int err;
1408
1409        /* Make sure new filter is there and in the right amounts. */
1410        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                return -EINVAL;
1412
1413        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414        if (!fp)
1415                return -ENOMEM;
1416
1417        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                __bpf_prog_free(fp);
1419                return -EFAULT;
1420        }
1421
1422        fp->len = fprog->len;
1423        fp->orig_prog = NULL;
1424
1425        if (save_orig) {
1426                err = bpf_prog_store_orig_filter(fp, fprog);
1427                if (err) {
1428                        __bpf_prog_free(fp);
1429                        return -ENOMEM;
1430                }
1431        }
1432
1433        /* bpf_prepare_filter() already takes care of freeing
1434         * memory in case something goes wrong.
1435         */
1436        fp = bpf_prepare_filter(fp, trans);
1437        if (IS_ERR(fp))
1438                return PTR_ERR(fp);
1439
1440        *pfp = fp;
1441        return 0;
1442}
1443EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445void bpf_prog_destroy(struct bpf_prog *fp)
1446{
1447        __bpf_prog_release(fp);
1448}
1449EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452{
1453        struct sk_filter *fp, *old_fp;
1454
1455        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456        if (!fp)
1457                return -ENOMEM;
1458
1459        fp->prog = prog;
1460
1461        if (!__sk_filter_charge(sk, fp)) {
1462                kfree(fp);
1463                return -ENOMEM;
1464        }
1465        refcount_set(&fp->refcnt, 1);
1466
1467        old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                           lockdep_sock_is_held(sk));
1469        rcu_assign_pointer(sk->sk_filter, fp);
1470
1471        if (old_fp)
1472                sk_filter_uncharge(sk, old_fp);
1473
1474        return 0;
1475}
1476
1477static
1478struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479{
1480        unsigned int fsize = bpf_classic_proglen(fprog);
1481        struct bpf_prog *prog;
1482        int err;
1483
1484        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                return ERR_PTR(-EPERM);
1486
1487        /* Make sure new filter is there and in the right amounts. */
1488        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                return ERR_PTR(-EINVAL);
1490
1491        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492        if (!prog)
1493                return ERR_PTR(-ENOMEM);
1494
1495        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                __bpf_prog_free(prog);
1497                return ERR_PTR(-EFAULT);
1498        }
1499
1500        prog->len = fprog->len;
1501
1502        err = bpf_prog_store_orig_filter(prog, fprog);
1503        if (err) {
1504                __bpf_prog_free(prog);
1505                return ERR_PTR(-ENOMEM);
1506        }
1507
1508        /* bpf_prepare_filter() already takes care of freeing
1509         * memory in case something goes wrong.
1510         */
1511        return bpf_prepare_filter(prog, NULL);
1512}
1513
1514/**
1515 *      sk_attach_filter - attach a socket filter
1516 *      @fprog: the filter program
1517 *      @sk: the socket to use
1518 *
1519 * Attach the user's filter code. We first run some sanity checks on
1520 * it to make sure it does not explode on us later. If an error
1521 * occurs or there is insufficient memory for the filter a negative
1522 * errno code is returned. On success the return is zero.
1523 */
1524int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525{
1526        struct bpf_prog *prog = __get_filter(fprog, sk);
1527        int err;
1528
1529        if (IS_ERR(prog))
1530                return PTR_ERR(prog);
1531
1532        err = __sk_attach_prog(prog, sk);
1533        if (err < 0) {
1534                __bpf_prog_release(prog);
1535                return err;
1536        }
1537
1538        return 0;
1539}
1540EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543{
1544        struct bpf_prog *prog = __get_filter(fprog, sk);
1545        int err;
1546
1547        if (IS_ERR(prog))
1548                return PTR_ERR(prog);
1549
1550        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                err = -ENOMEM;
1552        else
1553                err = reuseport_attach_prog(sk, prog);
1554
1555        if (err)
1556                __bpf_prog_release(prog);
1557
1558        return err;
1559}
1560
1561static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562{
1563        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                return ERR_PTR(-EPERM);
1565
1566        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567}
1568
1569int sk_attach_bpf(u32 ufd, struct sock *sk)
1570{
1571        struct bpf_prog *prog = __get_bpf(ufd, sk);
1572        int err;
1573
1574        if (IS_ERR(prog))
1575                return PTR_ERR(prog);
1576
1577        err = __sk_attach_prog(prog, sk);
1578        if (err < 0) {
1579                bpf_prog_put(prog);
1580                return err;
1581        }
1582
1583        return 0;
1584}
1585
1586int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587{
1588        struct bpf_prog *prog;
1589        int err;
1590
1591        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                return -EPERM;
1593
1594        prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595        if (PTR_ERR(prog) == -EINVAL)
1596                prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597        if (IS_ERR(prog))
1598                return PTR_ERR(prog);
1599
1600        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                 * bpf prog (e.g. sockmap).  It depends on the
1603                 * limitation imposed by bpf_prog_load().
1604                 * Hence, sysctl_optmem_max is not checked.
1605                 */
1606                if ((sk->sk_type != SOCK_STREAM &&
1607                     sk->sk_type != SOCK_DGRAM) ||
1608                    (sk->sk_protocol != IPPROTO_UDP &&
1609                     sk->sk_protocol != IPPROTO_TCP) ||
1610                    (sk->sk_family != AF_INET &&
1611                     sk->sk_family != AF_INET6)) {
1612                        err = -ENOTSUPP;
1613                        goto err_prog_put;
1614                }
1615        } else {
1616                /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                        err = -ENOMEM;
1619                        goto err_prog_put;
1620                }
1621        }
1622
1623        err = reuseport_attach_prog(sk, prog);
1624err_prog_put:
1625        if (err)
1626                bpf_prog_put(prog);
1627
1628        return err;
1629}
1630
1631void sk_reuseport_prog_free(struct bpf_prog *prog)
1632{
1633        if (!prog)
1634                return;
1635
1636        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                bpf_prog_put(prog);
1638        else
1639                bpf_prog_destroy(prog);
1640}
1641
1642struct bpf_scratchpad {
1643        union {
1644                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                u8     buff[MAX_BPF_STACK];
1646        };
1647};
1648
1649static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                          unsigned int write_len)
1653{
1654        return skb_ensure_writable(skb, write_len);
1655}
1656
1657static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                        unsigned int write_len)
1659{
1660        int err = __bpf_try_make_writable(skb, write_len);
1661
1662        bpf_compute_data_pointers(skb);
1663        return err;
1664}
1665
1666static int bpf_try_make_head_writable(struct sk_buff *skb)
1667{
1668        return bpf_try_make_writable(skb, skb_headlen(skb));
1669}
1670
1671static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672{
1673        if (skb_at_tc_ingress(skb))
1674                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675}
1676
1677static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678{
1679        if (skb_at_tc_ingress(skb))
1680                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681}
1682
1683BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684           const void *, from, u32, len, u64, flags)
1685{
1686        void *ptr;
1687
1688        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                return -EINVAL;
1690        if (unlikely(offset > 0xffff))
1691                return -EFAULT;
1692        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                return -EFAULT;
1694
1695        ptr = skb->data + offset;
1696        if (flags & BPF_F_RECOMPUTE_CSUM)
1697                __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699        memcpy(ptr, from, len);
1700
1701        if (flags & BPF_F_RECOMPUTE_CSUM)
1702                __skb_postpush_rcsum(skb, ptr, len, offset);
1703        if (flags & BPF_F_INVALIDATE_HASH)
1704                skb_clear_hash(skb);
1705
1706        return 0;
1707}
1708
1709static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710        .func           = bpf_skb_store_bytes,
1711        .gpl_only       = false,
1712        .ret_type       = RET_INTEGER,
1713        .arg1_type      = ARG_PTR_TO_CTX,
1714        .arg2_type      = ARG_ANYTHING,
1715        .arg3_type      = ARG_PTR_TO_MEM,
1716        .arg4_type      = ARG_CONST_SIZE,
1717        .arg5_type      = ARG_ANYTHING,
1718};
1719
1720BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721           void *, to, u32, len)
1722{
1723        void *ptr;
1724
1725        if (unlikely(offset > 0xffff))
1726                goto err_clear;
1727
1728        ptr = skb_header_pointer(skb, offset, len, to);
1729        if (unlikely(!ptr))
1730                goto err_clear;
1731        if (ptr != to)
1732                memcpy(to, ptr, len);
1733
1734        return 0;
1735err_clear:
1736        memset(to, 0, len);
1737        return -EFAULT;
1738}
1739
1740static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741        .func           = bpf_skb_load_bytes,
1742        .gpl_only       = false,
1743        .ret_type       = RET_INTEGER,
1744        .arg1_type      = ARG_PTR_TO_CTX,
1745        .arg2_type      = ARG_ANYTHING,
1746        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747        .arg4_type      = ARG_CONST_SIZE,
1748};
1749
1750BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751           const struct bpf_flow_dissector *, ctx, u32, offset,
1752           void *, to, u32, len)
1753{
1754        void *ptr;
1755
1756        if (unlikely(offset > 0xffff))
1757                goto err_clear;
1758
1759        if (unlikely(!ctx->skb))
1760                goto err_clear;
1761
1762        ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763        if (unlikely(!ptr))
1764                goto err_clear;
1765        if (ptr != to)
1766                memcpy(to, ptr, len);
1767
1768        return 0;
1769err_clear:
1770        memset(to, 0, len);
1771        return -EFAULT;
1772}
1773
1774static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775        .func           = bpf_flow_dissector_load_bytes,
1776        .gpl_only       = false,
1777        .ret_type       = RET_INTEGER,
1778        .arg1_type      = ARG_PTR_TO_CTX,
1779        .arg2_type      = ARG_ANYTHING,
1780        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781        .arg4_type      = ARG_CONST_SIZE,
1782};
1783
1784BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785           u32, offset, void *, to, u32, len, u32, start_header)
1786{
1787        u8 *end = skb_tail_pointer(skb);
1788        u8 *start, *ptr;
1789
1790        if (unlikely(offset > 0xffff))
1791                goto err_clear;
1792
1793        switch (start_header) {
1794        case BPF_HDR_START_MAC:
1795                if (unlikely(!skb_mac_header_was_set(skb)))
1796                        goto err_clear;
1797                start = skb_mac_header(skb);
1798                break;
1799        case BPF_HDR_START_NET:
1800                start = skb_network_header(skb);
1801                break;
1802        default:
1803                goto err_clear;
1804        }
1805
1806        ptr = start + offset;
1807
1808        if (likely(ptr + len <= end)) {
1809                memcpy(to, ptr, len);
1810                return 0;
1811        }
1812
1813err_clear:
1814        memset(to, 0, len);
1815        return -EFAULT;
1816}
1817
1818static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819        .func           = bpf_skb_load_bytes_relative,
1820        .gpl_only       = false,
1821        .ret_type       = RET_INTEGER,
1822        .arg1_type      = ARG_PTR_TO_CTX,
1823        .arg2_type      = ARG_ANYTHING,
1824        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825        .arg4_type      = ARG_CONST_SIZE,
1826        .arg5_type      = ARG_ANYTHING,
1827};
1828
1829BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830{
1831        /* Idea is the following: should the needed direct read/write
1832         * test fail during runtime, we can pull in more data and redo
1833         * again, since implicitly, we invalidate previous checks here.
1834         *
1835         * Or, since we know how much we need to make read/writeable,
1836         * this can be done once at the program beginning for direct
1837         * access case. By this we overcome limitations of only current
1838         * headroom being accessible.
1839         */
1840        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841}
1842
1843static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844        .func           = bpf_skb_pull_data,
1845        .gpl_only       = false,
1846        .ret_type       = RET_INTEGER,
1847        .arg1_type      = ARG_PTR_TO_CTX,
1848        .arg2_type      = ARG_ANYTHING,
1849};
1850
1851BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852{
1853        return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854}
1855
1856static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857        .func           = bpf_sk_fullsock,
1858        .gpl_only       = false,
1859        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861};
1862
1863static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                           unsigned int write_len)
1865{
1866        int err = __bpf_try_make_writable(skb, write_len);
1867
1868        bpf_compute_data_end_sk_skb(skb);
1869        return err;
1870}
1871
1872BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873{
1874        /* Idea is the following: should the needed direct read/write
1875         * test fail during runtime, we can pull in more data and redo
1876         * again, since implicitly, we invalidate previous checks here.
1877         *
1878         * Or, since we know how much we need to make read/writeable,
1879         * this can be done once at the program beginning for direct
1880         * access case. By this we overcome limitations of only current
1881         * headroom being accessible.
1882         */
1883        return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884}
1885
1886static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887        .func           = sk_skb_pull_data,
1888        .gpl_only       = false,
1889        .ret_type       = RET_INTEGER,
1890        .arg1_type      = ARG_PTR_TO_CTX,
1891        .arg2_type      = ARG_ANYTHING,
1892};
1893
1894BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895           u64, from, u64, to, u64, flags)
1896{
1897        __sum16 *ptr;
1898
1899        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900                return -EINVAL;
1901        if (unlikely(offset > 0xffff || offset & 1))
1902                return -EFAULT;
1903        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904                return -EFAULT;
1905
1906        ptr = (__sum16 *)(skb->data + offset);
1907        switch (flags & BPF_F_HDR_FIELD_MASK) {
1908        case 0:
1909                if (unlikely(from != 0))
1910                        return -EINVAL;
1911
1912                csum_replace_by_diff(ptr, to);
1913                break;
1914        case 2:
1915                csum_replace2(ptr, from, to);
1916                break;
1917        case 4:
1918                csum_replace4(ptr, from, to);
1919                break;
1920        default:
1921                return -EINVAL;
1922        }
1923
1924        return 0;
1925}
1926
1927static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928        .func           = bpf_l3_csum_replace,
1929        .gpl_only       = false,
1930        .ret_type       = RET_INTEGER,
1931        .arg1_type      = ARG_PTR_TO_CTX,
1932        .arg2_type      = ARG_ANYTHING,
1933        .arg3_type      = ARG_ANYTHING,
1934        .arg4_type      = ARG_ANYTHING,
1935        .arg5_type      = ARG_ANYTHING,
1936};
1937
1938BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939           u64, from, u64, to, u64, flags)
1940{
1941        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944        __sum16 *ptr;
1945
1946        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948                return -EINVAL;
1949        if (unlikely(offset > 0xffff || offset & 1))
1950                return -EFAULT;
1951        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952                return -EFAULT;
1953
1954        ptr = (__sum16 *)(skb->data + offset);
1955        if (is_mmzero && !do_mforce && !*ptr)
1956                return 0;
1957
1958        switch (flags & BPF_F_HDR_FIELD_MASK) {
1959        case 0:
1960                if (unlikely(from != 0))
1961                        return -EINVAL;
1962
1963                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964                break;
1965        case 2:
1966                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967                break;
1968        case 4:
1969                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970                break;
1971        default:
1972                return -EINVAL;
1973        }
1974
1975        if (is_mmzero && !*ptr)
1976                *ptr = CSUM_MANGLED_0;
1977        return 0;
1978}
1979
1980static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981        .func           = bpf_l4_csum_replace,
1982        .gpl_only       = false,
1983        .ret_type       = RET_INTEGER,
1984        .arg1_type      = ARG_PTR_TO_CTX,
1985        .arg2_type      = ARG_ANYTHING,
1986        .arg3_type      = ARG_ANYTHING,
1987        .arg4_type      = ARG_ANYTHING,
1988        .arg5_type      = ARG_ANYTHING,
1989};
1990
1991BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992           __be32 *, to, u32, to_size, __wsum, seed)
1993{
1994        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995        u32 diff_size = from_size + to_size;
1996        int i, j = 0;
1997
1998        /* This is quite flexible, some examples:
1999         *
2000         * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001         * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003         *
2004         * Even for diffing, from_size and to_size don't need to be equal.
2005         */
2006        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007                     diff_size > sizeof(sp->diff)))
2008                return -EINVAL;
2009
2010        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011                sp->diff[j] = ~from[i];
2012        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013                sp->diff[j] = to[i];
2014
2015        return csum_partial(sp->diff, diff_size, seed);
2016}
2017
2018static const struct bpf_func_proto bpf_csum_diff_proto = {
2019        .func           = bpf_csum_diff,
2020        .gpl_only       = false,
2021        .pkt_access     = true,
2022        .ret_type       = RET_INTEGER,
2023        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2024        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2025        .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2026        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2027        .arg5_type      = ARG_ANYTHING,
2028};
2029
2030BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031{
2032        /* The interface is to be used in combination with bpf_csum_diff()
2033         * for direct packet writes. csum rotation for alignment as well
2034         * as emulating csum_sub() can be done from the eBPF program.
2035         */
2036        if (skb->ip_summed == CHECKSUM_COMPLETE)
2037                return (skb->csum = csum_add(skb->csum, csum));
2038
2039        return -ENOTSUPP;
2040}
2041
2042static const struct bpf_func_proto bpf_csum_update_proto = {
2043        .func           = bpf_csum_update,
2044        .gpl_only       = false,
2045        .ret_type       = RET_INTEGER,
2046        .arg1_type      = ARG_PTR_TO_CTX,
2047        .arg2_type      = ARG_ANYTHING,
2048};
2049
2050BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051{
2052        /* The interface is to be used in combination with bpf_skb_adjust_room()
2053         * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054         * is passed as flags, for example.
2055         */
2056        switch (level) {
2057        case BPF_CSUM_LEVEL_INC:
2058                __skb_incr_checksum_unnecessary(skb);
2059                break;
2060        case BPF_CSUM_LEVEL_DEC:
2061                __skb_decr_checksum_unnecessary(skb);
2062                break;
2063        case BPF_CSUM_LEVEL_RESET:
2064                __skb_reset_checksum_unnecessary(skb);
2065                break;
2066        case BPF_CSUM_LEVEL_QUERY:
2067                return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068                       skb->csum_level : -EACCES;
2069        default:
2070                return -EINVAL;
2071        }
2072
2073        return 0;
2074}
2075
2076static const struct bpf_func_proto bpf_csum_level_proto = {
2077        .func           = bpf_csum_level,
2078        .gpl_only       = false,
2079        .ret_type       = RET_INTEGER,
2080        .arg1_type      = ARG_PTR_TO_CTX,
2081        .arg2_type      = ARG_ANYTHING,
2082};
2083
2084static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085{
2086        return dev_forward_skb(dev, skb);
2087}
2088
2089static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090                                      struct sk_buff *skb)
2091{
2092        int ret = ____dev_forward_skb(dev, skb);
2093
2094        if (likely(!ret)) {
2095                skb->dev = dev;
2096                ret = netif_rx(skb);
2097        }
2098
2099        return ret;
2100}
2101
2102static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103{
2104        int ret;
2105
2106        if (dev_xmit_recursion()) {
2107                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108                kfree_skb(skb);
2109                return -ENETDOWN;
2110        }
2111
2112        skb->dev = dev;
2113        skb->tstamp = 0;
2114
2115        dev_xmit_recursion_inc();
2116        ret = dev_queue_xmit(skb);
2117        dev_xmit_recursion_dec();
2118
2119        return ret;
2120}
2121
2122static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123                                 u32 flags)
2124{
2125        unsigned int mlen = skb_network_offset(skb);
2126
2127        if (mlen) {
2128                __skb_pull(skb, mlen);
2129
2130                /* At ingress, the mac header has already been pulled once.
2131                 * At egress, skb_pospull_rcsum has to be done in case that
2132                 * the skb is originated from ingress (i.e. a forwarded skb)
2133                 * to ensure that rcsum starts at net header.
2134                 */
2135                if (!skb_at_tc_ingress(skb))
2136                        skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137        }
2138        skb_pop_mac_header(skb);
2139        skb_reset_mac_len(skb);
2140        return flags & BPF_F_INGRESS ?
2141               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142}
2143
2144static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145                                 u32 flags)
2146{
2147        /* Verify that a link layer header is carried */
2148        if (unlikely(skb->mac_header >= skb->network_header)) {
2149                kfree_skb(skb);
2150                return -ERANGE;
2151        }
2152
2153        bpf_push_mac_rcsum(skb);
2154        return flags & BPF_F_INGRESS ?
2155               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156}
2157
2158static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159                          u32 flags)
2160{
2161        if (dev_is_mac_header_xmit(dev))
2162                return __bpf_redirect_common(skb, dev, flags);
2163        else
2164                return __bpf_redirect_no_mac(skb, dev, flags);
2165}
2166
2167#if IS_ENABLED(CONFIG_IPV6)
2168static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169                            struct net_device *dev, struct bpf_nh_params *nh)
2170{
2171        u32 hh_len = LL_RESERVED_SPACE(dev);
2172        const struct in6_addr *nexthop;
2173        struct dst_entry *dst = NULL;
2174        struct neighbour *neigh;
2175
2176        if (dev_xmit_recursion()) {
2177                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178                goto out_drop;
2179        }
2180
2181        skb->dev = dev;
2182        skb->tstamp = 0;
2183
2184        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185                struct sk_buff *skb2;
2186
2187                skb2 = skb_realloc_headroom(skb, hh_len);
2188                if (unlikely(!skb2)) {
2189                        kfree_skb(skb);
2190                        return -ENOMEM;
2191                }
2192                if (skb->sk)
2193                        skb_set_owner_w(skb2, skb->sk);
2194                consume_skb(skb);
2195                skb = skb2;
2196        }
2197
2198        rcu_read_lock_bh();
2199        if (!nh) {
2200                dst = skb_dst(skb);
2201                nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202                                      &ipv6_hdr(skb)->daddr);
2203        } else {
2204                nexthop = &nh->ipv6_nh;
2205        }
2206        neigh = ip_neigh_gw6(dev, nexthop);
2207        if (likely(!IS_ERR(neigh))) {
2208                int ret;
2209
2210                sock_confirm_neigh(skb, neigh);
2211                dev_xmit_recursion_inc();
2212                ret = neigh_output(neigh, skb, false);
2213                dev_xmit_recursion_dec();
2214                rcu_read_unlock_bh();
2215                return ret;
2216        }
2217        rcu_read_unlock_bh();
2218        if (dst)
2219                IP6_INC_STATS(dev_net(dst->dev),
2220                              ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221out_drop:
2222        kfree_skb(skb);
2223        return -ENETDOWN;
2224}
2225
2226static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227                                   struct bpf_nh_params *nh)
2228{
2229        const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230        struct net *net = dev_net(dev);
2231        int err, ret = NET_XMIT_DROP;
2232
2233        if (!nh) {
2234                struct dst_entry *dst;
2235                struct flowi6 fl6 = {
2236                        .flowi6_flags = FLOWI_FLAG_ANYSRC,
2237                        .flowi6_mark  = skb->mark,
2238                        .flowlabel    = ip6_flowinfo(ip6h),
2239                        .flowi6_oif   = dev->ifindex,
2240                        .flowi6_proto = ip6h->nexthdr,
2241                        .daddr        = ip6h->daddr,
2242                        .saddr        = ip6h->saddr,
2243                };
2244
2245                dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246                if (IS_ERR(dst))
2247                        goto out_drop;
2248
2249                skb_dst_set(skb, dst);
2250        } else if (nh->nh_family != AF_INET6) {
2251                goto out_drop;
2252        }
2253
2254        err = bpf_out_neigh_v6(net, skb, dev, nh);
2255        if (unlikely(net_xmit_eval(err)))
2256                dev->stats.tx_errors++;
2257        else
2258                ret = NET_XMIT_SUCCESS;
2259        goto out_xmit;
2260out_drop:
2261        dev->stats.tx_errors++;
2262        kfree_skb(skb);
2263out_xmit:
2264        return ret;
2265}
2266#else
2267static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268                                   struct bpf_nh_params *nh)
2269{
2270        kfree_skb(skb);
2271        return NET_XMIT_DROP;
2272}
2273#endif /* CONFIG_IPV6 */
2274
2275#if IS_ENABLED(CONFIG_INET)
2276static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277                            struct net_device *dev, struct bpf_nh_params *nh)
2278{
2279        u32 hh_len = LL_RESERVED_SPACE(dev);
2280        struct neighbour *neigh;
2281        bool is_v6gw = false;
2282
2283        if (dev_xmit_recursion()) {
2284                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285                goto out_drop;
2286        }
2287
2288        skb->dev = dev;
2289        skb->tstamp = 0;
2290
2291        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292                struct sk_buff *skb2;
2293
2294                skb2 = skb_realloc_headroom(skb, hh_len);
2295                if (unlikely(!skb2)) {
2296                        kfree_skb(skb);
2297                        return -ENOMEM;
2298                }
2299                if (skb->sk)
2300                        skb_set_owner_w(skb2, skb->sk);
2301                consume_skb(skb);
2302                skb = skb2;
2303        }
2304
2305        rcu_read_lock_bh();
2306        if (!nh) {
2307                struct dst_entry *dst = skb_dst(skb);
2308                struct rtable *rt = container_of(dst, struct rtable, dst);
2309
2310                neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311        } else if (nh->nh_family == AF_INET6) {
2312                neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313                is_v6gw = true;
2314        } else if (nh->nh_family == AF_INET) {
2315                neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316        } else {
2317                rcu_read_unlock_bh();
2318                goto out_drop;
2319        }
2320
2321        if (likely(!IS_ERR(neigh))) {
2322                int ret;
2323
2324                sock_confirm_neigh(skb, neigh);
2325                dev_xmit_recursion_inc();
2326                ret = neigh_output(neigh, skb, is_v6gw);
2327                dev_xmit_recursion_dec();
2328                rcu_read_unlock_bh();
2329                return ret;
2330        }
2331        rcu_read_unlock_bh();
2332out_drop:
2333        kfree_skb(skb);
2334        return -ENETDOWN;
2335}
2336
2337static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338                                   struct bpf_nh_params *nh)
2339{
2340        const struct iphdr *ip4h = ip_hdr(skb);
2341        struct net *net = dev_net(dev);
2342        int err, ret = NET_XMIT_DROP;
2343
2344        if (!nh) {
2345                struct flowi4 fl4 = {
2346                        .flowi4_flags = FLOWI_FLAG_ANYSRC,
2347                        .flowi4_mark  = skb->mark,
2348                        .flowi4_tos   = RT_TOS(ip4h->tos),
2349                        .flowi4_oif   = dev->ifindex,
2350                        .flowi4_proto = ip4h->protocol,
2351                        .daddr        = ip4h->daddr,
2352                        .saddr        = ip4h->saddr,
2353                };
2354                struct rtable *rt;
2355
2356                rt = ip_route_output_flow(net, &fl4, NULL);
2357                if (IS_ERR(rt))
2358                        goto out_drop;
2359                if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360                        ip_rt_put(rt);
2361                        goto out_drop;
2362                }
2363
2364                skb_dst_set(skb, &rt->dst);
2365        }
2366
2367        err = bpf_out_neigh_v4(net, skb, dev, nh);
2368        if (unlikely(net_xmit_eval(err)))
2369                dev->stats.tx_errors++;
2370        else
2371                ret = NET_XMIT_SUCCESS;
2372        goto out_xmit;
2373out_drop:
2374        dev->stats.tx_errors++;
2375        kfree_skb(skb);
2376out_xmit:
2377        return ret;
2378}
2379#else
2380static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381                                   struct bpf_nh_params *nh)
2382{
2383        kfree_skb(skb);
2384        return NET_XMIT_DROP;
2385}
2386#endif /* CONFIG_INET */
2387
2388static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389                                struct bpf_nh_params *nh)
2390{
2391        struct ethhdr *ethh = eth_hdr(skb);
2392
2393        if (unlikely(skb->mac_header >= skb->network_header))
2394                goto out;
2395        bpf_push_mac_rcsum(skb);
2396        if (is_multicast_ether_addr(ethh->h_dest))
2397                goto out;
2398
2399        skb_pull(skb, sizeof(*ethh));
2400        skb_unset_mac_header(skb);
2401        skb_reset_network_header(skb);
2402
2403        if (skb->protocol == htons(ETH_P_IP))
2404                return __bpf_redirect_neigh_v4(skb, dev, nh);
2405        else if (skb->protocol == htons(ETH_P_IPV6))
2406                return __bpf_redirect_neigh_v6(skb, dev, nh);
2407out:
2408        kfree_skb(skb);
2409        return -ENOTSUPP;
2410}
2411
2412/* Internal, non-exposed redirect flags. */
2413enum {
2414        BPF_F_NEIGH     = (1ULL << 1),
2415        BPF_F_PEER      = (1ULL << 2),
2416        BPF_F_NEXTHOP   = (1ULL << 3),
2417#define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418};
2419
2420BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421{
2422        struct net_device *dev;
2423        struct sk_buff *clone;
2424        int ret;
2425
2426        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427                return -EINVAL;
2428
2429        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430        if (unlikely(!dev))
2431                return -EINVAL;
2432
2433        clone = skb_clone(skb, GFP_ATOMIC);
2434        if (unlikely(!clone))
2435                return -ENOMEM;
2436
2437        /* For direct write, we need to keep the invariant that the skbs
2438         * we're dealing with need to be uncloned. Should uncloning fail
2439         * here, we need to free the just generated clone to unclone once
2440         * again.
2441         */
2442        ret = bpf_try_make_head_writable(skb);
2443        if (unlikely(ret)) {
2444                kfree_skb(clone);
2445                return -ENOMEM;
2446        }
2447
2448        return __bpf_redirect(clone, dev, flags);
2449}
2450
2451static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452        .func           = bpf_clone_redirect,
2453        .gpl_only       = false,
2454        .ret_type       = RET_INTEGER,
2455        .arg1_type      = ARG_PTR_TO_CTX,
2456        .arg2_type      = ARG_ANYTHING,
2457        .arg3_type      = ARG_ANYTHING,
2458};
2459
2460DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462
2463int skb_do_redirect(struct sk_buff *skb)
2464{
2465        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466        struct net *net = dev_net(skb->dev);
2467        struct net_device *dev;
2468        u32 flags = ri->flags;
2469
2470        dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471        ri->tgt_index = 0;
2472        ri->flags = 0;
2473        if (unlikely(!dev))
2474                goto out_drop;
2475        if (flags & BPF_F_PEER) {
2476                const struct net_device_ops *ops = dev->netdev_ops;
2477
2478                if (unlikely(!ops->ndo_get_peer_dev ||
2479                             !skb_at_tc_ingress(skb)))
2480                        goto out_drop;
2481                dev = ops->ndo_get_peer_dev(dev);
2482                if (unlikely(!dev ||
2483                             !is_skb_forwardable(dev, skb) ||
2484                             net_eq(net, dev_net(dev))))
2485                        goto out_drop;
2486                skb->dev = dev;
2487                return -EAGAIN;
2488        }
2489        return flags & BPF_F_NEIGH ?
2490               __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491                                    &ri->nh : NULL) :
2492               __bpf_redirect(skb, dev, flags);
2493out_drop:
2494        kfree_skb(skb);
2495        return -EINVAL;
2496}
2497
2498BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499{
2500        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501
2502        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503                return TC_ACT_SHOT;
2504
2505        ri->flags = flags;
2506        ri->tgt_index = ifindex;
2507
2508        return TC_ACT_REDIRECT;
2509}
2510
2511static const struct bpf_func_proto bpf_redirect_proto = {
2512        .func           = bpf_redirect,
2513        .gpl_only       = false,
2514        .ret_type       = RET_INTEGER,
2515        .arg1_type      = ARG_ANYTHING,
2516        .arg2_type      = ARG_ANYTHING,
2517};
2518
2519BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520{
2521        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522
2523        if (unlikely(flags))
2524                return TC_ACT_SHOT;
2525
2526        ri->flags = BPF_F_PEER;
2527        ri->tgt_index = ifindex;
2528
2529        return TC_ACT_REDIRECT;
2530}
2531
2532static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533        .func           = bpf_redirect_peer,
2534        .gpl_only       = false,
2535        .ret_type       = RET_INTEGER,
2536        .arg1_type      = ARG_ANYTHING,
2537        .arg2_type      = ARG_ANYTHING,
2538};
2539
2540BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541           int, plen, u64, flags)
2542{
2543        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544
2545        if (unlikely((plen && plen < sizeof(*params)) || flags))
2546                return TC_ACT_SHOT;
2547
2548        ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549        ri->tgt_index = ifindex;
2550
2551        BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552        if (plen)
2553                memcpy(&ri->nh, params, sizeof(ri->nh));
2554
2555        return TC_ACT_REDIRECT;
2556}
2557
2558static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559        .func           = bpf_redirect_neigh,
2560        .gpl_only       = false,
2561        .ret_type       = RET_INTEGER,
2562        .arg1_type      = ARG_ANYTHING,
2563        .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2564        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2565        .arg4_type      = ARG_ANYTHING,
2566};
2567
2568BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569{
2570        msg->apply_bytes = bytes;
2571        return 0;
2572}
2573
2574static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575        .func           = bpf_msg_apply_bytes,
2576        .gpl_only       = false,
2577        .ret_type       = RET_INTEGER,
2578        .arg1_type      = ARG_PTR_TO_CTX,
2579        .arg2_type      = ARG_ANYTHING,
2580};
2581
2582BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583{
2584        msg->cork_bytes = bytes;
2585        return 0;
2586}
2587
2588static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589        .func           = bpf_msg_cork_bytes,
2590        .gpl_only       = false,
2591        .ret_type       = RET_INTEGER,
2592        .arg1_type      = ARG_PTR_TO_CTX,
2593        .arg2_type      = ARG_ANYTHING,
2594};
2595
2596BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597           u32, end, u64, flags)
2598{
2599        u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600        u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601        struct scatterlist *sge;
2602        u8 *raw, *to, *from;
2603        struct page *page;
2604
2605        if (unlikely(flags || end <= start))
2606                return -EINVAL;
2607
2608        /* First find the starting scatterlist element */
2609        i = msg->sg.start;
2610        do {
2611                offset += len;
2612                len = sk_msg_elem(msg, i)->length;
2613                if (start < offset + len)
2614                        break;
2615                sk_msg_iter_var_next(i);
2616        } while (i != msg->sg.end);
2617
2618        if (unlikely(start >= offset + len))
2619                return -EINVAL;
2620
2621        first_sge = i;
2622        /* The start may point into the sg element so we need to also
2623         * account for the headroom.
2624         */
2625        bytes_sg_total = start - offset + bytes;
2626        if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627                goto out;
2628
2629        /* At this point we need to linearize multiple scatterlist
2630         * elements or a single shared page. Either way we need to
2631         * copy into a linear buffer exclusively owned by BPF. Then
2632         * place the buffer in the scatterlist and fixup the original
2633         * entries by removing the entries now in the linear buffer
2634         * and shifting the remaining entries. For now we do not try
2635         * to copy partial entries to avoid complexity of running out
2636         * of sg_entry slots. The downside is reading a single byte
2637         * will copy the entire sg entry.
2638         */
2639        do {
2640                copy += sk_msg_elem(msg, i)->length;
2641                sk_msg_iter_var_next(i);
2642                if (bytes_sg_total <= copy)
2643                        break;
2644        } while (i != msg->sg.end);
2645        last_sge = i;
2646
2647        if (unlikely(bytes_sg_total > copy))
2648                return -EINVAL;
2649
2650        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651                           get_order(copy));
2652        if (unlikely(!page))
2653                return -ENOMEM;
2654
2655        raw = page_address(page);
2656        i = first_sge;
2657        do {
2658                sge = sk_msg_elem(msg, i);
2659                from = sg_virt(sge);
2660                len = sge->length;
2661                to = raw + poffset;
2662
2663                memcpy(to, from, len);
2664                poffset += len;
2665                sge->length = 0;
2666                put_page(sg_page(sge));
2667
2668                sk_msg_iter_var_next(i);
2669        } while (i != last_sge);
2670
2671        sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672
2673        /* To repair sg ring we need to shift entries. If we only
2674         * had a single entry though we can just replace it and
2675         * be done. Otherwise walk the ring and shift the entries.
2676         */
2677        WARN_ON_ONCE(last_sge == first_sge);
2678        shift = last_sge > first_sge ?
2679                last_sge - first_sge - 1 :
2680                NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681        if (!shift)
2682                goto out;
2683
2684        i = first_sge;
2685        sk_msg_iter_var_next(i);
2686        do {
2687                u32 move_from;
2688
2689                if (i + shift >= NR_MSG_FRAG_IDS)
2690                        move_from = i + shift - NR_MSG_FRAG_IDS;
2691                else
2692                        move_from = i + shift;
2693                if (move_from == msg->sg.end)
2694                        break;
2695
2696                msg->sg.data[i] = msg->sg.data[move_from];
2697                msg->sg.data[move_from].length = 0;
2698                msg->sg.data[move_from].page_link = 0;
2699                msg->sg.data[move_from].offset = 0;
2700                sk_msg_iter_var_next(i);
2701        } while (1);
2702
2703        msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704                      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705                      msg->sg.end - shift;
2706out:
2707        msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708        msg->data_end = msg->data + bytes;
2709        return 0;
2710}
2711
2712static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713        .func           = bpf_msg_pull_data,
2714        .gpl_only       = false,
2715        .ret_type       = RET_INTEGER,
2716        .arg1_type      = ARG_PTR_TO_CTX,
2717        .arg2_type      = ARG_ANYTHING,
2718        .arg3_type      = ARG_ANYTHING,
2719        .arg4_type      = ARG_ANYTHING,
2720};
2721
2722BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723           u32, len, u64, flags)
2724{
2725        struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726        u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727        u8 *raw, *to, *from;
2728        struct page *page;
2729
2730        if (unlikely(flags))
2731                return -EINVAL;
2732
2733        /* First find the starting scatterlist element */
2734        i = msg->sg.start;
2735        do {
2736                offset += l;
2737                l = sk_msg_elem(msg, i)->length;
2738
2739                if (start < offset + l)
2740                        break;
2741                sk_msg_iter_var_next(i);
2742        } while (i != msg->sg.end);
2743
2744        if (start >= offset + l)
2745                return -EINVAL;
2746
2747        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748
2749        /* If no space available will fallback to copy, we need at
2750         * least one scatterlist elem available to push data into
2751         * when start aligns to the beginning of an element or two
2752         * when it falls inside an element. We handle the start equals
2753         * offset case because its the common case for inserting a
2754         * header.
2755         */
2756        if (!space || (space == 1 && start != offset))
2757                copy = msg->sg.data[i].length;
2758
2759        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760                           get_order(copy + len));
2761        if (unlikely(!page))
2762                return -ENOMEM;
2763
2764        if (copy) {
2765                int front, back;
2766
2767                raw = page_address(page);
2768
2769                psge = sk_msg_elem(msg, i);
2770                front = start - offset;
2771                back = psge->length - front;
2772                from = sg_virt(psge);
2773
2774                if (front)
2775                        memcpy(raw, from, front);
2776
2777                if (back) {
2778                        from += front;
2779                        to = raw + front + len;
2780
2781                        memcpy(to, from, back);
2782                }
2783
2784                put_page(sg_page(psge));
2785        } else if (start - offset) {
2786                psge = sk_msg_elem(msg, i);
2787                rsge = sk_msg_elem_cpy(msg, i);
2788
2789                psge->length = start - offset;
2790                rsge.length -= psge->length;
2791                rsge.offset += start;
2792
2793                sk_msg_iter_var_next(i);
2794                sg_unmark_end(psge);
2795                sg_unmark_end(&rsge);
2796                sk_msg_iter_next(msg, end);
2797        }
2798
2799        /* Slot(s) to place newly allocated data */
2800        new = i;
2801
2802        /* Shift one or two slots as needed */
2803        if (!copy) {
2804                sge = sk_msg_elem_cpy(msg, i);
2805
2806                sk_msg_iter_var_next(i);
2807                sg_unmark_end(&sge);
2808                sk_msg_iter_next(msg, end);
2809
2810                nsge = sk_msg_elem_cpy(msg, i);
2811                if (rsge.length) {
2812                        sk_msg_iter_var_next(i);
2813                        nnsge = sk_msg_elem_cpy(msg, i);
2814                }
2815
2816                while (i != msg->sg.end) {
2817                        msg->sg.data[i] = sge;
2818                        sge = nsge;
2819                        sk_msg_iter_var_next(i);
2820                        if (rsge.length) {
2821                                nsge = nnsge;
2822                                nnsge = sk_msg_elem_cpy(msg, i);
2823                        } else {
2824                                nsge = sk_msg_elem_cpy(msg, i);
2825                        }
2826                }
2827        }
2828
2829        /* Place newly allocated data buffer */
2830        sk_mem_charge(msg->sk, len);
2831        msg->sg.size += len;
2832        __clear_bit(new, &msg->sg.copy);
2833        sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834        if (rsge.length) {
2835                get_page(sg_page(&rsge));
2836                sk_msg_iter_var_next(new);
2837                msg->sg.data[new] = rsge;
2838        }
2839
2840        sk_msg_compute_data_pointers(msg);
2841        return 0;
2842}
2843
2844static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845        .func           = bpf_msg_push_data,
2846        .gpl_only       = false,
2847        .ret_type       = RET_INTEGER,
2848        .arg1_type      = ARG_PTR_TO_CTX,
2849        .arg2_type      = ARG_ANYTHING,
2850        .arg3_type      = ARG_ANYTHING,
2851        .arg4_type      = ARG_ANYTHING,
2852};
2853
2854static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855{
2856        int prev;
2857
2858        do {
2859                prev = i;
2860                sk_msg_iter_var_next(i);
2861                msg->sg.data[prev] = msg->sg.data[i];
2862        } while (i != msg->sg.end);
2863
2864        sk_msg_iter_prev(msg, end);
2865}
2866
2867static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868{
2869        struct scatterlist tmp, sge;
2870
2871        sk_msg_iter_next(msg, end);
2872        sge = sk_msg_elem_cpy(msg, i);
2873        sk_msg_iter_var_next(i);
2874        tmp = sk_msg_elem_cpy(msg, i);
2875
2876        while (i != msg->sg.end) {
2877                msg->sg.data[i] = sge;
2878                sk_msg_iter_var_next(i);
2879                sge = tmp;
2880                tmp = sk_msg_elem_cpy(msg, i);
2881        }
2882}
2883
2884BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885           u32, len, u64, flags)
2886{
2887        u32 i = 0, l = 0, space, offset = 0;
2888        u64 last = start + len;
2889        int pop;
2890
2891        if (unlikely(flags))
2892                return -EINVAL;
2893
2894        /* First find the starting scatterlist element */
2895        i = msg->sg.start;
2896        do {
2897                offset += l;
2898                l = sk_msg_elem(msg, i)->length;
2899
2900                if (start < offset + l)
2901                        break;
2902                sk_msg_iter_var_next(i);
2903        } while (i != msg->sg.end);
2904
2905        /* Bounds checks: start and pop must be inside message */
2906        if (start >= offset + l || last >= msg->sg.size)
2907                return -EINVAL;
2908
2909        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910
2911        pop = len;
2912        /* --------------| offset
2913         * -| start      |-------- len -------|
2914         *
2915         *  |----- a ----|-------- pop -------|----- b ----|
2916         *  |______________________________________________| length
2917         *
2918         *
2919         * a:   region at front of scatter element to save
2920         * b:   region at back of scatter element to save when length > A + pop
2921         * pop: region to pop from element, same as input 'pop' here will be
2922         *      decremented below per iteration.
2923         *
2924         * Two top-level cases to handle when start != offset, first B is non
2925         * zero and second B is zero corresponding to when a pop includes more
2926         * than one element.
2927         *
2928         * Then if B is non-zero AND there is no space allocate space and
2929         * compact A, B regions into page. If there is space shift ring to
2930         * the rigth free'ing the next element in ring to place B, leaving
2931         * A untouched except to reduce length.
2932         */
2933        if (start != offset) {
2934                struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935                int a = start;
2936                int b = sge->length - pop - a;
2937
2938                sk_msg_iter_var_next(i);
2939
2940                if (pop < sge->length - a) {
2941                        if (space) {
2942                                sge->length = a;
2943                                sk_msg_shift_right(msg, i);
2944                                nsge = sk_msg_elem(msg, i);
2945                                get_page(sg_page(sge));
2946                                sg_set_page(nsge,
2947                                            sg_page(sge),
2948                                            b, sge->offset + pop + a);
2949                        } else {
2950                                struct page *page, *orig;
2951                                u8 *to, *from;
2952
2953                                page = alloc_pages(__GFP_NOWARN |
2954                                                   __GFP_COMP   | GFP_ATOMIC,
2955                                                   get_order(a + b));
2956                                if (unlikely(!page))
2957                                        return -ENOMEM;
2958
2959                                sge->length = a;
2960                                orig = sg_page(sge);
2961                                from = sg_virt(sge);
2962                                to = page_address(page);
2963                                memcpy(to, from, a);
2964                                memcpy(to + a, from + a + pop, b);
2965                                sg_set_page(sge, page, a + b, 0);
2966                                put_page(orig);
2967                        }
2968                        pop = 0;
2969                } else if (pop >= sge->length - a) {
2970                        pop -= (sge->length - a);
2971                        sge->length = a;
2972                }
2973        }
2974
2975        /* From above the current layout _must_ be as follows,
2976         *
2977         * -| offset
2978         * -| start
2979         *
2980         *  |---- pop ---|---------------- b ------------|
2981         *  |____________________________________________| length
2982         *
2983         * Offset and start of the current msg elem are equal because in the
2984         * previous case we handled offset != start and either consumed the
2985         * entire element and advanced to the next element OR pop == 0.
2986         *
2987         * Two cases to handle here are first pop is less than the length
2988         * leaving some remainder b above. Simply adjust the element's layout
2989         * in this case. Or pop >= length of the element so that b = 0. In this
2990         * case advance to next element decrementing pop.
2991         */
2992        while (pop) {
2993                struct scatterlist *sge = sk_msg_elem(msg, i);
2994
2995                if (pop < sge->length) {
2996                        sge->length -= pop;
2997                        sge->offset += pop;
2998                        pop = 0;
2999                } else {
3000                        pop -= sge->length;
3001                        sk_msg_shift_left(msg, i);
3002                }
3003                sk_msg_iter_var_next(i);
3004        }
3005
3006        sk_mem_uncharge(msg->sk, len - pop);
3007        msg->sg.size -= (len - pop);
3008        sk_msg_compute_data_pointers(msg);
3009        return 0;
3010}
3011
3012static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013        .func           = bpf_msg_pop_data,
3014        .gpl_only       = false,
3015        .ret_type       = RET_INTEGER,
3016        .arg1_type      = ARG_PTR_TO_CTX,
3017        .arg2_type      = ARG_ANYTHING,
3018        .arg3_type      = ARG_ANYTHING,
3019        .arg4_type      = ARG_ANYTHING,
3020};
3021
3022#ifdef CONFIG_CGROUP_NET_CLASSID
3023BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024{
3025        return __task_get_classid(current);
3026}
3027
3028static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029        .func           = bpf_get_cgroup_classid_curr,
3030        .gpl_only       = false,
3031        .ret_type       = RET_INTEGER,
3032};
3033
3034BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035{
3036        struct sock *sk = skb_to_full_sk(skb);
3037
3038        if (!sk || !sk_fullsock(sk))
3039                return 0;
3040
3041        return sock_cgroup_classid(&sk->sk_cgrp_data);
3042}
3043
3044static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045        .func           = bpf_skb_cgroup_classid,
3046        .gpl_only       = false,
3047        .ret_type       = RET_INTEGER,
3048        .arg1_type      = ARG_PTR_TO_CTX,
3049};
3050#endif
3051
3052BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053{
3054        return task_get_classid(skb);
3055}
3056
3057static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058        .func           = bpf_get_cgroup_classid,
3059        .gpl_only       = false,
3060        .ret_type       = RET_INTEGER,
3061        .arg1_type      = ARG_PTR_TO_CTX,
3062};
3063
3064BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065{
3066        return dst_tclassid(skb);
3067}
3068
3069static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070        .func           = bpf_get_route_realm,
3071        .gpl_only       = false,
3072        .ret_type       = RET_INTEGER,
3073        .arg1_type      = ARG_PTR_TO_CTX,
3074};
3075
3076BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077{
3078        /* If skb_clear_hash() was called due to mangling, we can
3079         * trigger SW recalculation here. Later access to hash
3080         * can then use the inline skb->hash via context directly
3081         * instead of calling this helper again.
3082         */
3083        return skb_get_hash(skb);
3084}
3085
3086static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087        .func           = bpf_get_hash_recalc,
3088        .gpl_only       = false,
3089        .ret_type       = RET_INTEGER,
3090        .arg1_type      = ARG_PTR_TO_CTX,
3091};
3092
3093BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094{
3095        /* After all direct packet write, this can be used once for
3096         * triggering a lazy recalc on next skb_get_hash() invocation.
3097         */
3098        skb_clear_hash(skb);
3099        return 0;
3100}
3101
3102static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103        .func           = bpf_set_hash_invalid,
3104        .gpl_only       = false,
3105        .ret_type       = RET_INTEGER,
3106        .arg1_type      = ARG_PTR_TO_CTX,
3107};
3108
3109BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110{
3111        /* Set user specified hash as L4(+), so that it gets returned
3112         * on skb_get_hash() call unless BPF prog later on triggers a
3113         * skb_clear_hash().
3114         */
3115        __skb_set_sw_hash(skb, hash, true);
3116        return 0;
3117}
3118
3119static const struct bpf_func_proto bpf_set_hash_proto = {
3120        .func           = bpf_set_hash,
3121        .gpl_only       = false,
3122        .ret_type       = RET_INTEGER,
3123        .arg1_type      = ARG_PTR_TO_CTX,
3124        .arg2_type      = ARG_ANYTHING,
3125};
3126
3127BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128           u16, vlan_tci)
3129{
3130        int ret;
3131
3132        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133                     vlan_proto != htons(ETH_P_8021AD)))
3134                vlan_proto = htons(ETH_P_8021Q);
3135
3136        bpf_push_mac_rcsum(skb);
3137        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138        bpf_pull_mac_rcsum(skb);
3139
3140        bpf_compute_data_pointers(skb);
3141        return ret;
3142}
3143
3144static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145        .func           = bpf_skb_vlan_push,
3146        .gpl_only       = false,
3147        .ret_type       = RET_INTEGER,
3148        .arg1_type      = ARG_PTR_TO_CTX,
3149        .arg2_type      = ARG_ANYTHING,
3150        .arg3_type      = ARG_ANYTHING,
3151};
3152
3153BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154{
3155        int ret;
3156
3157        bpf_push_mac_rcsum(skb);
3158        ret = skb_vlan_pop(skb);
3159        bpf_pull_mac_rcsum(skb);
3160
3161        bpf_compute_data_pointers(skb);
3162        return ret;
3163}
3164
3165static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166        .func           = bpf_skb_vlan_pop,
3167        .gpl_only       = false,
3168        .ret_type       = RET_INTEGER,
3169        .arg1_type      = ARG_PTR_TO_CTX,
3170};
3171
3172static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173{
3174        /* Caller already did skb_cow() with len as headroom,
3175         * so no need to do it here.
3176         */
3177        skb_push(skb, len);
3178        memmove(skb->data, skb->data + len, off);
3179        memset(skb->data + off, 0, len);
3180
3181        /* No skb_postpush_rcsum(skb, skb->data + off, len)
3182         * needed here as it does not change the skb->csum
3183         * result for checksum complete when summing over
3184         * zeroed blocks.
3185         */
3186        return 0;
3187}
3188
3189static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190{
3191        /* skb_ensure_writable() is not needed here, as we're
3192         * already working on an uncloned skb.
3193         */
3194        if (unlikely(!pskb_may_pull(skb, off + len)))
3195                return -ENOMEM;
3196
3197        skb_postpull_rcsum(skb, skb->data + off, len);
3198        memmove(skb->data + len, skb->data, off);
3199        __skb_pull(skb, len);
3200
3201        return 0;
3202}
3203
3204static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205{
3206        bool trans_same = skb->transport_header == skb->network_header;
3207        int ret;
3208
3209        /* There's no need for __skb_push()/__skb_pull() pair to
3210         * get to the start of the mac header as we're guaranteed
3211         * to always start from here under eBPF.
3212         */
3213        ret = bpf_skb_generic_push(skb, off, len);
3214        if (likely(!ret)) {
3215                skb->mac_header -= len;
3216                skb->network_header -= len;
3217                if (trans_same)
3218                        skb->transport_header = skb->network_header;
3219        }
3220
3221        return ret;
3222}
3223
3224static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225{
3226        bool trans_same = skb->transport_header == skb->network_header;
3227        int ret;
3228
3229        /* Same here, __skb_push()/__skb_pull() pair not needed. */
3230        ret = bpf_skb_generic_pop(skb, off, len);
3231        if (likely(!ret)) {
3232                skb->mac_header += len;
3233                skb->network_header += len;
3234                if (trans_same)
3235                        skb->transport_header = skb->network_header;
3236        }
3237
3238        return ret;
3239}
3240
3241static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242{
3243        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244        u32 off = skb_mac_header_len(skb);
3245        int ret;
3246
3247        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248                return -ENOTSUPP;
3249
3250        ret = skb_cow(skb, len_diff);
3251        if (unlikely(ret < 0))
3252                return ret;
3253
3254        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255        if (unlikely(ret < 0))
3256                return ret;
3257
3258        if (skb_is_gso(skb)) {
3259                struct skb_shared_info *shinfo = skb_shinfo(skb);
3260
3261                /* SKB_GSO_TCPV4 needs to be changed into
3262                 * SKB_GSO_TCPV6.
3263                 */
3264                if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265                        shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266                        shinfo->gso_type |=  SKB_GSO_TCPV6;
3267                }
3268
3269                /* Due to IPv6 header, MSS needs to be downgraded. */
3270                skb_decrease_gso_size(shinfo, len_diff);
3271                /* Header must be checked, and gso_segs recomputed. */
3272                shinfo->gso_type |= SKB_GSO_DODGY;
3273                shinfo->gso_segs = 0;
3274        }
3275
3276        skb->protocol = htons(ETH_P_IPV6);
3277        skb_clear_hash(skb);
3278
3279        return 0;
3280}
3281
3282static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283{
3284        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285        u32 off = skb_mac_header_len(skb);
3286        int ret;
3287
3288        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3289                return -ENOTSUPP;
3290
3291        ret = skb_unclone(skb, GFP_ATOMIC);
3292        if (unlikely(ret < 0))
3293                return ret;
3294
3295        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3296        if (unlikely(ret < 0))
3297                return ret;
3298
3299        if (skb_is_gso(skb)) {
3300                struct skb_shared_info *shinfo = skb_shinfo(skb);
3301
3302                /* SKB_GSO_TCPV6 needs to be changed into
3303                 * SKB_GSO_TCPV4.
3304                 */
3305                if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306                        shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307                        shinfo->gso_type |=  SKB_GSO_TCPV4;
3308                }
3309
3310                /* Due to IPv4 header, MSS can be upgraded. */
3311                skb_increase_gso_size(shinfo, len_diff);
3312                /* Header must be checked, and gso_segs recomputed. */
3313                shinfo->gso_type |= SKB_GSO_DODGY;
3314                shinfo->gso_segs = 0;
3315        }
3316
3317        skb->protocol = htons(ETH_P_IP);
3318        skb_clear_hash(skb);
3319
3320        return 0;
3321}
3322
3323static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324{
3325        __be16 from_proto = skb->protocol;
3326
3327        if (from_proto == htons(ETH_P_IP) &&
3328              to_proto == htons(ETH_P_IPV6))
3329                return bpf_skb_proto_4_to_6(skb);
3330
3331        if (from_proto == htons(ETH_P_IPV6) &&
3332              to_proto == htons(ETH_P_IP))
3333                return bpf_skb_proto_6_to_4(skb);
3334
3335        return -ENOTSUPP;
3336}
3337
3338BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339           u64, flags)
3340{
3341        int ret;
3342
3343        if (unlikely(flags))
3344                return -EINVAL;
3345
3346        /* General idea is that this helper does the basic groundwork
3347         * needed for changing the protocol, and eBPF program fills the
3348         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349         * and other helpers, rather than passing a raw buffer here.
3350         *
3351         * The rationale is to keep this minimal and without a need to
3352         * deal with raw packet data. F.e. even if we would pass buffers
3353         * here, the program still needs to call the bpf_lX_csum_replace()
3354         * helpers anyway. Plus, this way we keep also separation of
3355         * concerns, since f.e. bpf_skb_store_bytes() should only take
3356         * care of stores.
3357         *
3358         * Currently, additional options and extension header space are
3359         * not supported, but flags register is reserved so we can adapt
3360         * that. For offloads, we mark packet as dodgy, so that headers
3361         * need to be verified first.
3362         */
3363        ret = bpf_skb_proto_xlat(skb, proto);
3364        bpf_compute_data_pointers(skb);
3365        return ret;
3366}
3367
3368static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369        .func           = bpf_skb_change_proto,
3370        .gpl_only       = false,
3371        .ret_type       = RET_INTEGER,
3372        .arg1_type      = ARG_PTR_TO_CTX,
3373        .arg2_type      = ARG_ANYTHING,
3374        .arg3_type      = ARG_ANYTHING,
3375};
3376
3377BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378{
3379        /* We only allow a restricted subset to be changed for now. */
3380        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381                     !skb_pkt_type_ok(pkt_type)))
3382                return -EINVAL;
3383
3384        skb->pkt_type = pkt_type;
3385        return 0;
3386}
3387
3388static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389        .func           = bpf_skb_change_type,
3390        .gpl_only       = false,
3391        .ret_type       = RET_INTEGER,
3392        .arg1_type      = ARG_PTR_TO_CTX,
3393        .arg2_type      = ARG_ANYTHING,
3394};
3395
3396static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397{
3398        switch (skb->protocol) {
3399        case htons(ETH_P_IP):
3400                return sizeof(struct iphdr);
3401        case htons(ETH_P_IPV6):
3402                return sizeof(struct ipv6hdr);
3403        default:
3404                return ~0U;
3405        }
3406}
3407
3408#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409                                         BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411#define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412                                         BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413                                         BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414                                         BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415                                         BPF_F_ADJ_ROOM_ENCAP_L2( \
3416                                          BPF_ADJ_ROOM_ENCAP_L2_MASK))
3417
3418static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3419                            u64 flags)
3420{
3421        u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3422        bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3423        u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3424        unsigned int gso_type = SKB_GSO_DODGY;
3425        int ret;
3426
3427        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3428                /* udp gso_size delineates datagrams, only allow if fixed */
3429                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3430                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3431                        return -ENOTSUPP;
3432        }
3433
3434        ret = skb_cow_head(skb, len_diff);
3435        if (unlikely(ret < 0))
3436                return ret;
3437
3438        if (encap) {
3439                if (skb->protocol != htons(ETH_P_IP) &&
3440                    skb->protocol != htons(ETH_P_IPV6))
3441                        return -ENOTSUPP;
3442
3443                if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3444                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445                        return -EINVAL;
3446
3447                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3448                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3449                        return -EINVAL;
3450
3451                if (skb->encapsulation)
3452                        return -EALREADY;
3453
3454                mac_len = skb->network_header - skb->mac_header;
3455                inner_net = skb->network_header;
3456                if (inner_mac_len > len_diff)
3457                        return -EINVAL;
3458                inner_trans = skb->transport_header;
3459        }
3460
3461        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3462        if (unlikely(ret < 0))
3463                return ret;
3464
3465        if (encap) {
3466                skb->inner_mac_header = inner_net - inner_mac_len;
3467                skb->inner_network_header = inner_net;
3468                skb->inner_transport_header = inner_trans;
3469                skb_set_inner_protocol(skb, skb->protocol);
3470
3471                skb->encapsulation = 1;
3472                skb_set_network_header(skb, mac_len);
3473
3474                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3475                        gso_type |= SKB_GSO_UDP_TUNNEL;
3476                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3477                        gso_type |= SKB_GSO_GRE;
3478                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479                        gso_type |= SKB_GSO_IPXIP6;
3480                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3481                        gso_type |= SKB_GSO_IPXIP4;
3482
3483                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3484                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3485                        int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3486                                        sizeof(struct ipv6hdr) :
3487                                        sizeof(struct iphdr);
3488
3489                        skb_set_transport_header(skb, mac_len + nh_len);
3490                }
3491
3492                /* Match skb->protocol to new outer l3 protocol */
3493                if (skb->protocol == htons(ETH_P_IP) &&
3494                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3495                        skb->protocol = htons(ETH_P_IPV6);
3496                else if (skb->protocol == htons(ETH_P_IPV6) &&
3497                         flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3498                        skb->protocol = htons(ETH_P_IP);
3499        }
3500
3501        if (skb_is_gso(skb)) {
3502                struct skb_shared_info *shinfo = skb_shinfo(skb);
3503
3504                /* Due to header grow, MSS needs to be downgraded. */
3505                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506                        skb_decrease_gso_size(shinfo, len_diff);
3507
3508                /* Header must be checked, and gso_segs recomputed. */
3509                shinfo->gso_type |= gso_type;
3510                shinfo->gso_segs = 0;
3511        }
3512
3513        return 0;
3514}
3515
3516static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3517                              u64 flags)
3518{
3519        int ret;
3520
3521        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3522                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3523                return -EINVAL;
3524
3525        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3526                /* udp gso_size delineates datagrams, only allow if fixed */
3527                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3528                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529                        return -ENOTSUPP;
3530        }
3531
3532        ret = skb_unclone(skb, GFP_ATOMIC);
3533        if (unlikely(ret < 0))
3534                return ret;
3535
3536        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3537        if (unlikely(ret < 0))
3538                return ret;
3539
3540        if (skb_is_gso(skb)) {
3541                struct skb_shared_info *shinfo = skb_shinfo(skb);
3542
3543                /* Due to header shrink, MSS can be upgraded. */
3544                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3545                        skb_increase_gso_size(shinfo, len_diff);
3546
3547                /* Header must be checked, and gso_segs recomputed. */
3548                shinfo->gso_type |= SKB_GSO_DODGY;
3549                shinfo->gso_segs = 0;
3550        }
3551
3552        return 0;
3553}
3554
3555static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3556{
3557        return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3558                          SKB_MAX_ALLOC;
3559}
3560
3561BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3562           u32, mode, u64, flags)
3563{
3564        u32 len_diff_abs = abs(len_diff);
3565        bool shrink = len_diff < 0;
3566        int ret = 0;
3567
3568        if (unlikely(flags || mode))
3569                return -EINVAL;
3570        if (unlikely(len_diff_abs > 0xfffU))
3571                return -EFAULT;
3572
3573        if (!shrink) {
3574                ret = skb_cow(skb, len_diff);
3575                if (unlikely(ret < 0))
3576                        return ret;
3577                __skb_push(skb, len_diff_abs);
3578                memset(skb->data, 0, len_diff_abs);
3579        } else {
3580                if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3581                        return -ENOMEM;
3582                __skb_pull(skb, len_diff_abs);
3583        }
3584        bpf_compute_data_end_sk_skb(skb);
3585        if (tls_sw_has_ctx_rx(skb->sk)) {
3586                struct strp_msg *rxm = strp_msg(skb);
3587
3588                rxm->full_len += len_diff;
3589        }
3590        return ret;
3591}
3592
3593static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3594        .func           = sk_skb_adjust_room,
3595        .gpl_only       = false,
3596        .ret_type       = RET_INTEGER,
3597        .arg1_type      = ARG_PTR_TO_CTX,
3598        .arg2_type      = ARG_ANYTHING,
3599        .arg3_type      = ARG_ANYTHING,
3600        .arg4_type      = ARG_ANYTHING,
3601};
3602
3603BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3604           u32, mode, u64, flags)
3605{
3606        u32 len_cur, len_diff_abs = abs(len_diff);
3607        u32 len_min = bpf_skb_net_base_len(skb);
3608        u32 len_max = __bpf_skb_max_len(skb);
3609        __be16 proto = skb->protocol;
3610        bool shrink = len_diff < 0;
3611        u32 off;
3612        int ret;
3613
3614        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3615                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3616                return -EINVAL;
3617        if (unlikely(len_diff_abs > 0xfffU))
3618                return -EFAULT;
3619        if (unlikely(proto != htons(ETH_P_IP) &&
3620                     proto != htons(ETH_P_IPV6)))
3621                return -ENOTSUPP;
3622
3623        off = skb_mac_header_len(skb);
3624        switch (mode) {
3625        case BPF_ADJ_ROOM_NET:
3626                off += bpf_skb_net_base_len(skb);
3627                break;
3628        case BPF_ADJ_ROOM_MAC:
3629                break;
3630        default:
3631                return -ENOTSUPP;
3632        }
3633
3634        len_cur = skb->len - skb_network_offset(skb);
3635        if ((shrink && (len_diff_abs >= len_cur ||
3636                        len_cur - len_diff_abs < len_min)) ||
3637            (!shrink && (skb->len + len_diff_abs > len_max &&
3638                         !skb_is_gso(skb))))
3639                return -ENOTSUPP;
3640
3641        ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3642                       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3643        if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3644                __skb_reset_checksum_unnecessary(skb);
3645
3646        bpf_compute_data_pointers(skb);
3647        return ret;
3648}
3649
3650static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3651        .func           = bpf_skb_adjust_room,
3652        .gpl_only       = false,
3653        .ret_type       = RET_INTEGER,
3654        .arg1_type      = ARG_PTR_TO_CTX,
3655        .arg2_type      = ARG_ANYTHING,
3656        .arg3_type      = ARG_ANYTHING,
3657        .arg4_type      = ARG_ANYTHING,
3658};
3659
3660static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3661{
3662        u32 min_len = skb_network_offset(skb);
3663
3664        if (skb_transport_header_was_set(skb))
3665                min_len = skb_transport_offset(skb);
3666        if (skb->ip_summed == CHECKSUM_PARTIAL)
3667                min_len = skb_checksum_start_offset(skb) +
3668                          skb->csum_offset + sizeof(__sum16);
3669        return min_len;
3670}
3671
3672static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3673{
3674        unsigned int old_len = skb->len;
3675        int ret;
3676
3677        ret = __skb_grow_rcsum(skb, new_len);
3678        if (!ret)
3679                memset(skb->data + old_len, 0, new_len - old_len);
3680        return ret;
3681}
3682
3683static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3684{
3685        return __skb_trim_rcsum(skb, new_len);
3686}
3687
3688static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3689                                        u64 flags)
3690{
3691        u32 max_len = __bpf_skb_max_len(skb);
3692        u32 min_len = __bpf_skb_min_len(skb);
3693        int ret;
3694
3695        if (unlikely(flags || new_len > max_len || new_len < min_len))
3696                return -EINVAL;
3697        if (skb->encapsulation)
3698                return -ENOTSUPP;
3699
3700        /* The basic idea of this helper is that it's performing the
3701         * needed work to either grow or trim an skb, and eBPF program
3702         * rewrites the rest via helpers like bpf_skb_store_bytes(),
3703         * bpf_lX_csum_replace() and others rather than passing a raw
3704         * buffer here. This one is a slow path helper and intended
3705         * for replies with control messages.
3706         *
3707         * Like in bpf_skb_change_proto(), we want to keep this rather
3708         * minimal and without protocol specifics so that we are able
3709         * to separate concerns as in bpf_skb_store_bytes() should only
3710         * be the one responsible for writing buffers.
3711         *
3712         * It's really expected to be a slow path operation here for
3713         * control message replies, so we're implicitly linearizing,
3714         * uncloning and drop offloads from the skb by this.
3715         */
3716        ret = __bpf_try_make_writable(skb, skb->len);
3717        if (!ret) {
3718                if (new_len > skb->len)
3719                        ret = bpf_skb_grow_rcsum(skb, new_len);
3720                else if (new_len < skb->len)
3721                        ret = bpf_skb_trim_rcsum(skb, new_len);
3722                if (!ret && skb_is_gso(skb))
3723                        skb_gso_reset(skb);
3724        }
3725        return ret;
3726}
3727
3728BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3729           u64, flags)
3730{
3731        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3732
3733        bpf_compute_data_pointers(skb);
3734        return ret;
3735}
3736
3737static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3738        .func           = bpf_skb_change_tail,
3739        .gpl_only       = false,
3740        .ret_type       = RET_INTEGER,
3741        .arg1_type      = ARG_PTR_TO_CTX,
3742        .arg2_type      = ARG_ANYTHING,
3743        .arg3_type      = ARG_ANYTHING,
3744};
3745
3746BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3747           u64, flags)
3748{
3749        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3750
3751        bpf_compute_data_end_sk_skb(skb);
3752        return ret;
3753}
3754
3755static const struct bpf_func_proto sk_skb_change_tail_proto = {
3756        .func           = sk_skb_change_tail,
3757        .gpl_only       = false,
3758        .ret_type       = RET_INTEGER,
3759        .arg1_type      = ARG_PTR_TO_CTX,
3760        .arg2_type      = ARG_ANYTHING,
3761        .arg3_type      = ARG_ANYTHING,
3762};
3763
3764static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3765                                        u64 flags)
3766{
3767        u32 max_len = __bpf_skb_max_len(skb);
3768        u32 new_len = skb->len + head_room;
3769        int ret;
3770
3771        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3772                     new_len < skb->len))
3773                return -EINVAL;
3774
3775        ret = skb_cow(skb, head_room);
3776        if (likely(!ret)) {
3777                /* Idea for this helper is that we currently only
3778                 * allow to expand on mac header. This means that
3779                 * skb->protocol network header, etc, stay as is.
3780                 * Compared to bpf_skb_change_tail(), we're more
3781                 * flexible due to not needing to linearize or
3782                 * reset GSO. Intention for this helper is to be
3783                 * used by an L3 skb that needs to push mac header
3784                 * for redirection into L2 device.
3785                 */
3786                __skb_push(skb, head_room);
3787                memset(skb->data, 0, head_room);
3788                skb_reset_mac_header(skb);
3789        }
3790
3791        return ret;
3792}
3793
3794BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3795           u64, flags)
3796{
3797        int ret = __bpf_skb_change_head(skb, head_room, flags);
3798
3799        bpf_compute_data_pointers(skb);
3800        return ret;
3801}
3802
3803static const struct bpf_func_proto bpf_skb_change_head_proto = {
3804        .func           = bpf_skb_change_head,
3805        .gpl_only       = false,
3806        .ret_type       = RET_INTEGER,
3807        .arg1_type      = ARG_PTR_TO_CTX,
3808        .arg2_type      = ARG_ANYTHING,
3809        .arg3_type      = ARG_ANYTHING,
3810};
3811
3812BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3813           u64, flags)
3814{
3815        int ret = __bpf_skb_change_head(skb, head_room, flags);
3816
3817        bpf_compute_data_end_sk_skb(skb);
3818        return ret;
3819}
3820
3821static const struct bpf_func_proto sk_skb_change_head_proto = {
3822        .func           = sk_skb_change_head,
3823        .gpl_only       = false,
3824        .ret_type       = RET_INTEGER,
3825        .arg1_type      = ARG_PTR_TO_CTX,
3826        .arg2_type      = ARG_ANYTHING,
3827        .arg3_type      = ARG_ANYTHING,
3828};
3829static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3830{
3831        return xdp_data_meta_unsupported(xdp) ? 0 :
3832               xdp->data - xdp->data_meta;
3833}
3834
3835BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3836{
3837        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3838        unsigned long metalen = xdp_get_metalen(xdp);
3839        void *data_start = xdp_frame_end + metalen;
3840        void *data = xdp->data + offset;
3841
3842        if (unlikely(data < data_start ||
3843                     data > xdp->data_end - ETH_HLEN))
3844                return -EINVAL;
3845
3846        if (metalen)
3847                memmove(xdp->data_meta + offset,
3848                        xdp->data_meta, metalen);
3849        xdp->data_meta += offset;
3850        xdp->data = data;
3851
3852        return 0;
3853}
3854
3855static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3856        .func           = bpf_xdp_adjust_head,
3857        .gpl_only       = false,
3858        .ret_type       = RET_INTEGER,
3859        .arg1_type      = ARG_PTR_TO_CTX,
3860        .arg2_type      = ARG_ANYTHING,
3861};
3862
3863BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3864{
3865        void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3866        void *data_end = xdp->data_end + offset;
3867
3868        /* Notice that xdp_data_hard_end have reserved some tailroom */
3869        if (unlikely(data_end > data_hard_end))
3870                return -EINVAL;
3871
3872        /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3873        if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3874                WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3875                return -EINVAL;
3876        }
3877
3878        if (unlikely(data_end < xdp->data + ETH_HLEN))
3879                return -EINVAL;
3880
3881        /* Clear memory area on grow, can contain uninit kernel memory */
3882        if (offset > 0)
3883                memset(xdp->data_end, 0, offset);
3884
3885        xdp->data_end = data_end;
3886
3887        return 0;
3888}
3889
3890static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3891        .func           = bpf_xdp_adjust_tail,
3892        .gpl_only       = false,
3893        .ret_type       = RET_INTEGER,
3894        .arg1_type      = ARG_PTR_TO_CTX,
3895        .arg2_type      = ARG_ANYTHING,
3896};
3897
3898BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3899{
3900        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3901        void *meta = xdp->data_meta + offset;
3902        unsigned long metalen = xdp->data - meta;
3903
3904        if (xdp_data_meta_unsupported(xdp))
3905                return -ENOTSUPP;
3906        if (unlikely(meta < xdp_frame_end ||
3907                     meta > xdp->data))
3908                return -EINVAL;
3909        if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3910                     (metalen > 32)))
3911                return -EACCES;
3912
3913        xdp->data_meta = meta;
3914
3915        return 0;
3916}
3917
3918static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3919        .func           = bpf_xdp_adjust_meta,
3920        .gpl_only       = false,
3921        .ret_type       = RET_INTEGER,
3922        .arg1_type      = ARG_PTR_TO_CTX,
3923        .arg2_type      = ARG_ANYTHING,
3924};
3925
3926static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3927                            struct bpf_map *map, struct xdp_buff *xdp)
3928{
3929        switch (map->map_type) {
3930        case BPF_MAP_TYPE_DEVMAP:
3931        case BPF_MAP_TYPE_DEVMAP_HASH:
3932                return dev_map_enqueue(fwd, xdp, dev_rx);
3933        case BPF_MAP_TYPE_CPUMAP:
3934                return cpu_map_enqueue(fwd, xdp, dev_rx);
3935        case BPF_MAP_TYPE_XSKMAP:
3936                return __xsk_map_redirect(fwd, xdp);
3937        default:
3938                return -EBADRQC;
3939        }
3940        return 0;
3941}
3942
3943void xdp_do_flush(void)
3944{
3945        __dev_flush();
3946        __cpu_map_flush();
3947        __xsk_map_flush();
3948}
3949EXPORT_SYMBOL_GPL(xdp_do_flush);
3950
3951static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3952{
3953        switch (map->map_type) {
3954        case BPF_MAP_TYPE_DEVMAP:
3955                return __dev_map_lookup_elem(map, index);
3956        case BPF_MAP_TYPE_DEVMAP_HASH:
3957                return __dev_map_hash_lookup_elem(map, index);
3958        case BPF_MAP_TYPE_CPUMAP:
3959                return __cpu_map_lookup_elem(map, index);
3960        case BPF_MAP_TYPE_XSKMAP:
3961                return __xsk_map_lookup_elem(map, index);
3962        default:
3963                return NULL;
3964        }
3965}
3966
3967void bpf_clear_redirect_map(struct bpf_map *map)
3968{
3969        struct bpf_redirect_info *ri;
3970        int cpu;
3971
3972        for_each_possible_cpu(cpu) {
3973                ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3974                /* Avoid polluting remote cacheline due to writes if
3975                 * not needed. Once we pass this test, we need the
3976                 * cmpxchg() to make sure it hasn't been changed in
3977                 * the meantime by remote CPU.
3978                 */
3979                if (unlikely(READ_ONCE(ri->map) == map))
3980                        cmpxchg(&ri->map, map, NULL);
3981        }
3982}
3983
3984int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3985                    struct bpf_prog *xdp_prog)
3986{
3987        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3988        struct bpf_map *map = READ_ONCE(ri->map);
3989        u32 index = ri->tgt_index;
3990        void *fwd = ri->tgt_value;
3991        int err;
3992
3993        ri->tgt_index = 0;
3994        ri->tgt_value = NULL;
3995        WRITE_ONCE(ri->map, NULL);
3996
3997        if (unlikely(!map)) {
3998                fwd = dev_get_by_index_rcu(dev_net(dev), index);
3999                if (unlikely(!fwd)) {
4000                        err = -EINVAL;
4001                        goto err;
4002                }
4003
4004                err = dev_xdp_enqueue(fwd, xdp, dev);
4005        } else {
4006                err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4007        }
4008
4009        if (unlikely(err))
4010                goto err;
4011
4012        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4013        return 0;
4014err:
4015        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4016        return err;
4017}
4018EXPORT_SYMBOL_GPL(xdp_do_redirect);
4019
4020static int xdp_do_generic_redirect_map(struct net_device *dev,
4021                                       struct sk_buff *skb,
4022                                       struct xdp_buff *xdp,
4023                                       struct bpf_prog *xdp_prog,
4024                                       struct bpf_map *map)
4025{
4026        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027        u32 index = ri->tgt_index;
4028        void *fwd = ri->tgt_value;
4029        int err = 0;
4030
4031        ri->tgt_index = 0;
4032        ri->tgt_value = NULL;
4033        WRITE_ONCE(ri->map, NULL);
4034
4035        if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4036            map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4037                struct bpf_dtab_netdev *dst = fwd;
4038
4039                err = dev_map_generic_redirect(dst, skb, xdp_prog);
4040                if (unlikely(err))
4041                        goto err;
4042        } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4043                struct xdp_sock *xs = fwd;
4044
4045                err = xsk_generic_rcv(xs, xdp);
4046                if (err)
4047                        goto err;
4048                consume_skb(skb);
4049        } else {
4050                /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4051                err = -EBADRQC;
4052                goto err;
4053        }
4054
4055        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4056        return 0;
4057err:
4058        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4059        return err;
4060}
4061
4062int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4063                            struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4064{
4065        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4066        struct bpf_map *map = READ_ONCE(ri->map);
4067        u32 index = ri->tgt_index;
4068        struct net_device *fwd;
4069        int err = 0;
4070
4071        if (map)
4072                return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4073                                                   map);
4074        ri->tgt_index = 0;
4075        fwd = dev_get_by_index_rcu(dev_net(dev), index);
4076        if (unlikely(!fwd)) {
4077                err = -EINVAL;
4078                goto err;
4079        }
4080
4081        err = xdp_ok_fwd_dev(fwd, skb->len);
4082        if (unlikely(err))
4083                goto err;
4084
4085        skb->dev = fwd;
4086        _trace_xdp_redirect(dev, xdp_prog, index);
4087        generic_xdp_tx(skb, xdp_prog);
4088        return 0;
4089err:
4090        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
4091        return err;
4092}
4093
4094BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4095{
4096        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4097
4098        if (unlikely(flags))
4099                return XDP_ABORTED;
4100
4101        ri->flags = flags;
4102        ri->tgt_index = ifindex;
4103        ri->tgt_value = NULL;
4104        WRITE_ONCE(ri->map, NULL);
4105
4106        return XDP_REDIRECT;
4107}
4108
4109static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4110        .func           = bpf_xdp_redirect,
4111        .gpl_only       = false,
4112        .ret_type       = RET_INTEGER,
4113        .arg1_type      = ARG_ANYTHING,
4114        .arg2_type      = ARG_ANYTHING,
4115};
4116
4117BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4118           u64, flags)
4119{
4120        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4121
4122        /* Lower bits of the flags are used as return code on lookup failure */
4123        if (unlikely(flags > XDP_TX))
4124                return XDP_ABORTED;
4125
4126        ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4127        if (unlikely(!ri->tgt_value)) {
4128                /* If the lookup fails we want to clear out the state in the
4129                 * redirect_info struct completely, so that if an eBPF program
4130                 * performs multiple lookups, the last one always takes
4131                 * precedence.
4132                 */
4133                WRITE_ONCE(ri->map, NULL);
4134                return flags;
4135        }
4136
4137        ri->flags = flags;
4138        ri->tgt_index = ifindex;
4139        WRITE_ONCE(ri->map, map);
4140
4141        return XDP_REDIRECT;
4142}
4143
4144static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4145        .func           = bpf_xdp_redirect_map,
4146        .gpl_only       = false,
4147        .ret_type       = RET_INTEGER,
4148        .arg1_type      = ARG_CONST_MAP_PTR,
4149        .arg2_type      = ARG_ANYTHING,
4150        .arg3_type      = ARG_ANYTHING,
4151};
4152
4153static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4154                                  unsigned long off, unsigned long len)
4155{
4156        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4157
4158        if (unlikely(!ptr))
4159                return len;
4160        if (ptr != dst_buff)
4161                memcpy(dst_buff, ptr, len);
4162
4163        return 0;
4164}
4165
4166BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4167           u64, flags, void *, meta, u64, meta_size)
4168{
4169        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4170
4171        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4172                return -EINVAL;
4173        if (unlikely(!skb || skb_size > skb->len))
4174                return -EFAULT;
4175
4176        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4177                                bpf_skb_copy);
4178}
4179
4180static const struct bpf_func_proto bpf_skb_event_output_proto = {
4181        .func           = bpf_skb_event_output,
4182        .gpl_only       = true,
4183        .ret_type       = RET_INTEGER,
4184        .arg1_type      = ARG_PTR_TO_CTX,
4185        .arg2_type      = ARG_CONST_MAP_PTR,
4186        .arg3_type      = ARG_ANYTHING,
4187        .arg4_type      = ARG_PTR_TO_MEM,
4188        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4189};
4190
4191BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4192
4193const struct bpf_func_proto bpf_skb_output_proto = {
4194        .func           = bpf_skb_event_output,
4195        .gpl_only       = true,
4196        .ret_type       = RET_INTEGER,
4197        .arg1_type      = ARG_PTR_TO_BTF_ID,
4198        .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4199        .arg2_type      = ARG_CONST_MAP_PTR,
4200        .arg3_type      = ARG_ANYTHING,
4201        .arg4_type      = ARG_PTR_TO_MEM,
4202        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4203};
4204
4205static unsigned short bpf_tunnel_key_af(u64 flags)
4206{
4207        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4208}
4209
4210BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4211           u32, size, u64, flags)
4212{
4213        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4214        u8 compat[sizeof(struct bpf_tunnel_key)];
4215        void *to_orig = to;
4216        int err;
4217
4218        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4219                err = -EINVAL;
4220                goto err_clear;
4221        }
4222        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4223                err = -EPROTO;
4224                goto err_clear;
4225        }
4226        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4227                err = -EINVAL;
4228                switch (size) {
4229                case offsetof(struct bpf_tunnel_key, tunnel_label):
4230                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4231                        goto set_compat;
4232                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4233                        /* Fixup deprecated structure layouts here, so we have
4234                         * a common path later on.
4235                         */
4236                        if (ip_tunnel_info_af(info) != AF_INET)
4237                                goto err_clear;
4238set_compat:
4239                        to = (struct bpf_tunnel_key *)compat;
4240                        break;
4241                default:
4242                        goto err_clear;
4243                }
4244        }
4245
4246        to->tunnel_id = be64_to_cpu(info->key.tun_id);
4247        to->tunnel_tos = info->key.tos;
4248        to->tunnel_ttl = info->key.ttl;
4249        to->tunnel_ext = 0;
4250
4251        if (flags & BPF_F_TUNINFO_IPV6) {
4252                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4253                       sizeof(to->remote_ipv6));
4254                to->tunnel_label = be32_to_cpu(info->key.label);
4255        } else {
4256                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4257                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4258                to->tunnel_label = 0;
4259        }
4260
4261        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4262                memcpy(to_orig, to, size);
4263
4264        return 0;
4265err_clear:
4266        memset(to_orig, 0, size);
4267        return err;
4268}
4269
4270static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4271        .func           = bpf_skb_get_tunnel_key,
4272        .gpl_only       = false,
4273        .ret_type       = RET_INTEGER,
4274        .arg1_type      = ARG_PTR_TO_CTX,
4275        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4276        .arg3_type      = ARG_CONST_SIZE,
4277        .arg4_type      = ARG_ANYTHING,
4278};
4279
4280BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4281{
4282        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4283        int err;
4284
4285        if (unlikely(!info ||
4286                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4287                err = -ENOENT;
4288                goto err_clear;
4289        }
4290        if (unlikely(size < info->options_len)) {
4291                err = -ENOMEM;
4292                goto err_clear;
4293        }
4294
4295        ip_tunnel_info_opts_get(to, info);
4296        if (size > info->options_len)
4297                memset(to + info->options_len, 0, size - info->options_len);
4298
4299        return info->options_len;
4300err_clear:
4301        memset(to, 0, size);
4302        return err;
4303}
4304
4305static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4306        .func           = bpf_skb_get_tunnel_opt,
4307        .gpl_only       = false,
4308        .ret_type       = RET_INTEGER,
4309        .arg1_type      = ARG_PTR_TO_CTX,
4310        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4311        .arg3_type      = ARG_CONST_SIZE,
4312};
4313
4314static struct metadata_dst __percpu *md_dst;
4315
4316BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4317           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4318{
4319        struct metadata_dst *md = this_cpu_ptr(md_dst);
4320        u8 compat[sizeof(struct bpf_tunnel_key)];
4321        struct ip_tunnel_info *info;
4322
4323        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4324                               BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4325                return -EINVAL;
4326        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4327                switch (size) {
4328                case offsetof(struct bpf_tunnel_key, tunnel_label):
4329                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4330                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4331                        /* Fixup deprecated structure layouts here, so we have
4332                         * a common path later on.
4333                         */
4334                        memcpy(compat, from, size);
4335                        memset(compat + size, 0, sizeof(compat) - size);
4336                        from = (const struct bpf_tunnel_key *) compat;
4337                        break;
4338                default:
4339                        return -EINVAL;
4340                }
4341        }
4342        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4343                     from->tunnel_ext))
4344                return -EINVAL;
4345
4346        skb_dst_drop(skb);
4347        dst_hold((struct dst_entry *) md);
4348        skb_dst_set(skb, (struct dst_entry *) md);
4349
4350        info = &md->u.tun_info;
4351        memset(info, 0, sizeof(*info));
4352        info->mode = IP_TUNNEL_INFO_TX;
4353
4354        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4355        if (flags & BPF_F_DONT_FRAGMENT)
4356                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4357        if (flags & BPF_F_ZERO_CSUM_TX)
4358                info->key.tun_flags &= ~TUNNEL_CSUM;
4359        if (flags & BPF_F_SEQ_NUMBER)
4360                info->key.tun_flags |= TUNNEL_SEQ;
4361
4362        info->key.tun_id = cpu_to_be64(from->tunnel_id);
4363        info->key.tos = from->tunnel_tos;
4364        info->key.ttl = from->tunnel_ttl;
4365
4366        if (flags & BPF_F_TUNINFO_IPV6) {
4367                info->mode |= IP_TUNNEL_INFO_IPV6;
4368                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4369                       sizeof(from->remote_ipv6));
4370                info->key.label = cpu_to_be32(from->tunnel_label) &
4371                                  IPV6_FLOWLABEL_MASK;
4372        } else {
4373                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4374        }
4375
4376        return 0;
4377}
4378
4379static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4380        .func           = bpf_skb_set_tunnel_key,
4381        .gpl_only       = false,
4382        .ret_type       = RET_INTEGER,
4383        .arg1_type      = ARG_PTR_TO_CTX,
4384        .arg2_type      = ARG_PTR_TO_MEM,
4385        .arg3_type      = ARG_CONST_SIZE,
4386        .arg4_type      = ARG_ANYTHING,
4387};
4388
4389BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4390           const u8 *, from, u32, size)
4391{
4392        struct ip_tunnel_info *info = skb_tunnel_info(skb);
4393        const struct metadata_dst *md = this_cpu_ptr(md_dst);
4394
4395        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4396                return -EINVAL;
4397        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4398                return -ENOMEM;
4399
4400        ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4401
4402        return 0;
4403}
4404
4405static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4406        .func           = bpf_skb_set_tunnel_opt,
4407        .gpl_only       = false,
4408        .ret_type       = RET_INTEGER,
4409        .arg1_type      = ARG_PTR_TO_CTX,
4410        .arg2_type      = ARG_PTR_TO_MEM,
4411        .arg3_type      = ARG_CONST_SIZE,
4412};
4413
4414static const struct bpf_func_proto *
4415bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4416{
4417        if (!md_dst) {
4418                struct metadata_dst __percpu *tmp;
4419
4420                tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4421                                                METADATA_IP_TUNNEL,
4422                                                GFP_KERNEL);
4423                if (!tmp)
4424                        return NULL;
4425                if (cmpxchg(&md_dst, NULL, tmp))
4426                        metadata_dst_free_percpu(tmp);
4427        }
4428
4429        switch (which) {
4430        case BPF_FUNC_skb_set_tunnel_key:
4431                return &bpf_skb_set_tunnel_key_proto;
4432        case BPF_FUNC_skb_set_tunnel_opt:
4433                return &bpf_skb_set_tunnel_opt_proto;
4434        default:
4435                return NULL;
4436        }
4437}
4438
4439BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4440           u32, idx)
4441{
4442        struct bpf_array *array = container_of(map, struct bpf_array, map);
4443        struct cgroup *cgrp;
4444        struct sock *sk;
4445
4446        sk = skb_to_full_sk(skb);
4447        if (!sk || !sk_fullsock(sk))
4448                return -ENOENT;
4449        if (unlikely(idx >= array->map.max_entries))
4450                return -E2BIG;
4451
4452        cgrp = READ_ONCE(array->ptrs[idx]);
4453        if (unlikely(!cgrp))
4454                return -EAGAIN;
4455
4456        return sk_under_cgroup_hierarchy(sk, cgrp);
4457}
4458
4459static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4460        .func           = bpf_skb_under_cgroup,
4461        .gpl_only       = false,
4462        .ret_type       = RET_INTEGER,
4463        .arg1_type      = ARG_PTR_TO_CTX,
4464        .arg2_type      = ARG_CONST_MAP_PTR,
4465        .arg3_type      = ARG_ANYTHING,
4466};
4467
4468#ifdef CONFIG_SOCK_CGROUP_DATA
4469static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4470{
4471        struct cgroup *cgrp;
4472
4473        sk = sk_to_full_sk(sk);
4474        if (!sk || !sk_fullsock(sk))
4475                return 0;
4476
4477        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4478        return cgroup_id(cgrp);
4479}
4480
4481BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4482{
4483        return __bpf_sk_cgroup_id(skb->sk);
4484}
4485
4486static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4487        .func           = bpf_skb_cgroup_id,
4488        .gpl_only       = false,
4489        .ret_type       = RET_INTEGER,
4490        .arg1_type      = ARG_PTR_TO_CTX,
4491};
4492
4493static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4494                                              int ancestor_level)
4495{
4496        struct cgroup *ancestor;
4497        struct cgroup *cgrp;
4498
4499        sk = sk_to_full_sk(sk);
4500        if (!sk || !sk_fullsock(sk))
4501                return 0;
4502
4503        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4504        ancestor = cgroup_ancestor(cgrp, ancestor_level);
4505        if (!ancestor)
4506                return 0;
4507
4508        return cgroup_id(ancestor);
4509}
4510
4511BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4512           ancestor_level)
4513{
4514        return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4515}
4516
4517static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4518        .func           = bpf_skb_ancestor_cgroup_id,
4519        .gpl_only       = false,
4520        .ret_type       = RET_INTEGER,
4521        .arg1_type      = ARG_PTR_TO_CTX,
4522        .arg2_type      = ARG_ANYTHING,
4523};
4524
4525BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4526{
4527        return __bpf_sk_cgroup_id(sk);
4528}
4529
4530static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4531        .func           = bpf_sk_cgroup_id,
4532        .gpl_only       = false,
4533        .ret_type       = RET_INTEGER,
4534        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4535};
4536
4537BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4538{
4539        return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4540}
4541
4542static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4543        .func           = bpf_sk_ancestor_cgroup_id,
4544        .gpl_only       = false,
4545        .ret_type       = RET_INTEGER,
4546        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4547        .arg2_type      = ARG_ANYTHING,
4548};
4549#endif
4550
4551static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4552                                  unsigned long off, unsigned long len)
4553{
4554        memcpy(dst_buff, src_buff + off, len);
4555        return 0;
4556}
4557
4558BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4559           u64, flags, void *, meta, u64, meta_size)
4560{
4561        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4562
4563        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4564                return -EINVAL;
4565        if (unlikely(!xdp ||
4566                     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4567                return -EFAULT;
4568
4569        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4570                                xdp_size, bpf_xdp_copy);
4571}
4572
4573static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4574        .func           = bpf_xdp_event_output,
4575        .gpl_only       = true,
4576        .ret_type       = RET_INTEGER,
4577        .arg1_type      = ARG_PTR_TO_CTX,
4578        .arg2_type      = ARG_CONST_MAP_PTR,
4579        .arg3_type      = ARG_ANYTHING,
4580        .arg4_type      = ARG_PTR_TO_MEM,
4581        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4582};
4583
4584BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4585
4586const struct bpf_func_proto bpf_xdp_output_proto = {
4587        .func           = bpf_xdp_event_output,
4588        .gpl_only       = true,
4589        .ret_type       = RET_INTEGER,
4590        .arg1_type      = ARG_PTR_TO_BTF_ID,
4591        .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4592        .arg2_type      = ARG_CONST_MAP_PTR,
4593        .arg3_type      = ARG_ANYTHING,
4594        .arg4_type      = ARG_PTR_TO_MEM,
4595        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4596};
4597
4598BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4599{
4600        return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4601}
4602
4603static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4604        .func           = bpf_get_socket_cookie,
4605        .gpl_only       = false,
4606        .ret_type       = RET_INTEGER,
4607        .arg1_type      = ARG_PTR_TO_CTX,
4608};
4609
4610BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4611{
4612        return __sock_gen_cookie(ctx->sk);
4613}
4614
4615static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4616        .func           = bpf_get_socket_cookie_sock_addr,
4617        .gpl_only       = false,
4618        .ret_type       = RET_INTEGER,
4619        .arg1_type      = ARG_PTR_TO_CTX,
4620};
4621
4622BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4623{
4624        return __sock_gen_cookie(ctx);
4625}
4626
4627static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4628        .func           = bpf_get_socket_cookie_sock,
4629        .gpl_only       = false,
4630        .ret_type       = RET_INTEGER,
4631        .arg1_type      = ARG_PTR_TO_CTX,
4632};
4633
4634BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4635{
4636        return __sock_gen_cookie(ctx->sk);
4637}
4638
4639static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4640        .func           = bpf_get_socket_cookie_sock_ops,
4641        .gpl_only       = false,
4642        .ret_type       = RET_INTEGER,
4643        .arg1_type      = ARG_PTR_TO_CTX,
4644};
4645
4646static u64 __bpf_get_netns_cookie(struct sock *sk)
4647{
4648#ifdef CONFIG_NET_NS
4649        return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4650#else
4651        return 0;
4652#endif
4653}
4654
4655BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656{
4657        return __bpf_get_netns_cookie(ctx);
4658}
4659
4660static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661        .func           = bpf_get_netns_cookie_sock,
4662        .gpl_only       = false,
4663        .ret_type       = RET_INTEGER,
4664        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4665};
4666
4667BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668{
4669        return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670}
4671
4672static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673        .func           = bpf_get_netns_cookie_sock_addr,
4674        .gpl_only       = false,
4675        .ret_type       = RET_INTEGER,
4676        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4677};
4678
4679BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4680{
4681        struct sock *sk = sk_to_full_sk(skb->sk);
4682        kuid_t kuid;
4683
4684        if (!sk || !sk_fullsock(sk))
4685                return overflowuid;
4686        kuid = sock_net_uid(sock_net(sk), sk);
4687        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4688}
4689
4690static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4691        .func           = bpf_get_socket_uid,
4692        .gpl_only       = false,
4693        .ret_type       = RET_INTEGER,
4694        .arg1_type      = ARG_PTR_TO_CTX,
4695};
4696
4697static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4698                           char *optval, int optlen)
4699{
4700        char devname[IFNAMSIZ];
4701        int val, valbool;
4702        struct net *net;
4703        int ifindex;
4704        int ret = 0;
4705
4706        if (!sk_fullsock(sk))
4707                return -EINVAL;
4708
4709        sock_owned_by_me(sk);
4710
4711        if (level == SOL_SOCKET) {
4712                if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4713                        return -EINVAL;
4714                val = *((int *)optval);
4715                valbool = val ? 1 : 0;
4716
4717                /* Only some socketops are supported */
4718                switch (optname) {
4719                case SO_RCVBUF:
4720                        val = min_t(u32, val, sysctl_rmem_max);
4721                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4722                        WRITE_ONCE(sk->sk_rcvbuf,
4723                                   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4724                        break;
4725                case SO_SNDBUF:
4726                        val = min_t(u32, val, sysctl_wmem_max);
4727                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4728                        WRITE_ONCE(sk->sk_sndbuf,
4729                                   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4730                        break;
4731                case SO_MAX_PACING_RATE: /* 32bit version */
4732                        if (val != ~0U)
4733                                cmpxchg(&sk->sk_pacing_status,
4734                                        SK_PACING_NONE,
4735                                        SK_PACING_NEEDED);
4736                        sk->sk_max_pacing_rate = (val == ~0U) ?
4737                                                 ~0UL : (unsigned int)val;
4738                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4739                                                 sk->sk_max_pacing_rate);
4740                        break;
4741                case SO_PRIORITY:
4742                        sk->sk_priority = val;
4743                        break;
4744                case SO_RCVLOWAT:
4745                        if (val < 0)
4746                                val = INT_MAX;
4747                        WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4748                        break;
4749                case SO_MARK:
4750                        if (sk->sk_mark != val) {
4751                                sk->sk_mark = val;
4752                                sk_dst_reset(sk);
4753                        }
4754                        break;
4755                case SO_BINDTODEVICE:
4756                        optlen = min_t(long, optlen, IFNAMSIZ - 1);
4757                        strncpy(devname, optval, optlen);
4758                        devname[optlen] = 0;
4759
4760                        ifindex = 0;
4761                        if (devname[0] != '\0') {
4762                                struct net_device *dev;
4763
4764                                ret = -ENODEV;
4765
4766                                net = sock_net(sk);
4767                                dev = dev_get_by_name(net, devname);
4768                                if (!dev)
4769                                        break;
4770                                ifindex = dev->ifindex;
4771                                dev_put(dev);
4772                        }
4773                        ret = sock_bindtoindex(sk, ifindex, false);
4774                        break;
4775                case SO_KEEPALIVE:
4776                        if (sk->sk_prot->keepalive)
4777                                sk->sk_prot->keepalive(sk, valbool);
4778                        sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4779                        break;
4780                default:
4781                        ret = -EINVAL;
4782                }
4783#ifdef CONFIG_INET
4784        } else if (level == SOL_IP) {
4785                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4786                        return -EINVAL;
4787
4788                val = *((int *)optval);
4789                /* Only some options are supported */
4790                switch (optname) {
4791                case IP_TOS:
4792                        if (val < -1 || val > 0xff) {
4793                                ret = -EINVAL;
4794                        } else {
4795                                struct inet_sock *inet = inet_sk(sk);
4796
4797                                if (val == -1)
4798                                        val = 0;
4799                                inet->tos = val;
4800                        }
4801                        break;
4802                default:
4803                        ret = -EINVAL;
4804                }
4805#if IS_ENABLED(CONFIG_IPV6)
4806        } else if (level == SOL_IPV6) {
4807                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4808                        return -EINVAL;
4809
4810                val = *((int *)optval);
4811                /* Only some options are supported */
4812                switch (optname) {
4813                case IPV6_TCLASS:
4814                        if (val < -1 || val > 0xff) {
4815                                ret = -EINVAL;
4816                        } else {
4817                                struct ipv6_pinfo *np = inet6_sk(sk);
4818
4819                                if (val == -1)
4820                                        val = 0;
4821                                np->tclass = val;
4822                        }
4823                        break;
4824                default:
4825                        ret = -EINVAL;
4826                }
4827#endif
4828        } else if (level == SOL_TCP &&
4829                   sk->sk_prot->setsockopt == tcp_setsockopt) {
4830                if (optname == TCP_CONGESTION) {
4831                        char name[TCP_CA_NAME_MAX];
4832
4833                        strncpy(name, optval, min_t(long, optlen,
4834                                                    TCP_CA_NAME_MAX-1));
4835                        name[TCP_CA_NAME_MAX-1] = 0;
4836                        ret = tcp_set_congestion_control(sk, name, false, true);
4837                } else {
4838                        struct inet_connection_sock *icsk = inet_csk(sk);
4839                        struct tcp_sock *tp = tcp_sk(sk);
4840                        unsigned long timeout;
4841
4842                        if (optlen != sizeof(int))
4843                                return -EINVAL;
4844
4845                        val = *((int *)optval);
4846                        /* Only some options are supported */
4847                        switch (optname) {
4848                        case TCP_BPF_IW:
4849                                if (val <= 0 || tp->data_segs_out > tp->syn_data)
4850                                        ret = -EINVAL;
4851                                else
4852                                        tp->snd_cwnd = val;
4853                                break;
4854                        case TCP_BPF_SNDCWND_CLAMP:
4855                                if (val <= 0) {
4856                                        ret = -EINVAL;
4857                                } else {
4858                                        tp->snd_cwnd_clamp = val;
4859                                        tp->snd_ssthresh = val;
4860                                }
4861                                break;
4862                        case TCP_BPF_DELACK_MAX:
4863                                timeout = usecs_to_jiffies(val);
4864                                if (timeout > TCP_DELACK_MAX ||
4865                                    timeout < TCP_TIMEOUT_MIN)
4866                                        return -EINVAL;
4867                                inet_csk(sk)->icsk_delack_max = timeout;
4868                                break;
4869                        case TCP_BPF_RTO_MIN:
4870                                timeout = usecs_to_jiffies(val);
4871                                if (timeout > TCP_RTO_MIN ||
4872                                    timeout < TCP_TIMEOUT_MIN)
4873                                        return -EINVAL;
4874                                inet_csk(sk)->icsk_rto_min = timeout;
4875                                break;
4876                        case TCP_SAVE_SYN:
4877                                if (val < 0 || val > 1)
4878                                        ret = -EINVAL;
4879                                else
4880                                        tp->save_syn = val;
4881                                break;
4882                        case TCP_KEEPIDLE:
4883                                ret = tcp_sock_set_keepidle_locked(sk, val);
4884                                break;
4885                        case TCP_KEEPINTVL:
4886                                if (val < 1 || val > MAX_TCP_KEEPINTVL)
4887                                        ret = -EINVAL;
4888                                else
4889                                        tp->keepalive_intvl = val * HZ;
4890                                break;
4891                        case TCP_KEEPCNT:
4892                                if (val < 1 || val > MAX_TCP_KEEPCNT)
4893                                        ret = -EINVAL;
4894                                else
4895                                        tp->keepalive_probes = val;
4896                                break;
4897                        case TCP_SYNCNT:
4898                                if (val < 1 || val > MAX_TCP_SYNCNT)
4899                                        ret = -EINVAL;
4900                                else
4901                                        icsk->icsk_syn_retries = val;
4902                                break;
4903                        case TCP_USER_TIMEOUT:
4904                                if (val < 0)
4905                                        ret = -EINVAL;
4906                                else
4907                                        icsk->icsk_user_timeout = val;
4908                                break;
4909                        case TCP_NOTSENT_LOWAT:
4910                                tp->notsent_lowat = val;
4911                                sk->sk_write_space(sk);
4912                                break;
4913                        default:
4914                                ret = -EINVAL;
4915                        }
4916                }
4917#endif
4918        } else {
4919                ret = -EINVAL;
4920        }
4921        return ret;
4922}
4923
4924static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4925                           char *optval, int optlen)
4926{
4927        if (!sk_fullsock(sk))
4928                goto err_clear;
4929
4930        sock_owned_by_me(sk);
4931
4932#ifdef CONFIG_INET
4933        if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4934                struct inet_connection_sock *icsk;
4935                struct tcp_sock *tp;
4936
4937                switch (optname) {
4938                case TCP_CONGESTION:
4939                        icsk = inet_csk(sk);
4940
4941                        if (!icsk->icsk_ca_ops || optlen <= 1)
4942                                goto err_clear;
4943                        strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4944                        optval[optlen - 1] = 0;
4945                        break;
4946                case TCP_SAVED_SYN:
4947                        tp = tcp_sk(sk);
4948
4949                        if (optlen <= 0 || !tp->saved_syn ||
4950                            optlen > tcp_saved_syn_len(tp->saved_syn))
4951                                goto err_clear;
4952                        memcpy(optval, tp->saved_syn->data, optlen);
4953                        break;
4954                default:
4955                        goto err_clear;
4956                }
4957        } else if (level == SOL_IP) {
4958                struct inet_sock *inet = inet_sk(sk);
4959
4960                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4961                        goto err_clear;
4962
4963                /* Only some options are supported */
4964                switch (optname) {
4965                case IP_TOS:
4966                        *((int *)optval) = (int)inet->tos;
4967                        break;
4968                default:
4969                        goto err_clear;
4970                }
4971#if IS_ENABLED(CONFIG_IPV6)
4972        } else if (level == SOL_IPV6) {
4973                struct ipv6_pinfo *np = inet6_sk(sk);
4974
4975                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4976                        goto err_clear;
4977
4978                /* Only some options are supported */
4979                switch (optname) {
4980                case IPV6_TCLASS:
4981                        *((int *)optval) = (int)np->tclass;
4982                        break;
4983                default:
4984                        goto err_clear;
4985                }
4986#endif
4987        } else {
4988                goto err_clear;
4989        }
4990        return 0;
4991#endif
4992err_clear:
4993        memset(optval, 0, optlen);
4994        return -EINVAL;
4995}
4996
4997BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4998           int, level, int, optname, char *, optval, int, optlen)
4999{
5000        return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5001}
5002
5003static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5004        .func           = bpf_sock_addr_setsockopt,
5005        .gpl_only       = false,
5006        .ret_type       = RET_INTEGER,
5007        .arg1_type      = ARG_PTR_TO_CTX,
5008        .arg2_type      = ARG_ANYTHING,
5009        .arg3_type      = ARG_ANYTHING,
5010        .arg4_type      = ARG_PTR_TO_MEM,
5011        .arg5_type      = ARG_CONST_SIZE,
5012};
5013
5014BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5015           int, level, int, optname, char *, optval, int, optlen)
5016{
5017        return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5018}
5019
5020static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5021        .func           = bpf_sock_addr_getsockopt,
5022        .gpl_only       = false,
5023        .ret_type       = RET_INTEGER,
5024        .arg1_type      = ARG_PTR_TO_CTX,
5025        .arg2_type      = ARG_ANYTHING,
5026        .arg3_type      = ARG_ANYTHING,
5027        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5028        .arg5_type      = ARG_CONST_SIZE,
5029};
5030
5031BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5032           int, level, int, optname, char *, optval, int, optlen)
5033{
5034        return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5035}
5036
5037static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5038        .func           = bpf_sock_ops_setsockopt,
5039        .gpl_only       = false,
5040        .ret_type       = RET_INTEGER,
5041        .arg1_type      = ARG_PTR_TO_CTX,
5042        .arg2_type      = ARG_ANYTHING,
5043        .arg3_type      = ARG_ANYTHING,
5044        .arg4_type      = ARG_PTR_TO_MEM,
5045        .arg5_type      = ARG_CONST_SIZE,
5046};
5047
5048static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5049                                int optname, const u8 **start)
5050{
5051        struct sk_buff *syn_skb = bpf_sock->syn_skb;
5052        const u8 *hdr_start;
5053        int ret;
5054
5055        if (syn_skb) {
5056                /* sk is a request_sock here */
5057
5058                if (optname == TCP_BPF_SYN) {
5059                        hdr_start = syn_skb->data;
5060                        ret = tcp_hdrlen(syn_skb);
5061                } else if (optname == TCP_BPF_SYN_IP) {
5062                        hdr_start = skb_network_header(syn_skb);
5063                        ret = skb_network_header_len(syn_skb) +
5064                                tcp_hdrlen(syn_skb);
5065                } else {
5066                        /* optname == TCP_BPF_SYN_MAC */
5067                        hdr_start = skb_mac_header(syn_skb);
5068                        ret = skb_mac_header_len(syn_skb) +
5069                                skb_network_header_len(syn_skb) +
5070                                tcp_hdrlen(syn_skb);
5071                }
5072        } else {
5073                struct sock *sk = bpf_sock->sk;
5074                struct saved_syn *saved_syn;
5075
5076                if (sk->sk_state == TCP_NEW_SYN_RECV)
5077                        /* synack retransmit. bpf_sock->syn_skb will
5078                         * not be available.  It has to resort to
5079                         * saved_syn (if it is saved).
5080                         */
5081                        saved_syn = inet_reqsk(sk)->saved_syn;
5082                else
5083                        saved_syn = tcp_sk(sk)->saved_syn;
5084
5085                if (!saved_syn)
5086                        return -ENOENT;
5087
5088                if (optname == TCP_BPF_SYN) {
5089                        hdr_start = saved_syn->data +
5090                                saved_syn->mac_hdrlen +
5091                                saved_syn->network_hdrlen;
5092                        ret = saved_syn->tcp_hdrlen;
5093                } else if (optname == TCP_BPF_SYN_IP) {
5094                        hdr_start = saved_syn->data +
5095                                saved_syn->mac_hdrlen;
5096                        ret = saved_syn->network_hdrlen +
5097                                saved_syn->tcp_hdrlen;
5098                } else {
5099                        /* optname == TCP_BPF_SYN_MAC */
5100
5101                        /* TCP_SAVE_SYN may not have saved the mac hdr */
5102                        if (!saved_syn->mac_hdrlen)
5103                                return -ENOENT;
5104
5105                        hdr_start = saved_syn->data;
5106                        ret = saved_syn->mac_hdrlen +
5107                                saved_syn->network_hdrlen +
5108                                saved_syn->tcp_hdrlen;
5109                }
5110        }
5111
5112        *start = hdr_start;
5113        return ret;
5114}
5115
5116BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5117           int, level, int, optname, char *, optval, int, optlen)
5118{
5119        if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5120            optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5121                int ret, copy_len = 0;
5122                const u8 *start;
5123
5124                ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5125                if (ret > 0) {
5126                        copy_len = ret;
5127                        if (optlen < copy_len) {
5128                                copy_len = optlen;
5129                                ret = -ENOSPC;
5130                        }
5131
5132                        memcpy(optval, start, copy_len);
5133                }
5134
5135                /* Zero out unused buffer at the end */
5136                memset(optval + copy_len, 0, optlen - copy_len);
5137
5138                return ret;
5139        }
5140
5141        return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5142}
5143
5144static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5145        .func           = bpf_sock_ops_getsockopt,
5146        .gpl_only       = false,
5147        .ret_type       = RET_INTEGER,
5148        .arg1_type      = ARG_PTR_TO_CTX,
5149        .arg2_type      = ARG_ANYTHING,
5150        .arg3_type      = ARG_ANYTHING,
5151        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5152        .arg5_type      = ARG_CONST_SIZE,
5153};
5154
5155BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5156           int, argval)
5157{
5158        struct sock *sk = bpf_sock->sk;
5159        int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5160
5161        if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5162                return -EINVAL;
5163
5164        tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5165
5166        return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5167}
5168
5169static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5170        .func           = bpf_sock_ops_cb_flags_set,
5171        .gpl_only       = false,
5172        .ret_type       = RET_INTEGER,
5173        .arg1_type      = ARG_PTR_TO_CTX,
5174        .arg2_type      = ARG_ANYTHING,
5175};
5176
5177const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5178EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5179
5180BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5181           int, addr_len)
5182{
5183#ifdef CONFIG_INET
5184        struct sock *sk = ctx->sk;
5185        u32 flags = BIND_FROM_BPF;
5186        int err;
5187
5188        err = -EINVAL;
5189        if (addr_len < offsetofend(struct sockaddr, sa_family))
5190                return err;
5191        if (addr->sa_family == AF_INET) {
5192                if (addr_len < sizeof(struct sockaddr_in))
5193                        return err;
5194                if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5195                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5196                return __inet_bind(sk, addr, addr_len, flags);
5197#if IS_ENABLED(CONFIG_IPV6)
5198        } else if (addr->sa_family == AF_INET6) {
5199                if (addr_len < SIN6_LEN_RFC2133)
5200                        return err;
5201                if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5202                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5203                /* ipv6_bpf_stub cannot be NULL, since it's called from
5204                 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5205                 */
5206                return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5207#endif /* CONFIG_IPV6 */
5208        }
5209#endif /* CONFIG_INET */
5210
5211        return -EAFNOSUPPORT;
5212}
5213
5214static const struct bpf_func_proto bpf_bind_proto = {
5215        .func           = bpf_bind,
5216        .gpl_only       = false,
5217        .ret_type       = RET_INTEGER,
5218        .arg1_type      = ARG_PTR_TO_CTX,
5219        .arg2_type      = ARG_PTR_TO_MEM,
5220        .arg3_type      = ARG_CONST_SIZE,
5221};
5222
5223#ifdef CONFIG_XFRM
5224BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5225           struct bpf_xfrm_state *, to, u32, size, u64, flags)
5226{
5227        const struct sec_path *sp = skb_sec_path(skb);
5228        const struct xfrm_state *x;
5229
5230        if (!sp || unlikely(index >= sp->len || flags))
5231                goto err_clear;
5232
5233        x = sp->xvec[index];
5234
5235        if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5236                goto err_clear;
5237
5238        to->reqid = x->props.reqid;
5239        to->spi = x->id.spi;
5240        to->family = x->props.family;
5241        to->ext = 0;
5242
5243        if (to->family == AF_INET6) {
5244                memcpy(to->remote_ipv6, x->props.saddr.a6,
5245                       sizeof(to->remote_ipv6));
5246        } else {
5247                to->remote_ipv4 = x->props.saddr.a4;
5248                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5249        }
5250
5251        return 0;
5252err_clear:
5253        memset(to, 0, size);
5254        return -EINVAL;
5255}
5256
5257static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5258        .func           = bpf_skb_get_xfrm_state,
5259        .gpl_only       = false,
5260        .ret_type       = RET_INTEGER,
5261        .arg1_type      = ARG_PTR_TO_CTX,
5262        .arg2_type      = ARG_ANYTHING,
5263        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5264        .arg4_type      = ARG_CONST_SIZE,
5265        .arg5_type      = ARG_ANYTHING,
5266};
5267#endif
5268
5269#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5270static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5271                                  const struct neighbour *neigh,
5272                                  const struct net_device *dev)
5273{
5274        memcpy(params->dmac, neigh->ha, ETH_ALEN);
5275        memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5276        params->h_vlan_TCI = 0;
5277        params->h_vlan_proto = 0;
5278
5279        return 0;
5280}
5281#endif
5282
5283#if IS_ENABLED(CONFIG_INET)
5284static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5285                               u32 flags, bool check_mtu)
5286{
5287        struct fib_nh_common *nhc;
5288        struct in_device *in_dev;
5289        struct neighbour *neigh;
5290        struct net_device *dev;
5291        struct fib_result res;
5292        struct flowi4 fl4;
5293        int err;
5294        u32 mtu;
5295
5296        dev = dev_get_by_index_rcu(net, params->ifindex);
5297        if (unlikely(!dev))
5298                return -ENODEV;
5299
5300        /* verify forwarding is enabled on this interface */
5301        in_dev = __in_dev_get_rcu(dev);
5302        if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5303                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5304
5305        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5306                fl4.flowi4_iif = 1;
5307                fl4.flowi4_oif = params->ifindex;
5308        } else {
5309                fl4.flowi4_iif = params->ifindex;
5310                fl4.flowi4_oif = 0;
5311        }
5312        fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5313        fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5314        fl4.flowi4_flags = 0;
5315
5316        fl4.flowi4_proto = params->l4_protocol;
5317        fl4.daddr = params->ipv4_dst;
5318        fl4.saddr = params->ipv4_src;
5319        fl4.fl4_sport = params->sport;
5320        fl4.fl4_dport = params->dport;
5321        fl4.flowi4_multipath_hash = 0;
5322
5323        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5324                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5325                struct fib_table *tb;
5326
5327                tb = fib_get_table(net, tbid);
5328                if (unlikely(!tb))
5329                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5330
5331                err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5332        } else {
5333                fl4.flowi4_mark = 0;
5334                fl4.flowi4_secid = 0;
5335                fl4.flowi4_tun_key.tun_id = 0;
5336                fl4.flowi4_uid = sock_net_uid(net, NULL);
5337
5338                err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5339        }
5340
5341        if (err) {
5342                /* map fib lookup errors to RTN_ type */
5343                if (err == -EINVAL)
5344                        return BPF_FIB_LKUP_RET_BLACKHOLE;
5345                if (err == -EHOSTUNREACH)
5346                        return BPF_FIB_LKUP_RET_UNREACHABLE;
5347                if (err == -EACCES)
5348                        return BPF_FIB_LKUP_RET_PROHIBIT;
5349
5350                return BPF_FIB_LKUP_RET_NOT_FWDED;
5351        }
5352
5353        if (res.type != RTN_UNICAST)
5354                return BPF_FIB_LKUP_RET_NOT_FWDED;
5355
5356        if (fib_info_num_path(res.fi) > 1)
5357                fib_select_path(net, &res, &fl4, NULL);
5358
5359        if (check_mtu) {
5360                mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5361                if (params->tot_len > mtu)
5362                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5363        }
5364
5365        nhc = res.nhc;
5366
5367        /* do not handle lwt encaps right now */
5368        if (nhc->nhc_lwtstate)
5369                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5370
5371        dev = nhc->nhc_dev;
5372
5373        params->rt_metric = res.fi->fib_priority;
5374        params->ifindex = dev->ifindex;
5375
5376        /* xdp and cls_bpf programs are run in RCU-bh so
5377         * rcu_read_lock_bh is not needed here
5378         */
5379        if (likely(nhc->nhc_gw_family != AF_INET6)) {
5380                if (nhc->nhc_gw_family)
5381                        params->ipv4_dst = nhc->nhc_gw.ipv4;
5382
5383                neigh = __ipv4_neigh_lookup_noref(dev,
5384                                                 (__force u32)params->ipv4_dst);
5385        } else {
5386                struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5387
5388                params->family = AF_INET6;
5389                *dst = nhc->nhc_gw.ipv6;
5390                neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5391        }
5392
5393        if (!neigh)
5394                return BPF_FIB_LKUP_RET_NO_NEIGH;
5395
5396        return bpf_fib_set_fwd_params(params, neigh, dev);
5397}
5398#endif
5399
5400#if IS_ENABLED(CONFIG_IPV6)
5401static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5402                               u32 flags, bool check_mtu)
5403{
5404        struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5405        struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5406        struct fib6_result res = {};
5407        struct neighbour *neigh;
5408        struct net_device *dev;
5409        struct inet6_dev *idev;
5410        struct flowi6 fl6;
5411        int strict = 0;
5412        int oif, err;
5413        u32 mtu;
5414
5415        /* link local addresses are never forwarded */
5416        if (rt6_need_strict(dst) || rt6_need_strict(src))
5417                return BPF_FIB_LKUP_RET_NOT_FWDED;
5418
5419        dev = dev_get_by_index_rcu(net, params->ifindex);
5420        if (unlikely(!dev))
5421                return -ENODEV;
5422
5423        idev = __in6_dev_get_safely(dev);
5424        if (unlikely(!idev || !idev->cnf.forwarding))
5425                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5426
5427        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5428                fl6.flowi6_iif = 1;
5429                oif = fl6.flowi6_oif = params->ifindex;
5430        } else {
5431                oif = fl6.flowi6_iif = params->ifindex;
5432                fl6.flowi6_oif = 0;
5433                strict = RT6_LOOKUP_F_HAS_SADDR;
5434        }
5435        fl6.flowlabel = params->flowinfo;
5436        fl6.flowi6_scope = 0;
5437        fl6.flowi6_flags = 0;
5438        fl6.mp_hash = 0;
5439
5440        fl6.flowi6_proto = params->l4_protocol;
5441        fl6.daddr = *dst;
5442        fl6.saddr = *src;
5443        fl6.fl6_sport = params->sport;
5444        fl6.fl6_dport = params->dport;
5445
5446        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5447                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5448                struct fib6_table *tb;
5449
5450                tb = ipv6_stub->fib6_get_table(net, tbid);
5451                if (unlikely(!tb))
5452                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5453
5454                err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5455                                                   strict);
5456        } else {
5457                fl6.flowi6_mark = 0;
5458                fl6.flowi6_secid = 0;
5459                fl6.flowi6_tun_key.tun_id = 0;
5460                fl6.flowi6_uid = sock_net_uid(net, NULL);
5461
5462                err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5463        }
5464
5465        if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5466                     res.f6i == net->ipv6.fib6_null_entry))
5467                return BPF_FIB_LKUP_RET_NOT_FWDED;
5468
5469        switch (res.fib6_type) {
5470        /* only unicast is forwarded */
5471        case RTN_UNICAST:
5472                break;
5473        case RTN_BLACKHOLE:
5474                return BPF_FIB_LKUP_RET_BLACKHOLE;
5475        case RTN_UNREACHABLE:
5476                return BPF_FIB_LKUP_RET_UNREACHABLE;
5477        case RTN_PROHIBIT:
5478                return BPF_FIB_LKUP_RET_PROHIBIT;
5479        default:
5480                return BPF_FIB_LKUP_RET_NOT_FWDED;
5481        }
5482
5483        ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5484                                    fl6.flowi6_oif != 0, NULL, strict);
5485
5486        if (check_mtu) {
5487                mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5488                if (params->tot_len > mtu)
5489                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5490        }
5491
5492        if (res.nh->fib_nh_lws)
5493                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5494
5495        if (res.nh->fib_nh_gw_family)
5496                *dst = res.nh->fib_nh_gw6;
5497
5498        dev = res.nh->fib_nh_dev;
5499        params->rt_metric = res.f6i->fib6_metric;
5500        params->ifindex = dev->ifindex;
5501
5502        /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5503         * not needed here.
5504         */
5505        neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5506        if (!neigh)
5507                return BPF_FIB_LKUP_RET_NO_NEIGH;
5508
5509        return bpf_fib_set_fwd_params(params, neigh, dev);
5510}
5511#endif
5512
5513BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5514           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5515{
5516        if (plen < sizeof(*params))
5517                return -EINVAL;
5518
5519        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5520                return -EINVAL;
5521
5522        switch (params->family) {
5523#if IS_ENABLED(CONFIG_INET)
5524        case AF_INET:
5525                return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5526                                           flags, true);
5527#endif
5528#if IS_ENABLED(CONFIG_IPV6)
5529        case AF_INET6:
5530                return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5531                                           flags, true);
5532#endif
5533        }
5534        return -EAFNOSUPPORT;
5535}
5536
5537static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5538        .func           = bpf_xdp_fib_lookup,
5539        .gpl_only       = true,
5540        .ret_type       = RET_INTEGER,
5541        .arg1_type      = ARG_PTR_TO_CTX,
5542        .arg2_type      = ARG_PTR_TO_MEM,
5543        .arg3_type      = ARG_CONST_SIZE,
5544        .arg4_type      = ARG_ANYTHING,
5545};
5546
5547BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5548           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5549{
5550        struct net *net = dev_net(skb->dev);
5551        int rc = -EAFNOSUPPORT;
5552
5553        if (plen < sizeof(*params))
5554                return -EINVAL;
5555
5556        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5557                return -EINVAL;
5558
5559        switch (params->family) {
5560#if IS_ENABLED(CONFIG_INET)
5561        case AF_INET:
5562                rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5563                break;
5564#endif
5565#if IS_ENABLED(CONFIG_IPV6)
5566        case AF_INET6:
5567                rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5568                break;
5569#endif
5570        }
5571
5572        if (!rc) {
5573                struct net_device *dev;
5574
5575                dev = dev_get_by_index_rcu(net, params->ifindex);
5576                if (!is_skb_forwardable(dev, skb))
5577                        rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5578        }
5579
5580        return rc;
5581}
5582
5583static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5584        .func           = bpf_skb_fib_lookup,
5585        .gpl_only       = true,
5586        .ret_type       = RET_INTEGER,
5587        .arg1_type      = ARG_PTR_TO_CTX,
5588        .arg2_type      = ARG_PTR_TO_MEM,
5589        .arg3_type      = ARG_CONST_SIZE,
5590        .arg4_type      = ARG_ANYTHING,
5591};
5592
5593#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5594static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5595{
5596        int err;
5597        struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5598
5599        if (!seg6_validate_srh(srh, len, false))
5600                return -EINVAL;
5601
5602        switch (type) {
5603        case BPF_LWT_ENCAP_SEG6_INLINE:
5604                if (skb->protocol != htons(ETH_P_IPV6))
5605                        return -EBADMSG;
5606
5607                err = seg6_do_srh_inline(skb, srh);
5608                break;
5609        case BPF_LWT_ENCAP_SEG6:
5610                skb_reset_inner_headers(skb);
5611                skb->encapsulation = 1;
5612                err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5613                break;
5614        default:
5615                return -EINVAL;
5616        }
5617
5618        bpf_compute_data_pointers(skb);
5619        if (err)
5620                return err;
5621
5622        ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5623        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5624
5625        return seg6_lookup_nexthop(skb, NULL, 0);
5626}
5627#endif /* CONFIG_IPV6_SEG6_BPF */
5628
5629#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5630static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5631                             bool ingress)
5632{
5633        return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5634}
5635#endif
5636
5637BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5638           u32, len)
5639{
5640        switch (type) {
5641#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5642        case BPF_LWT_ENCAP_SEG6:
5643        case BPF_LWT_ENCAP_SEG6_INLINE:
5644                return bpf_push_seg6_encap(skb, type, hdr, len);
5645#endif
5646#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5647        case BPF_LWT_ENCAP_IP:
5648                return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5649#endif
5650        default:
5651                return -EINVAL;
5652        }
5653}
5654
5655BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5656           void *, hdr, u32, len)
5657{
5658        switch (type) {
5659#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5660        case BPF_LWT_ENCAP_IP:
5661                return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5662#endif
5663        default:
5664                return -EINVAL;
5665        }
5666}
5667
5668static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5669        .func           = bpf_lwt_in_push_encap,
5670        .gpl_only       = false,
5671        .ret_type       = RET_INTEGER,
5672        .arg1_type      = ARG_PTR_TO_CTX,
5673        .arg2_type      = ARG_ANYTHING,
5674        .arg3_type      = ARG_PTR_TO_MEM,
5675        .arg4_type      = ARG_CONST_SIZE
5676};
5677
5678static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5679        .func           = bpf_lwt_xmit_push_encap,
5680        .gpl_only       = false,
5681        .ret_type       = RET_INTEGER,
5682        .arg1_type      = ARG_PTR_TO_CTX,
5683        .arg2_type      = ARG_ANYTHING,
5684        .arg3_type      = ARG_PTR_TO_MEM,
5685        .arg4_type      = ARG_CONST_SIZE
5686};
5687
5688#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5689BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5690           const void *, from, u32, len)
5691{
5692        struct seg6_bpf_srh_state *srh_state =
5693                this_cpu_ptr(&seg6_bpf_srh_states);
5694        struct ipv6_sr_hdr *srh = srh_state->srh;
5695        void *srh_tlvs, *srh_end, *ptr;
5696        int srhoff = 0;
5697
5698        if (srh == NULL)
5699                return -EINVAL;
5700
5701        srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5702        srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5703
5704        ptr = skb->data + offset;
5705        if (ptr >= srh_tlvs && ptr + len <= srh_end)
5706                srh_state->valid = false;
5707        else if (ptr < (void *)&srh->flags ||
5708                 ptr + len > (void *)&srh->segments)
5709                return -EFAULT;
5710
5711        if (unlikely(bpf_try_make_writable(skb, offset + len)))
5712                return -EFAULT;
5713        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5714                return -EINVAL;
5715        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5716
5717        memcpy(skb->data + offset, from, len);
5718        return 0;
5719}
5720
5721static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5722        .func           = bpf_lwt_seg6_store_bytes,
5723        .gpl_only       = false,
5724        .ret_type       = RET_INTEGER,
5725        .arg1_type      = ARG_PTR_TO_CTX,
5726        .arg2_type      = ARG_ANYTHING,
5727        .arg3_type      = ARG_PTR_TO_MEM,
5728        .arg4_type      = ARG_CONST_SIZE
5729};
5730
5731static void bpf_update_srh_state(struct sk_buff *skb)
5732{
5733        struct seg6_bpf_srh_state *srh_state =
5734                this_cpu_ptr(&seg6_bpf_srh_states);
5735        int srhoff = 0;
5736
5737        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5738                srh_state->srh = NULL;
5739        } else {
5740                srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5741                srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5742                srh_state->valid = true;
5743        }
5744}
5745
5746BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5747           u32, action, void *, param, u32, param_len)
5748{
5749        struct seg6_bpf_srh_state *srh_state =
5750                this_cpu_ptr(&seg6_bpf_srh_states);
5751        int hdroff = 0;
5752        int err;
5753
5754        switch (action) {
5755        case SEG6_LOCAL_ACTION_END_X:
5756                if (!seg6_bpf_has_valid_srh(skb))
5757                        return -EBADMSG;
5758                if (param_len != sizeof(struct in6_addr))
5759                        return -EINVAL;
5760                return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5761        case SEG6_LOCAL_ACTION_END_T:
5762                if (!seg6_bpf_has_valid_srh(skb))
5763                        return -EBADMSG;
5764                if (param_len != sizeof(int))
5765                        return -EINVAL;
5766                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5767        case SEG6_LOCAL_ACTION_END_DT6:
5768                if (!seg6_bpf_has_valid_srh(skb))
5769                        return -EBADMSG;
5770                if (param_len != sizeof(int))
5771                        return -EINVAL;
5772
5773                if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5774                        return -EBADMSG;
5775                if (!pskb_pull(skb, hdroff))
5776                        return -EBADMSG;
5777
5778                skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5779                skb_reset_network_header(skb);
5780                skb_reset_transport_header(skb);
5781                skb->encapsulation = 0;
5782
5783                bpf_compute_data_pointers(skb);
5784                bpf_update_srh_state(skb);
5785                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5786        case SEG6_LOCAL_ACTION_END_B6:
5787                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5788                        return -EBADMSG;
5789                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5790                                          param, param_len);
5791                if (!err)
5792                        bpf_update_srh_state(skb);
5793
5794                return err;
5795        case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5796                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5797                        return -EBADMSG;
5798                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5799                                          param, param_len);
5800                if (!err)
5801                        bpf_update_srh_state(skb);
5802
5803                return err;
5804        default:
5805                return -EINVAL;
5806        }
5807}
5808
5809static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5810        .func           = bpf_lwt_seg6_action,
5811        .gpl_only       = false,
5812        .ret_type       = RET_INTEGER,
5813        .arg1_type      = ARG_PTR_TO_CTX,
5814        .arg2_type      = ARG_ANYTHING,
5815        .arg3_type      = ARG_PTR_TO_MEM,
5816        .arg4_type      = ARG_CONST_SIZE
5817};
5818
5819BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5820           s32, len)
5821{
5822        struct seg6_bpf_srh_state *srh_state =
5823                this_cpu_ptr(&seg6_bpf_srh_states);
5824        struct ipv6_sr_hdr *srh = srh_state->srh;
5825        void *srh_end, *srh_tlvs, *ptr;
5826        struct ipv6hdr *hdr;
5827        int srhoff = 0;
5828        int ret;
5829
5830        if (unlikely(srh == NULL))
5831                return -EINVAL;
5832
5833        srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5834                        ((srh->first_segment + 1) << 4));
5835        srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5836                        srh_state->hdrlen);
5837        ptr = skb->data + offset;
5838
5839        if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5840                return -EFAULT;
5841        if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5842                return -EFAULT;
5843
5844        if (len > 0) {
5845                ret = skb_cow_head(skb, len);
5846                if (unlikely(ret < 0))
5847                        return ret;
5848
5849                ret = bpf_skb_net_hdr_push(skb, offset, len);
5850        } else {
5851                ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5852        }
5853
5854        bpf_compute_data_pointers(skb);
5855        if (unlikely(ret < 0))
5856                return ret;
5857
5858        hdr = (struct ipv6hdr *)skb->data;
5859        hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5860
5861        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5862                return -EINVAL;
5863        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5864        srh_state->hdrlen += len;
5865        srh_state->valid = false;
5866        return 0;
5867}
5868
5869static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5870        .func           = bpf_lwt_seg6_adjust_srh,
5871        .gpl_only       = false,
5872        .ret_type       = RET_INTEGER,
5873        .arg1_type      = ARG_PTR_TO_CTX,
5874        .arg2_type      = ARG_ANYTHING,
5875        .arg3_type      = ARG_ANYTHING,
5876};
5877#endif /* CONFIG_IPV6_SEG6_BPF */
5878
5879#ifdef CONFIG_INET
5880static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5881                              int dif, int sdif, u8 family, u8 proto)
5882{
5883        bool refcounted = false;
5884        struct sock *sk = NULL;
5885
5886        if (family == AF_INET) {
5887                __be32 src4 = tuple->ipv4.saddr;
5888                __be32 dst4 = tuple->ipv4.daddr;
5889
5890                if (proto == IPPROTO_TCP)
5891                        sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5892                                           src4, tuple->ipv4.sport,
5893                                           dst4, tuple->ipv4.dport,
5894                                           dif, sdif, &refcounted);
5895                else
5896                        sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5897                                               dst4, tuple->ipv4.dport,
5898                                               dif, sdif, &udp_table, NULL);
5899#if IS_ENABLED(CONFIG_IPV6)
5900        } else {
5901                struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5902                struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5903
5904                if (proto == IPPROTO_TCP)
5905                        sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5906                                            src6, tuple->ipv6.sport,
5907                                            dst6, ntohs(tuple->ipv6.dport),
5908                                            dif, sdif, &refcounted);
5909                else if (likely(ipv6_bpf_stub))
5910                        sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5911                                                            src6, tuple->ipv6.sport,
5912                                                            dst6, tuple->ipv6.dport,
5913                                                            dif, sdif,
5914                                                            &udp_table, NULL);
5915#endif
5916        }
5917
5918        if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5919                WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5920                sk = NULL;
5921        }
5922        return sk;
5923}
5924
5925/* bpf_skc_lookup performs the core lookup for different types of sockets,
5926 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5927 * Returns the socket as an 'unsigned long' to simplify the casting in the
5928 * callers to satisfy BPF_CALL declarations.
5929 */
5930static struct sock *
5931__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5932                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5933                 u64 flags)
5934{
5935        struct sock *sk = NULL;
5936        u8 family = AF_UNSPEC;
5937        struct net *net;
5938        int sdif;
5939
5940        if (len == sizeof(tuple->ipv4))
5941                family = AF_INET;
5942        else if (len == sizeof(tuple->ipv6))
5943                family = AF_INET6;
5944        else
5945                return NULL;
5946
5947        if (unlikely(family == AF_UNSPEC || flags ||
5948                     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5949                goto out;
5950
5951        if (family == AF_INET)
5952                sdif = inet_sdif(skb);
5953        else
5954                sdif = inet6_sdif(skb);
5955
5956        if ((s32)netns_id < 0) {
5957                net = caller_net;
5958                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5959        } else {
5960                net = get_net_ns_by_id(caller_net, netns_id);
5961                if (unlikely(!net))
5962                        goto out;
5963                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5964                put_net(net);
5965        }
5966
5967out:
5968        return sk;
5969}
5970
5971static struct sock *
5972__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5973                struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5974                u64 flags)
5975{
5976        struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5977                                           ifindex, proto, netns_id, flags);
5978
5979        if (sk) {
5980                sk = sk_to_full_sk(sk);
5981                if (!sk_fullsock(sk)) {
5982                        sock_gen_put(sk);
5983                        return NULL;
5984                }
5985        }
5986
5987        return sk;
5988}
5989
5990static struct sock *
5991bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5992               u8 proto, u64 netns_id, u64 flags)
5993{
5994        struct net *caller_net;
5995        int ifindex;
5996
5997        if (skb->dev) {
5998                caller_net = dev_net(skb->dev);
5999                ifindex = skb->dev->ifindex;
6000        } else {
6001                caller_net = sock_net(skb->sk);
6002                ifindex = 0;
6003        }
6004
6005        return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6006                                netns_id, flags);
6007}
6008
6009static struct sock *
6010bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6011              u8 proto, u64 netns_id, u64 flags)
6012{
6013        struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6014                                         flags);
6015
6016        if (sk) {
6017                sk = sk_to_full_sk(sk);
6018                if (!sk_fullsock(sk)) {
6019                        sock_gen_put(sk);
6020                        return NULL;
6021                }
6022        }
6023
6024        return sk;
6025}
6026
6027BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6028           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6029{
6030        return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6031                                             netns_id, flags);
6032}
6033
6034static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6035        .func           = bpf_skc_lookup_tcp,
6036        .gpl_only       = false,
6037        .pkt_access     = true,
6038        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6039        .arg1_type      = ARG_PTR_TO_CTX,
6040        .arg2_type      = ARG_PTR_TO_MEM,
6041        .arg3_type      = ARG_CONST_SIZE,
6042        .arg4_type      = ARG_ANYTHING,
6043        .arg5_type      = ARG_ANYTHING,
6044};
6045
6046BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6047           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6048{
6049        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6050                                            netns_id, flags);
6051}
6052
6053static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6054        .func           = bpf_sk_lookup_tcp,
6055        .gpl_only       = false,
6056        .pkt_access     = true,
6057        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6058        .arg1_type      = ARG_PTR_TO_CTX,
6059        .arg2_type      = ARG_PTR_TO_MEM,
6060        .arg3_type      = ARG_CONST_SIZE,
6061        .arg4_type      = ARG_ANYTHING,
6062        .arg5_type      = ARG_ANYTHING,
6063};
6064
6065BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6066           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6067{
6068        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6069                                            netns_id, flags);
6070}
6071
6072static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6073        .func           = bpf_sk_lookup_udp,
6074        .gpl_only       = false,
6075        .pkt_access     = true,
6076        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6077        .arg1_type      = ARG_PTR_TO_CTX,
6078        .arg2_type      = ARG_PTR_TO_MEM,
6079        .arg3_type      = ARG_CONST_SIZE,
6080        .arg4_type      = ARG_ANYTHING,
6081        .arg5_type      = ARG_ANYTHING,
6082};
6083
6084BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6085{
6086        if (sk && sk_is_refcounted(sk))
6087                sock_gen_put(sk);
6088        return 0;
6089}
6090
6091static const struct bpf_func_proto bpf_sk_release_proto = {
6092        .func           = bpf_sk_release,
6093        .gpl_only       = false,
6094        .ret_type       = RET_INTEGER,
6095        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6096};
6097
6098BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6099           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6100{
6101        struct net *caller_net = dev_net(ctx->rxq->dev);
6102        int ifindex = ctx->rxq->dev->ifindex;
6103
6104        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6105                                              ifindex, IPPROTO_UDP, netns_id,
6106                                              flags);
6107}
6108
6109static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6110        .func           = bpf_xdp_sk_lookup_udp,
6111        .gpl_only       = false,
6112        .pkt_access     = true,
6113        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6114        .arg1_type      = ARG_PTR_TO_CTX,
6115        .arg2_type      = ARG_PTR_TO_MEM,
6116        .arg3_type      = ARG_CONST_SIZE,
6117        .arg4_type      = ARG_ANYTHING,
6118        .arg5_type      = ARG_ANYTHING,
6119};
6120
6121BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6122           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6123{
6124        struct net *caller_net = dev_net(ctx->rxq->dev);
6125        int ifindex = ctx->rxq->dev->ifindex;
6126
6127        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6128                                               ifindex, IPPROTO_TCP, netns_id,
6129                                               flags);
6130}
6131
6132static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6133        .func           = bpf_xdp_skc_lookup_tcp,
6134        .gpl_only       = false,
6135        .pkt_access     = true,
6136        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6137        .arg1_type      = ARG_PTR_TO_CTX,
6138        .arg2_type      = ARG_PTR_TO_MEM,
6139        .arg3_type      = ARG_CONST_SIZE,
6140        .arg4_type      = ARG_ANYTHING,
6141        .arg5_type      = ARG_ANYTHING,
6142};
6143
6144BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6145           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6146{
6147        struct net *caller_net = dev_net(ctx->rxq->dev);
6148        int ifindex = ctx->rxq->dev->ifindex;
6149
6150        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6151                                              ifindex, IPPROTO_TCP, netns_id,
6152                                              flags);
6153}
6154
6155static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6156        .func           = bpf_xdp_sk_lookup_tcp,
6157        .gpl_only       = false,
6158        .pkt_access     = true,
6159        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6160        .arg1_type      = ARG_PTR_TO_CTX,
6161        .arg2_type      = ARG_PTR_TO_MEM,
6162        .arg3_type      = ARG_CONST_SIZE,
6163        .arg4_type      = ARG_ANYTHING,
6164        .arg5_type      = ARG_ANYTHING,
6165};
6166
6167BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6168           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6169{
6170        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6171                                               sock_net(ctx->sk), 0,
6172                                               IPPROTO_TCP, netns_id, flags);
6173}
6174
6175static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6176        .func           = bpf_sock_addr_skc_lookup_tcp,
6177        .gpl_only       = false,
6178        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6179        .arg1_type      = ARG_PTR_TO_CTX,
6180        .arg2_type      = ARG_PTR_TO_MEM,
6181        .arg3_type      = ARG_CONST_SIZE,
6182        .arg4_type      = ARG_ANYTHING,
6183        .arg5_type      = ARG_ANYTHING,
6184};
6185
6186BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6187           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6188{
6189        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6190                                              sock_net(ctx->sk), 0, IPPROTO_TCP,
6191                                              netns_id, flags);
6192}
6193
6194static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6195        .func           = bpf_sock_addr_sk_lookup_tcp,
6196        .gpl_only       = false,
6197        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6198        .arg1_type      = ARG_PTR_TO_CTX,
6199        .arg2_type      = ARG_PTR_TO_MEM,
6200        .arg3_type      = ARG_CONST_SIZE,
6201        .arg4_type      = ARG_ANYTHING,
6202        .arg5_type      = ARG_ANYTHING,
6203};
6204
6205BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6206           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6207{
6208        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6209                                              sock_net(ctx->sk), 0, IPPROTO_UDP,
6210                                              netns_id, flags);
6211}
6212
6213static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6214        .func           = bpf_sock_addr_sk_lookup_udp,
6215        .gpl_only       = false,
6216        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6217        .arg1_type      = ARG_PTR_TO_CTX,
6218        .arg2_type      = ARG_PTR_TO_MEM,
6219        .arg3_type      = ARG_CONST_SIZE,
6220        .arg4_type      = ARG_ANYTHING,
6221        .arg5_type      = ARG_ANYTHING,
6222};
6223
6224bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6225                                  struct bpf_insn_access_aux *info)
6226{
6227        if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6228                                          icsk_retransmits))
6229                return false;
6230
6231        if (off % size != 0)
6232                return false;
6233
6234        switch (off) {
6235        case offsetof(struct bpf_tcp_sock, bytes_received):
6236        case offsetof(struct bpf_tcp_sock, bytes_acked):
6237                return size == sizeof(__u64);
6238        default:
6239                return size == sizeof(__u32);
6240        }
6241}
6242
6243u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6244                                    const struct bpf_insn *si,
6245                                    struct bpf_insn *insn_buf,
6246                                    struct bpf_prog *prog, u32 *target_size)
6247{
6248        struct bpf_insn *insn = insn_buf;
6249
6250#define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6251        do {                                                            \
6252                BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6253                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6254                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6255                                      si->dst_reg, si->src_reg,         \
6256                                      offsetof(struct tcp_sock, FIELD)); \
6257        } while (0)
6258
6259#define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6260        do {                                                            \
6261                BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6262                                          FIELD) >                      \
6263                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6264                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6265                                        struct inet_connection_sock,    \
6266                                        FIELD),                         \
6267                                      si->dst_reg, si->src_reg,         \
6268                                      offsetof(                         \
6269                                        struct inet_connection_sock,    \
6270                                        FIELD));                        \
6271        } while (0)
6272
6273        if (insn > insn_buf)
6274                return insn - insn_buf;
6275
6276        switch (si->off) {
6277        case offsetof(struct bpf_tcp_sock, rtt_min):
6278                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6279                             sizeof(struct minmax));
6280                BUILD_BUG_ON(sizeof(struct minmax) <
6281                             sizeof(struct minmax_sample));
6282
6283                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6284                                      offsetof(struct tcp_sock, rtt_min) +
6285                                      offsetof(struct minmax_sample, v));
6286                break;
6287        case offsetof(struct bpf_tcp_sock, snd_cwnd):
6288                BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6289                break;
6290        case offsetof(struct bpf_tcp_sock, srtt_us):
6291                BPF_TCP_SOCK_GET_COMMON(srtt_us);
6292                break;
6293        case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6294                BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6295                break;
6296        case offsetof(struct bpf_tcp_sock, rcv_nxt):
6297                BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6298                break;
6299        case offsetof(struct bpf_tcp_sock, snd_nxt):
6300                BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6301                break;
6302        case offsetof(struct bpf_tcp_sock, snd_una):
6303                BPF_TCP_SOCK_GET_COMMON(snd_una);
6304                break;
6305        case offsetof(struct bpf_tcp_sock, mss_cache):
6306                BPF_TCP_SOCK_GET_COMMON(mss_cache);
6307                break;
6308        case offsetof(struct bpf_tcp_sock, ecn_flags):
6309                BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6310                break;
6311        case offsetof(struct bpf_tcp_sock, rate_delivered):
6312                BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6313                break;
6314        case offsetof(struct bpf_tcp_sock, rate_interval_us):
6315                BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6316                break;
6317        case offsetof(struct bpf_tcp_sock, packets_out):
6318                BPF_TCP_SOCK_GET_COMMON(packets_out);
6319                break;
6320        case offsetof(struct bpf_tcp_sock, retrans_out):
6321                BPF_TCP_SOCK_GET_COMMON(retrans_out);
6322                break;
6323        case offsetof(struct bpf_tcp_sock, total_retrans):
6324                BPF_TCP_SOCK_GET_COMMON(total_retrans);
6325                break;
6326        case offsetof(struct bpf_tcp_sock, segs_in):
6327                BPF_TCP_SOCK_GET_COMMON(segs_in);
6328                break;
6329        case offsetof(struct bpf_tcp_sock, data_segs_in):
6330                BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6331                break;
6332        case offsetof(struct bpf_tcp_sock, segs_out):
6333                BPF_TCP_SOCK_GET_COMMON(segs_out);
6334                break;
6335        case offsetof(struct bpf_tcp_sock, data_segs_out):
6336                BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6337                break;
6338        case offsetof(struct bpf_tcp_sock, lost_out):
6339                BPF_TCP_SOCK_GET_COMMON(lost_out);
6340                break;
6341        case offsetof(struct bpf_tcp_sock, sacked_out):
6342                BPF_TCP_SOCK_GET_COMMON(sacked_out);
6343                break;
6344        case offsetof(struct bpf_tcp_sock, bytes_received):
6345                BPF_TCP_SOCK_GET_COMMON(bytes_received);
6346                break;
6347        case offsetof(struct bpf_tcp_sock, bytes_acked):
6348                BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6349                break;
6350        case offsetof(struct bpf_tcp_sock, dsack_dups):
6351                BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6352                break;
6353        case offsetof(struct bpf_tcp_sock, delivered):
6354                BPF_TCP_SOCK_GET_COMMON(delivered);
6355                break;
6356        case offsetof(struct bpf_tcp_sock, delivered_ce):
6357                BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6358                break;
6359        case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6360                BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6361                break;
6362        }
6363
6364        return insn - insn_buf;
6365}
6366
6367BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6368{
6369        if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6370                return (unsigned long)sk;
6371
6372        return (unsigned long)NULL;
6373}
6374
6375const struct bpf_func_proto bpf_tcp_sock_proto = {
6376        .func           = bpf_tcp_sock,
6377        .gpl_only       = false,
6378        .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6379        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6380};
6381
6382BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6383{
6384        sk = sk_to_full_sk(sk);
6385
6386        if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6387                return (unsigned long)sk;
6388
6389        return (unsigned long)NULL;
6390}
6391
6392static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6393        .func           = bpf_get_listener_sock,
6394        .gpl_only       = false,
6395        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6396        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6397};
6398
6399BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6400{
6401        unsigned int iphdr_len;
6402
6403        switch (skb_protocol(skb, true)) {
6404        case cpu_to_be16(ETH_P_IP):
6405                iphdr_len = sizeof(struct iphdr);
6406                break;
6407        case cpu_to_be16(ETH_P_IPV6):
6408                iphdr_len = sizeof(struct ipv6hdr);
6409                break;
6410        default:
6411                return 0;
6412        }
6413
6414        if (skb_headlen(skb) < iphdr_len)
6415                return 0;
6416
6417        if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6418                return 0;
6419
6420        return INET_ECN_set_ce(skb);
6421}
6422
6423bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6424                                  struct bpf_insn_access_aux *info)
6425{
6426        if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6427                return false;
6428
6429        if (off % size != 0)
6430                return false;
6431
6432        switch (off) {
6433        default:
6434                return size == sizeof(__u32);
6435        }
6436}
6437
6438u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6439                                    const struct bpf_insn *si,
6440                                    struct bpf_insn *insn_buf,
6441                                    struct bpf_prog *prog, u32 *target_size)
6442{
6443        struct bpf_insn *insn = insn_buf;
6444
6445#define BPF_XDP_SOCK_GET(FIELD)                                         \
6446        do {                                                            \
6447                BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6448                             sizeof_field(struct bpf_xdp_sock, FIELD)); \
6449                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6450                                      si->dst_reg, si->src_reg,         \
6451                                      offsetof(struct xdp_sock, FIELD)); \
6452        } while (0)
6453
6454        switch (si->off) {
6455        case offsetof(struct bpf_xdp_sock, queue_id):
6456                BPF_XDP_SOCK_GET(queue_id);
6457                break;
6458        }
6459
6460        return insn - insn_buf;
6461}
6462
6463static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6464        .func           = bpf_skb_ecn_set_ce,
6465        .gpl_only       = false,
6466        .ret_type       = RET_INTEGER,
6467        .arg1_type      = ARG_PTR_TO_CTX,
6468};
6469
6470BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6471           struct tcphdr *, th, u32, th_len)
6472{
6473#ifdef CONFIG_SYN_COOKIES
6474        u32 cookie;
6475        int ret;
6476
6477        if (unlikely(!sk || th_len < sizeof(*th)))
6478                return -EINVAL;
6479
6480        /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6481        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6482                return -EINVAL;
6483
6484        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6485                return -EINVAL;
6486
6487        if (!th->ack || th->rst || th->syn)
6488                return -ENOENT;
6489
6490        if (tcp_synq_no_recent_overflow(sk))
6491                return -ENOENT;
6492
6493        cookie = ntohl(th->ack_seq) - 1;
6494
6495        switch (sk->sk_family) {
6496        case AF_INET:
6497                if (unlikely(iph_len < sizeof(struct iphdr)))
6498                        return -EINVAL;
6499
6500                ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6501                break;
6502
6503#if IS_BUILTIN(CONFIG_IPV6)
6504        case AF_INET6:
6505                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6506                        return -EINVAL;
6507
6508                ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6509                break;
6510#endif /* CONFIG_IPV6 */
6511
6512        default:
6513                return -EPROTONOSUPPORT;
6514        }
6515
6516        if (ret > 0)
6517                return 0;
6518
6519        return -ENOENT;
6520#else
6521        return -ENOTSUPP;
6522#endif
6523}
6524
6525static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6526        .func           = bpf_tcp_check_syncookie,
6527        .gpl_only       = true,
6528        .pkt_access     = true,
6529        .ret_type       = RET_INTEGER,
6530        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6531        .arg2_type      = ARG_PTR_TO_MEM,
6532        .arg3_type      = ARG_CONST_SIZE,
6533        .arg4_type      = ARG_PTR_TO_MEM,
6534        .arg5_type      = ARG_CONST_SIZE,
6535};
6536
6537BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6538           struct tcphdr *, th, u32, th_len)
6539{
6540#ifdef CONFIG_SYN_COOKIES
6541        u32 cookie;
6542        u16 mss;
6543
6544        if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6545                return -EINVAL;
6546
6547        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6548                return -EINVAL;
6549
6550        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6551                return -ENOENT;
6552
6553        if (!th->syn || th->ack || th->fin || th->rst)
6554                return -EINVAL;
6555
6556        if (unlikely(iph_len < sizeof(struct iphdr)))
6557                return -EINVAL;
6558
6559        /* Both struct iphdr and struct ipv6hdr have the version field at the
6560         * same offset so we can cast to the shorter header (struct iphdr).
6561         */
6562        switch (((struct iphdr *)iph)->version) {
6563        case 4:
6564                if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6565                        return -EINVAL;
6566
6567                mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6568                break;
6569
6570#if IS_BUILTIN(CONFIG_IPV6)
6571        case 6:
6572                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6573                        return -EINVAL;
6574
6575                if (sk->sk_family != AF_INET6)
6576                        return -EINVAL;
6577
6578                mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6579                break;
6580#endif /* CONFIG_IPV6 */
6581
6582        default:
6583                return -EPROTONOSUPPORT;
6584        }
6585        if (mss == 0)
6586                return -ENOENT;
6587
6588        return cookie | ((u64)mss << 32);
6589#else
6590        return -EOPNOTSUPP;
6591#endif /* CONFIG_SYN_COOKIES */
6592}
6593
6594static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6595        .func           = bpf_tcp_gen_syncookie,
6596        .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6597        .pkt_access     = true,
6598        .ret_type       = RET_INTEGER,
6599        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6600        .arg2_type      = ARG_PTR_TO_MEM,
6601        .arg3_type      = ARG_CONST_SIZE,
6602        .arg4_type      = ARG_PTR_TO_MEM,
6603        .arg5_type      = ARG_CONST_SIZE,
6604};
6605
6606BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6607{
6608        if (!sk || flags != 0)
6609                return -EINVAL;
6610        if (!skb_at_tc_ingress(skb))
6611                return -EOPNOTSUPP;
6612        if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6613                return -ENETUNREACH;
6614        if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6615                return -ESOCKTNOSUPPORT;
6616        if (sk_is_refcounted(sk) &&
6617            unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6618                return -ENOENT;
6619
6620        skb_orphan(skb);
6621        skb->sk = sk;
6622        skb->destructor = sock_pfree;
6623
6624        return 0;
6625}
6626
6627static const struct bpf_func_proto bpf_sk_assign_proto = {
6628        .func           = bpf_sk_assign,
6629        .gpl_only       = false,
6630        .ret_type       = RET_INTEGER,
6631        .arg1_type      = ARG_PTR_TO_CTX,
6632        .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6633        .arg3_type      = ARG_ANYTHING,
6634};
6635
6636static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6637                                    u8 search_kind, const u8 *magic,
6638                                    u8 magic_len, bool *eol)
6639{
6640        u8 kind, kind_len;
6641
6642        *eol = false;
6643
6644        while (op < opend) {
6645                kind = op[0];
6646
6647                if (kind == TCPOPT_EOL) {
6648                        *eol = true;
6649                        return ERR_PTR(-ENOMSG);
6650                } else if (kind == TCPOPT_NOP) {
6651                        op++;
6652                        continue;
6653                }
6654
6655                if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6656                        /* Something is wrong in the received header.
6657                         * Follow the TCP stack's tcp_parse_options()
6658                         * and just bail here.
6659                         */
6660                        return ERR_PTR(-EFAULT);
6661
6662                kind_len = op[1];
6663                if (search_kind == kind) {
6664                        if (!magic_len)
6665                                return op;
6666
6667                        if (magic_len > kind_len - 2)
6668                                return ERR_PTR(-ENOMSG);
6669
6670                        if (!memcmp(&op[2], magic, magic_len))
6671                                return op;
6672                }
6673
6674                op += kind_len;
6675        }
6676
6677        return ERR_PTR(-ENOMSG);
6678}
6679
6680BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6681           void *, search_res, u32, len, u64, flags)
6682{
6683        bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6684        const u8 *op, *opend, *magic, *search = search_res;
6685        u8 search_kind, search_len, copy_len, magic_len;
6686        int ret;
6687
6688        /* 2 byte is the minimal option len except TCPOPT_NOP and
6689         * TCPOPT_EOL which are useless for the bpf prog to learn
6690         * and this helper disallow loading them also.
6691         */
6692        if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6693                return -EINVAL;
6694
6695        search_kind = search[0];
6696        search_len = search[1];
6697
6698        if (search_len > len || search_kind == TCPOPT_NOP ||
6699            search_kind == TCPOPT_EOL)
6700                return -EINVAL;
6701
6702        if (search_kind == TCPOPT_EXP || search_kind == 253) {
6703                /* 16 or 32 bit magic.  +2 for kind and kind length */
6704                if (search_len != 4 && search_len != 6)
6705                        return -EINVAL;
6706                magic = &search[2];
6707                magic_len = search_len - 2;
6708        } else {
6709                if (search_len)
6710                        return -EINVAL;
6711                magic = NULL;
6712                magic_len = 0;
6713        }
6714
6715        if (load_syn) {
6716                ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6717                if (ret < 0)
6718                        return ret;
6719
6720                opend = op + ret;
6721                op += sizeof(struct tcphdr);
6722        } else {
6723                if (!bpf_sock->skb ||
6724                    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6725                        /* This bpf_sock->op cannot call this helper */
6726                        return -EPERM;
6727
6728                opend = bpf_sock->skb_data_end;
6729                op = bpf_sock->skb->data + sizeof(struct tcphdr);
6730        }
6731
6732        op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6733                                &eol);
6734        if (IS_ERR(op))
6735                return PTR_ERR(op);
6736
6737        copy_len = op[1];
6738        ret = copy_len;
6739        if (copy_len > len) {
6740                ret = -ENOSPC;
6741                copy_len = len;
6742        }
6743
6744        memcpy(search_res, op, copy_len);
6745        return ret;
6746}
6747
6748static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6749        .func           = bpf_sock_ops_load_hdr_opt,
6750        .gpl_only       = false,
6751        .ret_type       = RET_INTEGER,
6752        .arg1_type      = ARG_PTR_TO_CTX,
6753        .arg2_type      = ARG_PTR_TO_MEM,
6754        .arg3_type      = ARG_CONST_SIZE,
6755        .arg4_type      = ARG_ANYTHING,
6756};
6757
6758BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6759           const void *, from, u32, len, u64, flags)
6760{
6761        u8 new_kind, new_kind_len, magic_len = 0, *opend;
6762        const u8 *op, *new_op, *magic = NULL;
6763        struct sk_buff *skb;
6764        bool eol;
6765
6766        if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6767                return -EPERM;
6768
6769        if (len < 2 || flags)
6770                return -EINVAL;
6771
6772        new_op = from;
6773        new_kind = new_op[0];
6774        new_kind_len = new_op[1];
6775
6776        if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6777            new_kind == TCPOPT_EOL)
6778                return -EINVAL;
6779
6780        if (new_kind_len > bpf_sock->remaining_opt_len)
6781                return -ENOSPC;
6782
6783        /* 253 is another experimental kind */
6784        if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6785                if (new_kind_len < 4)
6786                        return -EINVAL;
6787                /* Match for the 2 byte magic also.
6788                 * RFC 6994: the magic could be 2 or 4 bytes.
6789                 * Hence, matching by 2 byte only is on the
6790                 * conservative side but it is the right
6791                 * thing to do for the 'search-for-duplication'
6792                 * purpose.
6793                 */
6794                magic = &new_op[2];
6795                magic_len = 2;
6796        }
6797
6798        /* Check for duplication */
6799        skb = bpf_sock->skb;
6800        op = skb->data + sizeof(struct tcphdr);
6801        opend = bpf_sock->skb_data_end;
6802
6803        op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6804                                &eol);
6805        if (!IS_ERR(op))
6806                return -EEXIST;
6807
6808        if (PTR_ERR(op) != -ENOMSG)
6809                return PTR_ERR(op);
6810
6811        if (eol)
6812                /* The option has been ended.  Treat it as no more
6813                 * header option can be written.
6814                 */
6815                return -ENOSPC;
6816
6817        /* No duplication found.  Store the header option. */
6818        memcpy(opend, from, new_kind_len);
6819
6820        bpf_sock->remaining_opt_len -= new_kind_len;
6821        bpf_sock->skb_data_end += new_kind_len;
6822
6823        return 0;
6824}
6825
6826static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6827        .func           = bpf_sock_ops_store_hdr_opt,
6828        .gpl_only       = false,
6829        .ret_type       = RET_INTEGER,
6830        .arg1_type      = ARG_PTR_TO_CTX,
6831        .arg2_type      = ARG_PTR_TO_MEM,
6832        .arg3_type      = ARG_CONST_SIZE,
6833        .arg4_type      = ARG_ANYTHING,
6834};
6835
6836BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6837           u32, len, u64, flags)
6838{
6839        if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6840                return -EPERM;
6841
6842        if (flags || len < 2)
6843                return -EINVAL;
6844
6845        if (len > bpf_sock->remaining_opt_len)
6846                return -ENOSPC;
6847
6848        bpf_sock->remaining_opt_len -= len;
6849
6850        return 0;
6851}
6852
6853static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6854        .func           = bpf_sock_ops_reserve_hdr_opt,
6855        .gpl_only       = false,
6856        .ret_type       = RET_INTEGER,
6857        .arg1_type      = ARG_PTR_TO_CTX,
6858        .arg2_type      = ARG_ANYTHING,
6859        .arg3_type      = ARG_ANYTHING,
6860};
6861
6862#endif /* CONFIG_INET */
6863
6864bool bpf_helper_changes_pkt_data(void *func)
6865{
6866        if (func == bpf_skb_vlan_push ||
6867            func == bpf_skb_vlan_pop ||
6868            func == bpf_skb_store_bytes ||
6869            func == bpf_skb_change_proto ||
6870            func == bpf_skb_change_head ||
6871            func == sk_skb_change_head ||
6872            func == bpf_skb_change_tail ||
6873            func == sk_skb_change_tail ||
6874            func == bpf_skb_adjust_room ||
6875            func == sk_skb_adjust_room ||
6876            func == bpf_skb_pull_data ||
6877            func == sk_skb_pull_data ||
6878            func == bpf_clone_redirect ||
6879            func == bpf_l3_csum_replace ||
6880            func == bpf_l4_csum_replace ||
6881            func == bpf_xdp_adjust_head ||
6882            func == bpf_xdp_adjust_meta ||
6883            func == bpf_msg_pull_data ||
6884            func == bpf_msg_push_data ||
6885            func == bpf_msg_pop_data ||
6886            func == bpf_xdp_adjust_tail ||
6887#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6888            func == bpf_lwt_seg6_store_bytes ||
6889            func == bpf_lwt_seg6_adjust_srh ||
6890            func == bpf_lwt_seg6_action ||
6891#endif
6892#ifdef CONFIG_INET
6893            func == bpf_sock_ops_store_hdr_opt ||
6894#endif
6895            func == bpf_lwt_in_push_encap ||
6896            func == bpf_lwt_xmit_push_encap)
6897                return true;
6898
6899        return false;
6900}
6901
6902const struct bpf_func_proto bpf_event_output_data_proto __weak;
6903const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6904
6905static const struct bpf_func_proto *
6906sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6907{
6908        switch (func_id) {
6909        /* inet and inet6 sockets are created in a process
6910         * context so there is always a valid uid/gid
6911         */
6912        case BPF_FUNC_get_current_uid_gid:
6913                return &bpf_get_current_uid_gid_proto;
6914        case BPF_FUNC_get_local_storage:
6915                return &bpf_get_local_storage_proto;
6916        case BPF_FUNC_get_socket_cookie:
6917                return &bpf_get_socket_cookie_sock_proto;
6918        case BPF_FUNC_get_netns_cookie:
6919                return &bpf_get_netns_cookie_sock_proto;
6920        case BPF_FUNC_perf_event_output:
6921                return &bpf_event_output_data_proto;
6922        case BPF_FUNC_get_current_pid_tgid:
6923                return &bpf_get_current_pid_tgid_proto;
6924        case BPF_FUNC_get_current_comm:
6925                return &bpf_get_current_comm_proto;
6926#ifdef CONFIG_CGROUPS
6927        case BPF_FUNC_get_current_cgroup_id:
6928                return &bpf_get_current_cgroup_id_proto;
6929        case BPF_FUNC_get_current_ancestor_cgroup_id:
6930                return &bpf_get_current_ancestor_cgroup_id_proto;
6931#endif
6932#ifdef CONFIG_CGROUP_NET_CLASSID
6933        case BPF_FUNC_get_cgroup_classid:
6934                return &bpf_get_cgroup_classid_curr_proto;
6935#endif
6936        case BPF_FUNC_sk_storage_get:
6937                return &bpf_sk_storage_get_cg_sock_proto;
6938        default:
6939                return bpf_base_func_proto(func_id);
6940        }
6941}
6942
6943static const struct bpf_func_proto *
6944sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6945{
6946        switch (func_id) {
6947        /* inet and inet6 sockets are created in a process
6948         * context so there is always a valid uid/gid
6949         */
6950        case BPF_FUNC_get_current_uid_gid:
6951                return &bpf_get_current_uid_gid_proto;
6952        case BPF_FUNC_bind:
6953                switch (prog->expected_attach_type) {
6954                case BPF_CGROUP_INET4_CONNECT:
6955                case BPF_CGROUP_INET6_CONNECT:
6956                        return &bpf_bind_proto;
6957                default:
6958                        return NULL;
6959                }
6960        case BPF_FUNC_get_socket_cookie:
6961                return &bpf_get_socket_cookie_sock_addr_proto;
6962        case BPF_FUNC_get_netns_cookie:
6963                return &bpf_get_netns_cookie_sock_addr_proto;
6964        case BPF_FUNC_get_local_storage:
6965                return &bpf_get_local_storage_proto;
6966        case BPF_FUNC_perf_event_output:
6967                return &bpf_event_output_data_proto;
6968        case BPF_FUNC_get_current_pid_tgid:
6969                return &bpf_get_current_pid_tgid_proto;
6970        case BPF_FUNC_get_current_comm:
6971                return &bpf_get_current_comm_proto;
6972#ifdef CONFIG_CGROUPS
6973        case BPF_FUNC_get_current_cgroup_id:
6974                return &bpf_get_current_cgroup_id_proto;
6975        case BPF_FUNC_get_current_ancestor_cgroup_id:
6976                return &bpf_get_current_ancestor_cgroup_id_proto;
6977#endif
6978#ifdef CONFIG_CGROUP_NET_CLASSID
6979        case BPF_FUNC_get_cgroup_classid:
6980                return &bpf_get_cgroup_classid_curr_proto;
6981#endif
6982#ifdef CONFIG_INET
6983        case BPF_FUNC_sk_lookup_tcp:
6984                return &bpf_sock_addr_sk_lookup_tcp_proto;
6985        case BPF_FUNC_sk_lookup_udp:
6986                return &bpf_sock_addr_sk_lookup_udp_proto;
6987        case BPF_FUNC_sk_release:
6988                return &bpf_sk_release_proto;
6989        case BPF_FUNC_skc_lookup_tcp:
6990                return &bpf_sock_addr_skc_lookup_tcp_proto;
6991#endif /* CONFIG_INET */
6992        case BPF_FUNC_sk_storage_get:
6993                return &bpf_sk_storage_get_proto;
6994        case BPF_FUNC_sk_storage_delete:
6995                return &bpf_sk_storage_delete_proto;
6996        case BPF_FUNC_setsockopt:
6997                switch (prog->expected_attach_type) {
6998                case BPF_CGROUP_INET4_CONNECT:
6999                case BPF_CGROUP_INET6_CONNECT:
7000                        return &bpf_sock_addr_setsockopt_proto;
7001                default:
7002                        return NULL;
7003                }
7004        case BPF_FUNC_getsockopt:
7005                switch (prog->expected_attach_type) {
7006                case BPF_CGROUP_INET4_CONNECT:
7007                case BPF_CGROUP_INET6_CONNECT:
7008                        return &bpf_sock_addr_getsockopt_proto;
7009                default:
7010                        return NULL;
7011                }
7012        default:
7013                return bpf_sk_base_func_proto(func_id);
7014        }
7015}
7016
7017static const struct bpf_func_proto *
7018sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7019{
7020        switch (func_id) {
7021        case BPF_FUNC_skb_load_bytes:
7022                return &bpf_skb_load_bytes_proto;
7023        case BPF_FUNC_skb_load_bytes_relative:
7024                return &bpf_skb_load_bytes_relative_proto;
7025        case BPF_FUNC_get_socket_cookie:
7026                return &bpf_get_socket_cookie_proto;
7027        case BPF_FUNC_get_socket_uid:
7028                return &bpf_get_socket_uid_proto;
7029        case BPF_FUNC_perf_event_output:
7030                return &bpf_skb_event_output_proto;
7031        default:
7032                return bpf_sk_base_func_proto(func_id);
7033        }
7034}
7035
7036const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7037const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7038
7039static const struct bpf_func_proto *
7040cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7041{
7042        switch (func_id) {
7043        case BPF_FUNC_get_local_storage:
7044                return &bpf_get_local_storage_proto;
7045        case BPF_FUNC_sk_fullsock:
7046                return &bpf_sk_fullsock_proto;
7047        case BPF_FUNC_sk_storage_get:
7048                return &bpf_sk_storage_get_proto;
7049        case BPF_FUNC_sk_storage_delete:
7050                return &bpf_sk_storage_delete_proto;
7051        case BPF_FUNC_perf_event_output:
7052                return &bpf_skb_event_output_proto;
7053#ifdef CONFIG_SOCK_CGROUP_DATA
7054        case BPF_FUNC_skb_cgroup_id:
7055                return &bpf_skb_cgroup_id_proto;
7056        case BPF_FUNC_skb_ancestor_cgroup_id:
7057                return &bpf_skb_ancestor_cgroup_id_proto;
7058        case BPF_FUNC_sk_cgroup_id:
7059                return &bpf_sk_cgroup_id_proto;
7060        case BPF_FUNC_sk_ancestor_cgroup_id:
7061                return &bpf_sk_ancestor_cgroup_id_proto;
7062#endif
7063#ifdef CONFIG_INET
7064        case BPF_FUNC_sk_lookup_tcp:
7065                return &bpf_sk_lookup_tcp_proto;
7066        case BPF_FUNC_sk_lookup_udp:
7067                return &bpf_sk_lookup_udp_proto;
7068        case BPF_FUNC_sk_release:
7069                return &bpf_sk_release_proto;
7070        case BPF_FUNC_skc_lookup_tcp:
7071                return &bpf_skc_lookup_tcp_proto;
7072        case BPF_FUNC_tcp_sock:
7073                return &bpf_tcp_sock_proto;
7074        case BPF_FUNC_get_listener_sock:
7075                return &bpf_get_listener_sock_proto;
7076        case BPF_FUNC_skb_ecn_set_ce:
7077                return &bpf_skb_ecn_set_ce_proto;
7078#endif
7079        default:
7080                return sk_filter_func_proto(func_id, prog);
7081        }
7082}
7083
7084static const struct bpf_func_proto *
7085tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7086{
7087        switch (func_id) {
7088        case BPF_FUNC_skb_store_bytes:
7089                return &bpf_skb_store_bytes_proto;
7090        case BPF_FUNC_skb_load_bytes:
7091                return &bpf_skb_load_bytes_proto;
7092        case BPF_FUNC_skb_load_bytes_relative:
7093                return &bpf_skb_load_bytes_relative_proto;
7094        case BPF_FUNC_skb_pull_data:
7095                return &bpf_skb_pull_data_proto;
7096        case BPF_FUNC_csum_diff:
7097                return &bpf_csum_diff_proto;
7098        case BPF_FUNC_csum_update:
7099                return &bpf_csum_update_proto;
7100        case BPF_FUNC_csum_level:
7101                return &bpf_csum_level_proto;
7102        case BPF_FUNC_l3_csum_replace:
7103                return &bpf_l3_csum_replace_proto;
7104        case BPF_FUNC_l4_csum_replace:
7105                return &bpf_l4_csum_replace_proto;
7106        case BPF_FUNC_clone_redirect:
7107                return &bpf_clone_redirect_proto;
7108        case BPF_FUNC_get_cgroup_classid:
7109                return &bpf_get_cgroup_classid_proto;
7110        case BPF_FUNC_skb_vlan_push:
7111                return &bpf_skb_vlan_push_proto;
7112        case BPF_FUNC_skb_vlan_pop:
7113                return &bpf_skb_vlan_pop_proto;
7114        case BPF_FUNC_skb_change_proto:
7115                return &bpf_skb_change_proto_proto;
7116        case BPF_FUNC_skb_change_type:
7117                return &bpf_skb_change_type_proto;
7118        case BPF_FUNC_skb_adjust_room:
7119                return &bpf_skb_adjust_room_proto;
7120        case BPF_FUNC_skb_change_tail:
7121                return &bpf_skb_change_tail_proto;
7122        case BPF_FUNC_skb_change_head:
7123                return &bpf_skb_change_head_proto;
7124        case BPF_FUNC_skb_get_tunnel_key:
7125                return &bpf_skb_get_tunnel_key_proto;
7126        case BPF_FUNC_skb_set_tunnel_key:
7127                return bpf_get_skb_set_tunnel_proto(func_id);
7128        case BPF_FUNC_skb_get_tunnel_opt:
7129                return &bpf_skb_get_tunnel_opt_proto;
7130        case BPF_FUNC_skb_set_tunnel_opt:
7131                return bpf_get_skb_set_tunnel_proto(func_id);
7132        case BPF_FUNC_redirect:
7133                return &bpf_redirect_proto;
7134        case BPF_FUNC_redirect_neigh:
7135                return &bpf_redirect_neigh_proto;
7136        case BPF_FUNC_redirect_peer:
7137                return &bpf_redirect_peer_proto;
7138        case BPF_FUNC_get_route_realm:
7139                return &bpf_get_route_realm_proto;
7140        case BPF_FUNC_get_hash_recalc:
7141                return &bpf_get_hash_recalc_proto;
7142        case BPF_FUNC_set_hash_invalid:
7143                return &bpf_set_hash_invalid_proto;
7144        case BPF_FUNC_set_hash:
7145                return &bpf_set_hash_proto;
7146        case BPF_FUNC_perf_event_output:
7147                return &bpf_skb_event_output_proto;
7148        case BPF_FUNC_get_smp_processor_id:
7149                return &bpf_get_smp_processor_id_proto;
7150        case BPF_FUNC_skb_under_cgroup:
7151                return &bpf_skb_under_cgroup_proto;
7152        case BPF_FUNC_get_socket_cookie:
7153                return &bpf_get_socket_cookie_proto;
7154        case BPF_FUNC_get_socket_uid:
7155                return &bpf_get_socket_uid_proto;
7156        case BPF_FUNC_fib_lookup:
7157                return &bpf_skb_fib_lookup_proto;
7158        case BPF_FUNC_sk_fullsock:
7159                return &bpf_sk_fullsock_proto;
7160        case BPF_FUNC_sk_storage_get:
7161                return &bpf_sk_storage_get_proto;
7162        case BPF_FUNC_sk_storage_delete:
7163                return &bpf_sk_storage_delete_proto;
7164#ifdef CONFIG_XFRM
7165        case BPF_FUNC_skb_get_xfrm_state:
7166                return &bpf_skb_get_xfrm_state_proto;
7167#endif
7168#ifdef CONFIG_CGROUP_NET_CLASSID
7169        case BPF_FUNC_skb_cgroup_classid:
7170                return &bpf_skb_cgroup_classid_proto;
7171#endif
7172#ifdef CONFIG_SOCK_CGROUP_DATA
7173        case BPF_FUNC_skb_cgroup_id:
7174                return &bpf_skb_cgroup_id_proto;
7175        case BPF_FUNC_skb_ancestor_cgroup_id:
7176                return &bpf_skb_ancestor_cgroup_id_proto;
7177#endif
7178#ifdef CONFIG_INET
7179        case BPF_FUNC_sk_lookup_tcp:
7180                return &bpf_sk_lookup_tcp_proto;
7181        case BPF_FUNC_sk_lookup_udp:
7182                return &bpf_sk_lookup_udp_proto;
7183        case BPF_FUNC_sk_release:
7184                return &bpf_sk_release_proto;
7185        case BPF_FUNC_tcp_sock:
7186                return &bpf_tcp_sock_proto;
7187        case BPF_FUNC_get_listener_sock:
7188                return &bpf_get_listener_sock_proto;
7189        case BPF_FUNC_skc_lookup_tcp:
7190                return &bpf_skc_lookup_tcp_proto;
7191        case BPF_FUNC_tcp_check_syncookie:
7192                return &bpf_tcp_check_syncookie_proto;
7193        case BPF_FUNC_skb_ecn_set_ce:
7194                return &bpf_skb_ecn_set_ce_proto;
7195        case BPF_FUNC_tcp_gen_syncookie:
7196                return &bpf_tcp_gen_syncookie_proto;
7197        case BPF_FUNC_sk_assign:
7198                return &bpf_sk_assign_proto;
7199#endif
7200        default:
7201                return bpf_sk_base_func_proto(func_id);
7202        }
7203}
7204
7205static const struct bpf_func_proto *
7206xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7207{
7208        switch (func_id) {
7209        case BPF_FUNC_perf_event_output:
7210                return &bpf_xdp_event_output_proto;
7211        case BPF_FUNC_get_smp_processor_id:
7212                return &bpf_get_smp_processor_id_proto;
7213        case BPF_FUNC_csum_diff:
7214                return &bpf_csum_diff_proto;
7215        case BPF_FUNC_xdp_adjust_head:
7216                return &bpf_xdp_adjust_head_proto;
7217        case BPF_FUNC_xdp_adjust_meta:
7218                return &bpf_xdp_adjust_meta_proto;
7219        case BPF_FUNC_redirect:
7220                return &bpf_xdp_redirect_proto;
7221        case BPF_FUNC_redirect_map:
7222                return &bpf_xdp_redirect_map_proto;
7223        case BPF_FUNC_xdp_adjust_tail:
7224                return &bpf_xdp_adjust_tail_proto;
7225        case BPF_FUNC_fib_lookup:
7226                return &bpf_xdp_fib_lookup_proto;
7227#ifdef CONFIG_INET
7228        case BPF_FUNC_sk_lookup_udp:
7229                return &bpf_xdp_sk_lookup_udp_proto;
7230        case BPF_FUNC_sk_lookup_tcp:
7231                return &bpf_xdp_sk_lookup_tcp_proto;
7232        case BPF_FUNC_sk_release:
7233                return &bpf_sk_release_proto;
7234        case BPF_FUNC_skc_lookup_tcp:
7235                return &bpf_xdp_skc_lookup_tcp_proto;
7236        case BPF_FUNC_tcp_check_syncookie:
7237                return &bpf_tcp_check_syncookie_proto;
7238        case BPF_FUNC_tcp_gen_syncookie:
7239                return &bpf_tcp_gen_syncookie_proto;
7240#endif
7241        default:
7242                return bpf_sk_base_func_proto(func_id);
7243        }
7244}
7245
7246const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7247const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7248
7249static const struct bpf_func_proto *
7250sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7251{
7252        switch (func_id) {
7253        case BPF_FUNC_setsockopt:
7254                return &bpf_sock_ops_setsockopt_proto;
7255        case BPF_FUNC_getsockopt:
7256                return &bpf_sock_ops_getsockopt_proto;
7257        case BPF_FUNC_sock_ops_cb_flags_set:
7258                return &bpf_sock_ops_cb_flags_set_proto;
7259        case BPF_FUNC_sock_map_update:
7260                return &bpf_sock_map_update_proto;
7261        case BPF_FUNC_sock_hash_update:
7262                return &bpf_sock_hash_update_proto;
7263        case BPF_FUNC_get_socket_cookie:
7264                return &bpf_get_socket_cookie_sock_ops_proto;
7265        case BPF_FUNC_get_local_storage:
7266                return &bpf_get_local_storage_proto;
7267        case BPF_FUNC_perf_event_output:
7268                return &bpf_event_output_data_proto;
7269        case BPF_FUNC_sk_storage_get:
7270                return &bpf_sk_storage_get_proto;
7271        case BPF_FUNC_sk_storage_delete:
7272                return &bpf_sk_storage_delete_proto;
7273#ifdef CONFIG_INET
7274        case BPF_FUNC_load_hdr_opt:
7275                return &bpf_sock_ops_load_hdr_opt_proto;
7276        case BPF_FUNC_store_hdr_opt:
7277                return &bpf_sock_ops_store_hdr_opt_proto;
7278        case BPF_FUNC_reserve_hdr_opt:
7279                return &bpf_sock_ops_reserve_hdr_opt_proto;
7280        case BPF_FUNC_tcp_sock:
7281                return &bpf_tcp_sock_proto;
7282#endif /* CONFIG_INET */
7283        default:
7284                return bpf_sk_base_func_proto(func_id);
7285        }
7286}
7287
7288const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7289const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7290
7291static const struct bpf_func_proto *
7292sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7293{
7294        switch (func_id) {
7295        case BPF_FUNC_msg_redirect_map:
7296                return &bpf_msg_redirect_map_proto;
7297        case BPF_FUNC_msg_redirect_hash:
7298                return &bpf_msg_redirect_hash_proto;
7299        case BPF_FUNC_msg_apply_bytes:
7300                return &bpf_msg_apply_bytes_proto;
7301        case BPF_FUNC_msg_cork_bytes:
7302                return &bpf_msg_cork_bytes_proto;
7303        case BPF_FUNC_msg_pull_data:
7304                return &bpf_msg_pull_data_proto;
7305        case BPF_FUNC_msg_push_data:
7306                return &bpf_msg_push_data_proto;
7307        case BPF_FUNC_msg_pop_data:
7308                return &bpf_msg_pop_data_proto;
7309        case BPF_FUNC_perf_event_output:
7310                return &bpf_event_output_data_proto;
7311        case BPF_FUNC_get_current_uid_gid:
7312                return &bpf_get_current_uid_gid_proto;
7313        case BPF_FUNC_get_current_pid_tgid:
7314                return &bpf_get_current_pid_tgid_proto;
7315        case BPF_FUNC_sk_storage_get:
7316                return &bpf_sk_storage_get_proto;
7317        case BPF_FUNC_sk_storage_delete:
7318                return &bpf_sk_storage_delete_proto;
7319#ifdef CONFIG_CGROUPS
7320        case BPF_FUNC_get_current_cgroup_id:
7321                return &bpf_get_current_cgroup_id_proto;
7322        case BPF_FUNC_get_current_ancestor_cgroup_id:
7323                return &bpf_get_current_ancestor_cgroup_id_proto;
7324#endif
7325#ifdef CONFIG_CGROUP_NET_CLASSID
7326        case BPF_FUNC_get_cgroup_classid:
7327                return &bpf_get_cgroup_classid_curr_proto;
7328#endif
7329        default:
7330                return bpf_sk_base_func_proto(func_id);
7331        }
7332}
7333
7334const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7335const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7336
7337static const struct bpf_func_proto *
7338sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7339{
7340        switch (func_id) {
7341        case BPF_FUNC_skb_store_bytes:
7342                return &bpf_skb_store_bytes_proto;
7343        case BPF_FUNC_skb_load_bytes:
7344                return &bpf_skb_load_bytes_proto;
7345        case BPF_FUNC_skb_pull_data:
7346                return &sk_skb_pull_data_proto;
7347        case BPF_FUNC_skb_change_tail:
7348                return &sk_skb_change_tail_proto;
7349        case BPF_FUNC_skb_change_head:
7350                return &sk_skb_change_head_proto;
7351        case BPF_FUNC_skb_adjust_room:
7352                return &sk_skb_adjust_room_proto;
7353        case BPF_FUNC_get_socket_cookie:
7354                return &bpf_get_socket_cookie_proto;
7355        case BPF_FUNC_get_socket_uid:
7356                return &bpf_get_socket_uid_proto;
7357        case BPF_FUNC_sk_redirect_map:
7358                return &bpf_sk_redirect_map_proto;
7359        case BPF_FUNC_sk_redirect_hash:
7360                return &bpf_sk_redirect_hash_proto;
7361        case BPF_FUNC_perf_event_output:
7362                return &bpf_skb_event_output_proto;
7363#ifdef CONFIG_INET
7364        case BPF_FUNC_sk_lookup_tcp:
7365                return &bpf_sk_lookup_tcp_proto;
7366        case BPF_FUNC_sk_lookup_udp:
7367                return &bpf_sk_lookup_udp_proto;
7368        case BPF_FUNC_sk_release:
7369                return &bpf_sk_release_proto;
7370        case BPF_FUNC_skc_lookup_tcp:
7371                return &bpf_skc_lookup_tcp_proto;
7372#endif
7373        default:
7374                return bpf_sk_base_func_proto(func_id);
7375        }
7376}
7377
7378static const struct bpf_func_proto *
7379flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7380{
7381        switch (func_id) {
7382        case BPF_FUNC_skb_load_bytes:
7383                return &bpf_flow_dissector_load_bytes_proto;
7384        default:
7385                return bpf_sk_base_func_proto(func_id);
7386        }
7387}
7388
7389static const struct bpf_func_proto *
7390lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7391{
7392        switch (func_id) {
7393        case BPF_FUNC_skb_load_bytes:
7394                return &bpf_skb_load_bytes_proto;
7395        case BPF_FUNC_skb_pull_data:
7396                return &bpf_skb_pull_data_proto;
7397        case BPF_FUNC_csum_diff:
7398                return &bpf_csum_diff_proto;
7399        case BPF_FUNC_get_cgroup_classid:
7400                return &bpf_get_cgroup_classid_proto;
7401        case BPF_FUNC_get_route_realm:
7402                return &bpf_get_route_realm_proto;
7403        case BPF_FUNC_get_hash_recalc:
7404                return &bpf_get_hash_recalc_proto;
7405        case BPF_FUNC_perf_event_output:
7406                return &bpf_skb_event_output_proto;
7407        case BPF_FUNC_get_smp_processor_id:
7408                return &bpf_get_smp_processor_id_proto;
7409        case BPF_FUNC_skb_under_cgroup:
7410                return &bpf_skb_under_cgroup_proto;
7411        default:
7412                return bpf_sk_base_func_proto(func_id);
7413        }
7414}
7415
7416static const struct bpf_func_proto *
7417lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7418{
7419        switch (func_id) {
7420        case BPF_FUNC_lwt_push_encap:
7421                return &bpf_lwt_in_push_encap_proto;
7422        default:
7423                return lwt_out_func_proto(func_id, prog);
7424        }
7425}
7426
7427static const struct bpf_func_proto *
7428lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7429{
7430        switch (func_id) {
7431        case BPF_FUNC_skb_get_tunnel_key:
7432                return &bpf_skb_get_tunnel_key_proto;
7433        case BPF_FUNC_skb_set_tunnel_key:
7434                return bpf_get_skb_set_tunnel_proto(func_id);
7435        case BPF_FUNC_skb_get_tunnel_opt:
7436                return &bpf_skb_get_tunnel_opt_proto;
7437        case BPF_FUNC_skb_set_tunnel_opt:
7438                return bpf_get_skb_set_tunnel_proto(func_id);
7439        case BPF_FUNC_redirect:
7440                return &bpf_redirect_proto;
7441        case BPF_FUNC_clone_redirect:
7442                return &bpf_clone_redirect_proto;
7443        case BPF_FUNC_skb_change_tail:
7444                return &bpf_skb_change_tail_proto;
7445        case BPF_FUNC_skb_change_head:
7446                return &bpf_skb_change_head_proto;
7447        case BPF_FUNC_skb_store_bytes:
7448                return &bpf_skb_store_bytes_proto;
7449        case BPF_FUNC_csum_update:
7450                return &bpf_csum_update_proto;
7451        case BPF_FUNC_csum_level:
7452                return &bpf_csum_level_proto;
7453        case BPF_FUNC_l3_csum_replace:
7454                return &bpf_l3_csum_replace_proto;
7455        case BPF_FUNC_l4_csum_replace:
7456                return &bpf_l4_csum_replace_proto;
7457        case BPF_FUNC_set_hash_invalid:
7458                return &bpf_set_hash_invalid_proto;
7459        case BPF_FUNC_lwt_push_encap:
7460                return &bpf_lwt_xmit_push_encap_proto;
7461        default:
7462                return lwt_out_func_proto(func_id, prog);
7463        }
7464}
7465
7466static const struct bpf_func_proto *
7467lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7468{
7469        switch (func_id) {
7470#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7471        case BPF_FUNC_lwt_seg6_store_bytes:
7472                return &bpf_lwt_seg6_store_bytes_proto;
7473        case BPF_FUNC_lwt_seg6_action:
7474                return &bpf_lwt_seg6_action_proto;
7475        case BPF_FUNC_lwt_seg6_adjust_srh:
7476                return &bpf_lwt_seg6_adjust_srh_proto;
7477#endif
7478        default:
7479                return lwt_out_func_proto(func_id, prog);
7480        }
7481}
7482
7483static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7484                                    const struct bpf_prog *prog,
7485                                    struct bpf_insn_access_aux *info)
7486{
7487        const int size_default = sizeof(__u32);
7488
7489        if (off < 0 || off >= sizeof(struct __sk_buff))
7490                return false;
7491
7492        /* The verifier guarantees that size > 0. */
7493        if (off % size != 0)
7494                return false;
7495
7496        switch (off) {
7497        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7498                if (off + size > offsetofend(struct __sk_buff, cb[4]))
7499                        return false;
7500                break;
7501        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7502        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7503        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7504        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7505        case bpf_ctx_range(struct __sk_buff, data):
7506        case bpf_ctx_range(struct __sk_buff, data_meta):
7507        case bpf_ctx_range(struct __sk_buff, data_end):
7508                if (size != size_default)
7509                        return false;
7510                break;
7511        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7512                return false;
7513        case bpf_ctx_range(struct __sk_buff, tstamp):
7514                if (size != sizeof(__u64))
7515                        return false;
7516                break;
7517        case offsetof(struct __sk_buff, sk):
7518                if (type == BPF_WRITE || size != sizeof(__u64))
7519                        return false;
7520                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7521                break;
7522        default:
7523                /* Only narrow read access allowed for now. */
7524                if (type == BPF_WRITE) {
7525                        if (size != size_default)
7526                                return false;
7527                } else {
7528                        bpf_ctx_record_field_size(info, size_default);
7529                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7530                                return false;
7531                }
7532        }
7533
7534        return true;
7535}
7536
7537static bool sk_filter_is_valid_access(int off, int size,
7538                                      enum bpf_access_type type,
7539                                      const struct bpf_prog *prog,
7540                                      struct bpf_insn_access_aux *info)
7541{
7542        switch (off) {
7543        case bpf_ctx_range(struct __sk_buff, tc_classid):
7544        case bpf_ctx_range(struct __sk_buff, data):
7545        case bpf_ctx_range(struct __sk_buff, data_meta):
7546        case bpf_ctx_range(struct __sk_buff, data_end):
7547        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7548        case bpf_ctx_range(struct __sk_buff, tstamp):
7549        case bpf_ctx_range(struct __sk_buff, wire_len):
7550                return false;
7551        }
7552
7553        if (type == BPF_WRITE) {
7554                switch (off) {
7555                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7556                        break;
7557                default:
7558                        return false;
7559                }
7560        }
7561
7562        return bpf_skb_is_valid_access(off, size, type, prog, info);
7563}
7564
7565static bool cg_skb_is_valid_access(int off, int size,
7566                                   enum bpf_access_type type,
7567                                   const struct bpf_prog *prog,
7568                                   struct bpf_insn_access_aux *info)
7569{
7570        switch (off) {
7571        case bpf_ctx_range(struct __sk_buff, tc_classid):
7572        case bpf_ctx_range(struct __sk_buff, data_meta):
7573        case bpf_ctx_range(struct __sk_buff, wire_len):
7574                return false;
7575        case bpf_ctx_range(struct __sk_buff, data):
7576        case bpf_ctx_range(struct __sk_buff, data_end):
7577                if (!bpf_capable())
7578                        return false;
7579                break;
7580        }
7581
7582        if (type == BPF_WRITE) {
7583                switch (off) {
7584                case bpf_ctx_range(struct __sk_buff, mark):
7585                case bpf_ctx_range(struct __sk_buff, priority):
7586                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7587                        break;
7588                case bpf_ctx_range(struct __sk_buff, tstamp):
7589                        if (!bpf_capable())
7590                                return false;
7591                        break;
7592                default:
7593                        return false;
7594                }
7595        }
7596
7597        switch (off) {
7598        case bpf_ctx_range(struct __sk_buff, data):
7599                info->reg_type = PTR_TO_PACKET;
7600                break;
7601        case bpf_ctx_range(struct __sk_buff, data_end):
7602                info->reg_type = PTR_TO_PACKET_END;
7603                break;
7604        }
7605
7606        return bpf_skb_is_valid_access(off, size, type, prog, info);
7607}
7608
7609static bool lwt_is_valid_access(int off, int size,
7610                                enum bpf_access_type type,
7611                                const struct bpf_prog *prog,
7612                                struct bpf_insn_access_aux *info)
7613{
7614        switch (off) {
7615        case bpf_ctx_range(struct __sk_buff, tc_classid):
7616        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7617        case bpf_ctx_range(struct __sk_buff, data_meta):
7618        case bpf_ctx_range(struct __sk_buff, tstamp):
7619        case bpf_ctx_range(struct __sk_buff, wire_len):
7620                return false;
7621        }
7622
7623        if (type == BPF_WRITE) {
7624                switch (off) {
7625                case bpf_ctx_range(struct __sk_buff, mark):
7626                case bpf_ctx_range(struct __sk_buff, priority):
7627                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7628                        break;
7629                default:
7630                        return false;
7631                }
7632        }
7633
7634        switch (off) {
7635        case bpf_ctx_range(struct __sk_buff, data):
7636                info->reg_type = PTR_TO_PACKET;
7637                break;
7638        case bpf_ctx_range(struct __sk_buff, data_end):
7639                info->reg_type = PTR_TO_PACKET_END;
7640                break;
7641        }
7642
7643        return bpf_skb_is_valid_access(off, size, type, prog, info);
7644}
7645
7646/* Attach type specific accesses */
7647static bool __sock_filter_check_attach_type(int off,
7648                                            enum bpf_access_type access_type,
7649                                            enum bpf_attach_type attach_type)
7650{
7651        switch (off) {
7652        case offsetof(struct bpf_sock, bound_dev_if):
7653        case offsetof(struct bpf_sock, mark):
7654        case offsetof(struct bpf_sock, priority):
7655                switch (attach_type) {
7656                case BPF_CGROUP_INET_SOCK_CREATE:
7657                case BPF_CGROUP_INET_SOCK_RELEASE:
7658                        goto full_access;
7659                default:
7660                        return false;
7661                }
7662        case bpf_ctx_range(struct bpf_sock, src_ip4):
7663                switch (attach_type) {
7664                case BPF_CGROUP_INET4_POST_BIND:
7665                        goto read_only;
7666                default:
7667                        return false;
7668                }
7669        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7670                switch (attach_type) {
7671                case BPF_CGROUP_INET6_POST_BIND:
7672                        goto read_only;
7673                default:
7674                        return false;
7675                }
7676        case bpf_ctx_range(struct bpf_sock, src_port):
7677                switch (attach_type) {
7678                case BPF_CGROUP_INET4_POST_BIND:
7679                case BPF_CGROUP_INET6_POST_BIND:
7680                        goto read_only;
7681                default:
7682                        return false;
7683                }
7684        }
7685read_only:
7686        return access_type == BPF_READ;
7687full_access:
7688        return true;
7689}
7690
7691bool bpf_sock_common_is_valid_access(int off, int size,
7692                                     enum bpf_access_type type,
7693                                     struct bpf_insn_access_aux *info)
7694{
7695        switch (off) {
7696        case bpf_ctx_range_till(struct bpf_sock, type, priority):
7697                return false;
7698        default:
7699                return bpf_sock_is_valid_access(off, size, type, info);
7700        }
7701}
7702
7703bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7704                              struct bpf_insn_access_aux *info)
7705{
7706        const int size_default = sizeof(__u32);
7707
7708        if (off < 0 || off >= sizeof(struct bpf_sock))
7709                return false;
7710        if (off % size != 0)
7711                return false;
7712
7713        switch (off) {
7714        case offsetof(struct bpf_sock, state):
7715        case offsetof(struct bpf_sock, family):
7716        case offsetof(struct bpf_sock, type):
7717        case offsetof(struct bpf_sock, protocol):
7718        case offsetof(struct bpf_sock, dst_port):
7719        case offsetof(struct bpf_sock, src_port):
7720        case offsetof(struct bpf_sock, rx_queue_mapping):
7721        case bpf_ctx_range(struct bpf_sock, src_ip4):
7722        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7723        case bpf_ctx_range(struct bpf_sock, dst_ip4):
7724        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7725                bpf_ctx_record_field_size(info, size_default);
7726                return bpf_ctx_narrow_access_ok(off, size, size_default);
7727        }
7728
7729        return size == size_default;
7730}
7731
7732static bool sock_filter_is_valid_access(int off, int size,
7733                                        enum bpf_access_type type,
7734                                        const struct bpf_prog *prog,
7735                                        struct bpf_insn_access_aux *info)
7736{
7737        if (!bpf_sock_is_valid_access(off, size, type, info))
7738                return false;
7739        return __sock_filter_check_attach_type(off, type,
7740                                               prog->expected_attach_type);
7741}
7742
7743static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7744                             const struct bpf_prog *prog)
7745{
7746        /* Neither direct read nor direct write requires any preliminary
7747         * action.
7748         */
7749        return 0;
7750}
7751
7752static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7753                                const struct bpf_prog *prog, int drop_verdict)
7754{
7755        struct bpf_insn *insn = insn_buf;
7756
7757        if (!direct_write)
7758                return 0;
7759
7760        /* if (!skb->cloned)
7761         *       goto start;
7762         *
7763         * (Fast-path, otherwise approximation that we might be
7764         *  a clone, do the rest in helper.)
7765         */
7766        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7767        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7768        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7769
7770        /* ret = bpf_skb_pull_data(skb, 0); */
7771        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7772        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7773        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7774                               BPF_FUNC_skb_pull_data);
7775        /* if (!ret)
7776         *      goto restore;
7777         * return TC_ACT_SHOT;
7778         */
7779        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7780        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7781        *insn++ = BPF_EXIT_INSN();
7782
7783        /* restore: */
7784        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7785        /* start: */
7786        *insn++ = prog->insnsi[0];
7787
7788        return insn - insn_buf;
7789}
7790
7791static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7792                          struct bpf_insn *insn_buf)
7793{
7794        bool indirect = BPF_MODE(orig->code) == BPF_IND;
7795        struct bpf_insn *insn = insn_buf;
7796
7797        if (!indirect) {
7798                *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7799        } else {
7800                *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7801                if (orig->imm)
7802                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7803        }
7804        /* We're guaranteed here that CTX is in R6. */
7805        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7806
7807        switch (BPF_SIZE(orig->code)) {
7808        case BPF_B:
7809                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7810                break;
7811        case BPF_H:
7812                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7813                break;
7814        case BPF_W:
7815                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7816                break;
7817        }
7818
7819        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7820        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7821        *insn++ = BPF_EXIT_INSN();
7822
7823        return insn - insn_buf;
7824}
7825
7826static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7827                               const struct bpf_prog *prog)
7828{
7829        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7830}
7831
7832static bool tc_cls_act_is_valid_access(int off, int size,
7833                                       enum bpf_access_type type,
7834                                       const struct bpf_prog *prog,
7835                                       struct bpf_insn_access_aux *info)
7836{
7837        if (type == BPF_WRITE) {
7838                switch (off) {
7839                case bpf_ctx_range(struct __sk_buff, mark):
7840                case bpf_ctx_range(struct __sk_buff, tc_index):
7841                case bpf_ctx_range(struct __sk_buff, priority):
7842                case bpf_ctx_range(struct __sk_buff, tc_classid):
7843                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7844                case bpf_ctx_range(struct __sk_buff, tstamp):
7845                case bpf_ctx_range(struct __sk_buff, queue_mapping):
7846                        break;
7847                default:
7848                        return false;
7849                }
7850        }
7851
7852        switch (off) {
7853        case bpf_ctx_range(struct __sk_buff, data):
7854                info->reg_type = PTR_TO_PACKET;
7855                break;
7856        case bpf_ctx_range(struct __sk_buff, data_meta):
7857                info->reg_type = PTR_TO_PACKET_META;
7858                break;
7859        case bpf_ctx_range(struct __sk_buff, data_end):
7860                info->reg_type = PTR_TO_PACKET_END;
7861                break;
7862        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7863                return false;
7864        }
7865
7866        return bpf_skb_is_valid_access(off, size, type, prog, info);
7867}
7868
7869static bool __is_valid_xdp_access(int off, int size)
7870{
7871        if (off < 0 || off >= sizeof(struct xdp_md))
7872                return false;
7873        if (off % size != 0)
7874                return false;
7875        if (size != sizeof(__u32))
7876                return false;
7877
7878        return true;
7879}
7880
7881static bool xdp_is_valid_access(int off, int size,
7882                                enum bpf_access_type type,
7883                                const struct bpf_prog *prog,
7884                                struct bpf_insn_access_aux *info)
7885{
7886        if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7887                switch (off) {
7888                case offsetof(struct xdp_md, egress_ifindex):
7889                        return false;
7890                }
7891        }
7892
7893        if (type == BPF_WRITE) {
7894                if (bpf_prog_is_dev_bound(prog->aux)) {
7895                        switch (off) {
7896                        case offsetof(struct xdp_md, rx_queue_index):
7897                                return __is_valid_xdp_access(off, size);
7898                        }
7899                }
7900                return false;
7901        }
7902
7903        switch (off) {
7904        case offsetof(struct xdp_md, data):
7905                info->reg_type = PTR_TO_PACKET;
7906                break;
7907        case offsetof(struct xdp_md, data_meta):
7908                info->reg_type = PTR_TO_PACKET_META;
7909                break;
7910        case offsetof(struct xdp_md, data_end):
7911                info->reg_type = PTR_TO_PACKET_END;
7912                break;
7913        }
7914
7915        return __is_valid_xdp_access(off, size);
7916}
7917
7918void bpf_warn_invalid_xdp_action(u32 act)
7919{
7920        const u32 act_max = XDP_REDIRECT;
7921
7922        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7923                  act > act_max ? "Illegal" : "Driver unsupported",
7924                  act);
7925}
7926EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7927
7928static bool sock_addr_is_valid_access(int off, int size,
7929                                      enum bpf_access_type type,
7930                                      const struct bpf_prog *prog,
7931                                      struct bpf_insn_access_aux *info)
7932{
7933        const int size_default = sizeof(__u32);
7934
7935        if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7936                return false;
7937        if (off % size != 0)
7938                return false;
7939
7940        /* Disallow access to IPv6 fields from IPv4 contex and vise
7941         * versa.
7942         */
7943        switch (off) {
7944        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7945                switch (prog->expected_attach_type) {
7946                case BPF_CGROUP_INET4_BIND:
7947                case BPF_CGROUP_INET4_CONNECT:
7948                case BPF_CGROUP_INET4_GETPEERNAME:
7949                case BPF_CGROUP_INET4_GETSOCKNAME:
7950                case BPF_CGROUP_UDP4_SENDMSG:
7951                case BPF_CGROUP_UDP4_RECVMSG:
7952                        break;
7953                default:
7954                        return false;
7955                }
7956                break;
7957        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7958                switch (prog->expected_attach_type) {
7959                case BPF_CGROUP_INET6_BIND:
7960                case BPF_CGROUP_INET6_CONNECT:
7961                case BPF_CGROUP_INET6_GETPEERNAME:
7962                case BPF_CGROUP_INET6_GETSOCKNAME:
7963                case BPF_CGROUP_UDP6_SENDMSG:
7964                case BPF_CGROUP_UDP6_RECVMSG:
7965                        break;
7966                default:
7967                        return false;
7968                }
7969                break;
7970        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7971                switch (prog->expected_attach_type) {
7972                case BPF_CGROUP_UDP4_SENDMSG:
7973                        break;
7974                default:
7975                        return false;
7976                }
7977                break;
7978        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7979                                msg_src_ip6[3]):
7980                switch (prog->expected_attach_type) {
7981                case BPF_CGROUP_UDP6_SENDMSG:
7982                        break;
7983                default:
7984                        return false;
7985                }
7986                break;
7987        }
7988
7989        switch (off) {
7990        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7991        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7992        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7993        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7994                                msg_src_ip6[3]):
7995        case bpf_ctx_range(struct bpf_sock_addr, user_port):
7996                if (type == BPF_READ) {
7997                        bpf_ctx_record_field_size(info, size_default);
7998
7999                        if (bpf_ctx_wide_access_ok(off, size,
8000                                                   struct bpf_sock_addr,
8001                                                   user_ip6))
8002                                return true;
8003
8004                        if (bpf_ctx_wide_access_ok(off, size,
8005                                                   struct bpf_sock_addr,
8006                                                   msg_src_ip6))
8007                                return true;
8008
8009                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8010                                return false;
8011                } else {
8012                        if (bpf_ctx_wide_access_ok(off, size,
8013                                                   struct bpf_sock_addr,
8014                                                   user_ip6))
8015                                return true;
8016
8017                        if (bpf_ctx_wide_access_ok(off, size,
8018                                                   struct bpf_sock_addr,
8019                                                   msg_src_ip6))
8020                                return true;
8021
8022                        if (size != size_default)
8023                                return false;
8024                }
8025                break;
8026        case offsetof(struct bpf_sock_addr, sk):
8027                if (type != BPF_READ)
8028                        return false;
8029                if (size != sizeof(__u64))
8030                        return false;
8031                info->reg_type = PTR_TO_SOCKET;
8032                break;
8033        default:
8034                if (type == BPF_READ) {
8035                        if (size != size_default)
8036                                return false;
8037                } else {
8038                        return false;
8039                }
8040        }
8041
8042        return true;
8043}
8044
8045static bool sock_ops_is_valid_access(int off, int size,
8046                                     enum bpf_access_type type,
8047                                     const struct bpf_prog *prog,
8048                                     struct bpf_insn_access_aux *info)
8049{
8050        const int size_default = sizeof(__u32);
8051
8052        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8053                return false;
8054
8055        /* The verifier guarantees that size > 0. */
8056        if (off % size != 0)
8057                return false;
8058
8059        if (type == BPF_WRITE) {
8060                switch (off) {
8061                case offsetof(struct bpf_sock_ops, reply):
8062                case offsetof(struct bpf_sock_ops, sk_txhash):
8063                        if (size != size_default)
8064                                return false;
8065                        break;
8066                default:
8067                        return false;
8068                }
8069        } else {
8070                switch (off) {
8071                case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8072                                        bytes_acked):
8073                        if (size != sizeof(__u64))
8074                                return false;
8075                        break;
8076                case offsetof(struct bpf_sock_ops, sk):
8077                        if (size != sizeof(__u64))
8078                                return false;
8079                        info->reg_type = PTR_TO_SOCKET_OR_NULL;
8080                        break;
8081                case offsetof(struct bpf_sock_ops, skb_data):
8082                        if (size != sizeof(__u64))
8083                                return false;
8084                        info->reg_type = PTR_TO_PACKET;
8085                        break;
8086                case offsetof(struct bpf_sock_ops, skb_data_end):
8087                        if (size != sizeof(__u64))
8088                                return false;
8089                        info->reg_type = PTR_TO_PACKET_END;
8090                        break;
8091                case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8092                        bpf_ctx_record_field_size(info, size_default);
8093                        return bpf_ctx_narrow_access_ok(off, size,
8094                                                        size_default);
8095                default:
8096                        if (size != size_default)
8097                                return false;
8098                        break;
8099                }
8100        }
8101
8102        return true;
8103}
8104
8105static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8106                           const struct bpf_prog *prog)
8107{
8108        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8109}
8110
8111static bool sk_skb_is_valid_access(int off, int size,
8112                                   enum bpf_access_type type,
8113                                   const struct bpf_prog *prog,
8114                                   struct bpf_insn_access_aux *info)
8115{
8116        switch (off) {
8117        case bpf_ctx_range(struct __sk_buff, tc_classid):
8118        case bpf_ctx_range(struct __sk_buff, data_meta):
8119        case bpf_ctx_range(struct __sk_buff, tstamp):
8120        case bpf_ctx_range(struct __sk_buff, wire_len):
8121                return false;
8122        }
8123
8124        if (type == BPF_WRITE) {
8125                switch (off) {
8126                case bpf_ctx_range(struct __sk_buff, tc_index):
8127                case bpf_ctx_range(struct __sk_buff, priority):
8128                        break;
8129                default:
8130                        return false;
8131                }
8132        }
8133
8134        switch (off) {
8135        case bpf_ctx_range(struct __sk_buff, mark):
8136                return false;
8137        case bpf_ctx_range(struct __sk_buff, data):
8138                info->reg_type = PTR_TO_PACKET;
8139                break;
8140        case bpf_ctx_range(struct __sk_buff, data_end):
8141                info->reg_type = PTR_TO_PACKET_END;
8142                break;
8143        }
8144
8145        return bpf_skb_is_valid_access(off, size, type, prog, info);
8146}
8147
8148static bool sk_msg_is_valid_access(int off, int size,
8149                                   enum bpf_access_type type,
8150                                   const struct bpf_prog *prog,
8151                                   struct bpf_insn_access_aux *info)
8152{
8153        if (type == BPF_WRITE)
8154                return false;
8155
8156        if (off % size != 0)
8157                return false;
8158
8159        switch (off) {
8160        case offsetof(struct sk_msg_md, data):
8161                info->reg_type = PTR_TO_PACKET;
8162                if (size != sizeof(__u64))
8163                        return false;
8164                break;
8165        case offsetof(struct sk_msg_md, data_end):
8166                info->reg_type = PTR_TO_PACKET_END;
8167                if (size != sizeof(__u64))
8168                        return false;
8169                break;
8170        case offsetof(struct sk_msg_md, sk):
8171                if (size != sizeof(__u64))
8172                        return false;
8173                info->reg_type = PTR_TO_SOCKET;
8174                break;
8175        case bpf_ctx_range(struct sk_msg_md, family):
8176        case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8177        case bpf_ctx_range(struct sk_msg_md, local_ip4):
8178        case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8179        case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8180        case bpf_ctx_range(struct sk_msg_md, remote_port):
8181        case bpf_ctx_range(struct sk_msg_md, local_port):
8182        case bpf_ctx_range(struct sk_msg_md, size):
8183                if (size != sizeof(__u32))
8184                        return false;
8185                break;
8186        default:
8187                return false;
8188        }
8189        return true;
8190}
8191
8192static bool flow_dissector_is_valid_access(int off, int size,
8193                                           enum bpf_access_type type,
8194                                           const struct bpf_prog *prog,
8195                                           struct bpf_insn_access_aux *info)
8196{
8197        const int size_default = sizeof(__u32);
8198
8199        if (off < 0 || off >= sizeof(struct __sk_buff))
8200                return false;
8201
8202        if (type == BPF_WRITE)
8203                return false;
8204
8205        switch (off) {
8206        case bpf_ctx_range(struct __sk_buff, data):
8207                if (size != size_default)
8208                        return false;
8209                info->reg_type = PTR_TO_PACKET;
8210                return true;
8211        case bpf_ctx_range(struct __sk_buff, data_end):
8212                if (size != size_default)
8213                        return false;
8214                info->reg_type = PTR_TO_PACKET_END;
8215                return true;
8216        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8217                if (size != sizeof(__u64))
8218                        return false;
8219                info->reg_type = PTR_TO_FLOW_KEYS;
8220                return true;
8221        default:
8222                return false;
8223        }
8224}
8225
8226static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8227                                             const struct bpf_insn *si,
8228                                             struct bpf_insn *insn_buf,
8229                                             struct bpf_prog *prog,
8230                                             u32 *target_size)
8231
8232{
8233        struct bpf_insn *insn = insn_buf;
8234
8235        switch (si->off) {
8236        case offsetof(struct __sk_buff, data):
8237                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8238                                      si->dst_reg, si->src_reg,
8239                                      offsetof(struct bpf_flow_dissector, data));
8240                break;
8241
8242        case offsetof(struct __sk_buff, data_end):
8243                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8244                                      si->dst_reg, si->src_reg,
8245                                      offsetof(struct bpf_flow_dissector, data_end));
8246                break;
8247
8248        case offsetof(struct __sk_buff, flow_keys):
8249                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8250                                      si->dst_reg, si->src_reg,
8251                                      offsetof(struct bpf_flow_dissector, flow_keys));
8252                break;
8253        }
8254
8255        return insn - insn_buf;
8256}
8257
8258static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8259                                                  struct bpf_insn *insn)
8260{
8261        /* si->dst_reg = skb_shinfo(SKB); */
8262#ifdef NET_SKBUFF_DATA_USES_OFFSET
8263        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8264                              BPF_REG_AX, si->src_reg,
8265                              offsetof(struct sk_buff, end));
8266        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8267                              si->dst_reg, si->src_reg,
8268                              offsetof(struct sk_buff, head));
8269        *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8270#else
8271        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8272                              si->dst_reg, si->src_reg,
8273                              offsetof(struct sk_buff, end));
8274#endif
8275
8276        return insn;
8277}
8278
8279static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8280                                  const struct bpf_insn *si,
8281                                  struct bpf_insn *insn_buf,
8282                                  struct bpf_prog *prog, u32 *target_size)
8283{
8284        struct bpf_insn *insn = insn_buf;
8285        int off;
8286
8287        switch (si->off) {
8288        case offsetof(struct __sk_buff, len):
8289                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8290                                      bpf_target_off(struct sk_buff, len, 4,
8291                                                     target_size));
8292                break;
8293
8294        case offsetof(struct __sk_buff, protocol):
8295                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8296                                      bpf_target_off(struct sk_buff, protocol, 2,
8297                                                     target_size));
8298                break;
8299
8300        case offsetof(struct __sk_buff, vlan_proto):
8301                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8302                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
8303                                                     target_size));
8304                break;
8305
8306        case offsetof(struct __sk_buff, priority):
8307                if (type == BPF_WRITE)
8308                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8309                                              bpf_target_off(struct sk_buff, priority, 4,
8310                                                             target_size));
8311                else
8312                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8313                                              bpf_target_off(struct sk_buff, priority, 4,
8314                                                             target_size));
8315                break;
8316
8317        case offsetof(struct __sk_buff, ingress_ifindex):
8318                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8319                                      bpf_target_off(struct sk_buff, skb_iif, 4,
8320                                                     target_size));
8321                break;
8322
8323        case offsetof(struct __sk_buff, ifindex):
8324                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8325                                      si->dst_reg, si->src_reg,
8326                                      offsetof(struct sk_buff, dev));
8327                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8328                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8329                                      bpf_target_off(struct net_device, ifindex, 4,
8330                                                     target_size));
8331                break;
8332
8333        case offsetof(struct __sk_buff, hash):
8334                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8335                                      bpf_target_off(struct sk_buff, hash, 4,
8336                                                     target_size));
8337                break;
8338
8339        case offsetof(struct __sk_buff, mark):
8340                if (type == BPF_WRITE)
8341                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8342                                              bpf_target_off(struct sk_buff, mark, 4,
8343                                                             target_size));
8344                else
8345                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8346                                              bpf_target_off(struct sk_buff, mark, 4,
8347                                                             target_size));
8348                break;
8349
8350        case offsetof(struct __sk_buff, pkt_type):
8351                *target_size = 1;
8352                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8353                                      PKT_TYPE_OFFSET());
8354                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8355#ifdef __BIG_ENDIAN_BITFIELD
8356                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8357#endif
8358                break;
8359
8360        case offsetof(struct __sk_buff, queue_mapping):
8361                if (type == BPF_WRITE) {
8362                        *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8363                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8364                                              bpf_target_off(struct sk_buff,
8365                                                             queue_mapping,
8366                                                             2, target_size));
8367                } else {
8368                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8369                                              bpf_target_off(struct sk_buff,
8370                                                             queue_mapping,
8371                                                             2, target_size));
8372                }
8373                break;
8374
8375        case offsetof(struct __sk_buff, vlan_present):
8376                *target_size = 1;
8377                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8378                                      PKT_VLAN_PRESENT_OFFSET());
8379                if (PKT_VLAN_PRESENT_BIT)
8380                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8381                if (PKT_VLAN_PRESENT_BIT < 7)
8382                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8383                break;
8384
8385        case offsetof(struct __sk_buff, vlan_tci):
8386                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8387                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
8388                                                     target_size));
8389                break;
8390
8391        case offsetof(struct __sk_buff, cb[0]) ...
8392             offsetofend(struct __sk_buff, cb[4]) - 1:
8393                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8394                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8395                              offsetof(struct qdisc_skb_cb, data)) %
8396                             sizeof(__u64));
8397
8398                prog->cb_access = 1;
8399                off  = si->off;
8400                off -= offsetof(struct __sk_buff, cb[0]);
8401                off += offsetof(struct sk_buff, cb);
8402                off += offsetof(struct qdisc_skb_cb, data);
8403                if (type == BPF_WRITE)
8404                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8405                                              si->src_reg, off);
8406                else
8407                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8408                                              si->src_reg, off);
8409                break;
8410
8411        case offsetof(struct __sk_buff, tc_classid):
8412                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8413
8414                off  = si->off;
8415                off -= offsetof(struct __sk_buff, tc_classid);
8416                off += offsetof(struct sk_buff, cb);
8417                off += offsetof(struct qdisc_skb_cb, tc_classid);
8418                *target_size = 2;
8419                if (type == BPF_WRITE)
8420                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8421                                              si->src_reg, off);
8422                else
8423                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8424                                              si->src_reg, off);
8425                break;
8426
8427        case offsetof(struct __sk_buff, data):
8428                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8429                                      si->dst_reg, si->src_reg,
8430                                      offsetof(struct sk_buff, data));
8431                break;
8432
8433        case offsetof(struct __sk_buff, data_meta):
8434                off  = si->off;
8435                off -= offsetof(struct __sk_buff, data_meta);
8436                off += offsetof(struct sk_buff, cb);
8437                off += offsetof(struct bpf_skb_data_end, data_meta);
8438                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8439                                      si->src_reg, off);
8440                break;
8441
8442        case offsetof(struct __sk_buff, data_end):
8443                off  = si->off;
8444                off -= offsetof(struct __sk_buff, data_end);
8445                off += offsetof(struct sk_buff, cb);
8446                off += offsetof(struct bpf_skb_data_end, data_end);
8447                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8448                                      si->src_reg, off);
8449                break;
8450
8451        case offsetof(struct __sk_buff, tc_index):
8452#ifdef CONFIG_NET_SCHED
8453                if (type == BPF_WRITE)
8454                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8455                                              bpf_target_off(struct sk_buff, tc_index, 2,
8456                                                             target_size));
8457                else
8458                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8459                                              bpf_target_off(struct sk_buff, tc_index, 2,
8460                                                             target_size));
8461#else
8462                *target_size = 2;
8463                if (type == BPF_WRITE)
8464                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8465                else
8466                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8467#endif
8468                break;
8469
8470        case offsetof(struct __sk_buff, napi_id):
8471#if defined(CONFIG_NET_RX_BUSY_POLL)
8472                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8473                                      bpf_target_off(struct sk_buff, napi_id, 4,
8474                                                     target_size));
8475                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8476                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8477#else
8478                *target_size = 4;
8479                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8480#endif
8481                break;
8482        case offsetof(struct __sk_buff, family):
8483                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8484
8485                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8486                                      si->dst_reg, si->src_reg,
8487                                      offsetof(struct sk_buff, sk));
8488                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8489                                      bpf_target_off(struct sock_common,
8490                                                     skc_family,
8491                                                     2, target_size));
8492                break;
8493        case offsetof(struct __sk_buff, remote_ip4):
8494                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8495
8496                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8497                                      si->dst_reg, si->src_reg,
8498                                      offsetof(struct sk_buff, sk));
8499                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8500                                      bpf_target_off(struct sock_common,
8501                                                     skc_daddr,
8502                                                     4, target_size));
8503                break;
8504        case offsetof(struct __sk_buff, local_ip4):
8505                BUILD_BUG_ON(sizeof_field(struct sock_common,
8506                                          skc_rcv_saddr) != 4);
8507
8508                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8509                                      si->dst_reg, si->src_reg,
8510                                      offsetof(struct sk_buff, sk));
8511                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8512                                      bpf_target_off(struct sock_common,
8513                                                     skc_rcv_saddr,
8514                                                     4, target_size));
8515                break;
8516        case offsetof(struct __sk_buff, remote_ip6[0]) ...
8517             offsetof(struct __sk_buff, remote_ip6[3]):
8518#if IS_ENABLED(CONFIG_IPV6)
8519                BUILD_BUG_ON(sizeof_field(struct sock_common,
8520                                          skc_v6_daddr.s6_addr32[0]) != 4);
8521
8522                off = si->off;
8523                off -= offsetof(struct __sk_buff, remote_ip6[0]);
8524
8525                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8526                                      si->dst_reg, si->src_reg,
8527                                      offsetof(struct sk_buff, sk));
8528                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8529                                      offsetof(struct sock_common,
8530                                               skc_v6_daddr.s6_addr32[0]) +
8531                                      off);
8532#else
8533                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8534#endif
8535                break;
8536        case offsetof(struct __sk_buff, local_ip6[0]) ...
8537             offsetof(struct __sk_buff, local_ip6[3]):
8538#if IS_ENABLED(CONFIG_IPV6)
8539                BUILD_BUG_ON(sizeof_field(struct sock_common,
8540                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8541
8542                off = si->off;
8543                off -= offsetof(struct __sk_buff, local_ip6[0]);
8544
8545                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8546                                      si->dst_reg, si->src_reg,
8547                                      offsetof(struct sk_buff, sk));
8548                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8549                                      offsetof(struct sock_common,
8550                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8551                                      off);
8552#else
8553                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8554#endif
8555                break;
8556
8557        case offsetof(struct __sk_buff, remote_port):
8558                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8559
8560                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8561                                      si->dst_reg, si->src_reg,
8562                                      offsetof(struct sk_buff, sk));
8563                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8564                                      bpf_target_off(struct sock_common,
8565                                                     skc_dport,
8566                                                     2, target_size));
8567#ifndef __BIG_ENDIAN_BITFIELD
8568                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8569#endif
8570                break;
8571
8572        case offsetof(struct __sk_buff, local_port):
8573                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8574
8575                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8576                                      si->dst_reg, si->src_reg,
8577                                      offsetof(struct sk_buff, sk));
8578                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8579                                      bpf_target_off(struct sock_common,
8580                                                     skc_num, 2, target_size));
8581                break;
8582
8583        case offsetof(struct __sk_buff, tstamp):
8584                BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8585
8586                if (type == BPF_WRITE)
8587                        *insn++ = BPF_STX_MEM(BPF_DW,
8588                                              si->dst_reg, si->src_reg,
8589                                              bpf_target_off(struct sk_buff,
8590                                                             tstamp, 8,
8591                                                             target_size));
8592                else
8593                        *insn++ = BPF_LDX_MEM(BPF_DW,
8594                                              si->dst_reg, si->src_reg,
8595                                              bpf_target_off(struct sk_buff,
8596                                                             tstamp, 8,
8597                                                             target_size));
8598                break;
8599
8600        case offsetof(struct __sk_buff, gso_segs):
8601                insn = bpf_convert_shinfo_access(si, insn);
8602                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8603                                      si->dst_reg, si->dst_reg,
8604                                      bpf_target_off(struct skb_shared_info,
8605                                                     gso_segs, 2,
8606                                                     target_size));
8607                break;
8608        case offsetof(struct __sk_buff, gso_size):
8609                insn = bpf_convert_shinfo_access(si, insn);
8610                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8611                                      si->dst_reg, si->dst_reg,
8612                                      bpf_target_off(struct skb_shared_info,
8613                                                     gso_size, 2,
8614                                                     target_size));
8615                break;
8616        case offsetof(struct __sk_buff, wire_len):
8617                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8618
8619                off = si->off;
8620                off -= offsetof(struct __sk_buff, wire_len);
8621                off += offsetof(struct sk_buff, cb);
8622                off += offsetof(struct qdisc_skb_cb, pkt_len);
8623                *target_size = 4;
8624                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8625                break;
8626
8627        case offsetof(struct __sk_buff, sk):
8628                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8629                                      si->dst_reg, si->src_reg,
8630                                      offsetof(struct sk_buff, sk));
8631                break;
8632        }
8633
8634        return insn - insn_buf;
8635}
8636
8637u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8638                                const struct bpf_insn *si,
8639                                struct bpf_insn *insn_buf,
8640                                struct bpf_prog *prog, u32 *target_size)
8641{
8642        struct bpf_insn *insn = insn_buf;
8643        int off;
8644
8645        switch (si->off) {
8646        case offsetof(struct bpf_sock, bound_dev_if):
8647                BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8648
8649                if (type == BPF_WRITE)
8650                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8651                                        offsetof(struct sock, sk_bound_dev_if));
8652                else
8653                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8654                                      offsetof(struct sock, sk_bound_dev_if));
8655                break;
8656
8657        case offsetof(struct bpf_sock, mark):
8658                BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8659
8660                if (type == BPF_WRITE)
8661                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8662                                        offsetof(struct sock, sk_mark));
8663                else
8664                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8665                                      offsetof(struct sock, sk_mark));
8666                break;
8667
8668        case offsetof(struct bpf_sock, priority):
8669                BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8670
8671                if (type == BPF_WRITE)
8672                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8673                                        offsetof(struct sock, sk_priority));
8674                else
8675                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8676                                      offsetof(struct sock, sk_priority));
8677                break;
8678
8679        case offsetof(struct bpf_sock, family):
8680                *insn++ = BPF_LDX_MEM(
8681                        BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8682                        si->dst_reg, si->src_reg,
8683                        bpf_target_off(struct sock_common,
8684                                       skc_family,
8685                                       sizeof_field(struct sock_common,
8686                                                    skc_family),
8687                                       target_size));
8688                break;
8689
8690        case offsetof(struct bpf_sock, type):
8691                *insn++ = BPF_LDX_MEM(
8692                        BPF_FIELD_SIZEOF(struct sock, sk_type),
8693                        si->dst_reg, si->src_reg,
8694                        bpf_target_off(struct sock, sk_type,
8695                                       sizeof_field(struct sock, sk_type),
8696                                       target_size));
8697                break;
8698
8699        case offsetof(struct bpf_sock, protocol):
8700                *insn++ = BPF_LDX_MEM(
8701                        BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8702                        si->dst_reg, si->src_reg,
8703                        bpf_target_off(struct sock, sk_protocol,
8704                                       sizeof_field(struct sock, sk_protocol),
8705                                       target_size));
8706                break;
8707
8708        case offsetof(struct bpf_sock, src_ip4):
8709                *insn++ = BPF_LDX_MEM(
8710                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8711                        bpf_target_off(struct sock_common, skc_rcv_saddr,
8712                                       sizeof_field(struct sock_common,
8713                                                    skc_rcv_saddr),
8714                                       target_size));
8715                break;
8716
8717        case offsetof(struct bpf_sock, dst_ip4):
8718                *insn++ = BPF_LDX_MEM(
8719                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8720                        bpf_target_off(struct sock_common, skc_daddr,
8721                                       sizeof_field(struct sock_common,
8722                                                    skc_daddr),
8723                                       target_size));
8724                break;
8725
8726        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8727#if IS_ENABLED(CONFIG_IPV6)
8728                off = si->off;
8729                off -= offsetof(struct bpf_sock, src_ip6[0]);
8730                *insn++ = BPF_LDX_MEM(
8731                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8732                        bpf_target_off(
8733                                struct sock_common,
8734                                skc_v6_rcv_saddr.s6_addr32[0],
8735                                sizeof_field(struct sock_common,
8736                                             skc_v6_rcv_saddr.s6_addr32[0]),
8737                                target_size) + off);
8738#else
8739                (void)off;
8740                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8741#endif
8742                break;
8743
8744        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8745#if IS_ENABLED(CONFIG_IPV6)
8746                off = si->off;
8747                off -= offsetof(struct bpf_sock, dst_ip6[0]);
8748                *insn++ = BPF_LDX_MEM(
8749                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8750                        bpf_target_off(struct sock_common,
8751                                       skc_v6_daddr.s6_addr32[0],
8752                                       sizeof_field(struct sock_common,
8753                                                    skc_v6_daddr.s6_addr32[0]),
8754                                       target_size) + off);
8755#else
8756                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8757                *target_size = 4;
8758#endif
8759                break;
8760
8761        case offsetof(struct bpf_sock, src_port):
8762                *insn++ = BPF_LDX_MEM(
8763                        BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8764                        si->dst_reg, si->src_reg,
8765                        bpf_target_off(struct sock_common, skc_num,
8766                                       sizeof_field(struct sock_common,
8767                                                    skc_num),
8768                                       target_size));
8769                break;
8770
8771        case offsetof(struct bpf_sock, dst_port):
8772                *insn++ = BPF_LDX_MEM(
8773                        BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8774                        si->dst_reg, si->src_reg,
8775                        bpf_target_off(struct sock_common, skc_dport,
8776                                       sizeof_field(struct sock_common,
8777                                                    skc_dport),
8778                                       target_size));
8779                break;
8780
8781        case offsetof(struct bpf_sock, state):
8782                *insn++ = BPF_LDX_MEM(
8783                        BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8784                        si->dst_reg, si->src_reg,
8785                        bpf_target_off(struct sock_common, skc_state,
8786                                       sizeof_field(struct sock_common,
8787                                                    skc_state),
8788                                       target_size));
8789                break;
8790        case offsetof(struct bpf_sock, rx_queue_mapping):
8791#ifdef CONFIG_XPS
8792                *insn++ = BPF_LDX_MEM(
8793                        BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8794                        si->dst_reg, si->src_reg,
8795                        bpf_target_off(struct sock, sk_rx_queue_mapping,
8796                                       sizeof_field(struct sock,
8797                                                    sk_rx_queue_mapping),
8798                                       target_size));
8799                *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8800                                      1);
8801                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8802#else
8803                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8804                *target_size = 2;
8805#endif
8806                break;
8807        }
8808
8809        return insn - insn_buf;
8810}
8811
8812static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8813                                         const struct bpf_insn *si,
8814                                         struct bpf_insn *insn_buf,
8815                                         struct bpf_prog *prog, u32 *target_size)
8816{
8817        struct bpf_insn *insn = insn_buf;
8818
8819        switch (si->off) {
8820        case offsetof(struct __sk_buff, ifindex):
8821                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8822                                      si->dst_reg, si->src_reg,
8823                                      offsetof(struct sk_buff, dev));
8824                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8825                                      bpf_target_off(struct net_device, ifindex, 4,
8826                                                     target_size));
8827                break;
8828        default:
8829                return bpf_convert_ctx_access(type, si, insn_buf, prog,
8830                                              target_size);
8831        }
8832
8833        return insn - insn_buf;
8834}
8835
8836static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8837                                  const struct bpf_insn *si,
8838                                  struct bpf_insn *insn_buf,
8839                                  struct bpf_prog *prog, u32 *target_size)
8840{
8841        struct bpf_insn *insn = insn_buf;
8842
8843        switch (si->off) {
8844        case offsetof(struct xdp_md, data):
8845                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8846                                      si->dst_reg, si->src_reg,
8847                                      offsetof(struct xdp_buff, data));
8848                break;
8849        case offsetof(struct xdp_md, data_meta):
8850                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8851                                      si->dst_reg, si->src_reg,
8852                                      offsetof(struct xdp_buff, data_meta));
8853                break;
8854        case offsetof(struct xdp_md, data_end):
8855                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8856                                      si->dst_reg, si->src_reg,
8857                                      offsetof(struct xdp_buff, data_end));
8858                break;
8859        case offsetof(struct xdp_md, ingress_ifindex):
8860                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8861                                      si->dst_reg, si->src_reg,
8862                                      offsetof(struct xdp_buff, rxq));
8863                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8864                                      si->dst_reg, si->dst_reg,
8865                                      offsetof(struct xdp_rxq_info, dev));
8866                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8867                                      offsetof(struct net_device, ifindex));
8868                break;
8869        case offsetof(struct xdp_md, rx_queue_index):
8870                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8871                                      si->dst_reg, si->src_reg,
8872                                      offsetof(struct xdp_buff, rxq));
8873                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8874                                      offsetof(struct xdp_rxq_info,
8875                                               queue_index));
8876                break;
8877        case offsetof(struct xdp_md, egress_ifindex):
8878                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8879                                      si->dst_reg, si->src_reg,
8880                                      offsetof(struct xdp_buff, txq));
8881                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8882                                      si->dst_reg, si->dst_reg,
8883                                      offsetof(struct xdp_txq_info, dev));
8884                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8885                                      offsetof(struct net_device, ifindex));
8886                break;
8887        }
8888
8889        return insn - insn_buf;
8890}
8891
8892/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8893 * context Structure, F is Field in context structure that contains a pointer
8894 * to Nested Structure of type NS that has the field NF.
8895 *
8896 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8897 * sure that SIZE is not greater than actual size of S.F.NF.
8898 *
8899 * If offset OFF is provided, the load happens from that offset relative to
8900 * offset of NF.
8901 */
8902#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8903        do {                                                                   \
8904                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8905                                      si->src_reg, offsetof(S, F));            \
8906                *insn++ = BPF_LDX_MEM(                                         \
8907                        SIZE, si->dst_reg, si->dst_reg,                        \
8908                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8909                                       target_size)                            \
8910                                + OFF);                                        \
8911        } while (0)
8912
8913#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8914        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8915                                             BPF_FIELD_SIZEOF(NS, NF), 0)
8916
8917/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8918 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8919 *
8920 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8921 * "register" since two registers available in convert_ctx_access are not
8922 * enough: we can't override neither SRC, since it contains value to store, nor
8923 * DST since it contains pointer to context that may be used by later
8924 * instructions. But we need a temporary place to save pointer to nested
8925 * structure whose field we want to store to.
8926 */
8927#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8928        do {                                                                   \
8929                int tmp_reg = BPF_REG_9;                                       \
8930                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8931                        --tmp_reg;                                             \
8932                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8933                        --tmp_reg;                                             \
8934                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8935                                      offsetof(S, TF));                        \
8936                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8937                                      si->dst_reg, offsetof(S, F));            \
8938                *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8939                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8940                                       target_size)                            \
8941                                + OFF);                                        \
8942                *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8943                                      offsetof(S, TF));                        \
8944        } while (0)
8945
8946#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8947                                                      TF)                      \
8948        do {                                                                   \
8949                if (type == BPF_WRITE) {                                       \
8950                        SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8951                                                         OFF, TF);             \
8952                } else {                                                       \
8953                        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8954                                S, NS, F, NF, SIZE, OFF);  \
8955                }                                                              \
8956        } while (0)
8957
8958#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8959        SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8960                S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8961
8962static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8963                                        const struct bpf_insn *si,
8964                                        struct bpf_insn *insn_buf,
8965                                        struct bpf_prog *prog, u32 *target_size)
8966{
8967        int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8968        struct bpf_insn *insn = insn_buf;
8969
8970        switch (si->off) {
8971        case offsetof(struct bpf_sock_addr, user_family):
8972                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8973                                            struct sockaddr, uaddr, sa_family);
8974                break;
8975
8976        case offsetof(struct bpf_sock_addr, user_ip4):
8977                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8978                        struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8979                        sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8980                break;
8981
8982        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8983                off = si->off;
8984                off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8985                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8986                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8987                        sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8988                        tmp_reg);
8989                break;
8990
8991        case offsetof(struct bpf_sock_addr, user_port):
8992                /* To get port we need to know sa_family first and then treat
8993                 * sockaddr as either sockaddr_in or sockaddr_in6.
8994                 * Though we can simplify since port field has same offset and
8995                 * size in both structures.
8996                 * Here we check this invariant and use just one of the
8997                 * structures if it's true.
8998                 */
8999                BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9000                             offsetof(struct sockaddr_in6, sin6_port));
9001                BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9002                             sizeof_field(struct sockaddr_in6, sin6_port));
9003                /* Account for sin6_port being smaller than user_port. */
9004                port_size = min(port_size, BPF_LDST_BYTES(si));
9005                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9006                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9007                        sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9008                break;
9009
9010        case offsetof(struct bpf_sock_addr, family):
9011                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9012                                            struct sock, sk, sk_family);
9013                break;
9014
9015        case offsetof(struct bpf_sock_addr, type):
9016                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9017                                            struct sock, sk, sk_type);
9018                break;
9019
9020        case offsetof(struct bpf_sock_addr, protocol):
9021                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9022                                            struct sock, sk, sk_protocol);
9023                break;
9024
9025        case offsetof(struct bpf_sock_addr, msg_src_ip4):
9026                /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9027                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9028                        struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9029                        s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9030                break;
9031
9032        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9033                                msg_src_ip6[3]):
9034                off = si->off;
9035                off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9036                /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9037                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9038                        struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9039                        s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9040                break;
9041        case offsetof(struct bpf_sock_addr, sk):
9042                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9043                                      si->dst_reg, si->src_reg,
9044                                      offsetof(struct bpf_sock_addr_kern, sk));
9045                break;
9046        }
9047
9048        return insn - insn_buf;
9049}
9050
9051static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9052                                       const struct bpf_insn *si,
9053                                       struct bpf_insn *insn_buf,
9054                                       struct bpf_prog *prog,
9055                                       u32 *target_size)
9056{
9057        struct bpf_insn *insn = insn_buf;
9058        int off;
9059
9060/* Helper macro for adding read access to tcp_sock or sock fields. */
9061#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9062        do {                                                                  \
9063                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9064                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9065                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9066                if (si->dst_reg == reg || si->src_reg == reg)                 \
9067                        reg--;                                                \
9068                if (si->dst_reg == reg || si->src_reg == reg)                 \
9069                        reg--;                                                \
9070                if (si->dst_reg == si->src_reg) {                             \
9071                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9072                                          offsetof(struct bpf_sock_ops_kern,  \
9073                                          temp));                             \
9074                        fullsock_reg = reg;                                   \
9075                        jmp += 2;                                             \
9076                }                                                             \
9077                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9078                                                struct bpf_sock_ops_kern,     \
9079                                                is_fullsock),                 \
9080                                      fullsock_reg, si->src_reg,              \
9081                                      offsetof(struct bpf_sock_ops_kern,      \
9082                                               is_fullsock));                 \
9083                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9084                if (si->dst_reg == si->src_reg)                               \
9085                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9086                                      offsetof(struct bpf_sock_ops_kern,      \
9087                                      temp));                                 \
9088                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9089                                                struct bpf_sock_ops_kern, sk),\
9090                                      si->dst_reg, si->src_reg,               \
9091                                      offsetof(struct bpf_sock_ops_kern, sk));\
9092                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9093                                                       OBJ_FIELD),            \
9094                                      si->dst_reg, si->dst_reg,               \
9095                                      offsetof(OBJ, OBJ_FIELD));              \
9096                if (si->dst_reg == si->src_reg) {                             \
9097                        *insn++ = BPF_JMP_A(1);                               \
9098                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9099                                      offsetof(struct bpf_sock_ops_kern,      \
9100                                      temp));                                 \
9101                }                                                             \
9102        } while (0)
9103
9104#define SOCK_OPS_GET_SK()                                                             \
9105        do {                                                                  \
9106                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9107                if (si->dst_reg == reg || si->src_reg == reg)                 \
9108                        reg--;                                                \
9109                if (si->dst_reg == reg || si->src_reg == reg)                 \
9110                        reg--;                                                \
9111                if (si->dst_reg == si->src_reg) {                             \
9112                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9113                                          offsetof(struct bpf_sock_ops_kern,  \
9114                                          temp));                             \
9115                        fullsock_reg = reg;                                   \
9116                        jmp += 2;                                             \
9117                }                                                             \
9118                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9119                                                struct bpf_sock_ops_kern,     \
9120                                                is_fullsock),                 \
9121                                      fullsock_reg, si->src_reg,              \
9122                                      offsetof(struct bpf_sock_ops_kern,      \
9123                                               is_fullsock));                 \
9124                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9125                if (si->dst_reg == si->src_reg)                               \
9126                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9127                                      offsetof(struct bpf_sock_ops_kern,      \
9128                                      temp));                                 \
9129                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9130                                                struct bpf_sock_ops_kern, sk),\
9131                                      si->dst_reg, si->src_reg,               \
9132                                      offsetof(struct bpf_sock_ops_kern, sk));\
9133                if (si->dst_reg == si->src_reg) {                             \
9134                        *insn++ = BPF_JMP_A(1);                               \
9135                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9136                                      offsetof(struct bpf_sock_ops_kern,      \
9137                                      temp));                                 \
9138                }                                                             \
9139        } while (0)
9140
9141#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9142                SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9143
9144/* Helper macro for adding write access to tcp_sock or sock fields.
9145 * The macro is called with two registers, dst_reg which contains a pointer
9146 * to ctx (context) and src_reg which contains the value that should be
9147 * stored. However, we need an additional register since we cannot overwrite
9148 * dst_reg because it may be used later in the program.
9149 * Instead we "borrow" one of the other register. We first save its value
9150 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9151 * it at the end of the macro.
9152 */
9153#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9154        do {                                                                  \
9155                int reg = BPF_REG_9;                                          \
9156                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9157                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9158                if (si->dst_reg == reg || si->src_reg == reg)                 \
9159                        reg--;                                                \
9160                if (si->dst_reg == reg || si->src_reg == reg)                 \
9161                        reg--;                                                \
9162                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9163                                      offsetof(struct bpf_sock_ops_kern,      \
9164                                               temp));                        \
9165                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9166                                                struct bpf_sock_ops_kern,     \
9167                                                is_fullsock),                 \
9168                                      reg, si->dst_reg,                       \
9169                                      offsetof(struct bpf_sock_ops_kern,      \
9170                                               is_fullsock));                 \
9171                *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9172                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9173                                                struct bpf_sock_ops_kern, sk),\
9174                                      reg, si->dst_reg,                       \
9175                                      offsetof(struct bpf_sock_ops_kern, sk));\
9176                *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9177                                      reg, si->src_reg,                       \
9178                                      offsetof(OBJ, OBJ_FIELD));              \
9179                *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9180                                      offsetof(struct bpf_sock_ops_kern,      \
9181                                               temp));                        \
9182        } while (0)
9183
9184#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9185        do {                                                                  \
9186                if (TYPE == BPF_WRITE)                                        \
9187                        SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9188                else                                                          \
9189                        SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9190        } while (0)
9191
9192        if (insn > insn_buf)
9193                return insn - insn_buf;
9194
9195        switch (si->off) {
9196        case offsetof(struct bpf_sock_ops, op):
9197                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9198                                                       op),
9199                                      si->dst_reg, si->src_reg,
9200                                      offsetof(struct bpf_sock_ops_kern, op));
9201                break;
9202
9203        case offsetof(struct bpf_sock_ops, replylong[0]) ...
9204             offsetof(struct bpf_sock_ops, replylong[3]):
9205                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9206                             sizeof_field(struct bpf_sock_ops_kern, reply));
9207                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9208                             sizeof_field(struct bpf_sock_ops_kern, replylong));
9209                off = si->off;
9210                off -= offsetof(struct bpf_sock_ops, replylong[0]);
9211                off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9212                if (type == BPF_WRITE)
9213                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9214                                              off);
9215                else
9216                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9217                                              off);
9218                break;
9219
9220        case offsetof(struct bpf_sock_ops, family):
9221                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9222
9223                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9224                                              struct bpf_sock_ops_kern, sk),
9225                                      si->dst_reg, si->src_reg,
9226                                      offsetof(struct bpf_sock_ops_kern, sk));
9227                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9228                                      offsetof(struct sock_common, skc_family));
9229                break;
9230
9231        case offsetof(struct bpf_sock_ops, remote_ip4):
9232                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9233
9234                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9235                                                struct bpf_sock_ops_kern, sk),
9236                                      si->dst_reg, si->src_reg,
9237                                      offsetof(struct bpf_sock_ops_kern, sk));
9238                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9239                                      offsetof(struct sock_common, skc_daddr));
9240                break;
9241
9242        case offsetof(struct bpf_sock_ops, local_ip4):
9243                BUILD_BUG_ON(sizeof_field(struct sock_common,
9244                                          skc_rcv_saddr) != 4);
9245
9246                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9247                                              struct bpf_sock_ops_kern, sk),
9248                                      si->dst_reg, si->src_reg,
9249                                      offsetof(struct bpf_sock_ops_kern, sk));
9250                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9251                                      offsetof(struct sock_common,
9252                                               skc_rcv_saddr));
9253                break;
9254
9255        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9256             offsetof(struct bpf_sock_ops, remote_ip6[3]):
9257#if IS_ENABLED(CONFIG_IPV6)
9258                BUILD_BUG_ON(sizeof_field(struct sock_common,
9259                                          skc_v6_daddr.s6_addr32[0]) != 4);
9260
9261                off = si->off;
9262                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9263                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9264                                                struct bpf_sock_ops_kern, sk),
9265                                      si->dst_reg, si->src_reg,
9266                                      offsetof(struct bpf_sock_ops_kern, sk));
9267                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9268                                      offsetof(struct sock_common,
9269                                               skc_v6_daddr.s6_addr32[0]) +
9270                                      off);
9271#else
9272                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9273#endif
9274                break;
9275
9276        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9277             offsetof(struct bpf_sock_ops, local_ip6[3]):
9278#if IS_ENABLED(CONFIG_IPV6)
9279                BUILD_BUG_ON(sizeof_field(struct sock_common,
9280                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9281
9282                off = si->off;
9283                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9284                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9285                                                struct bpf_sock_ops_kern, sk),
9286                                      si->dst_reg, si->src_reg,
9287                                      offsetof(struct bpf_sock_ops_kern, sk));
9288                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9289                                      offsetof(struct sock_common,
9290                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9291                                      off);
9292#else
9293                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9294#endif
9295                break;
9296
9297        case offsetof(struct bpf_sock_ops, remote_port):
9298                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9299
9300                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9301                                                struct bpf_sock_ops_kern, sk),
9302                                      si->dst_reg, si->src_reg,
9303                                      offsetof(struct bpf_sock_ops_kern, sk));
9304                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9305                                      offsetof(struct sock_common, skc_dport));
9306#ifndef __BIG_ENDIAN_BITFIELD
9307                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9308#endif
9309                break;
9310
9311        case offsetof(struct bpf_sock_ops, local_port):
9312                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9313
9314                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9315                                                struct bpf_sock_ops_kern, sk),
9316                                      si->dst_reg, si->src_reg,
9317                                      offsetof(struct bpf_sock_ops_kern, sk));
9318                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9319                                      offsetof(struct sock_common, skc_num));
9320                break;
9321
9322        case offsetof(struct bpf_sock_ops, is_fullsock):
9323                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9324                                                struct bpf_sock_ops_kern,
9325                                                is_fullsock),
9326                                      si->dst_reg, si->src_reg,
9327                                      offsetof(struct bpf_sock_ops_kern,
9328                                               is_fullsock));
9329                break;
9330
9331        case offsetof(struct bpf_sock_ops, state):
9332                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9333
9334                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9335                                                struct bpf_sock_ops_kern, sk),
9336                                      si->dst_reg, si->src_reg,
9337                                      offsetof(struct bpf_sock_ops_kern, sk));
9338                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9339                                      offsetof(struct sock_common, skc_state));
9340                break;
9341
9342        case offsetof(struct bpf_sock_ops, rtt_min):
9343                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9344                             sizeof(struct minmax));
9345                BUILD_BUG_ON(sizeof(struct minmax) <
9346                             sizeof(struct minmax_sample));
9347
9348                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9349                                                struct bpf_sock_ops_kern, sk),
9350                                      si->dst_reg, si->src_reg,
9351                                      offsetof(struct bpf_sock_ops_kern, sk));
9352                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9353                                      offsetof(struct tcp_sock, rtt_min) +
9354                                      sizeof_field(struct minmax_sample, t));
9355                break;
9356
9357        case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9358                SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9359                                   struct tcp_sock);
9360                break;
9361
9362        case offsetof(struct bpf_sock_ops, sk_txhash):
9363                SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9364                                          struct sock, type);
9365                break;
9366        case offsetof(struct bpf_sock_ops, snd_cwnd):
9367                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9368                break;
9369        case offsetof(struct bpf_sock_ops, srtt_us):
9370                SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9371                break;
9372        case offsetof(struct bpf_sock_ops, snd_ssthresh):
9373                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9374                break;
9375        case offsetof(struct bpf_sock_ops, rcv_nxt):
9376                SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9377                break;
9378        case offsetof(struct bpf_sock_ops, snd_nxt):
9379                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9380                break;
9381        case offsetof(struct bpf_sock_ops, snd_una):
9382                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9383                break;
9384        case offsetof(struct bpf_sock_ops, mss_cache):
9385                SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9386                break;
9387        case offsetof(struct bpf_sock_ops, ecn_flags):
9388                SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9389                break;
9390        case offsetof(struct bpf_sock_ops, rate_delivered):
9391                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9392                break;
9393        case offsetof(struct bpf_sock_ops, rate_interval_us):
9394                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9395                break;
9396        case offsetof(struct bpf_sock_ops, packets_out):
9397                SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9398                break;
9399        case offsetof(struct bpf_sock_ops, retrans_out):
9400                SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9401                break;
9402        case offsetof(struct bpf_sock_ops, total_retrans):
9403                SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9404                break;
9405        case offsetof(struct bpf_sock_ops, segs_in):
9406                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9407                break;
9408        case offsetof(struct bpf_sock_ops, data_segs_in):
9409                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9410                break;
9411        case offsetof(struct bpf_sock_ops, segs_out):
9412                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9413                break;
9414        case offsetof(struct bpf_sock_ops, data_segs_out):
9415                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9416                break;
9417        case offsetof(struct bpf_sock_ops, lost_out):
9418                SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9419                break;
9420        case offsetof(struct bpf_sock_ops, sacked_out):
9421                SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9422                break;
9423        case offsetof(struct bpf_sock_ops, bytes_received):
9424                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9425                break;
9426        case offsetof(struct bpf_sock_ops, bytes_acked):
9427                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9428                break;
9429        case offsetof(struct bpf_sock_ops, sk):
9430                SOCK_OPS_GET_SK();
9431                break;
9432        case offsetof(struct bpf_sock_ops, skb_data_end):
9433                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9434                                                       skb_data_end),
9435                                      si->dst_reg, si->src_reg,
9436                                      offsetof(struct bpf_sock_ops_kern,
9437                                               skb_data_end));
9438                break;
9439        case offsetof(struct bpf_sock_ops, skb_data):
9440                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9441                                                       skb),
9442                                      si->dst_reg, si->src_reg,
9443                                      offsetof(struct bpf_sock_ops_kern,
9444                                               skb));
9445                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9446                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9447                                      si->dst_reg, si->dst_reg,
9448                                      offsetof(struct sk_buff, data));
9449                break;
9450        case offsetof(struct bpf_sock_ops, skb_len):
9451                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9452                                                       skb),
9453                                      si->dst_reg, si->src_reg,
9454                                      offsetof(struct bpf_sock_ops_kern,
9455                                               skb));
9456                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9457                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9458                                      si->dst_reg, si->dst_reg,
9459                                      offsetof(struct sk_buff, len));
9460                break;
9461        case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9462                off = offsetof(struct sk_buff, cb);
9463                off += offsetof(struct tcp_skb_cb, tcp_flags);
9464                *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9465                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9466                                                       skb),
9467                                      si->dst_reg, si->src_reg,
9468                                      offsetof(struct bpf_sock_ops_kern,
9469                                               skb));
9470                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9471                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9472                                                       tcp_flags),
9473                                      si->dst_reg, si->dst_reg, off);
9474                break;
9475        }
9476        return insn - insn_buf;
9477}
9478
9479static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9480                                     const struct bpf_insn *si,
9481                                     struct bpf_insn *insn_buf,
9482                                     struct bpf_prog *prog, u32 *target_size)
9483{
9484        struct bpf_insn *insn = insn_buf;
9485        int off;
9486
9487        switch (si->off) {
9488        case offsetof(struct __sk_buff, data_end):
9489                off  = si->off;
9490                off -= offsetof(struct __sk_buff, data_end);
9491                off += offsetof(struct sk_buff, cb);
9492                off += offsetof(struct tcp_skb_cb, bpf.data_end);
9493                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9494                                      si->src_reg, off);
9495                break;
9496        default:
9497                return bpf_convert_ctx_access(type, si, insn_buf, prog,
9498                                              target_size);
9499        }
9500
9501        return insn - insn_buf;
9502}
9503
9504static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9505                                     const struct bpf_insn *si,
9506                                     struct bpf_insn *insn_buf,
9507                                     struct bpf_prog *prog, u32 *target_size)
9508{
9509        struct bpf_insn *insn = insn_buf;
9510#if IS_ENABLED(CONFIG_IPV6)
9511        int off;
9512#endif
9513
9514        /* convert ctx uses the fact sg element is first in struct */
9515        BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9516
9517        switch (si->off) {
9518        case offsetof(struct sk_msg_md, data):
9519                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9520                                      si->dst_reg, si->src_reg,
9521                                      offsetof(struct sk_msg, data));
9522                break;
9523        case offsetof(struct sk_msg_md, data_end):
9524                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9525                                      si->dst_reg, si->src_reg,
9526                                      offsetof(struct sk_msg, data_end));
9527                break;
9528        case offsetof(struct sk_msg_md, family):
9529                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9530
9531                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9532                                              struct sk_msg, sk),
9533                                      si->dst_reg, si->src_reg,
9534                                      offsetof(struct sk_msg, sk));
9535                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9536                                      offsetof(struct sock_common, skc_family));
9537                break;
9538
9539        case offsetof(struct sk_msg_md, remote_ip4):
9540                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9541
9542                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9543                                                struct sk_msg, sk),
9544                                      si->dst_reg, si->src_reg,
9545                                      offsetof(struct sk_msg, sk));
9546                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9547                                      offsetof(struct sock_common, skc_daddr));
9548                break;
9549
9550        case offsetof(struct sk_msg_md, local_ip4):
9551                BUILD_BUG_ON(sizeof_field(struct sock_common,
9552                                          skc_rcv_saddr) != 4);
9553
9554                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9555                                              struct sk_msg, sk),
9556                                      si->dst_reg, si->src_reg,
9557                                      offsetof(struct sk_msg, sk));
9558                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9559                                      offsetof(struct sock_common,
9560                                               skc_rcv_saddr));
9561                break;
9562
9563        case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9564             offsetof(struct sk_msg_md, remote_ip6[3]):
9565#if IS_ENABLED(CONFIG_IPV6)
9566                BUILD_BUG_ON(sizeof_field(struct sock_common,
9567                                          skc_v6_daddr.s6_addr32[0]) != 4);
9568
9569                off = si->off;
9570                off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9571                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9572                                                struct sk_msg, sk),
9573                                      si->dst_reg, si->src_reg,
9574                                      offsetof(struct sk_msg, sk));
9575                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9576                                      offsetof(struct sock_common,
9577                                               skc_v6_daddr.s6_addr32[0]) +
9578                                      off);
9579#else
9580                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9581#endif
9582                break;
9583
9584        case offsetof(struct sk_msg_md, local_ip6[0]) ...
9585             offsetof(struct sk_msg_md, local_ip6[3]):
9586#if IS_ENABLED(CONFIG_IPV6)
9587                BUILD_BUG_ON(sizeof_field(struct sock_common,
9588                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9589
9590                off = si->off;
9591                off -= offsetof(struct sk_msg_md, local_ip6[0]);
9592                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9593                                                struct sk_msg, sk),
9594                                      si->dst_reg, si->src_reg,
9595                                      offsetof(struct sk_msg, sk));
9596                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9597                                      offsetof(struct sock_common,
9598                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9599                                      off);
9600#else
9601                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9602#endif
9603                break;
9604
9605        case offsetof(struct sk_msg_md, remote_port):
9606                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9607
9608                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9609                                                struct sk_msg, sk),
9610                                      si->dst_reg, si->src_reg,
9611                                      offsetof(struct sk_msg, sk));
9612                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9613                                      offsetof(struct sock_common, skc_dport));
9614#ifndef __BIG_ENDIAN_BITFIELD
9615                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9616#endif
9617                break;
9618
9619        case offsetof(struct sk_msg_md, local_port):
9620                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9621
9622                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9623                                                struct sk_msg, sk),
9624                                      si->dst_reg, si->src_reg,
9625                                      offsetof(struct sk_msg, sk));
9626                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9627                                      offsetof(struct sock_common, skc_num));
9628                break;
9629
9630        case offsetof(struct sk_msg_md, size):
9631                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9632                                      si->dst_reg, si->src_reg,
9633                                      offsetof(struct sk_msg_sg, size));
9634                break;
9635
9636        case offsetof(struct sk_msg_md, sk):
9637                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9638                                      si->dst_reg, si->src_reg,
9639                                      offsetof(struct sk_msg, sk));
9640                break;
9641        }
9642
9643        return insn - insn_buf;
9644}
9645
9646const struct bpf_verifier_ops sk_filter_verifier_ops = {
9647        .get_func_proto         = sk_filter_func_proto,
9648        .is_valid_access        = sk_filter_is_valid_access,
9649        .convert_ctx_access     = bpf_convert_ctx_access,
9650        .gen_ld_abs             = bpf_gen_ld_abs,
9651};
9652
9653const struct bpf_prog_ops sk_filter_prog_ops = {
9654        .test_run               = bpf_prog_test_run_skb,
9655};
9656
9657const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9658        .get_func_proto         = tc_cls_act_func_proto,
9659        .is_valid_access        = tc_cls_act_is_valid_access,
9660        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9661        .gen_prologue           = tc_cls_act_prologue,
9662        .gen_ld_abs             = bpf_gen_ld_abs,
9663};
9664
9665const struct bpf_prog_ops tc_cls_act_prog_ops = {
9666        .test_run               = bpf_prog_test_run_skb,
9667};
9668
9669const struct bpf_verifier_ops xdp_verifier_ops = {
9670        .get_func_proto         = xdp_func_proto,
9671        .is_valid_access        = xdp_is_valid_access,
9672        .convert_ctx_access     = xdp_convert_ctx_access,
9673        .gen_prologue           = bpf_noop_prologue,
9674};
9675
9676const struct bpf_prog_ops xdp_prog_ops = {
9677        .test_run               = bpf_prog_test_run_xdp,
9678};
9679
9680const struct bpf_verifier_ops cg_skb_verifier_ops = {
9681        .get_func_proto         = cg_skb_func_proto,
9682        .is_valid_access        = cg_skb_is_valid_access,
9683        .convert_ctx_access     = bpf_convert_ctx_access,
9684};
9685
9686const struct bpf_prog_ops cg_skb_prog_ops = {
9687        .test_run               = bpf_prog_test_run_skb,
9688};
9689
9690const struct bpf_verifier_ops lwt_in_verifier_ops = {
9691        .get_func_proto         = lwt_in_func_proto,
9692        .is_valid_access        = lwt_is_valid_access,
9693        .convert_ctx_access     = bpf_convert_ctx_access,
9694};
9695
9696const struct bpf_prog_ops lwt_in_prog_ops = {
9697        .test_run               = bpf_prog_test_run_skb,
9698};
9699
9700const struct bpf_verifier_ops lwt_out_verifier_ops = {
9701        .get_func_proto         = lwt_out_func_proto,
9702        .is_valid_access        = lwt_is_valid_access,
9703        .convert_ctx_access     = bpf_convert_ctx_access,
9704};
9705
9706const struct bpf_prog_ops lwt_out_prog_ops = {
9707        .test_run               = bpf_prog_test_run_skb,
9708};
9709
9710const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9711        .get_func_proto         = lwt_xmit_func_proto,
9712        .is_valid_access        = lwt_is_valid_access,
9713        .convert_ctx_access     = bpf_convert_ctx_access,
9714        .gen_prologue           = tc_cls_act_prologue,
9715};
9716
9717const struct bpf_prog_ops lwt_xmit_prog_ops = {
9718        .test_run               = bpf_prog_test_run_skb,
9719};
9720
9721const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9722        .get_func_proto         = lwt_seg6local_func_proto,
9723        .is_valid_access        = lwt_is_valid_access,
9724        .convert_ctx_access     = bpf_convert_ctx_access,
9725};
9726
9727const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9728        .test_run               = bpf_prog_test_run_skb,
9729};
9730
9731const struct bpf_verifier_ops cg_sock_verifier_ops = {
9732        .get_func_proto         = sock_filter_func_proto,
9733        .is_valid_access        = sock_filter_is_valid_access,
9734        .convert_ctx_access     = bpf_sock_convert_ctx_access,
9735};
9736
9737const struct bpf_prog_ops cg_sock_prog_ops = {
9738};
9739
9740const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9741        .get_func_proto         = sock_addr_func_proto,
9742        .is_valid_access        = sock_addr_is_valid_access,
9743        .convert_ctx_access     = sock_addr_convert_ctx_access,
9744};
9745
9746const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9747};
9748
9749const struct bpf_verifier_ops sock_ops_verifier_ops = {
9750        .get_func_proto         = sock_ops_func_proto,
9751        .is_valid_access        = sock_ops_is_valid_access,
9752        .convert_ctx_access     = sock_ops_convert_ctx_access,
9753};
9754
9755const struct bpf_prog_ops sock_ops_prog_ops = {
9756};
9757
9758const struct bpf_verifier_ops sk_skb_verifier_ops = {
9759        .get_func_proto         = sk_skb_func_proto,
9760        .is_valid_access        = sk_skb_is_valid_access,
9761        .convert_ctx_access     = sk_skb_convert_ctx_access,
9762        .gen_prologue           = sk_skb_prologue,
9763};
9764
9765const struct bpf_prog_ops sk_skb_prog_ops = {
9766};
9767
9768const struct bpf_verifier_ops sk_msg_verifier_ops = {
9769        .get_func_proto         = sk_msg_func_proto,
9770        .is_valid_access        = sk_msg_is_valid_access,
9771        .convert_ctx_access     = sk_msg_convert_ctx_access,
9772        .gen_prologue           = bpf_noop_prologue,
9773};
9774
9775const struct bpf_prog_ops sk_msg_prog_ops = {
9776};
9777
9778const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9779        .get_func_proto         = flow_dissector_func_proto,
9780        .is_valid_access        = flow_dissector_is_valid_access,
9781        .convert_ctx_access     = flow_dissector_convert_ctx_access,
9782};
9783
9784const struct bpf_prog_ops flow_dissector_prog_ops = {
9785        .test_run               = bpf_prog_test_run_flow_dissector,
9786};
9787
9788int sk_detach_filter(struct sock *sk)
9789{
9790        int ret = -ENOENT;
9791        struct sk_filter *filter;
9792
9793        if (sock_flag(sk, SOCK_FILTER_LOCKED))
9794                return -EPERM;
9795
9796        filter = rcu_dereference_protected(sk->sk_filter,
9797                                           lockdep_sock_is_held(sk));
9798        if (filter) {
9799                RCU_INIT_POINTER(sk->sk_filter, NULL);
9800                sk_filter_uncharge(sk, filter);
9801                ret = 0;
9802        }
9803
9804        return ret;
9805}
9806EXPORT_SYMBOL_GPL(sk_detach_filter);
9807
9808int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9809                  unsigned int len)
9810{
9811        struct sock_fprog_kern *fprog;
9812        struct sk_filter *filter;
9813        int ret = 0;
9814
9815        lock_sock(sk);
9816        filter = rcu_dereference_protected(sk->sk_filter,
9817                                           lockdep_sock_is_held(sk));
9818        if (!filter)
9819                goto out;
9820
9821        /* We're copying the filter that has been originally attached,
9822         * so no conversion/decode needed anymore. eBPF programs that
9823         * have no original program cannot be dumped through this.
9824         */
9825        ret = -EACCES;
9826        fprog = filter->prog->orig_prog;
9827        if (!fprog)
9828                goto out;
9829
9830        ret = fprog->len;
9831        if (!len)
9832                /* User space only enquires number of filter blocks. */
9833                goto out;
9834
9835        ret = -EINVAL;
9836        if (len < fprog->len)
9837                goto out;
9838
9839        ret = -EFAULT;
9840        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9841                goto out;
9842
9843        /* Instead of bytes, the API requests to return the number
9844         * of filter blocks.
9845         */
9846        ret = fprog->len;
9847out:
9848        release_sock(sk);
9849        return ret;
9850}
9851
9852#ifdef CONFIG_INET
9853static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9854                                    struct sock_reuseport *reuse,
9855                                    struct sock *sk, struct sk_buff *skb,
9856                                    u32 hash)
9857{
9858        reuse_kern->skb = skb;
9859        reuse_kern->sk = sk;
9860        reuse_kern->selected_sk = NULL;
9861        reuse_kern->data_end = skb->data + skb_headlen(skb);
9862        reuse_kern->hash = hash;
9863        reuse_kern->reuseport_id = reuse->reuseport_id;
9864        reuse_kern->bind_inany = reuse->bind_inany;
9865}
9866
9867struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9868                                  struct bpf_prog *prog, struct sk_buff *skb,
9869                                  u32 hash)
9870{
9871        struct sk_reuseport_kern reuse_kern;
9872        enum sk_action action;
9873
9874        bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9875        action = BPF_PROG_RUN(prog, &reuse_kern);
9876
9877        if (action == SK_PASS)
9878                return reuse_kern.selected_sk;
9879        else
9880                return ERR_PTR(-ECONNREFUSED);
9881}
9882
9883BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9884           struct bpf_map *, map, void *, key, u32, flags)
9885{
9886        bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9887        struct sock_reuseport *reuse;
9888        struct sock *selected_sk;
9889
9890        selected_sk = map->ops->map_lookup_elem(map, key);
9891        if (!selected_sk)
9892                return -ENOENT;
9893
9894        reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9895        if (!reuse) {
9896                /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9897                if (sk_is_refcounted(selected_sk))
9898                        sock_put(selected_sk);
9899
9900                /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9901                 * The only (!reuse) case here is - the sk has already been
9902                 * unhashed (e.g. by close()), so treat it as -ENOENT.
9903                 *
9904                 * Other maps (e.g. sock_map) do not provide this guarantee and
9905                 * the sk may never be in the reuseport group to begin with.
9906                 */
9907                return is_sockarray ? -ENOENT : -EINVAL;
9908        }
9909
9910        if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9911                struct sock *sk = reuse_kern->sk;
9912
9913                if (sk->sk_protocol != selected_sk->sk_protocol)
9914                        return -EPROTOTYPE;
9915                else if (sk->sk_family != selected_sk->sk_family)
9916                        return -EAFNOSUPPORT;
9917
9918                /* Catch all. Likely bound to a different sockaddr. */
9919                return -EBADFD;
9920        }
9921
9922        reuse_kern->selected_sk = selected_sk;
9923
9924        return 0;
9925}
9926
9927static const struct bpf_func_proto sk_select_reuseport_proto = {
9928        .func           = sk_select_reuseport,
9929        .gpl_only       = false,
9930        .ret_type       = RET_INTEGER,
9931        .arg1_type      = ARG_PTR_TO_CTX,
9932        .arg2_type      = ARG_CONST_MAP_PTR,
9933        .arg3_type      = ARG_PTR_TO_MAP_KEY,
9934        .arg4_type      = ARG_ANYTHING,
9935};
9936
9937BPF_CALL_4(sk_reuseport_load_bytes,
9938           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9939           void *, to, u32, len)
9940{
9941        return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9942}
9943
9944static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9945        .func           = sk_reuseport_load_bytes,
9946        .gpl_only       = false,
9947        .ret_type       = RET_INTEGER,
9948        .arg1_type      = ARG_PTR_TO_CTX,
9949        .arg2_type      = ARG_ANYTHING,
9950        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9951        .arg4_type      = ARG_CONST_SIZE,
9952};
9953
9954BPF_CALL_5(sk_reuseport_load_bytes_relative,
9955           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9956           void *, to, u32, len, u32, start_header)
9957{
9958        return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9959                                               len, start_header);
9960}
9961
9962static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9963        .func           = sk_reuseport_load_bytes_relative,
9964        .gpl_only       = false,
9965        .ret_type       = RET_INTEGER,
9966        .arg1_type      = ARG_PTR_TO_CTX,
9967        .arg2_type      = ARG_ANYTHING,
9968        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9969        .arg4_type      = ARG_CONST_SIZE,
9970        .arg5_type      = ARG_ANYTHING,
9971};
9972
9973static const struct bpf_func_proto *
9974sk_reuseport_func_proto(enum bpf_func_id func_id,
9975                        const struct bpf_prog *prog)
9976{
9977        switch (func_id) {
9978        case BPF_FUNC_sk_select_reuseport:
9979                return &sk_select_reuseport_proto;
9980        case BPF_FUNC_skb_load_bytes:
9981                return &sk_reuseport_load_bytes_proto;
9982        case BPF_FUNC_skb_load_bytes_relative:
9983                return &sk_reuseport_load_bytes_relative_proto;
9984        default:
9985                return bpf_base_func_proto(func_id);
9986        }
9987}
9988
9989static bool
9990sk_reuseport_is_valid_access(int off, int size,
9991                             enum bpf_access_type type,
9992                             const struct bpf_prog *prog,
9993                             struct bpf_insn_access_aux *info)
9994{
9995        const u32 size_default = sizeof(__u32);
9996
9997        if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9998            off % size || type != BPF_READ)
9999                return false;
10000
10001        switch (off) {
10002        case offsetof(struct sk_reuseport_md, data):
10003                info->reg_type = PTR_TO_PACKET;
10004                return size == sizeof(__u64);
10005
10006        case offsetof(struct sk_reuseport_md, data_end):
10007                info->reg_type = PTR_TO_PACKET_END;
10008                return size == sizeof(__u64);
10009
10010        case offsetof(struct sk_reuseport_md, hash):
10011                return size == size_default;
10012
10013        /* Fields that allow narrowing */
10014        case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10015                if (size < sizeof_field(struct sk_buff, protocol))
10016                        return false;
10017                fallthrough;
10018        case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10019        case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10020        case bpf_ctx_range(struct sk_reuseport_md, len):
10021                bpf_ctx_record_field_size(info, size_default);
10022                return bpf_ctx_narrow_access_ok(off, size, size_default);
10023
10024        default:
10025                return false;
10026        }
10027}
10028
10029#define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10030        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10031                              si->dst_reg, si->src_reg,                 \
10032                              bpf_target_off(struct sk_reuseport_kern, F, \
10033                                             sizeof_field(struct sk_reuseport_kern, F), \
10034                                             target_size));             \
10035        })
10036
10037#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10038        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10039                                    struct sk_buff,                     \
10040                                    skb,                                \
10041                                    SKB_FIELD)
10042
10043#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10044        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10045                                    struct sock,                        \
10046                                    sk,                                 \
10047                                    SK_FIELD)
10048
10049static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10050                                           const struct bpf_insn *si,
10051                                           struct bpf_insn *insn_buf,
10052                                           struct bpf_prog *prog,
10053                                           u32 *target_size)
10054{
10055        struct bpf_insn *insn = insn_buf;
10056
10057        switch (si->off) {
10058        case offsetof(struct sk_reuseport_md, data):
10059                SK_REUSEPORT_LOAD_SKB_FIELD(data);
10060                break;
10061
10062        case offsetof(struct sk_reuseport_md, len):
10063                SK_REUSEPORT_LOAD_SKB_FIELD(len);
10064                break;
10065
10066        case offsetof(struct sk_reuseport_md, eth_protocol):
10067                SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10068                break;
10069
10070        case offsetof(struct sk_reuseport_md, ip_protocol):
10071                SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10072                break;
10073
10074        case offsetof(struct sk_reuseport_md, data_end):
10075                SK_REUSEPORT_LOAD_FIELD(data_end);
10076                break;
10077
10078        case offsetof(struct sk_reuseport_md, hash):
10079                SK_REUSEPORT_LOAD_FIELD(hash);
10080                break;
10081
10082        case offsetof(struct sk_reuseport_md, bind_inany):
10083                SK_REUSEPORT_LOAD_FIELD(bind_inany);
10084                break;
10085        }
10086
10087        return insn - insn_buf;
10088}
10089
10090const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10091        .get_func_proto         = sk_reuseport_func_proto,
10092        .is_valid_access        = sk_reuseport_is_valid_access,
10093        .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10094};
10095
10096const struct bpf_prog_ops sk_reuseport_prog_ops = {
10097};
10098
10099DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10100EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10101
10102BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10103           struct sock *, sk, u64, flags)
10104{
10105        if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10106                               BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10107                return -EINVAL;
10108        if (unlikely(sk && sk_is_refcounted(sk)))
10109                return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10110        if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10111                return -ESOCKTNOSUPPORT; /* reject connected sockets */
10112
10113        /* Check if socket is suitable for packet L3/L4 protocol */
10114        if (sk && sk->sk_protocol != ctx->protocol)
10115                return -EPROTOTYPE;
10116        if (sk && sk->sk_family != ctx->family &&
10117            (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10118                return -EAFNOSUPPORT;
10119
10120        if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10121                return -EEXIST;
10122
10123        /* Select socket as lookup result */
10124        ctx->selected_sk = sk;
10125        ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10126        return 0;
10127}
10128
10129static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10130        .func           = bpf_sk_lookup_assign,
10131        .gpl_only       = false,
10132        .ret_type       = RET_INTEGER,
10133        .arg1_type      = ARG_PTR_TO_CTX,
10134        .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10135        .arg3_type      = ARG_ANYTHING,
10136};
10137
10138static const struct bpf_func_proto *
10139sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10140{
10141        switch (func_id) {
10142        case BPF_FUNC_perf_event_output:
10143                return &bpf_event_output_data_proto;
10144        case BPF_FUNC_sk_assign:
10145                return &bpf_sk_lookup_assign_proto;
10146        case BPF_FUNC_sk_release:
10147                return &bpf_sk_release_proto;
10148        default:
10149                return bpf_sk_base_func_proto(func_id);
10150        }
10151}
10152
10153static bool sk_lookup_is_valid_access(int off, int size,
10154                                      enum bpf_access_type type,
10155                                      const struct bpf_prog *prog,
10156                                      struct bpf_insn_access_aux *info)
10157{
10158        if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10159                return false;
10160        if (off % size != 0)
10161                return false;
10162        if (type != BPF_READ)
10163                return false;
10164
10165        switch (off) {
10166        case offsetof(struct bpf_sk_lookup, sk):
10167                info->reg_type = PTR_TO_SOCKET_OR_NULL;
10168                return size == sizeof(__u64);
10169
10170        case bpf_ctx_range(struct bpf_sk_lookup, family):
10171        case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10172        case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10173        case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10174        case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10175        case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10176        case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10177        case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10178                bpf_ctx_record_field_size(info, sizeof(__u32));
10179                return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10180
10181        default:
10182                return false;
10183        }
10184}
10185
10186static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10187                                        const struct bpf_insn *si,
10188                                        struct bpf_insn *insn_buf,
10189                                        struct bpf_prog *prog,
10190                                        u32 *target_size)
10191{
10192        struct bpf_insn *insn = insn_buf;
10193
10194        switch (si->off) {
10195        case offsetof(struct bpf_sk_lookup, sk):
10196                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10197                                      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10198                break;
10199
10200        case offsetof(struct bpf_sk_lookup, family):
10201                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10202                                      bpf_target_off(struct bpf_sk_lookup_kern,
10203                                                     family, 2, target_size));
10204                break;
10205
10206        case offsetof(struct bpf_sk_lookup, protocol):
10207                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10208                                      bpf_target_off(struct bpf_sk_lookup_kern,
10209                                                     protocol, 2, target_size));
10210                break;
10211
10212        case offsetof(struct bpf_sk_lookup, remote_ip4):
10213                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10214                                      bpf_target_off(struct bpf_sk_lookup_kern,
10215                                                     v4.saddr, 4, target_size));
10216                break;
10217
10218        case offsetof(struct bpf_sk_lookup, local_ip4):
10219                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10220                                      bpf_target_off(struct bpf_sk_lookup_kern,
10221                                                     v4.daddr, 4, target_size));
10222                break;
10223
10224        case bpf_ctx_range_till(struct bpf_sk_lookup,
10225                                remote_ip6[0], remote_ip6[3]): {
10226#if IS_ENABLED(CONFIG_IPV6)
10227                int off = si->off;
10228
10229                off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10230                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10231                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10232                                      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10233                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10234                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10235#else
10236                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10237#endif
10238                break;
10239        }
10240        case bpf_ctx_range_till(struct bpf_sk_lookup,
10241                                local_ip6[0], local_ip6[3]): {
10242#if IS_ENABLED(CONFIG_IPV6)
10243                int off = si->off;
10244
10245                off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10246                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10247                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10248                                      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10249                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10250                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10251#else
10252                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10253#endif
10254                break;
10255        }
10256        case offsetof(struct bpf_sk_lookup, remote_port):
10257                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10258                                      bpf_target_off(struct bpf_sk_lookup_kern,
10259                                                     sport, 2, target_size));
10260                break;
10261
10262        case offsetof(struct bpf_sk_lookup, local_port):
10263                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10264                                      bpf_target_off(struct bpf_sk_lookup_kern,
10265                                                     dport, 2, target_size));
10266                break;
10267        }
10268
10269        return insn - insn_buf;
10270}
10271
10272const struct bpf_prog_ops sk_lookup_prog_ops = {
10273};
10274
10275const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10276        .get_func_proto         = sk_lookup_func_proto,
10277        .is_valid_access        = sk_lookup_is_valid_access,
10278        .convert_ctx_access     = sk_lookup_convert_ctx_access,
10279};
10280
10281#endif /* CONFIG_INET */
10282
10283DEFINE_BPF_DISPATCHER(xdp)
10284
10285void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10286{
10287        bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10288}
10289
10290#ifdef CONFIG_DEBUG_INFO_BTF
10291BTF_ID_LIST_GLOBAL(btf_sock_ids)
10292#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10293BTF_SOCK_TYPE_xxx
10294#undef BTF_SOCK_TYPE
10295#else
10296u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10297#endif
10298
10299BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10300{
10301        /* tcp6_sock type is not generated in dwarf and hence btf,
10302         * trigger an explicit type generation here.
10303         */
10304        BTF_TYPE_EMIT(struct tcp6_sock);
10305        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10306            sk->sk_family == AF_INET6)
10307                return (unsigned long)sk;
10308
10309        return (unsigned long)NULL;
10310}
10311
10312const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10313        .func                   = bpf_skc_to_tcp6_sock,
10314        .gpl_only               = false,
10315        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10316        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10317        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10318};
10319
10320BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10321{
10322        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10323                return (unsigned long)sk;
10324
10325        return (unsigned long)NULL;
10326}
10327
10328const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10329        .func                   = bpf_skc_to_tcp_sock,
10330        .gpl_only               = false,
10331        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10332        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10333        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10334};
10335
10336BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10337{
10338        /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10339         * generated if CONFIG_INET=n. Trigger an explicit generation here.
10340         */
10341        BTF_TYPE_EMIT(struct inet_timewait_sock);
10342        BTF_TYPE_EMIT(struct tcp_timewait_sock);
10343
10344#ifdef CONFIG_INET
10345        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10346                return (unsigned long)sk;
10347#endif
10348
10349#if IS_BUILTIN(CONFIG_IPV6)
10350        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10351                return (unsigned long)sk;
10352#endif
10353
10354        return (unsigned long)NULL;
10355}
10356
10357const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10358        .func                   = bpf_skc_to_tcp_timewait_sock,
10359        .gpl_only               = false,
10360        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10361        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10362        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10363};
10364
10365BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10366{
10367#ifdef CONFIG_INET
10368        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10369                return (unsigned long)sk;
10370#endif
10371
10372#if IS_BUILTIN(CONFIG_IPV6)
10373        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10374                return (unsigned long)sk;
10375#endif
10376
10377        return (unsigned long)NULL;
10378}
10379
10380const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10381        .func                   = bpf_skc_to_tcp_request_sock,
10382        .gpl_only               = false,
10383        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10384        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10385        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10386};
10387
10388BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10389{
10390        /* udp6_sock type is not generated in dwarf and hence btf,
10391         * trigger an explicit type generation here.
10392         */
10393        BTF_TYPE_EMIT(struct udp6_sock);
10394        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10395            sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10396                return (unsigned long)sk;
10397
10398        return (unsigned long)NULL;
10399}
10400
10401const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10402        .func                   = bpf_skc_to_udp6_sock,
10403        .gpl_only               = false,
10404        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10405        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10406        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10407};
10408
10409static const struct bpf_func_proto *
10410bpf_sk_base_func_proto(enum bpf_func_id func_id)
10411{
10412        const struct bpf_func_proto *func;
10413
10414        switch (func_id) {
10415        case BPF_FUNC_skc_to_tcp6_sock:
10416                func = &bpf_skc_to_tcp6_sock_proto;
10417                break;
10418        case BPF_FUNC_skc_to_tcp_sock:
10419                func = &bpf_skc_to_tcp_sock_proto;
10420                break;
10421        case BPF_FUNC_skc_to_tcp_timewait_sock:
10422                func = &bpf_skc_to_tcp_timewait_sock_proto;
10423                break;
10424        case BPF_FUNC_skc_to_tcp_request_sock:
10425                func = &bpf_skc_to_tcp_request_sock_proto;
10426                break;
10427        case BPF_FUNC_skc_to_udp6_sock:
10428                func = &bpf_skc_to_udp6_sock_proto;
10429                break;
10430        default:
10431                return bpf_base_func_proto(func_id);
10432        }
10433
10434        if (!perfmon_capable())
10435                return NULL;
10436
10437        return func;
10438}
10439