linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  24 *              operating system.  INET is implemented using the  BSD Socket
  25 *              interface as the means of communication with the user level.
  26 *
  27 *              IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *              David S. Miller, <davem@davemloft.net>
  34 *              Stephen Hemminger <shemminger@osdl.org>
  35 *              Paul E. McKenney <paulmck@us.ibm.com>
  36 *              Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75                                   enum fib_event_type event_type, u32 dst,
  76                                   int dst_len, struct fib_alias *fa,
  77                                   struct netlink_ext_ack *extack)
  78{
  79        struct fib_entry_notifier_info info = {
  80                .info.extack = extack,
  81                .dst = dst,
  82                .dst_len = dst_len,
  83                .fi = fa->fa_info,
  84                .tos = fa->fa_tos,
  85                .type = fa->fa_type,
  86                .tb_id = fa->tb_id,
  87        };
  88        return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92                                    enum fib_event_type event_type, u32 dst,
  93                                    int dst_len, struct fib_alias *fa,
  94                                    struct netlink_ext_ack *extack)
  95{
  96        struct fib_entry_notifier_info info = {
  97                .info.extack = extack,
  98                .dst = dst,
  99                .dst_len = dst_len,
 100                .fi = fa->fa_info,
 101                .tos = fa->fa_tos,
 102                .type = fa->fa_type,
 103                .tb_id = fa->tb_id,
 104        };
 105        return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH       (8*sizeof(t_key))
 111#define KEY_MAX         ((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)     ((n)->bits)
 117#define IS_LEAF(n)      (!(n)->bits)
 118
 119struct key_vector {
 120        t_key key;
 121        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 122        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 123        unsigned char slen;
 124        union {
 125                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126                struct hlist_head leaf;
 127                /* This array is valid if (pos | bits) > 0 (TNODE) */
 128                struct key_vector __rcu *tnode[0];
 129        };
 130};
 131
 132struct tnode {
 133        struct rcu_head rcu;
 134        t_key empty_children;           /* KEYLENGTH bits needed */
 135        t_key full_children;            /* KEYLENGTH bits needed */
 136        struct key_vector __rcu *parent;
 137        struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE       TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146        unsigned int gets;
 147        unsigned int backtrack;
 148        unsigned int semantic_match_passed;
 149        unsigned int semantic_match_miss;
 150        unsigned int null_node_hit;
 151        unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156        unsigned int totdepth;
 157        unsigned int maxdepth;
 158        unsigned int tnodes;
 159        unsigned int leaves;
 160        unsigned int nullpointers;
 161        unsigned int prefixes;
 162        unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166        struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168        struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189        return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203        if (n)
 204                rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214        return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221        unsigned long index = key ^ kv->key;
 222
 223        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224                return 0;
 225
 226        return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296        kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301        call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 304#define TNODE_VMALLOC_MAX \
 305        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309        struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311        if (!n->tn_bits)
 312                kmem_cache_free(trie_leaf_kmem, n);
 313        else
 314                kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321        size_t size;
 322
 323        /* verify bits is within bounds */
 324        if (bits > TNODE_VMALLOC_MAX)
 325                return NULL;
 326
 327        /* determine size and verify it is non-zero and didn't overflow */
 328        size = TNODE_SIZE(1ul << bits);
 329
 330        if (size <= PAGE_SIZE)
 331                return kzalloc(size, GFP_KERNEL);
 332        else
 333                return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338        tn_info(n)->empty_children++;
 339
 340        if (!tn_info(n)->empty_children)
 341                tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346        if (!tn_info(n)->empty_children)
 347                tn_info(n)->full_children--;
 348
 349        tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354        struct key_vector *l;
 355        struct tnode *kv;
 356
 357        kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358        if (!kv)
 359                return NULL;
 360
 361        /* initialize key vector */
 362        l = kv->kv;
 363        l->key = key;
 364        l->pos = 0;
 365        l->bits = 0;
 366        l->slen = fa->fa_slen;
 367
 368        /* link leaf to fib alias */
 369        INIT_HLIST_HEAD(&l->leaf);
 370        hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372        return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377        unsigned int shift = pos + bits;
 378        struct key_vector *tn;
 379        struct tnode *tnode;
 380
 381        /* verify bits and pos their msb bits clear and values are valid */
 382        BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384        tnode = tnode_alloc(bits);
 385        if (!tnode)
 386                return NULL;
 387
 388        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389                 sizeof(struct key_vector *) << bits);
 390
 391        if (bits == KEYLENGTH)
 392                tnode->full_children = 1;
 393        else
 394                tnode->empty_children = 1ul << bits;
 395
 396        tn = tnode->kv;
 397        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398        tn->pos = pos;
 399        tn->bits = bits;
 400        tn->slen = pos;
 401
 402        return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417                      struct key_vector *n)
 418{
 419        struct key_vector *chi = get_child(tn, i);
 420        int isfull, wasfull;
 421
 422        BUG_ON(i >= child_length(tn));
 423
 424        /* update emptyChildren, overflow into fullChildren */
 425        if (!n && chi)
 426                empty_child_inc(tn);
 427        if (n && !chi)
 428                empty_child_dec(tn);
 429
 430        /* update fullChildren */
 431        wasfull = tnode_full(tn, chi);
 432        isfull = tnode_full(tn, n);
 433
 434        if (wasfull && !isfull)
 435                tn_info(tn)->full_children--;
 436        else if (!wasfull && isfull)
 437                tn_info(tn)->full_children++;
 438
 439        if (n && (tn->slen < n->slen))
 440                tn->slen = n->slen;
 441
 442        rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447        unsigned long i;
 448
 449        /* update all of the child parent pointers */
 450        for (i = child_length(tn); i;) {
 451                struct key_vector *inode = get_child(tn, --i);
 452
 453                if (!inode)
 454                        continue;
 455
 456                /* Either update the children of a tnode that
 457                 * already belongs to us or update the child
 458                 * to point to ourselves.
 459                 */
 460                if (node_parent(inode) == tn)
 461                        update_children(inode);
 462                else
 463                        node_set_parent(inode, tn);
 464        }
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468                                  struct key_vector *n)
 469{
 470        if (IS_TRIE(tp))
 471                rcu_assign_pointer(tp->tnode[0], n);
 472        else
 473                put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478        tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482                                     struct key_vector *n)
 483{
 484        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490        struct callback_head *head = &tn_info(tn)->rcu;
 491
 492        while (head) {
 493                head = head->next;
 494                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495                node_free(tn);
 496
 497                tn = container_of(head, struct tnode, rcu)->kv;
 498        }
 499
 500        if (tnode_free_size >= sysctl_fib_sync_mem) {
 501                tnode_free_size = 0;
 502                synchronize_rcu();
 503        }
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507                                  struct key_vector *oldtnode,
 508                                  struct key_vector *tn)
 509{
 510        struct key_vector *tp = node_parent(oldtnode);
 511        unsigned long i;
 512
 513        /* setup the parent pointer out of and back into this node */
 514        NODE_INIT_PARENT(tn, tp);
 515        put_child_root(tp, tn->key, tn);
 516
 517        /* update all of the child parent pointers */
 518        update_children(tn);
 519
 520        /* all pointers should be clean so we are done */
 521        tnode_free(oldtnode);
 522
 523        /* resize children now that oldtnode is freed */
 524        for (i = child_length(tn); i;) {
 525                struct key_vector *inode = get_child(tn, --i);
 526
 527                /* resize child node */
 528                if (tnode_full(tn, inode))
 529                        tn = resize(t, inode);
 530        }
 531
 532        return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536                                  struct key_vector *oldtnode)
 537{
 538        struct key_vector *tn;
 539        unsigned long i;
 540        t_key m;
 541
 542        pr_debug("In inflate\n");
 543
 544        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545        if (!tn)
 546                goto notnode;
 547
 548        /* prepare oldtnode to be freed */
 549        tnode_free_init(oldtnode);
 550
 551        /* Assemble all of the pointers in our cluster, in this case that
 552         * represents all of the pointers out of our allocated nodes that
 553         * point to existing tnodes and the links between our allocated
 554         * nodes.
 555         */
 556        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557                struct key_vector *inode = get_child(oldtnode, --i);
 558                struct key_vector *node0, *node1;
 559                unsigned long j, k;
 560
 561                /* An empty child */
 562                if (!inode)
 563                        continue;
 564
 565                /* A leaf or an internal node with skipped bits */
 566                if (!tnode_full(oldtnode, inode)) {
 567                        put_child(tn, get_index(inode->key, tn), inode);
 568                        continue;
 569                }
 570
 571                /* drop the node in the old tnode free list */
 572                tnode_free_append(oldtnode, inode);
 573
 574                /* An internal node with two children */
 575                if (inode->bits == 1) {
 576                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 577                        put_child(tn, 2 * i, get_child(inode, 0));
 578                        continue;
 579                }
 580
 581                /* We will replace this node 'inode' with two new
 582                 * ones, 'node0' and 'node1', each with half of the
 583                 * original children. The two new nodes will have
 584                 * a position one bit further down the key and this
 585                 * means that the "significant" part of their keys
 586                 * (see the discussion near the top of this file)
 587                 * will differ by one bit, which will be "0" in
 588                 * node0's key and "1" in node1's key. Since we are
 589                 * moving the key position by one step, the bit that
 590                 * we are moving away from - the bit at position
 591                 * (tn->pos) - is the one that will differ between
 592                 * node0 and node1. So... we synthesize that bit in the
 593                 * two new keys.
 594                 */
 595                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596                if (!node1)
 597                        goto nomem;
 598                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600                tnode_free_append(tn, node1);
 601                if (!node0)
 602                        goto nomem;
 603                tnode_free_append(tn, node0);
 604
 605                /* populate child pointers in new nodes */
 606                for (k = child_length(inode), j = k / 2; j;) {
 607                        put_child(node1, --j, get_child(inode, --k));
 608                        put_child(node0, j, get_child(inode, j));
 609                        put_child(node1, --j, get_child(inode, --k));
 610                        put_child(node0, j, get_child(inode, j));
 611                }
 612
 613                /* link new nodes to parent */
 614                NODE_INIT_PARENT(node1, tn);
 615                NODE_INIT_PARENT(node0, tn);
 616
 617                /* link parent to nodes */
 618                put_child(tn, 2 * i + 1, node1);
 619                put_child(tn, 2 * i, node0);
 620        }
 621
 622        /* setup the parent pointers into and out of this node */
 623        return replace(t, oldtnode, tn);
 624nomem:
 625        /* all pointers should be clean so we are done */
 626        tnode_free(tn);
 627notnode:
 628        return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632                                struct key_vector *oldtnode)
 633{
 634        struct key_vector *tn;
 635        unsigned long i;
 636
 637        pr_debug("In halve\n");
 638
 639        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640        if (!tn)
 641                goto notnode;
 642
 643        /* prepare oldtnode to be freed */
 644        tnode_free_init(oldtnode);
 645
 646        /* Assemble all of the pointers in our cluster, in this case that
 647         * represents all of the pointers out of our allocated nodes that
 648         * point to existing tnodes and the links between our allocated
 649         * nodes.
 650         */
 651        for (i = child_length(oldtnode); i;) {
 652                struct key_vector *node1 = get_child(oldtnode, --i);
 653                struct key_vector *node0 = get_child(oldtnode, --i);
 654                struct key_vector *inode;
 655
 656                /* At least one of the children is empty */
 657                if (!node1 || !node0) {
 658                        put_child(tn, i / 2, node1 ? : node0);
 659                        continue;
 660                }
 661
 662                /* Two nonempty children */
 663                inode = tnode_new(node0->key, oldtnode->pos, 1);
 664                if (!inode)
 665                        goto nomem;
 666                tnode_free_append(tn, inode);
 667
 668                /* initialize pointers out of node */
 669                put_child(inode, 1, node1);
 670                put_child(inode, 0, node0);
 671                NODE_INIT_PARENT(inode, tn);
 672
 673                /* link parent to node */
 674                put_child(tn, i / 2, inode);
 675        }
 676
 677        /* setup the parent pointers into and out of this node */
 678        return replace(t, oldtnode, tn);
 679nomem:
 680        /* all pointers should be clean so we are done */
 681        tnode_free(tn);
 682notnode:
 683        return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687                                   struct key_vector *oldtnode)
 688{
 689        struct key_vector *n, *tp;
 690        unsigned long i;
 691
 692        /* scan the tnode looking for that one child that might still exist */
 693        for (n = NULL, i = child_length(oldtnode); !n && i;)
 694                n = get_child(oldtnode, --i);
 695
 696        /* compress one level */
 697        tp = node_parent(oldtnode);
 698        put_child_root(tp, oldtnode->key, n);
 699        node_set_parent(n, tp);
 700
 701        /* drop dead node */
 702        node_free(oldtnode);
 703
 704        return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709        unsigned char slen = tn->pos;
 710        unsigned long stride, i;
 711        unsigned char slen_max;
 712
 713        /* only vector 0 can have a suffix length greater than or equal to
 714         * tn->pos + tn->bits, the second highest node will have a suffix
 715         * length at most of tn->pos + tn->bits - 1
 716         */
 717        slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719        /* search though the list of children looking for nodes that might
 720         * have a suffix greater than the one we currently have.  This is
 721         * why we start with a stride of 2 since a stride of 1 would
 722         * represent the nodes with suffix length equal to tn->pos
 723         */
 724        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725                struct key_vector *n = get_child(tn, i);
 726
 727                if (!n || (n->slen <= slen))
 728                        continue;
 729
 730                /* update stride and slen based on new value */
 731                stride <<= (n->slen - slen);
 732                slen = n->slen;
 733                i &= ~(stride - 1);
 734
 735                /* stop searching if we have hit the maximum possible value */
 736                if (slen >= slen_max)
 737                        break;
 738        }
 739
 740        tn->slen = slen;
 741
 742        return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804        unsigned long used = child_length(tn);
 805        unsigned long threshold = used;
 806
 807        /* Keep root node larger */
 808        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809        used -= tn_info(tn)->empty_children;
 810        used += tn_info(tn)->full_children;
 811
 812        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819        unsigned long used = child_length(tn);
 820        unsigned long threshold = used;
 821
 822        /* Keep root node larger */
 823        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824        used -= tn_info(tn)->empty_children;
 825
 826        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833        unsigned long used = child_length(tn);
 834
 835        used -= tn_info(tn)->empty_children;
 836
 837        /* account for bits == KEYLENGTH case */
 838        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839                used -= KEY_MAX;
 840
 841        /* One child or none, time to drop us from the trie */
 842        return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849        struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851        struct key_vector *tp = node_parent(tn);
 852        unsigned long cindex = get_index(tn->key, tp);
 853        int max_work = MAX_WORK;
 854
 855        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856                 tn, inflate_threshold, halve_threshold);
 857
 858        /* track the tnode via the pointer from the parent instead of
 859         * doing it ourselves.  This way we can let RCU fully do its
 860         * thing without us interfering
 861         */
 862        BUG_ON(tn != get_child(tp, cindex));
 863
 864        /* Double as long as the resulting node has a number of
 865         * nonempty nodes that are above the threshold.
 866         */
 867        while (should_inflate(tp, tn) && max_work) {
 868                tp = inflate(t, tn);
 869                if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871                        this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873                        break;
 874                }
 875
 876                max_work--;
 877                tn = get_child(tp, cindex);
 878        }
 879
 880        /* update parent in case inflate failed */
 881        tp = node_parent(tn);
 882
 883        /* Return if at least one inflate is run */
 884        if (max_work != MAX_WORK)
 885                return tp;
 886
 887        /* Halve as long as the number of empty children in this
 888         * node is above threshold.
 889         */
 890        while (should_halve(tp, tn) && max_work) {
 891                tp = halve(t, tn);
 892                if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894                        this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896                        break;
 897                }
 898
 899                max_work--;
 900                tn = get_child(tp, cindex);
 901        }
 902
 903        /* Only one child remains */
 904        if (should_collapse(tn))
 905                return collapse(t, tn);
 906
 907        /* update parent in case halve failed */
 908        return node_parent(tn);
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913        unsigned char node_slen = tn->slen;
 914
 915        while ((node_slen > tn->pos) && (node_slen > slen)) {
 916                slen = update_suffix(tn);
 917                if (node_slen == slen)
 918                        break;
 919
 920                tn = node_parent(tn);
 921                node_slen = tn->slen;
 922        }
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927        while (tn->slen < slen) {
 928                tn->slen = slen;
 929                tn = node_parent(tn);
 930        }
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935                                        struct key_vector **tp, u32 key)
 936{
 937        struct key_vector *pn, *n = t->kv;
 938        unsigned long index = 0;
 939
 940        do {
 941                pn = n;
 942                n = get_child_rcu(n, index);
 943
 944                if (!n)
 945                        break;
 946
 947                index = get_cindex(key, n);
 948
 949                /* This bit of code is a bit tricky but it combines multiple
 950                 * checks into a single check.  The prefix consists of the
 951                 * prefix plus zeros for the bits in the cindex. The index
 952                 * is the difference between the key and this value.  From
 953                 * this we can actually derive several pieces of data.
 954                 *   if (index >= (1ul << bits))
 955                 *     we have a mismatch in skip bits and failed
 956                 *   else
 957                 *     we know the value is cindex
 958                 *
 959                 * This check is safe even if bits == KEYLENGTH due to the
 960                 * fact that we can only allocate a node with 32 bits if a
 961                 * long is greater than 32 bits.
 962                 */
 963                if (index >= (1ul << n->bits)) {
 964                        n = NULL;
 965                        break;
 966                }
 967
 968                /* keep searching until we find a perfect match leaf or NULL */
 969        } while (IS_TNODE(n));
 970
 971        *tp = pn;
 972
 973        return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982                                        u8 tos, u32 prio, u32 tb_id,
 983                                        bool find_first)
 984{
 985        struct fib_alias *fa;
 986
 987        if (!fah)
 988                return NULL;
 989
 990        hlist_for_each_entry(fa, fah, fa_list) {
 991                if (fa->fa_slen < slen)
 992                        continue;
 993                if (fa->fa_slen != slen)
 994                        break;
 995                if (fa->tb_id > tb_id)
 996                        continue;
 997                if (fa->tb_id != tb_id)
 998                        break;
 999                if (find_first)
1000                        return fa;
1001                if (fa->fa_tos > tos)
1002                        continue;
1003                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004                        return fa;
1005        }
1006
1007        return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013        u8 slen = KEYLENGTH - fri->dst_len;
1014        struct key_vector *l, *tp;
1015        struct fib_table *tb;
1016        struct fib_alias *fa;
1017        struct trie *t;
1018
1019        tb = fib_get_table(net, fri->tb_id);
1020        if (!tb)
1021                return NULL;
1022
1023        t = (struct trie *)tb->tb_data;
1024        l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025        if (!l)
1026                return NULL;
1027
1028        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029                if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030                    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031                    fa->fa_type == fri->type)
1032                        return fa;
1033        }
1034
1035        return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040        struct fib_alias *fa_match;
1041
1042        rcu_read_lock();
1043
1044        fa_match = fib_find_matching_alias(net, fri);
1045        if (!fa_match)
1046                goto out;
1047
1048        fa_match->offload = fri->offload;
1049        fa_match->trap = fri->trap;
1050
1051out:
1052        rcu_read_unlock();
1053}
1054EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
1056static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057{
1058        while (!IS_TRIE(tn))
1059                tn = resize(t, tn);
1060}
1061
1062static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063                           struct fib_alias *new, t_key key)
1064{
1065        struct key_vector *n, *l;
1066
1067        l = leaf_new(key, new);
1068        if (!l)
1069                goto noleaf;
1070
1071        /* retrieve child from parent node */
1072        n = get_child(tp, get_index(key, tp));
1073
1074        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075         *
1076         *  Add a new tnode here
1077         *  first tnode need some special handling
1078         *  leaves us in position for handling as case 3
1079         */
1080        if (n) {
1081                struct key_vector *tn;
1082
1083                tn = tnode_new(key, __fls(key ^ n->key), 1);
1084                if (!tn)
1085                        goto notnode;
1086
1087                /* initialize routes out of node */
1088                NODE_INIT_PARENT(tn, tp);
1089                put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091                /* start adding routes into the node */
1092                put_child_root(tp, key, tn);
1093                node_set_parent(n, tn);
1094
1095                /* parent now has a NULL spot where the leaf can go */
1096                tp = tn;
1097        }
1098
1099        /* Case 3: n is NULL, and will just insert a new leaf */
1100        node_push_suffix(tp, new->fa_slen);
1101        NODE_INIT_PARENT(l, tp);
1102        put_child_root(tp, key, l);
1103        trie_rebalance(t, tp);
1104
1105        return 0;
1106notnode:
1107        node_free(l);
1108noleaf:
1109        return -ENOMEM;
1110}
1111
1112static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113                            struct key_vector *l, struct fib_alias *new,
1114                            struct fib_alias *fa, t_key key)
1115{
1116        if (!l)
1117                return fib_insert_node(t, tp, new, key);
1118
1119        if (fa) {
1120                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121        } else {
1122                struct fib_alias *last;
1123
1124                hlist_for_each_entry(last, &l->leaf, fa_list) {
1125                        if (new->fa_slen < last->fa_slen)
1126                                break;
1127                        if ((new->fa_slen == last->fa_slen) &&
1128                            (new->tb_id > last->tb_id))
1129                                break;
1130                        fa = last;
1131                }
1132
1133                if (fa)
1134                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135                else
1136                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137        }
1138
1139        /* if we added to the tail node then we need to update slen */
1140        if (l->slen < new->fa_slen) {
1141                l->slen = new->fa_slen;
1142                node_push_suffix(tp, new->fa_slen);
1143        }
1144
1145        return 0;
1146}
1147
1148static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149{
1150        if (plen > KEYLENGTH) {
1151                NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152                return false;
1153        }
1154
1155        if ((plen < KEYLENGTH) && (key << plen)) {
1156                NL_SET_ERR_MSG(extack,
1157                               "Invalid prefix for given prefix length");
1158                return false;
1159        }
1160
1161        return true;
1162}
1163
1164static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165                             struct key_vector *l, struct fib_alias *old);
1166
1167/* Caller must hold RTNL. */
1168int fib_table_insert(struct net *net, struct fib_table *tb,
1169                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1170{
1171        struct trie *t = (struct trie *)tb->tb_data;
1172        struct fib_alias *fa, *new_fa;
1173        struct key_vector *l, *tp;
1174        u16 nlflags = NLM_F_EXCL;
1175        struct fib_info *fi;
1176        u8 plen = cfg->fc_dst_len;
1177        u8 slen = KEYLENGTH - plen;
1178        u8 tos = cfg->fc_tos;
1179        u32 key;
1180        int err;
1181
1182        key = ntohl(cfg->fc_dst);
1183
1184        if (!fib_valid_key_len(key, plen, extack))
1185                return -EINVAL;
1186
1187        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189        fi = fib_create_info(cfg, extack);
1190        if (IS_ERR(fi)) {
1191                err = PTR_ERR(fi);
1192                goto err;
1193        }
1194
1195        l = fib_find_node(t, &tp, key);
1196        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197                                tb->tb_id, false) : NULL;
1198
1199        /* Now fa, if non-NULL, points to the first fib alias
1200         * with the same keys [prefix,tos,priority], if such key already
1201         * exists or to the node before which we will insert new one.
1202         *
1203         * If fa is NULL, we will need to allocate a new one and
1204         * insert to the tail of the section matching the suffix length
1205         * of the new alias.
1206         */
1207
1208        if (fa && fa->fa_tos == tos &&
1209            fa->fa_info->fib_priority == fi->fib_priority) {
1210                struct fib_alias *fa_first, *fa_match;
1211
1212                err = -EEXIST;
1213                if (cfg->fc_nlflags & NLM_F_EXCL)
1214                        goto out;
1215
1216                nlflags &= ~NLM_F_EXCL;
1217
1218                /* We have 2 goals:
1219                 * 1. Find exact match for type, scope, fib_info to avoid
1220                 * duplicate routes
1221                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222                 */
1223                fa_match = NULL;
1224                fa_first = fa;
1225                hlist_for_each_entry_from(fa, fa_list) {
1226                        if ((fa->fa_slen != slen) ||
1227                            (fa->tb_id != tb->tb_id) ||
1228                            (fa->fa_tos != tos))
1229                                break;
1230                        if (fa->fa_info->fib_priority != fi->fib_priority)
1231                                break;
1232                        if (fa->fa_type == cfg->fc_type &&
1233                            fa->fa_info == fi) {
1234                                fa_match = fa;
1235                                break;
1236                        }
1237                }
1238
1239                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240                        struct fib_info *fi_drop;
1241                        u8 state;
1242
1243                        nlflags |= NLM_F_REPLACE;
1244                        fa = fa_first;
1245                        if (fa_match) {
1246                                if (fa == fa_match)
1247                                        err = 0;
1248                                goto out;
1249                        }
1250                        err = -ENOBUFS;
1251                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252                        if (!new_fa)
1253                                goto out;
1254
1255                        fi_drop = fa->fa_info;
1256                        new_fa->fa_tos = fa->fa_tos;
1257                        new_fa->fa_info = fi;
1258                        new_fa->fa_type = cfg->fc_type;
1259                        state = fa->fa_state;
1260                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1261                        new_fa->fa_slen = fa->fa_slen;
1262                        new_fa->tb_id = tb->tb_id;
1263                        new_fa->fa_default = -1;
1264                        new_fa->offload = 0;
1265                        new_fa->trap = 0;
1266
1267                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269                        if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270                                           tb->tb_id, true) == new_fa) {
1271                                enum fib_event_type fib_event;
1272
1273                                fib_event = FIB_EVENT_ENTRY_REPLACE;
1274                                err = call_fib_entry_notifiers(net, fib_event,
1275                                                               key, plen,
1276                                                               new_fa, extack);
1277                                if (err) {
1278                                        hlist_replace_rcu(&new_fa->fa_list,
1279                                                          &fa->fa_list);
1280                                        goto out_free_new_fa;
1281                                }
1282                        }
1283
1284                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287                        alias_free_mem_rcu(fa);
1288
1289                        fib_release_info(fi_drop);
1290                        if (state & FA_S_ACCESSED)
1291                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293                        goto succeeded;
1294                }
1295                /* Error if we find a perfect match which
1296                 * uses the same scope, type, and nexthop
1297                 * information.
1298                 */
1299                if (fa_match)
1300                        goto out;
1301
1302                if (cfg->fc_nlflags & NLM_F_APPEND)
1303                        nlflags |= NLM_F_APPEND;
1304                else
1305                        fa = fa_first;
1306        }
1307        err = -ENOENT;
1308        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309                goto out;
1310
1311        nlflags |= NLM_F_CREATE;
1312        err = -ENOBUFS;
1313        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314        if (!new_fa)
1315                goto out;
1316
1317        new_fa->fa_info = fi;
1318        new_fa->fa_tos = tos;
1319        new_fa->fa_type = cfg->fc_type;
1320        new_fa->fa_state = 0;
1321        new_fa->fa_slen = slen;
1322        new_fa->tb_id = tb->tb_id;
1323        new_fa->fa_default = -1;
1324        new_fa->offload = 0;
1325        new_fa->trap = 0;
1326
1327        /* Insert new entry to the list. */
1328        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329        if (err)
1330                goto out_free_new_fa;
1331
1332        /* The alias was already inserted, so the node must exist. */
1333        l = l ? l : fib_find_node(t, &tp, key);
1334        if (WARN_ON_ONCE(!l))
1335                goto out_free_new_fa;
1336
1337        if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1338            new_fa) {
1339                enum fib_event_type fib_event;
1340
1341                fib_event = FIB_EVENT_ENTRY_REPLACE;
1342                err = call_fib_entry_notifiers(net, fib_event, key, plen,
1343                                               new_fa, extack);
1344                if (err)
1345                        goto out_remove_new_fa;
1346        }
1347
1348        if (!plen)
1349                tb->tb_num_default++;
1350
1351        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1352        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1353                  &cfg->fc_nlinfo, nlflags);
1354succeeded:
1355        return 0;
1356
1357out_remove_new_fa:
1358        fib_remove_alias(t, tp, l, new_fa);
1359out_free_new_fa:
1360        kmem_cache_free(fn_alias_kmem, new_fa);
1361out:
1362        fib_release_info(fi);
1363err:
1364        return err;
1365}
1366
1367static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1368{
1369        t_key prefix = n->key;
1370
1371        return (key ^ prefix) & (prefix | -prefix);
1372}
1373
1374bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1375                         const struct flowi4 *flp)
1376{
1377        if (nhc->nhc_flags & RTNH_F_DEAD)
1378                return false;
1379
1380        if (ip_ignore_linkdown(nhc->nhc_dev) &&
1381            nhc->nhc_flags & RTNH_F_LINKDOWN &&
1382            !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1383                return false;
1384
1385        if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1386                if (flp->flowi4_oif &&
1387                    flp->flowi4_oif != nhc->nhc_oif)
1388                        return false;
1389        }
1390
1391        return true;
1392}
1393
1394/* should be called with rcu_read_lock */
1395int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1396                     struct fib_result *res, int fib_flags)
1397{
1398        struct trie *t = (struct trie *) tb->tb_data;
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400        struct trie_use_stats __percpu *stats = t->stats;
1401#endif
1402        const t_key key = ntohl(flp->daddr);
1403        struct key_vector *n, *pn;
1404        struct fib_alias *fa;
1405        unsigned long index;
1406        t_key cindex;
1407
1408        pn = t->kv;
1409        cindex = 0;
1410
1411        n = get_child_rcu(pn, cindex);
1412        if (!n) {
1413                trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1414                return -EAGAIN;
1415        }
1416
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418        this_cpu_inc(stats->gets);
1419#endif
1420
1421        /* Step 1: Travel to the longest prefix match in the trie */
1422        for (;;) {
1423                index = get_cindex(key, n);
1424
1425                /* This bit of code is a bit tricky but it combines multiple
1426                 * checks into a single check.  The prefix consists of the
1427                 * prefix plus zeros for the "bits" in the prefix. The index
1428                 * is the difference between the key and this value.  From
1429                 * this we can actually derive several pieces of data.
1430                 *   if (index >= (1ul << bits))
1431                 *     we have a mismatch in skip bits and failed
1432                 *   else
1433                 *     we know the value is cindex
1434                 *
1435                 * This check is safe even if bits == KEYLENGTH due to the
1436                 * fact that we can only allocate a node with 32 bits if a
1437                 * long is greater than 32 bits.
1438                 */
1439                if (index >= (1ul << n->bits))
1440                        break;
1441
1442                /* we have found a leaf. Prefixes have already been compared */
1443                if (IS_LEAF(n))
1444                        goto found;
1445
1446                /* only record pn and cindex if we are going to be chopping
1447                 * bits later.  Otherwise we are just wasting cycles.
1448                 */
1449                if (n->slen > n->pos) {
1450                        pn = n;
1451                        cindex = index;
1452                }
1453
1454                n = get_child_rcu(n, index);
1455                if (unlikely(!n))
1456                        goto backtrace;
1457        }
1458
1459        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1460        for (;;) {
1461                /* record the pointer where our next node pointer is stored */
1462                struct key_vector __rcu **cptr = n->tnode;
1463
1464                /* This test verifies that none of the bits that differ
1465                 * between the key and the prefix exist in the region of
1466                 * the lsb and higher in the prefix.
1467                 */
1468                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1469                        goto backtrace;
1470
1471                /* exit out and process leaf */
1472                if (unlikely(IS_LEAF(n)))
1473                        break;
1474
1475                /* Don't bother recording parent info.  Since we are in
1476                 * prefix match mode we will have to come back to wherever
1477                 * we started this traversal anyway
1478                 */
1479
1480                while ((n = rcu_dereference(*cptr)) == NULL) {
1481backtrace:
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483                        if (!n)
1484                                this_cpu_inc(stats->null_node_hit);
1485#endif
1486                        /* If we are at cindex 0 there are no more bits for
1487                         * us to strip at this level so we must ascend back
1488                         * up one level to see if there are any more bits to
1489                         * be stripped there.
1490                         */
1491                        while (!cindex) {
1492                                t_key pkey = pn->key;
1493
1494                                /* If we don't have a parent then there is
1495                                 * nothing for us to do as we do not have any
1496                                 * further nodes to parse.
1497                                 */
1498                                if (IS_TRIE(pn)) {
1499                                        trace_fib_table_lookup(tb->tb_id, flp,
1500                                                               NULL, -EAGAIN);
1501                                        return -EAGAIN;
1502                                }
1503#ifdef CONFIG_IP_FIB_TRIE_STATS
1504                                this_cpu_inc(stats->backtrack);
1505#endif
1506                                /* Get Child's index */
1507                                pn = node_parent_rcu(pn);
1508                                cindex = get_index(pkey, pn);
1509                        }
1510
1511                        /* strip the least significant bit from the cindex */
1512                        cindex &= cindex - 1;
1513
1514                        /* grab pointer for next child node */
1515                        cptr = &pn->tnode[cindex];
1516                }
1517        }
1518
1519found:
1520        /* this line carries forward the xor from earlier in the function */
1521        index = key ^ n->key;
1522
1523        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1524        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1525                struct fib_info *fi = fa->fa_info;
1526                struct fib_nh_common *nhc;
1527                int nhsel, err;
1528
1529                if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1530                        if (index >= (1ul << fa->fa_slen))
1531                                continue;
1532                }
1533                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1534                        continue;
1535                if (fi->fib_dead)
1536                        continue;
1537                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1538                        continue;
1539                fib_alias_accessed(fa);
1540                err = fib_props[fa->fa_type].error;
1541                if (unlikely(err < 0)) {
1542out_reject:
1543#ifdef CONFIG_IP_FIB_TRIE_STATS
1544                        this_cpu_inc(stats->semantic_match_passed);
1545#endif
1546                        trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1547                        return err;
1548                }
1549                if (fi->fib_flags & RTNH_F_DEAD)
1550                        continue;
1551
1552                if (unlikely(fi->nh)) {
1553                        if (nexthop_is_blackhole(fi->nh)) {
1554                                err = fib_props[RTN_BLACKHOLE].error;
1555                                goto out_reject;
1556                        }
1557
1558                        nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1559                                                     &nhsel);
1560                        if (nhc)
1561                                goto set_result;
1562                        goto miss;
1563                }
1564
1565                for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1566                        nhc = fib_info_nhc(fi, nhsel);
1567
1568                        if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1569                                continue;
1570set_result:
1571                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1572                                refcount_inc(&fi->fib_clntref);
1573
1574                        res->prefix = htonl(n->key);
1575                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1576                        res->nh_sel = nhsel;
1577                        res->nhc = nhc;
1578                        res->type = fa->fa_type;
1579                        res->scope = fi->fib_scope;
1580                        res->fi = fi;
1581                        res->table = tb;
1582                        res->fa_head = &n->leaf;
1583#ifdef CONFIG_IP_FIB_TRIE_STATS
1584                        this_cpu_inc(stats->semantic_match_passed);
1585#endif
1586                        trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1587
1588                        return err;
1589                }
1590        }
1591miss:
1592#ifdef CONFIG_IP_FIB_TRIE_STATS
1593        this_cpu_inc(stats->semantic_match_miss);
1594#endif
1595        goto backtrace;
1596}
1597EXPORT_SYMBOL_GPL(fib_table_lookup);
1598
1599static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1600                             struct key_vector *l, struct fib_alias *old)
1601{
1602        /* record the location of the previous list_info entry */
1603        struct hlist_node **pprev = old->fa_list.pprev;
1604        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1605
1606        /* remove the fib_alias from the list */
1607        hlist_del_rcu(&old->fa_list);
1608
1609        /* if we emptied the list this leaf will be freed and we can sort
1610         * out parent suffix lengths as a part of trie_rebalance
1611         */
1612        if (hlist_empty(&l->leaf)) {
1613                if (tp->slen == l->slen)
1614                        node_pull_suffix(tp, tp->pos);
1615                put_child_root(tp, l->key, NULL);
1616                node_free(l);
1617                trie_rebalance(t, tp);
1618                return;
1619        }
1620
1621        /* only access fa if it is pointing at the last valid hlist_node */
1622        if (*pprev)
1623                return;
1624
1625        /* update the trie with the latest suffix length */
1626        l->slen = fa->fa_slen;
1627        node_pull_suffix(tp, fa->fa_slen);
1628}
1629
1630static void fib_notify_alias_delete(struct net *net, u32 key,
1631                                    struct hlist_head *fah,
1632                                    struct fib_alias *fa_to_delete,
1633                                    struct netlink_ext_ack *extack)
1634{
1635        struct fib_alias *fa_next, *fa_to_notify;
1636        u32 tb_id = fa_to_delete->tb_id;
1637        u8 slen = fa_to_delete->fa_slen;
1638        enum fib_event_type fib_event;
1639
1640        /* Do not notify if we do not care about the route. */
1641        if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1642                return;
1643
1644        /* Determine if the route should be replaced by the next route in the
1645         * list.
1646         */
1647        fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1648                                   struct fib_alias, fa_list);
1649        if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1650                fib_event = FIB_EVENT_ENTRY_REPLACE;
1651                fa_to_notify = fa_next;
1652        } else {
1653                fib_event = FIB_EVENT_ENTRY_DEL;
1654                fa_to_notify = fa_to_delete;
1655        }
1656        call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1657                                 fa_to_notify, extack);
1658}
1659
1660/* Caller must hold RTNL. */
1661int fib_table_delete(struct net *net, struct fib_table *tb,
1662                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1663{
1664        struct trie *t = (struct trie *) tb->tb_data;
1665        struct fib_alias *fa, *fa_to_delete;
1666        struct key_vector *l, *tp;
1667        u8 plen = cfg->fc_dst_len;
1668        u8 slen = KEYLENGTH - plen;
1669        u8 tos = cfg->fc_tos;
1670        u32 key;
1671
1672        key = ntohl(cfg->fc_dst);
1673
1674        if (!fib_valid_key_len(key, plen, extack))
1675                return -EINVAL;
1676
1677        l = fib_find_node(t, &tp, key);
1678        if (!l)
1679                return -ESRCH;
1680
1681        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1682        if (!fa)
1683                return -ESRCH;
1684
1685        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1686
1687        fa_to_delete = NULL;
1688        hlist_for_each_entry_from(fa, fa_list) {
1689                struct fib_info *fi = fa->fa_info;
1690
1691                if ((fa->fa_slen != slen) ||
1692                    (fa->tb_id != tb->tb_id) ||
1693                    (fa->fa_tos != tos))
1694                        break;
1695
1696                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1697                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1698                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1699                    (!cfg->fc_prefsrc ||
1700                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1701                    (!cfg->fc_protocol ||
1702                     fi->fib_protocol == cfg->fc_protocol) &&
1703                    fib_nh_match(net, cfg, fi, extack) == 0 &&
1704                    fib_metrics_match(cfg, fi)) {
1705                        fa_to_delete = fa;
1706                        break;
1707                }
1708        }
1709
1710        if (!fa_to_delete)
1711                return -ESRCH;
1712
1713        fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1714        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1715                  &cfg->fc_nlinfo, 0);
1716
1717        if (!plen)
1718                tb->tb_num_default--;
1719
1720        fib_remove_alias(t, tp, l, fa_to_delete);
1721
1722        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1723                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1724
1725        fib_release_info(fa_to_delete->fa_info);
1726        alias_free_mem_rcu(fa_to_delete);
1727        return 0;
1728}
1729
1730/* Scan for the next leaf starting at the provided key value */
1731static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1732{
1733        struct key_vector *pn, *n = *tn;
1734        unsigned long cindex;
1735
1736        /* this loop is meant to try and find the key in the trie */
1737        do {
1738                /* record parent and next child index */
1739                pn = n;
1740                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1741
1742                if (cindex >> pn->bits)
1743                        break;
1744
1745                /* descend into the next child */
1746                n = get_child_rcu(pn, cindex++);
1747                if (!n)
1748                        break;
1749
1750                /* guarantee forward progress on the keys */
1751                if (IS_LEAF(n) && (n->key >= key))
1752                        goto found;
1753        } while (IS_TNODE(n));
1754
1755        /* this loop will search for the next leaf with a greater key */
1756        while (!IS_TRIE(pn)) {
1757                /* if we exhausted the parent node we will need to climb */
1758                if (cindex >= (1ul << pn->bits)) {
1759                        t_key pkey = pn->key;
1760
1761                        pn = node_parent_rcu(pn);
1762                        cindex = get_index(pkey, pn) + 1;
1763                        continue;
1764                }
1765
1766                /* grab the next available node */
1767                n = get_child_rcu(pn, cindex++);
1768                if (!n)
1769                        continue;
1770
1771                /* no need to compare keys since we bumped the index */
1772                if (IS_LEAF(n))
1773                        goto found;
1774
1775                /* Rescan start scanning in new node */
1776                pn = n;
1777                cindex = 0;
1778        }
1779
1780        *tn = pn;
1781        return NULL; /* Root of trie */
1782found:
1783        /* if we are at the limit for keys just return NULL for the tnode */
1784        *tn = pn;
1785        return n;
1786}
1787
1788static void fib_trie_free(struct fib_table *tb)
1789{
1790        struct trie *t = (struct trie *)tb->tb_data;
1791        struct key_vector *pn = t->kv;
1792        unsigned long cindex = 1;
1793        struct hlist_node *tmp;
1794        struct fib_alias *fa;
1795
1796        /* walk trie in reverse order and free everything */
1797        for (;;) {
1798                struct key_vector *n;
1799
1800                if (!(cindex--)) {
1801                        t_key pkey = pn->key;
1802
1803                        if (IS_TRIE(pn))
1804                                break;
1805
1806                        n = pn;
1807                        pn = node_parent(pn);
1808
1809                        /* drop emptied tnode */
1810                        put_child_root(pn, n->key, NULL);
1811                        node_free(n);
1812
1813                        cindex = get_index(pkey, pn);
1814
1815                        continue;
1816                }
1817
1818                /* grab the next available node */
1819                n = get_child(pn, cindex);
1820                if (!n)
1821                        continue;
1822
1823                if (IS_TNODE(n)) {
1824                        /* record pn and cindex for leaf walking */
1825                        pn = n;
1826                        cindex = 1ul << n->bits;
1827
1828                        continue;
1829                }
1830
1831                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832                        hlist_del_rcu(&fa->fa_list);
1833                        alias_free_mem_rcu(fa);
1834                }
1835
1836                put_child_root(pn, n->key, NULL);
1837                node_free(n);
1838        }
1839
1840#ifdef CONFIG_IP_FIB_TRIE_STATS
1841        free_percpu(t->stats);
1842#endif
1843        kfree(tb);
1844}
1845
1846struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1847{
1848        struct trie *ot = (struct trie *)oldtb->tb_data;
1849        struct key_vector *l, *tp = ot->kv;
1850        struct fib_table *local_tb;
1851        struct fib_alias *fa;
1852        struct trie *lt;
1853        t_key key = 0;
1854
1855        if (oldtb->tb_data == oldtb->__data)
1856                return oldtb;
1857
1858        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1859        if (!local_tb)
1860                return NULL;
1861
1862        lt = (struct trie *)local_tb->tb_data;
1863
1864        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1865                struct key_vector *local_l = NULL, *local_tp;
1866
1867                hlist_for_each_entry(fa, &l->leaf, fa_list) {
1868                        struct fib_alias *new_fa;
1869
1870                        if (local_tb->tb_id != fa->tb_id)
1871                                continue;
1872
1873                        /* clone fa for new local table */
1874                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1875                        if (!new_fa)
1876                                goto out;
1877
1878                        memcpy(new_fa, fa, sizeof(*fa));
1879
1880                        /* insert clone into table */
1881                        if (!local_l)
1882                                local_l = fib_find_node(lt, &local_tp, l->key);
1883
1884                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1885                                             NULL, l->key)) {
1886                                kmem_cache_free(fn_alias_kmem, new_fa);
1887                                goto out;
1888                        }
1889                }
1890
1891                /* stop loop if key wrapped back to 0 */
1892                key = l->key + 1;
1893                if (key < l->key)
1894                        break;
1895        }
1896
1897        return local_tb;
1898out:
1899        fib_trie_free(local_tb);
1900
1901        return NULL;
1902}
1903
1904/* Caller must hold RTNL */
1905void fib_table_flush_external(struct fib_table *tb)
1906{
1907        struct trie *t = (struct trie *)tb->tb_data;
1908        struct key_vector *pn = t->kv;
1909        unsigned long cindex = 1;
1910        struct hlist_node *tmp;
1911        struct fib_alias *fa;
1912
1913        /* walk trie in reverse order */
1914        for (;;) {
1915                unsigned char slen = 0;
1916                struct key_vector *n;
1917
1918                if (!(cindex--)) {
1919                        t_key pkey = pn->key;
1920
1921                        /* cannot resize the trie vector */
1922                        if (IS_TRIE(pn))
1923                                break;
1924
1925                        /* update the suffix to address pulled leaves */
1926                        if (pn->slen > pn->pos)
1927                                update_suffix(pn);
1928
1929                        /* resize completed node */
1930                        pn = resize(t, pn);
1931                        cindex = get_index(pkey, pn);
1932
1933                        continue;
1934                }
1935
1936                /* grab the next available node */
1937                n = get_child(pn, cindex);
1938                if (!n)
1939                        continue;
1940
1941                if (IS_TNODE(n)) {
1942                        /* record pn and cindex for leaf walking */
1943                        pn = n;
1944                        cindex = 1ul << n->bits;
1945
1946                        continue;
1947                }
1948
1949                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1950                        /* if alias was cloned to local then we just
1951                         * need to remove the local copy from main
1952                         */
1953                        if (tb->tb_id != fa->tb_id) {
1954                                hlist_del_rcu(&fa->fa_list);
1955                                alias_free_mem_rcu(fa);
1956                                continue;
1957                        }
1958
1959                        /* record local slen */
1960                        slen = fa->fa_slen;
1961                }
1962
1963                /* update leaf slen */
1964                n->slen = slen;
1965
1966                if (hlist_empty(&n->leaf)) {
1967                        put_child_root(pn, n->key, NULL);
1968                        node_free(n);
1969                }
1970        }
1971}
1972
1973/* Caller must hold RTNL. */
1974int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1975{
1976        struct trie *t = (struct trie *)tb->tb_data;
1977        struct key_vector *pn = t->kv;
1978        unsigned long cindex = 1;
1979        struct hlist_node *tmp;
1980        struct fib_alias *fa;
1981        int found = 0;
1982
1983        /* walk trie in reverse order */
1984        for (;;) {
1985                unsigned char slen = 0;
1986                struct key_vector *n;
1987
1988                if (!(cindex--)) {
1989                        t_key pkey = pn->key;
1990
1991                        /* cannot resize the trie vector */
1992                        if (IS_TRIE(pn))
1993                                break;
1994
1995                        /* update the suffix to address pulled leaves */
1996                        if (pn->slen > pn->pos)
1997                                update_suffix(pn);
1998
1999                        /* resize completed node */
2000                        pn = resize(t, pn);
2001                        cindex = get_index(pkey, pn);
2002
2003                        continue;
2004                }
2005
2006                /* grab the next available node */
2007                n = get_child(pn, cindex);
2008                if (!n)
2009                        continue;
2010
2011                if (IS_TNODE(n)) {
2012                        /* record pn and cindex for leaf walking */
2013                        pn = n;
2014                        cindex = 1ul << n->bits;
2015
2016                        continue;
2017                }
2018
2019                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2020                        struct fib_info *fi = fa->fa_info;
2021
2022                        if (!fi || tb->tb_id != fa->tb_id ||
2023                            (!(fi->fib_flags & RTNH_F_DEAD) &&
2024                             !fib_props[fa->fa_type].error)) {
2025                                slen = fa->fa_slen;
2026                                continue;
2027                        }
2028
2029                        /* Do not flush error routes if network namespace is
2030                         * not being dismantled
2031                         */
2032                        if (!flush_all && fib_props[fa->fa_type].error) {
2033                                slen = fa->fa_slen;
2034                                continue;
2035                        }
2036
2037                        fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2038                                                NULL);
2039                        hlist_del_rcu(&fa->fa_list);
2040                        fib_release_info(fa->fa_info);
2041                        alias_free_mem_rcu(fa);
2042                        found++;
2043                }
2044
2045                /* update leaf slen */
2046                n->slen = slen;
2047
2048                if (hlist_empty(&n->leaf)) {
2049                        put_child_root(pn, n->key, NULL);
2050                        node_free(n);
2051                }
2052        }
2053
2054        pr_debug("trie_flush found=%d\n", found);
2055        return found;
2056}
2057
2058/* derived from fib_trie_free */
2059static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2060                                     struct nl_info *info)
2061{
2062        struct trie *t = (struct trie *)tb->tb_data;
2063        struct key_vector *pn = t->kv;
2064        unsigned long cindex = 1;
2065        struct fib_alias *fa;
2066
2067        for (;;) {
2068                struct key_vector *n;
2069
2070                if (!(cindex--)) {
2071                        t_key pkey = pn->key;
2072
2073                        if (IS_TRIE(pn))
2074                                break;
2075
2076                        pn = node_parent(pn);
2077                        cindex = get_index(pkey, pn);
2078                        continue;
2079                }
2080
2081                /* grab the next available node */
2082                n = get_child(pn, cindex);
2083                if (!n)
2084                        continue;
2085
2086                if (IS_TNODE(n)) {
2087                        /* record pn and cindex for leaf walking */
2088                        pn = n;
2089                        cindex = 1ul << n->bits;
2090
2091                        continue;
2092                }
2093
2094                hlist_for_each_entry(fa, &n->leaf, fa_list) {
2095                        struct fib_info *fi = fa->fa_info;
2096
2097                        if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2098                                continue;
2099
2100                        rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2101                                  KEYLENGTH - fa->fa_slen, tb->tb_id,
2102                                  info, NLM_F_REPLACE);
2103
2104                        /* call_fib_entry_notifiers will be removed when
2105                         * in-kernel notifier is implemented and supported
2106                         * for nexthop objects
2107                         */
2108                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2109                                                 n->key,
2110                                                 KEYLENGTH - fa->fa_slen, fa,
2111                                                 NULL);
2112                }
2113        }
2114}
2115
2116void fib_info_notify_update(struct net *net, struct nl_info *info)
2117{
2118        unsigned int h;
2119
2120        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2121                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2122                struct fib_table *tb;
2123
2124                hlist_for_each_entry_rcu(tb, head, tb_hlist,
2125                                         lockdep_rtnl_is_held())
2126                        __fib_info_notify_update(net, tb, info);
2127        }
2128}
2129
2130static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2131                           struct notifier_block *nb,
2132                           struct netlink_ext_ack *extack)
2133{
2134        struct fib_alias *fa;
2135        int last_slen = -1;
2136        int err;
2137
2138        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2139                struct fib_info *fi = fa->fa_info;
2140
2141                if (!fi)
2142                        continue;
2143
2144                /* local and main table can share the same trie,
2145                 * so don't notify twice for the same entry.
2146                 */
2147                if (tb->tb_id != fa->tb_id)
2148                        continue;
2149
2150                if (fa->fa_slen == last_slen)
2151                        continue;
2152
2153                last_slen = fa->fa_slen;
2154                err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2155                                              l->key, KEYLENGTH - fa->fa_slen,
2156                                              fa, extack);
2157                if (err)
2158                        return err;
2159        }
2160        return 0;
2161}
2162
2163static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2164                            struct netlink_ext_ack *extack)
2165{
2166        struct trie *t = (struct trie *)tb->tb_data;
2167        struct key_vector *l, *tp = t->kv;
2168        t_key key = 0;
2169        int err;
2170
2171        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2172                err = fib_leaf_notify(l, tb, nb, extack);
2173                if (err)
2174                        return err;
2175
2176                key = l->key + 1;
2177                /* stop in case of wrap around */
2178                if (key < l->key)
2179                        break;
2180        }
2181        return 0;
2182}
2183
2184int fib_notify(struct net *net, struct notifier_block *nb,
2185               struct netlink_ext_ack *extack)
2186{
2187        unsigned int h;
2188        int err;
2189
2190        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2191                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2192                struct fib_table *tb;
2193
2194                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2195                        err = fib_table_notify(tb, nb, extack);
2196                        if (err)
2197                                return err;
2198                }
2199        }
2200        return 0;
2201}
2202
2203static void __trie_free_rcu(struct rcu_head *head)
2204{
2205        struct fib_table *tb = container_of(head, struct fib_table, rcu);
2206#ifdef CONFIG_IP_FIB_TRIE_STATS
2207        struct trie *t = (struct trie *)tb->tb_data;
2208
2209        if (tb->tb_data == tb->__data)
2210                free_percpu(t->stats);
2211#endif /* CONFIG_IP_FIB_TRIE_STATS */
2212        kfree(tb);
2213}
2214
2215void fib_free_table(struct fib_table *tb)
2216{
2217        call_rcu(&tb->rcu, __trie_free_rcu);
2218}
2219
2220static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2221                             struct sk_buff *skb, struct netlink_callback *cb,
2222                             struct fib_dump_filter *filter)
2223{
2224        unsigned int flags = NLM_F_MULTI;
2225        __be32 xkey = htonl(l->key);
2226        int i, s_i, i_fa, s_fa, err;
2227        struct fib_alias *fa;
2228
2229        if (filter->filter_set ||
2230            !filter->dump_exceptions || !filter->dump_routes)
2231                flags |= NLM_F_DUMP_FILTERED;
2232
2233        s_i = cb->args[4];
2234        s_fa = cb->args[5];
2235        i = 0;
2236
2237        /* rcu_read_lock is hold by caller */
2238        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2239                struct fib_info *fi = fa->fa_info;
2240
2241                if (i < s_i)
2242                        goto next;
2243
2244                i_fa = 0;
2245
2246                if (tb->tb_id != fa->tb_id)
2247                        goto next;
2248
2249                if (filter->filter_set) {
2250                        if (filter->rt_type && fa->fa_type != filter->rt_type)
2251                                goto next;
2252
2253                        if ((filter->protocol &&
2254                             fi->fib_protocol != filter->protocol))
2255                                goto next;
2256
2257                        if (filter->dev &&
2258                            !fib_info_nh_uses_dev(fi, filter->dev))
2259                                goto next;
2260                }
2261
2262                if (filter->dump_routes) {
2263                        if (!s_fa) {
2264                                struct fib_rt_info fri;
2265
2266                                fri.fi = fi;
2267                                fri.tb_id = tb->tb_id;
2268                                fri.dst = xkey;
2269                                fri.dst_len = KEYLENGTH - fa->fa_slen;
2270                                fri.tos = fa->fa_tos;
2271                                fri.type = fa->fa_type;
2272                                fri.offload = fa->offload;
2273                                fri.trap = fa->trap;
2274                                err = fib_dump_info(skb,
2275                                                    NETLINK_CB(cb->skb).portid,
2276                                                    cb->nlh->nlmsg_seq,
2277                                                    RTM_NEWROUTE, &fri, flags);
2278                                if (err < 0)
2279                                        goto stop;
2280                        }
2281
2282                        i_fa++;
2283                }
2284
2285                if (filter->dump_exceptions) {
2286                        err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2287                                                 &i_fa, s_fa, flags);
2288                        if (err < 0)
2289                                goto stop;
2290                }
2291
2292next:
2293                i++;
2294        }
2295
2296        cb->args[4] = i;
2297        return skb->len;
2298
2299stop:
2300        cb->args[4] = i;
2301        cb->args[5] = i_fa;
2302        return err;
2303}
2304
2305/* rcu_read_lock needs to be hold by caller from readside */
2306int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2307                   struct netlink_callback *cb, struct fib_dump_filter *filter)
2308{
2309        struct trie *t = (struct trie *)tb->tb_data;
2310        struct key_vector *l, *tp = t->kv;
2311        /* Dump starting at last key.
2312         * Note: 0.0.0.0/0 (ie default) is first key.
2313         */
2314        int count = cb->args[2];
2315        t_key key = cb->args[3];
2316
2317        /* First time here, count and key are both always 0. Count > 0
2318         * and key == 0 means the dump has wrapped around and we are done.
2319         */
2320        if (count && !key)
2321                return skb->len;
2322
2323        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2324                int err;
2325
2326                err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2327                if (err < 0) {
2328                        cb->args[3] = key;
2329                        cb->args[2] = count;
2330                        return err;
2331                }
2332
2333                ++count;
2334                key = l->key + 1;
2335
2336                memset(&cb->args[4], 0,
2337                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2338
2339                /* stop loop if key wrapped back to 0 */
2340                if (key < l->key)
2341                        break;
2342        }
2343
2344        cb->args[3] = key;
2345        cb->args[2] = count;
2346
2347        return skb->len;
2348}
2349
2350void __init fib_trie_init(void)
2351{
2352        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2353                                          sizeof(struct fib_alias),
2354                                          0, SLAB_PANIC, NULL);
2355
2356        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2357                                           LEAF_SIZE,
2358                                           0, SLAB_PANIC, NULL);
2359}
2360
2361struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2362{
2363        struct fib_table *tb;
2364        struct trie *t;
2365        size_t sz = sizeof(*tb);
2366
2367        if (!alias)
2368                sz += sizeof(struct trie);
2369
2370        tb = kzalloc(sz, GFP_KERNEL);
2371        if (!tb)
2372                return NULL;
2373
2374        tb->tb_id = id;
2375        tb->tb_num_default = 0;
2376        tb->tb_data = (alias ? alias->__data : tb->__data);
2377
2378        if (alias)
2379                return tb;
2380
2381        t = (struct trie *) tb->tb_data;
2382        t->kv[0].pos = KEYLENGTH;
2383        t->kv[0].slen = KEYLENGTH;
2384#ifdef CONFIG_IP_FIB_TRIE_STATS
2385        t->stats = alloc_percpu(struct trie_use_stats);
2386        if (!t->stats) {
2387                kfree(tb);
2388                tb = NULL;
2389        }
2390#endif
2391
2392        return tb;
2393}
2394
2395#ifdef CONFIG_PROC_FS
2396/* Depth first Trie walk iterator */
2397struct fib_trie_iter {
2398        struct seq_net_private p;
2399        struct fib_table *tb;
2400        struct key_vector *tnode;
2401        unsigned int index;
2402        unsigned int depth;
2403};
2404
2405static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2406{
2407        unsigned long cindex = iter->index;
2408        struct key_vector *pn = iter->tnode;
2409        t_key pkey;
2410
2411        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2412                 iter->tnode, iter->index, iter->depth);
2413
2414        while (!IS_TRIE(pn)) {
2415                while (cindex < child_length(pn)) {
2416                        struct key_vector *n = get_child_rcu(pn, cindex++);
2417
2418                        if (!n)
2419                                continue;
2420
2421                        if (IS_LEAF(n)) {
2422                                iter->tnode = pn;
2423                                iter->index = cindex;
2424                        } else {
2425                                /* push down one level */
2426                                iter->tnode = n;
2427                                iter->index = 0;
2428                                ++iter->depth;
2429                        }
2430
2431                        return n;
2432                }
2433
2434                /* Current node exhausted, pop back up */
2435                pkey = pn->key;
2436                pn = node_parent_rcu(pn);
2437                cindex = get_index(pkey, pn) + 1;
2438                --iter->depth;
2439        }
2440
2441        /* record root node so further searches know we are done */
2442        iter->tnode = pn;
2443        iter->index = 0;
2444
2445        return NULL;
2446}
2447
2448static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2449                                             struct trie *t)
2450{
2451        struct key_vector *n, *pn;
2452
2453        if (!t)
2454                return NULL;
2455
2456        pn = t->kv;
2457        n = rcu_dereference(pn->tnode[0]);
2458        if (!n)
2459                return NULL;
2460
2461        if (IS_TNODE(n)) {
2462                iter->tnode = n;
2463                iter->index = 0;
2464                iter->depth = 1;
2465        } else {
2466                iter->tnode = pn;
2467                iter->index = 0;
2468                iter->depth = 0;
2469        }
2470
2471        return n;
2472}
2473
2474static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2475{
2476        struct key_vector *n;
2477        struct fib_trie_iter iter;
2478
2479        memset(s, 0, sizeof(*s));
2480
2481        rcu_read_lock();
2482        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2483                if (IS_LEAF(n)) {
2484                        struct fib_alias *fa;
2485
2486                        s->leaves++;
2487                        s->totdepth += iter.depth;
2488                        if (iter.depth > s->maxdepth)
2489                                s->maxdepth = iter.depth;
2490
2491                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2492                                ++s->prefixes;
2493                } else {
2494                        s->tnodes++;
2495                        if (n->bits < MAX_STAT_DEPTH)
2496                                s->nodesizes[n->bits]++;
2497                        s->nullpointers += tn_info(n)->empty_children;
2498                }
2499        }
2500        rcu_read_unlock();
2501}
2502
2503/*
2504 *      This outputs /proc/net/fib_triestats
2505 */
2506static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2507{
2508        unsigned int i, max, pointers, bytes, avdepth;
2509
2510        if (stat->leaves)
2511                avdepth = stat->totdepth*100 / stat->leaves;
2512        else
2513                avdepth = 0;
2514
2515        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2516                   avdepth / 100, avdepth % 100);
2517        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2518
2519        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2520        bytes = LEAF_SIZE * stat->leaves;
2521
2522        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2523        bytes += sizeof(struct fib_alias) * stat->prefixes;
2524
2525        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2526        bytes += TNODE_SIZE(0) * stat->tnodes;
2527
2528        max = MAX_STAT_DEPTH;
2529        while (max > 0 && stat->nodesizes[max-1] == 0)
2530                max--;
2531
2532        pointers = 0;
2533        for (i = 1; i < max; i++)
2534                if (stat->nodesizes[i] != 0) {
2535                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2536                        pointers += (1<<i) * stat->nodesizes[i];
2537                }
2538        seq_putc(seq, '\n');
2539        seq_printf(seq, "\tPointers: %u\n", pointers);
2540
2541        bytes += sizeof(struct key_vector *) * pointers;
2542        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2543        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2544}
2545
2546#ifdef CONFIG_IP_FIB_TRIE_STATS
2547static void trie_show_usage(struct seq_file *seq,
2548                            const struct trie_use_stats __percpu *stats)
2549{
2550        struct trie_use_stats s = { 0 };
2551        int cpu;
2552
2553        /* loop through all of the CPUs and gather up the stats */
2554        for_each_possible_cpu(cpu) {
2555                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2556
2557                s.gets += pcpu->gets;
2558                s.backtrack += pcpu->backtrack;
2559                s.semantic_match_passed += pcpu->semantic_match_passed;
2560                s.semantic_match_miss += pcpu->semantic_match_miss;
2561                s.null_node_hit += pcpu->null_node_hit;
2562                s.resize_node_skipped += pcpu->resize_node_skipped;
2563        }
2564
2565        seq_printf(seq, "\nCounters:\n---------\n");
2566        seq_printf(seq, "gets = %u\n", s.gets);
2567        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2568        seq_printf(seq, "semantic match passed = %u\n",
2569                   s.semantic_match_passed);
2570        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2571        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2572        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2573}
2574#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2575
2576static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2577{
2578        if (tb->tb_id == RT_TABLE_LOCAL)
2579                seq_puts(seq, "Local:\n");
2580        else if (tb->tb_id == RT_TABLE_MAIN)
2581                seq_puts(seq, "Main:\n");
2582        else
2583                seq_printf(seq, "Id %d:\n", tb->tb_id);
2584}
2585
2586
2587static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2588{
2589        struct net *net = (struct net *)seq->private;
2590        unsigned int h;
2591
2592        seq_printf(seq,
2593                   "Basic info: size of leaf:"
2594                   " %zd bytes, size of tnode: %zd bytes.\n",
2595                   LEAF_SIZE, TNODE_SIZE(0));
2596
2597        rcu_read_lock();
2598        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2599                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2600                struct fib_table *tb;
2601
2602                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2603                        struct trie *t = (struct trie *) tb->tb_data;
2604                        struct trie_stat stat;
2605
2606                        if (!t)
2607                                continue;
2608
2609                        fib_table_print(seq, tb);
2610
2611                        trie_collect_stats(t, &stat);
2612                        trie_show_stats(seq, &stat);
2613#ifdef CONFIG_IP_FIB_TRIE_STATS
2614                        trie_show_usage(seq, t->stats);
2615#endif
2616                }
2617                cond_resched_rcu();
2618        }
2619        rcu_read_unlock();
2620
2621        return 0;
2622}
2623
2624static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2625{
2626        struct fib_trie_iter *iter = seq->private;
2627        struct net *net = seq_file_net(seq);
2628        loff_t idx = 0;
2629        unsigned int h;
2630
2631        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2632                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2633                struct fib_table *tb;
2634
2635                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2636                        struct key_vector *n;
2637
2638                        for (n = fib_trie_get_first(iter,
2639                                                    (struct trie *) tb->tb_data);
2640                             n; n = fib_trie_get_next(iter))
2641                                if (pos == idx++) {
2642                                        iter->tb = tb;
2643                                        return n;
2644                                }
2645                }
2646        }
2647
2648        return NULL;
2649}
2650
2651static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2652        __acquires(RCU)
2653{
2654        rcu_read_lock();
2655        return fib_trie_get_idx(seq, *pos);
2656}
2657
2658static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2659{
2660        struct fib_trie_iter *iter = seq->private;
2661        struct net *net = seq_file_net(seq);
2662        struct fib_table *tb = iter->tb;
2663        struct hlist_node *tb_node;
2664        unsigned int h;
2665        struct key_vector *n;
2666
2667        ++*pos;
2668        /* next node in same table */
2669        n = fib_trie_get_next(iter);
2670        if (n)
2671                return n;
2672
2673        /* walk rest of this hash chain */
2674        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2675        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2676                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2677                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2678                if (n)
2679                        goto found;
2680        }
2681
2682        /* new hash chain */
2683        while (++h < FIB_TABLE_HASHSZ) {
2684                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2685                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2686                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2687                        if (n)
2688                                goto found;
2689                }
2690        }
2691        return NULL;
2692
2693found:
2694        iter->tb = tb;
2695        return n;
2696}
2697
2698static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2699        __releases(RCU)
2700{
2701        rcu_read_unlock();
2702}
2703
2704static void seq_indent(struct seq_file *seq, int n)
2705{
2706        while (n-- > 0)
2707                seq_puts(seq, "   ");
2708}
2709
2710static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2711{
2712        switch (s) {
2713        case RT_SCOPE_UNIVERSE: return "universe";
2714        case RT_SCOPE_SITE:     return "site";
2715        case RT_SCOPE_LINK:     return "link";
2716        case RT_SCOPE_HOST:     return "host";
2717        case RT_SCOPE_NOWHERE:  return "nowhere";
2718        default:
2719                snprintf(buf, len, "scope=%d", s);
2720                return buf;
2721        }
2722}
2723
2724static const char *const rtn_type_names[__RTN_MAX] = {
2725        [RTN_UNSPEC] = "UNSPEC",
2726        [RTN_UNICAST] = "UNICAST",
2727        [RTN_LOCAL] = "LOCAL",
2728        [RTN_BROADCAST] = "BROADCAST",
2729        [RTN_ANYCAST] = "ANYCAST",
2730        [RTN_MULTICAST] = "MULTICAST",
2731        [RTN_BLACKHOLE] = "BLACKHOLE",
2732        [RTN_UNREACHABLE] = "UNREACHABLE",
2733        [RTN_PROHIBIT] = "PROHIBIT",
2734        [RTN_THROW] = "THROW",
2735        [RTN_NAT] = "NAT",
2736        [RTN_XRESOLVE] = "XRESOLVE",
2737};
2738
2739static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2740{
2741        if (t < __RTN_MAX && rtn_type_names[t])
2742                return rtn_type_names[t];
2743        snprintf(buf, len, "type %u", t);
2744        return buf;
2745}
2746
2747/* Pretty print the trie */
2748static int fib_trie_seq_show(struct seq_file *seq, void *v)
2749{
2750        const struct fib_trie_iter *iter = seq->private;
2751        struct key_vector *n = v;
2752
2753        if (IS_TRIE(node_parent_rcu(n)))
2754                fib_table_print(seq, iter->tb);
2755
2756        if (IS_TNODE(n)) {
2757                __be32 prf = htonl(n->key);
2758
2759                seq_indent(seq, iter->depth-1);
2760                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2761                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2762                           tn_info(n)->full_children,
2763                           tn_info(n)->empty_children);
2764        } else {
2765                __be32 val = htonl(n->key);
2766                struct fib_alias *fa;
2767
2768                seq_indent(seq, iter->depth);
2769                seq_printf(seq, "  |-- %pI4\n", &val);
2770
2771                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2772                        char buf1[32], buf2[32];
2773
2774                        seq_indent(seq, iter->depth + 1);
2775                        seq_printf(seq, "  /%zu %s %s",
2776                                   KEYLENGTH - fa->fa_slen,
2777                                   rtn_scope(buf1, sizeof(buf1),
2778                                             fa->fa_info->fib_scope),
2779                                   rtn_type(buf2, sizeof(buf2),
2780                                            fa->fa_type));
2781                        if (fa->fa_tos)
2782                                seq_printf(seq, " tos=%d", fa->fa_tos);
2783                        seq_putc(seq, '\n');
2784                }
2785        }
2786
2787        return 0;
2788}
2789
2790static const struct seq_operations fib_trie_seq_ops = {
2791        .start  = fib_trie_seq_start,
2792        .next   = fib_trie_seq_next,
2793        .stop   = fib_trie_seq_stop,
2794        .show   = fib_trie_seq_show,
2795};
2796
2797struct fib_route_iter {
2798        struct seq_net_private p;
2799        struct fib_table *main_tb;
2800        struct key_vector *tnode;
2801        loff_t  pos;
2802        t_key   key;
2803};
2804
2805static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2806                                            loff_t pos)
2807{
2808        struct key_vector *l, **tp = &iter->tnode;
2809        t_key key;
2810
2811        /* use cached location of previously found key */
2812        if (iter->pos > 0 && pos >= iter->pos) {
2813                key = iter->key;
2814        } else {
2815                iter->pos = 1;
2816                key = 0;
2817        }
2818
2819        pos -= iter->pos;
2820
2821        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2822                key = l->key + 1;
2823                iter->pos++;
2824                l = NULL;
2825
2826                /* handle unlikely case of a key wrap */
2827                if (!key)
2828                        break;
2829        }
2830
2831        if (l)
2832                iter->key = l->key;     /* remember it */
2833        else
2834                iter->pos = 0;          /* forget it */
2835
2836        return l;
2837}
2838
2839static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2840        __acquires(RCU)
2841{
2842        struct fib_route_iter *iter = seq->private;
2843        struct fib_table *tb;
2844        struct trie *t;
2845
2846        rcu_read_lock();
2847
2848        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2849        if (!tb)
2850                return NULL;
2851
2852        iter->main_tb = tb;
2853        t = (struct trie *)tb->tb_data;
2854        iter->tnode = t->kv;
2855
2856        if (*pos != 0)
2857                return fib_route_get_idx(iter, *pos);
2858
2859        iter->pos = 0;
2860        iter->key = KEY_MAX;
2861
2862        return SEQ_START_TOKEN;
2863}
2864
2865static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2866{
2867        struct fib_route_iter *iter = seq->private;
2868        struct key_vector *l = NULL;
2869        t_key key = iter->key + 1;
2870
2871        ++*pos;
2872
2873        /* only allow key of 0 for start of sequence */
2874        if ((v == SEQ_START_TOKEN) || key)
2875                l = leaf_walk_rcu(&iter->tnode, key);
2876
2877        if (l) {
2878                iter->key = l->key;
2879                iter->pos++;
2880        } else {
2881                iter->pos = 0;
2882        }
2883
2884        return l;
2885}
2886
2887static void fib_route_seq_stop(struct seq_file *seq, void *v)
2888        __releases(RCU)
2889{
2890        rcu_read_unlock();
2891}
2892
2893static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2894{
2895        unsigned int flags = 0;
2896
2897        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2898                flags = RTF_REJECT;
2899        if (fi) {
2900                const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2901
2902                if (nhc->nhc_gw.ipv4)
2903                        flags |= RTF_GATEWAY;
2904        }
2905        if (mask == htonl(0xFFFFFFFF))
2906                flags |= RTF_HOST;
2907        flags |= RTF_UP;
2908        return flags;
2909}
2910
2911/*
2912 *      This outputs /proc/net/route.
2913 *      The format of the file is not supposed to be changed
2914 *      and needs to be same as fib_hash output to avoid breaking
2915 *      legacy utilities
2916 */
2917static int fib_route_seq_show(struct seq_file *seq, void *v)
2918{
2919        struct fib_route_iter *iter = seq->private;
2920        struct fib_table *tb = iter->main_tb;
2921        struct fib_alias *fa;
2922        struct key_vector *l = v;
2923        __be32 prefix;
2924
2925        if (v == SEQ_START_TOKEN) {
2926                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2927                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2928                           "\tWindow\tIRTT");
2929                return 0;
2930        }
2931
2932        prefix = htonl(l->key);
2933
2934        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2935                struct fib_info *fi = fa->fa_info;
2936                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2937                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2938
2939                if ((fa->fa_type == RTN_BROADCAST) ||
2940                    (fa->fa_type == RTN_MULTICAST))
2941                        continue;
2942
2943                if (fa->tb_id != tb->tb_id)
2944                        continue;
2945
2946                seq_setwidth(seq, 127);
2947
2948                if (fi) {
2949                        struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2950                        __be32 gw = 0;
2951
2952                        if (nhc->nhc_gw_family == AF_INET)
2953                                gw = nhc->nhc_gw.ipv4;
2954
2955                        seq_printf(seq,
2956                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2957                                   "%d\t%08X\t%d\t%u\t%u",
2958                                   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2959                                   prefix, gw, flags, 0, 0,
2960                                   fi->fib_priority,
2961                                   mask,
2962                                   (fi->fib_advmss ?
2963                                    fi->fib_advmss + 40 : 0),
2964                                   fi->fib_window,
2965                                   fi->fib_rtt >> 3);
2966                } else {
2967                        seq_printf(seq,
2968                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2969                                   "%d\t%08X\t%d\t%u\t%u",
2970                                   prefix, 0, flags, 0, 0, 0,
2971                                   mask, 0, 0, 0);
2972                }
2973                seq_pad(seq, '\n');
2974        }
2975
2976        return 0;
2977}
2978
2979static const struct seq_operations fib_route_seq_ops = {
2980        .start  = fib_route_seq_start,
2981        .next   = fib_route_seq_next,
2982        .stop   = fib_route_seq_stop,
2983        .show   = fib_route_seq_show,
2984};
2985
2986int __net_init fib_proc_init(struct net *net)
2987{
2988        if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2989                        sizeof(struct fib_trie_iter)))
2990                goto out1;
2991
2992        if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2993                        fib_triestat_seq_show, NULL))
2994                goto out2;
2995
2996        if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2997                        sizeof(struct fib_route_iter)))
2998                goto out3;
2999
3000        return 0;
3001
3002out3:
3003        remove_proc_entry("fib_triestat", net->proc_net);
3004out2:
3005        remove_proc_entry("fib_trie", net->proc_net);
3006out1:
3007        return -ENOMEM;
3008}
3009
3010void __net_exit fib_proc_exit(struct net *net)
3011{
3012        remove_proc_entry("fib_trie", net->proc_net);
3013        remove_proc_entry("fib_triestat", net->proc_net);
3014        remove_proc_entry("route", net->proc_net);
3015}
3016
3017#endif /* CONFIG_PROC_FS */
3018