linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36#include "cgroup.h"
  37
  38#include <linux/ctype.h>
  39#include <symbol/kallsyms.h>
  40#include <linux/mman.h>
  41#include <linux/string.h>
  42#include <linux/zalloc.h>
  43
  44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  45
  46static struct dso *machine__kernel_dso(struct machine *machine)
  47{
  48        return machine->vmlinux_map->dso;
  49}
  50
  51static void dsos__init(struct dsos *dsos)
  52{
  53        INIT_LIST_HEAD(&dsos->head);
  54        dsos->root = RB_ROOT;
  55        init_rwsem(&dsos->lock);
  56}
  57
  58static void machine__threads_init(struct machine *machine)
  59{
  60        int i;
  61
  62        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  63                struct threads *threads = &machine->threads[i];
  64                threads->entries = RB_ROOT_CACHED;
  65                init_rwsem(&threads->lock);
  66                threads->nr = 0;
  67                INIT_LIST_HEAD(&threads->dead);
  68                threads->last_match = NULL;
  69        }
  70}
  71
  72static int machine__set_mmap_name(struct machine *machine)
  73{
  74        if (machine__is_host(machine))
  75                machine->mmap_name = strdup("[kernel.kallsyms]");
  76        else if (machine__is_default_guest(machine))
  77                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  78        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  79                          machine->pid) < 0)
  80                machine->mmap_name = NULL;
  81
  82        return machine->mmap_name ? 0 : -ENOMEM;
  83}
  84
  85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  86{
  87        int err = -ENOMEM;
  88
  89        memset(machine, 0, sizeof(*machine));
  90        maps__init(&machine->kmaps, machine);
  91        RB_CLEAR_NODE(&machine->rb_node);
  92        dsos__init(&machine->dsos);
  93
  94        machine__threads_init(machine);
  95
  96        machine->vdso_info = NULL;
  97        machine->env = NULL;
  98
  99        machine->pid = pid;
 100
 101        machine->id_hdr_size = 0;
 102        machine->kptr_restrict_warned = false;
 103        machine->comm_exec = false;
 104        machine->kernel_start = 0;
 105        machine->vmlinux_map = NULL;
 106
 107        machine->root_dir = strdup(root_dir);
 108        if (machine->root_dir == NULL)
 109                return -ENOMEM;
 110
 111        if (machine__set_mmap_name(machine))
 112                goto out;
 113
 114        if (pid != HOST_KERNEL_ID) {
 115                struct thread *thread = machine__findnew_thread(machine, -1,
 116                                                                pid);
 117                char comm[64];
 118
 119                if (thread == NULL)
 120                        goto out;
 121
 122                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 123                thread__set_comm(thread, comm, 0);
 124                thread__put(thread);
 125        }
 126
 127        machine->current_tid = NULL;
 128        err = 0;
 129
 130out:
 131        if (err) {
 132                zfree(&machine->root_dir);
 133                zfree(&machine->mmap_name);
 134        }
 135        return 0;
 136}
 137
 138struct machine *machine__new_host(void)
 139{
 140        struct machine *machine = malloc(sizeof(*machine));
 141
 142        if (machine != NULL) {
 143                machine__init(machine, "", HOST_KERNEL_ID);
 144
 145                if (machine__create_kernel_maps(machine) < 0)
 146                        goto out_delete;
 147        }
 148
 149        return machine;
 150out_delete:
 151        free(machine);
 152        return NULL;
 153}
 154
 155struct machine *machine__new_kallsyms(void)
 156{
 157        struct machine *machine = machine__new_host();
 158        /*
 159         * FIXME:
 160         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 161         *    ask for not using the kcore parsing code, once this one is fixed
 162         *    to create a map per module.
 163         */
 164        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 165                machine__delete(machine);
 166                machine = NULL;
 167        }
 168
 169        return machine;
 170}
 171
 172static void dsos__purge(struct dsos *dsos)
 173{
 174        struct dso *pos, *n;
 175
 176        down_write(&dsos->lock);
 177
 178        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 179                RB_CLEAR_NODE(&pos->rb_node);
 180                pos->root = NULL;
 181                list_del_init(&pos->node);
 182                dso__put(pos);
 183        }
 184
 185        up_write(&dsos->lock);
 186}
 187
 188static void dsos__exit(struct dsos *dsos)
 189{
 190        dsos__purge(dsos);
 191        exit_rwsem(&dsos->lock);
 192}
 193
 194void machine__delete_threads(struct machine *machine)
 195{
 196        struct rb_node *nd;
 197        int i;
 198
 199        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 200                struct threads *threads = &machine->threads[i];
 201                down_write(&threads->lock);
 202                nd = rb_first_cached(&threads->entries);
 203                while (nd) {
 204                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 205
 206                        nd = rb_next(nd);
 207                        __machine__remove_thread(machine, t, false);
 208                }
 209                up_write(&threads->lock);
 210        }
 211}
 212
 213void machine__exit(struct machine *machine)
 214{
 215        int i;
 216
 217        if (machine == NULL)
 218                return;
 219
 220        machine__destroy_kernel_maps(machine);
 221        maps__exit(&machine->kmaps);
 222        dsos__exit(&machine->dsos);
 223        machine__exit_vdso(machine);
 224        zfree(&machine->root_dir);
 225        zfree(&machine->mmap_name);
 226        zfree(&machine->current_tid);
 227
 228        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 229                struct threads *threads = &machine->threads[i];
 230                struct thread *thread, *n;
 231                /*
 232                 * Forget about the dead, at this point whatever threads were
 233                 * left in the dead lists better have a reference count taken
 234                 * by who is using them, and then, when they drop those references
 235                 * and it finally hits zero, thread__put() will check and see that
 236                 * its not in the dead threads list and will not try to remove it
 237                 * from there, just calling thread__delete() straight away.
 238                 */
 239                list_for_each_entry_safe(thread, n, &threads->dead, node)
 240                        list_del_init(&thread->node);
 241
 242                exit_rwsem(&threads->lock);
 243        }
 244}
 245
 246void machine__delete(struct machine *machine)
 247{
 248        if (machine) {
 249                machine__exit(machine);
 250                free(machine);
 251        }
 252}
 253
 254void machines__init(struct machines *machines)
 255{
 256        machine__init(&machines->host, "", HOST_KERNEL_ID);
 257        machines->guests = RB_ROOT_CACHED;
 258}
 259
 260void machines__exit(struct machines *machines)
 261{
 262        machine__exit(&machines->host);
 263        /* XXX exit guest */
 264}
 265
 266struct machine *machines__add(struct machines *machines, pid_t pid,
 267                              const char *root_dir)
 268{
 269        struct rb_node **p = &machines->guests.rb_root.rb_node;
 270        struct rb_node *parent = NULL;
 271        struct machine *pos, *machine = malloc(sizeof(*machine));
 272        bool leftmost = true;
 273
 274        if (machine == NULL)
 275                return NULL;
 276
 277        if (machine__init(machine, root_dir, pid) != 0) {
 278                free(machine);
 279                return NULL;
 280        }
 281
 282        while (*p != NULL) {
 283                parent = *p;
 284                pos = rb_entry(parent, struct machine, rb_node);
 285                if (pid < pos->pid)
 286                        p = &(*p)->rb_left;
 287                else {
 288                        p = &(*p)->rb_right;
 289                        leftmost = false;
 290                }
 291        }
 292
 293        rb_link_node(&machine->rb_node, parent, p);
 294        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 295
 296        return machine;
 297}
 298
 299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 300{
 301        struct rb_node *nd;
 302
 303        machines->host.comm_exec = comm_exec;
 304
 305        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 306                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 307
 308                machine->comm_exec = comm_exec;
 309        }
 310}
 311
 312struct machine *machines__find(struct machines *machines, pid_t pid)
 313{
 314        struct rb_node **p = &machines->guests.rb_root.rb_node;
 315        struct rb_node *parent = NULL;
 316        struct machine *machine;
 317        struct machine *default_machine = NULL;
 318
 319        if (pid == HOST_KERNEL_ID)
 320                return &machines->host;
 321
 322        while (*p != NULL) {
 323                parent = *p;
 324                machine = rb_entry(parent, struct machine, rb_node);
 325                if (pid < machine->pid)
 326                        p = &(*p)->rb_left;
 327                else if (pid > machine->pid)
 328                        p = &(*p)->rb_right;
 329                else
 330                        return machine;
 331                if (!machine->pid)
 332                        default_machine = machine;
 333        }
 334
 335        return default_machine;
 336}
 337
 338struct machine *machines__findnew(struct machines *machines, pid_t pid)
 339{
 340        char path[PATH_MAX];
 341        const char *root_dir = "";
 342        struct machine *machine = machines__find(machines, pid);
 343
 344        if (machine && (machine->pid == pid))
 345                goto out;
 346
 347        if ((pid != HOST_KERNEL_ID) &&
 348            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 349            (symbol_conf.guestmount)) {
 350                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 351                if (access(path, R_OK)) {
 352                        static struct strlist *seen;
 353
 354                        if (!seen)
 355                                seen = strlist__new(NULL, NULL);
 356
 357                        if (!strlist__has_entry(seen, path)) {
 358                                pr_err("Can't access file %s\n", path);
 359                                strlist__add(seen, path);
 360                        }
 361                        machine = NULL;
 362                        goto out;
 363                }
 364                root_dir = path;
 365        }
 366
 367        machine = machines__add(machines, pid, root_dir);
 368out:
 369        return machine;
 370}
 371
 372void machines__process_guests(struct machines *machines,
 373                              machine__process_t process, void *data)
 374{
 375        struct rb_node *nd;
 376
 377        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 378                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 379                process(pos, data);
 380        }
 381}
 382
 383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 384{
 385        struct rb_node *node;
 386        struct machine *machine;
 387
 388        machines->host.id_hdr_size = id_hdr_size;
 389
 390        for (node = rb_first_cached(&machines->guests); node;
 391             node = rb_next(node)) {
 392                machine = rb_entry(node, struct machine, rb_node);
 393                machine->id_hdr_size = id_hdr_size;
 394        }
 395
 396        return;
 397}
 398
 399static void machine__update_thread_pid(struct machine *machine,
 400                                       struct thread *th, pid_t pid)
 401{
 402        struct thread *leader;
 403
 404        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 405                return;
 406
 407        th->pid_ = pid;
 408
 409        if (th->pid_ == th->tid)
 410                return;
 411
 412        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 413        if (!leader)
 414                goto out_err;
 415
 416        if (!leader->maps)
 417                leader->maps = maps__new(machine);
 418
 419        if (!leader->maps)
 420                goto out_err;
 421
 422        if (th->maps == leader->maps)
 423                return;
 424
 425        if (th->maps) {
 426                /*
 427                 * Maps are created from MMAP events which provide the pid and
 428                 * tid.  Consequently there never should be any maps on a thread
 429                 * with an unknown pid.  Just print an error if there are.
 430                 */
 431                if (!maps__empty(th->maps))
 432                        pr_err("Discarding thread maps for %d:%d\n",
 433                               th->pid_, th->tid);
 434                maps__put(th->maps);
 435        }
 436
 437        th->maps = maps__get(leader->maps);
 438out_put:
 439        thread__put(leader);
 440        return;
 441out_err:
 442        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 443        goto out_put;
 444}
 445
 446/*
 447 * Front-end cache - TID lookups come in blocks,
 448 * so most of the time we dont have to look up
 449 * the full rbtree:
 450 */
 451static struct thread*
 452__threads__get_last_match(struct threads *threads, struct machine *machine,
 453                          int pid, int tid)
 454{
 455        struct thread *th;
 456
 457        th = threads->last_match;
 458        if (th != NULL) {
 459                if (th->tid == tid) {
 460                        machine__update_thread_pid(machine, th, pid);
 461                        return thread__get(th);
 462                }
 463
 464                threads->last_match = NULL;
 465        }
 466
 467        return NULL;
 468}
 469
 470static struct thread*
 471threads__get_last_match(struct threads *threads, struct machine *machine,
 472                        int pid, int tid)
 473{
 474        struct thread *th = NULL;
 475
 476        if (perf_singlethreaded)
 477                th = __threads__get_last_match(threads, machine, pid, tid);
 478
 479        return th;
 480}
 481
 482static void
 483__threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485        threads->last_match = th;
 486}
 487
 488static void
 489threads__set_last_match(struct threads *threads, struct thread *th)
 490{
 491        if (perf_singlethreaded)
 492                __threads__set_last_match(threads, th);
 493}
 494
 495/*
 496 * Caller must eventually drop thread->refcnt returned with a successful
 497 * lookup/new thread inserted.
 498 */
 499static struct thread *____machine__findnew_thread(struct machine *machine,
 500                                                  struct threads *threads,
 501                                                  pid_t pid, pid_t tid,
 502                                                  bool create)
 503{
 504        struct rb_node **p = &threads->entries.rb_root.rb_node;
 505        struct rb_node *parent = NULL;
 506        struct thread *th;
 507        bool leftmost = true;
 508
 509        th = threads__get_last_match(threads, machine, pid, tid);
 510        if (th)
 511                return th;
 512
 513        while (*p != NULL) {
 514                parent = *p;
 515                th = rb_entry(parent, struct thread, rb_node);
 516
 517                if (th->tid == tid) {
 518                        threads__set_last_match(threads, th);
 519                        machine__update_thread_pid(machine, th, pid);
 520                        return thread__get(th);
 521                }
 522
 523                if (tid < th->tid)
 524                        p = &(*p)->rb_left;
 525                else {
 526                        p = &(*p)->rb_right;
 527                        leftmost = false;
 528                }
 529        }
 530
 531        if (!create)
 532                return NULL;
 533
 534        th = thread__new(pid, tid);
 535        if (th != NULL) {
 536                rb_link_node(&th->rb_node, parent, p);
 537                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 538
 539                /*
 540                 * We have to initialize maps separately after rb tree is updated.
 541                 *
 542                 * The reason is that we call machine__findnew_thread
 543                 * within thread__init_maps to find the thread
 544                 * leader and that would screwed the rb tree.
 545                 */
 546                if (thread__init_maps(th, machine)) {
 547                        rb_erase_cached(&th->rb_node, &threads->entries);
 548                        RB_CLEAR_NODE(&th->rb_node);
 549                        thread__put(th);
 550                        return NULL;
 551                }
 552                /*
 553                 * It is now in the rbtree, get a ref
 554                 */
 555                thread__get(th);
 556                threads__set_last_match(threads, th);
 557                ++threads->nr;
 558        }
 559
 560        return th;
 561}
 562
 563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 564{
 565        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 566}
 567
 568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 569                                       pid_t tid)
 570{
 571        struct threads *threads = machine__threads(machine, tid);
 572        struct thread *th;
 573
 574        down_write(&threads->lock);
 575        th = __machine__findnew_thread(machine, pid, tid);
 576        up_write(&threads->lock);
 577        return th;
 578}
 579
 580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 581                                    pid_t tid)
 582{
 583        struct threads *threads = machine__threads(machine, tid);
 584        struct thread *th;
 585
 586        down_read(&threads->lock);
 587        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 588        up_read(&threads->lock);
 589        return th;
 590}
 591
 592struct comm *machine__thread_exec_comm(struct machine *machine,
 593                                       struct thread *thread)
 594{
 595        if (machine->comm_exec)
 596                return thread__exec_comm(thread);
 597        else
 598                return thread__comm(thread);
 599}
 600
 601int machine__process_comm_event(struct machine *machine, union perf_event *event,
 602                                struct perf_sample *sample)
 603{
 604        struct thread *thread = machine__findnew_thread(machine,
 605                                                        event->comm.pid,
 606                                                        event->comm.tid);
 607        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 608        int err = 0;
 609
 610        if (exec)
 611                machine->comm_exec = true;
 612
 613        if (dump_trace)
 614                perf_event__fprintf_comm(event, stdout);
 615
 616        if (thread == NULL ||
 617            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 618                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 619                err = -1;
 620        }
 621
 622        thread__put(thread);
 623
 624        return err;
 625}
 626
 627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 628                                      union perf_event *event,
 629                                      struct perf_sample *sample __maybe_unused)
 630{
 631        struct thread *thread = machine__findnew_thread(machine,
 632                                                        event->namespaces.pid,
 633                                                        event->namespaces.tid);
 634        int err = 0;
 635
 636        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 637                  "\nWARNING: kernel seems to support more namespaces than perf"
 638                  " tool.\nTry updating the perf tool..\n\n");
 639
 640        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 641                  "\nWARNING: perf tool seems to support more namespaces than"
 642                  " the kernel.\nTry updating the kernel..\n\n");
 643
 644        if (dump_trace)
 645                perf_event__fprintf_namespaces(event, stdout);
 646
 647        if (thread == NULL ||
 648            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 649                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 650                err = -1;
 651        }
 652
 653        thread__put(thread);
 654
 655        return err;
 656}
 657
 658int machine__process_cgroup_event(struct machine *machine,
 659                                  union perf_event *event,
 660                                  struct perf_sample *sample __maybe_unused)
 661{
 662        struct cgroup *cgrp;
 663
 664        if (dump_trace)
 665                perf_event__fprintf_cgroup(event, stdout);
 666
 667        cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 668        if (cgrp == NULL)
 669                return -ENOMEM;
 670
 671        return 0;
 672}
 673
 674int machine__process_lost_event(struct machine *machine __maybe_unused,
 675                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 676{
 677        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 678                    event->lost.id, event->lost.lost);
 679        return 0;
 680}
 681
 682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 683                                        union perf_event *event, struct perf_sample *sample)
 684{
 685        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 686                    sample->id, event->lost_samples.lost);
 687        return 0;
 688}
 689
 690static struct dso *machine__findnew_module_dso(struct machine *machine,
 691                                               struct kmod_path *m,
 692                                               const char *filename)
 693{
 694        struct dso *dso;
 695
 696        down_write(&machine->dsos.lock);
 697
 698        dso = __dsos__find(&machine->dsos, m->name, true);
 699        if (!dso) {
 700                dso = __dsos__addnew(&machine->dsos, m->name);
 701                if (dso == NULL)
 702                        goto out_unlock;
 703
 704                dso__set_module_info(dso, m, machine);
 705                dso__set_long_name(dso, strdup(filename), true);
 706                dso->kernel = DSO_SPACE__KERNEL;
 707        }
 708
 709        dso__get(dso);
 710out_unlock:
 711        up_write(&machine->dsos.lock);
 712        return dso;
 713}
 714
 715int machine__process_aux_event(struct machine *machine __maybe_unused,
 716                               union perf_event *event)
 717{
 718        if (dump_trace)
 719                perf_event__fprintf_aux(event, stdout);
 720        return 0;
 721}
 722
 723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 724                                        union perf_event *event)
 725{
 726        if (dump_trace)
 727                perf_event__fprintf_itrace_start(event, stdout);
 728        return 0;
 729}
 730
 731int machine__process_switch_event(struct machine *machine __maybe_unused,
 732                                  union perf_event *event)
 733{
 734        if (dump_trace)
 735                perf_event__fprintf_switch(event, stdout);
 736        return 0;
 737}
 738
 739static int machine__process_ksymbol_register(struct machine *machine,
 740                                             union perf_event *event,
 741                                             struct perf_sample *sample __maybe_unused)
 742{
 743        struct symbol *sym;
 744        struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
 745
 746        if (!map) {
 747                struct dso *dso = dso__new(event->ksymbol.name);
 748
 749                if (dso) {
 750                        dso->kernel = DSO_SPACE__KERNEL;
 751                        map = map__new2(0, dso);
 752                }
 753
 754                if (!dso || !map) {
 755                        dso__put(dso);
 756                        return -ENOMEM;
 757                }
 758
 759                if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 760                        map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 761                        map->dso->data.file_size = event->ksymbol.len;
 762                        dso__set_loaded(map->dso);
 763                }
 764
 765                map->start = event->ksymbol.addr;
 766                map->end = map->start + event->ksymbol.len;
 767                maps__insert(&machine->kmaps, map);
 768                dso__set_loaded(dso);
 769
 770                if (is_bpf_image(event->ksymbol.name)) {
 771                        dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 772                        dso__set_long_name(dso, "", false);
 773                }
 774        }
 775
 776        sym = symbol__new(map->map_ip(map, map->start),
 777                          event->ksymbol.len,
 778                          0, 0, event->ksymbol.name);
 779        if (!sym)
 780                return -ENOMEM;
 781        dso__insert_symbol(map->dso, sym);
 782        return 0;
 783}
 784
 785static int machine__process_ksymbol_unregister(struct machine *machine,
 786                                               union perf_event *event,
 787                                               struct perf_sample *sample __maybe_unused)
 788{
 789        struct symbol *sym;
 790        struct map *map;
 791
 792        map = maps__find(&machine->kmaps, event->ksymbol.addr);
 793        if (!map)
 794                return 0;
 795
 796        if (map != machine->vmlinux_map)
 797                maps__remove(&machine->kmaps, map);
 798        else {
 799                sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
 800                if (sym)
 801                        dso__delete_symbol(map->dso, sym);
 802        }
 803
 804        return 0;
 805}
 806
 807int machine__process_ksymbol(struct machine *machine __maybe_unused,
 808                             union perf_event *event,
 809                             struct perf_sample *sample)
 810{
 811        if (dump_trace)
 812                perf_event__fprintf_ksymbol(event, stdout);
 813
 814        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 815                return machine__process_ksymbol_unregister(machine, event,
 816                                                           sample);
 817        return machine__process_ksymbol_register(machine, event, sample);
 818}
 819
 820int machine__process_text_poke(struct machine *machine, union perf_event *event,
 821                               struct perf_sample *sample __maybe_unused)
 822{
 823        struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
 824        u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 825
 826        if (dump_trace)
 827                perf_event__fprintf_text_poke(event, machine, stdout);
 828
 829        if (!event->text_poke.new_len)
 830                return 0;
 831
 832        if (cpumode != PERF_RECORD_MISC_KERNEL) {
 833                pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 834                return 0;
 835        }
 836
 837        if (map && map->dso) {
 838                u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 839                int ret;
 840
 841                /*
 842                 * Kernel maps might be changed when loading symbols so loading
 843                 * must be done prior to using kernel maps.
 844                 */
 845                map__load(map);
 846                ret = dso__data_write_cache_addr(map->dso, map, machine,
 847                                                 event->text_poke.addr,
 848                                                 new_bytes,
 849                                                 event->text_poke.new_len);
 850                if (ret != event->text_poke.new_len)
 851                        pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 852                                 event->text_poke.addr);
 853        } else {
 854                pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 855                         event->text_poke.addr);
 856        }
 857
 858        return 0;
 859}
 860
 861static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 862                                              const char *filename)
 863{
 864        struct map *map = NULL;
 865        struct kmod_path m;
 866        struct dso *dso;
 867
 868        if (kmod_path__parse_name(&m, filename))
 869                return NULL;
 870
 871        dso = machine__findnew_module_dso(machine, &m, filename);
 872        if (dso == NULL)
 873                goto out;
 874
 875        map = map__new2(start, dso);
 876        if (map == NULL)
 877                goto out;
 878
 879        maps__insert(&machine->kmaps, map);
 880
 881        /* Put the map here because maps__insert alread got it */
 882        map__put(map);
 883out:
 884        /* put the dso here, corresponding to  machine__findnew_module_dso */
 885        dso__put(dso);
 886        zfree(&m.name);
 887        return map;
 888}
 889
 890size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 891{
 892        struct rb_node *nd;
 893        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 894
 895        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 896                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 897                ret += __dsos__fprintf(&pos->dsos.head, fp);
 898        }
 899
 900        return ret;
 901}
 902
 903size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 904                                     bool (skip)(struct dso *dso, int parm), int parm)
 905{
 906        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 907}
 908
 909size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 910                                     bool (skip)(struct dso *dso, int parm), int parm)
 911{
 912        struct rb_node *nd;
 913        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 914
 915        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 916                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 917                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 918        }
 919        return ret;
 920}
 921
 922size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 923{
 924        int i;
 925        size_t printed = 0;
 926        struct dso *kdso = machine__kernel_dso(machine);
 927
 928        if (kdso->has_build_id) {
 929                char filename[PATH_MAX];
 930                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 931                                           false))
 932                        printed += fprintf(fp, "[0] %s\n", filename);
 933        }
 934
 935        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 936                printed += fprintf(fp, "[%d] %s\n",
 937                                   i + kdso->has_build_id, vmlinux_path[i]);
 938
 939        return printed;
 940}
 941
 942size_t machine__fprintf(struct machine *machine, FILE *fp)
 943{
 944        struct rb_node *nd;
 945        size_t ret;
 946        int i;
 947
 948        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 949                struct threads *threads = &machine->threads[i];
 950
 951                down_read(&threads->lock);
 952
 953                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 954
 955                for (nd = rb_first_cached(&threads->entries); nd;
 956                     nd = rb_next(nd)) {
 957                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 958
 959                        ret += thread__fprintf(pos, fp);
 960                }
 961
 962                up_read(&threads->lock);
 963        }
 964        return ret;
 965}
 966
 967static struct dso *machine__get_kernel(struct machine *machine)
 968{
 969        const char *vmlinux_name = machine->mmap_name;
 970        struct dso *kernel;
 971
 972        if (machine__is_host(machine)) {
 973                if (symbol_conf.vmlinux_name)
 974                        vmlinux_name = symbol_conf.vmlinux_name;
 975
 976                kernel = machine__findnew_kernel(machine, vmlinux_name,
 977                                                 "[kernel]", DSO_SPACE__KERNEL);
 978        } else {
 979                if (symbol_conf.default_guest_vmlinux_name)
 980                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 981
 982                kernel = machine__findnew_kernel(machine, vmlinux_name,
 983                                                 "[guest.kernel]",
 984                                                 DSO_SPACE__KERNEL_GUEST);
 985        }
 986
 987        if (kernel != NULL && (!kernel->has_build_id))
 988                dso__read_running_kernel_build_id(kernel, machine);
 989
 990        return kernel;
 991}
 992
 993struct process_args {
 994        u64 start;
 995};
 996
 997void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 998                                    size_t bufsz)
 999{
1000        if (machine__is_default_guest(machine))
1001                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1002        else
1003                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1004}
1005
1006const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1007
1008/* Figure out the start address of kernel map from /proc/kallsyms.
1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1010 * symbol_name if it's not that important.
1011 */
1012static int machine__get_running_kernel_start(struct machine *machine,
1013                                             const char **symbol_name,
1014                                             u64 *start, u64 *end)
1015{
1016        char filename[PATH_MAX];
1017        int i, err = -1;
1018        const char *name;
1019        u64 addr = 0;
1020
1021        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1022
1023        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1024                return 0;
1025
1026        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1027                err = kallsyms__get_function_start(filename, name, &addr);
1028                if (!err)
1029                        break;
1030        }
1031
1032        if (err)
1033                return -1;
1034
1035        if (symbol_name)
1036                *symbol_name = name;
1037
1038        *start = addr;
1039
1040        err = kallsyms__get_function_start(filename, "_etext", &addr);
1041        if (!err)
1042                *end = addr;
1043
1044        return 0;
1045}
1046
1047int machine__create_extra_kernel_map(struct machine *machine,
1048                                     struct dso *kernel,
1049                                     struct extra_kernel_map *xm)
1050{
1051        struct kmap *kmap;
1052        struct map *map;
1053
1054        map = map__new2(xm->start, kernel);
1055        if (!map)
1056                return -1;
1057
1058        map->end   = xm->end;
1059        map->pgoff = xm->pgoff;
1060
1061        kmap = map__kmap(map);
1062
1063        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1064
1065        maps__insert(&machine->kmaps, map);
1066
1067        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1068                  kmap->name, map->start, map->end);
1069
1070        map__put(map);
1071
1072        return 0;
1073}
1074
1075static u64 find_entry_trampoline(struct dso *dso)
1076{
1077        /* Duplicates are removed so lookup all aliases */
1078        const char *syms[] = {
1079                "_entry_trampoline",
1080                "__entry_trampoline_start",
1081                "entry_SYSCALL_64_trampoline",
1082        };
1083        struct symbol *sym = dso__first_symbol(dso);
1084        unsigned int i;
1085
1086        for (; sym; sym = dso__next_symbol(sym)) {
1087                if (sym->binding != STB_GLOBAL)
1088                        continue;
1089                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1090                        if (!strcmp(sym->name, syms[i]))
1091                                return sym->start;
1092                }
1093        }
1094
1095        return 0;
1096}
1097
1098/*
1099 * These values can be used for kernels that do not have symbols for the entry
1100 * trampolines in kallsyms.
1101 */
1102#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1103#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1104#define X86_64_ENTRY_TRAMPOLINE         0x6000
1105
1106/* Map x86_64 PTI entry trampolines */
1107int machine__map_x86_64_entry_trampolines(struct machine *machine,
1108                                          struct dso *kernel)
1109{
1110        struct maps *kmaps = &machine->kmaps;
1111        int nr_cpus_avail, cpu;
1112        bool found = false;
1113        struct map *map;
1114        u64 pgoff;
1115
1116        /*
1117         * In the vmlinux case, pgoff is a virtual address which must now be
1118         * mapped to a vmlinux offset.
1119         */
1120        maps__for_each_entry(kmaps, map) {
1121                struct kmap *kmap = __map__kmap(map);
1122                struct map *dest_map;
1123
1124                if (!kmap || !is_entry_trampoline(kmap->name))
1125                        continue;
1126
1127                dest_map = maps__find(kmaps, map->pgoff);
1128                if (dest_map != map)
1129                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1130                found = true;
1131        }
1132        if (found || machine->trampolines_mapped)
1133                return 0;
1134
1135        pgoff = find_entry_trampoline(kernel);
1136        if (!pgoff)
1137                return 0;
1138
1139        nr_cpus_avail = machine__nr_cpus_avail(machine);
1140
1141        /* Add a 1 page map for each CPU's entry trampoline */
1142        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1143                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1144                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1145                         X86_64_ENTRY_TRAMPOLINE;
1146                struct extra_kernel_map xm = {
1147                        .start = va,
1148                        .end   = va + page_size,
1149                        .pgoff = pgoff,
1150                };
1151
1152                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1153
1154                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1155                        return -1;
1156        }
1157
1158        machine->trampolines_mapped = nr_cpus_avail;
1159
1160        return 0;
1161}
1162
1163int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1164                                             struct dso *kernel __maybe_unused)
1165{
1166        return 0;
1167}
1168
1169static int
1170__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1171{
1172        /* In case of renewal the kernel map, destroy previous one */
1173        machine__destroy_kernel_maps(machine);
1174
1175        machine->vmlinux_map = map__new2(0, kernel);
1176        if (machine->vmlinux_map == NULL)
1177                return -1;
1178
1179        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1180        maps__insert(&machine->kmaps, machine->vmlinux_map);
1181        return 0;
1182}
1183
1184void machine__destroy_kernel_maps(struct machine *machine)
1185{
1186        struct kmap *kmap;
1187        struct map *map = machine__kernel_map(machine);
1188
1189        if (map == NULL)
1190                return;
1191
1192        kmap = map__kmap(map);
1193        maps__remove(&machine->kmaps, map);
1194        if (kmap && kmap->ref_reloc_sym) {
1195                zfree((char **)&kmap->ref_reloc_sym->name);
1196                zfree(&kmap->ref_reloc_sym);
1197        }
1198
1199        map__zput(machine->vmlinux_map);
1200}
1201
1202int machines__create_guest_kernel_maps(struct machines *machines)
1203{
1204        int ret = 0;
1205        struct dirent **namelist = NULL;
1206        int i, items = 0;
1207        char path[PATH_MAX];
1208        pid_t pid;
1209        char *endp;
1210
1211        if (symbol_conf.default_guest_vmlinux_name ||
1212            symbol_conf.default_guest_modules ||
1213            symbol_conf.default_guest_kallsyms) {
1214                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1215        }
1216
1217        if (symbol_conf.guestmount) {
1218                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1219                if (items <= 0)
1220                        return -ENOENT;
1221                for (i = 0; i < items; i++) {
1222                        if (!isdigit(namelist[i]->d_name[0])) {
1223                                /* Filter out . and .. */
1224                                continue;
1225                        }
1226                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1227                        if ((*endp != '\0') ||
1228                            (endp == namelist[i]->d_name) ||
1229                            (errno == ERANGE)) {
1230                                pr_debug("invalid directory (%s). Skipping.\n",
1231                                         namelist[i]->d_name);
1232                                continue;
1233                        }
1234                        sprintf(path, "%s/%s/proc/kallsyms",
1235                                symbol_conf.guestmount,
1236                                namelist[i]->d_name);
1237                        ret = access(path, R_OK);
1238                        if (ret) {
1239                                pr_debug("Can't access file %s\n", path);
1240                                goto failure;
1241                        }
1242                        machines__create_kernel_maps(machines, pid);
1243                }
1244failure:
1245                free(namelist);
1246        }
1247
1248        return ret;
1249}
1250
1251void machines__destroy_kernel_maps(struct machines *machines)
1252{
1253        struct rb_node *next = rb_first_cached(&machines->guests);
1254
1255        machine__destroy_kernel_maps(&machines->host);
1256
1257        while (next) {
1258                struct machine *pos = rb_entry(next, struct machine, rb_node);
1259
1260                next = rb_next(&pos->rb_node);
1261                rb_erase_cached(&pos->rb_node, &machines->guests);
1262                machine__delete(pos);
1263        }
1264}
1265
1266int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1267{
1268        struct machine *machine = machines__findnew(machines, pid);
1269
1270        if (machine == NULL)
1271                return -1;
1272
1273        return machine__create_kernel_maps(machine);
1274}
1275
1276int machine__load_kallsyms(struct machine *machine, const char *filename)
1277{
1278        struct map *map = machine__kernel_map(machine);
1279        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1280
1281        if (ret > 0) {
1282                dso__set_loaded(map->dso);
1283                /*
1284                 * Since /proc/kallsyms will have multiple sessions for the
1285                 * kernel, with modules between them, fixup the end of all
1286                 * sections.
1287                 */
1288                maps__fixup_end(&machine->kmaps);
1289        }
1290
1291        return ret;
1292}
1293
1294int machine__load_vmlinux_path(struct machine *machine)
1295{
1296        struct map *map = machine__kernel_map(machine);
1297        int ret = dso__load_vmlinux_path(map->dso, map);
1298
1299        if (ret > 0)
1300                dso__set_loaded(map->dso);
1301
1302        return ret;
1303}
1304
1305static char *get_kernel_version(const char *root_dir)
1306{
1307        char version[PATH_MAX];
1308        FILE *file;
1309        char *name, *tmp;
1310        const char *prefix = "Linux version ";
1311
1312        sprintf(version, "%s/proc/version", root_dir);
1313        file = fopen(version, "r");
1314        if (!file)
1315                return NULL;
1316
1317        tmp = fgets(version, sizeof(version), file);
1318        fclose(file);
1319        if (!tmp)
1320                return NULL;
1321
1322        name = strstr(version, prefix);
1323        if (!name)
1324                return NULL;
1325        name += strlen(prefix);
1326        tmp = strchr(name, ' ');
1327        if (tmp)
1328                *tmp = '\0';
1329
1330        return strdup(name);
1331}
1332
1333static bool is_kmod_dso(struct dso *dso)
1334{
1335        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1336               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1337}
1338
1339static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1340{
1341        char *long_name;
1342        struct map *map = maps__find_by_name(maps, m->name);
1343
1344        if (map == NULL)
1345                return 0;
1346
1347        long_name = strdup(path);
1348        if (long_name == NULL)
1349                return -ENOMEM;
1350
1351        dso__set_long_name(map->dso, long_name, true);
1352        dso__kernel_module_get_build_id(map->dso, "");
1353
1354        /*
1355         * Full name could reveal us kmod compression, so
1356         * we need to update the symtab_type if needed.
1357         */
1358        if (m->comp && is_kmod_dso(map->dso)) {
1359                map->dso->symtab_type++;
1360                map->dso->comp = m->comp;
1361        }
1362
1363        return 0;
1364}
1365
1366static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1367{
1368        struct dirent *dent;
1369        DIR *dir = opendir(dir_name);
1370        int ret = 0;
1371
1372        if (!dir) {
1373                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1374                return -1;
1375        }
1376
1377        while ((dent = readdir(dir)) != NULL) {
1378                char path[PATH_MAX];
1379                struct stat st;
1380
1381                /*sshfs might return bad dent->d_type, so we have to stat*/
1382                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1383                if (stat(path, &st))
1384                        continue;
1385
1386                if (S_ISDIR(st.st_mode)) {
1387                        if (!strcmp(dent->d_name, ".") ||
1388                            !strcmp(dent->d_name, ".."))
1389                                continue;
1390
1391                        /* Do not follow top-level source and build symlinks */
1392                        if (depth == 0) {
1393                                if (!strcmp(dent->d_name, "source") ||
1394                                    !strcmp(dent->d_name, "build"))
1395                                        continue;
1396                        }
1397
1398                        ret = maps__set_modules_path_dir(maps, path, depth + 1);
1399                        if (ret < 0)
1400                                goto out;
1401                } else {
1402                        struct kmod_path m;
1403
1404                        ret = kmod_path__parse_name(&m, dent->d_name);
1405                        if (ret)
1406                                goto out;
1407
1408                        if (m.kmod)
1409                                ret = maps__set_module_path(maps, path, &m);
1410
1411                        zfree(&m.name);
1412
1413                        if (ret)
1414                                goto out;
1415                }
1416        }
1417
1418out:
1419        closedir(dir);
1420        return ret;
1421}
1422
1423static int machine__set_modules_path(struct machine *machine)
1424{
1425        char *version;
1426        char modules_path[PATH_MAX];
1427
1428        version = get_kernel_version(machine->root_dir);
1429        if (!version)
1430                return -1;
1431
1432        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1433                 machine->root_dir, version);
1434        free(version);
1435
1436        return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1437}
1438int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1439                                u64 *size __maybe_unused,
1440                                const char *name __maybe_unused)
1441{
1442        return 0;
1443}
1444
1445static int machine__create_module(void *arg, const char *name, u64 start,
1446                                  u64 size)
1447{
1448        struct machine *machine = arg;
1449        struct map *map;
1450
1451        if (arch__fix_module_text_start(&start, &size, name) < 0)
1452                return -1;
1453
1454        map = machine__addnew_module_map(machine, start, name);
1455        if (map == NULL)
1456                return -1;
1457        map->end = start + size;
1458
1459        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1460
1461        return 0;
1462}
1463
1464static int machine__create_modules(struct machine *machine)
1465{
1466        const char *modules;
1467        char path[PATH_MAX];
1468
1469        if (machine__is_default_guest(machine)) {
1470                modules = symbol_conf.default_guest_modules;
1471        } else {
1472                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1473                modules = path;
1474        }
1475
1476        if (symbol__restricted_filename(modules, "/proc/modules"))
1477                return -1;
1478
1479        if (modules__parse(modules, machine, machine__create_module))
1480                return -1;
1481
1482        if (!machine__set_modules_path(machine))
1483                return 0;
1484
1485        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1486
1487        return 0;
1488}
1489
1490static void machine__set_kernel_mmap(struct machine *machine,
1491                                     u64 start, u64 end)
1492{
1493        machine->vmlinux_map->start = start;
1494        machine->vmlinux_map->end   = end;
1495        /*
1496         * Be a bit paranoid here, some perf.data file came with
1497         * a zero sized synthesized MMAP event for the kernel.
1498         */
1499        if (start == 0 && end == 0)
1500                machine->vmlinux_map->end = ~0ULL;
1501}
1502
1503static void machine__update_kernel_mmap(struct machine *machine,
1504                                     u64 start, u64 end)
1505{
1506        struct map *map = machine__kernel_map(machine);
1507
1508        map__get(map);
1509        maps__remove(&machine->kmaps, map);
1510
1511        machine__set_kernel_mmap(machine, start, end);
1512
1513        maps__insert(&machine->kmaps, map);
1514        map__put(map);
1515}
1516
1517int machine__create_kernel_maps(struct machine *machine)
1518{
1519        struct dso *kernel = machine__get_kernel(machine);
1520        const char *name = NULL;
1521        struct map *map;
1522        u64 start = 0, end = ~0ULL;
1523        int ret;
1524
1525        if (kernel == NULL)
1526                return -1;
1527
1528        ret = __machine__create_kernel_maps(machine, kernel);
1529        if (ret < 0)
1530                goto out_put;
1531
1532        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1533                if (machine__is_host(machine))
1534                        pr_debug("Problems creating module maps, "
1535                                 "continuing anyway...\n");
1536                else
1537                        pr_debug("Problems creating module maps for guest %d, "
1538                                 "continuing anyway...\n", machine->pid);
1539        }
1540
1541        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1542                if (name &&
1543                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1544                        machine__destroy_kernel_maps(machine);
1545                        ret = -1;
1546                        goto out_put;
1547                }
1548
1549                /*
1550                 * we have a real start address now, so re-order the kmaps
1551                 * assume it's the last in the kmaps
1552                 */
1553                machine__update_kernel_mmap(machine, start, end);
1554        }
1555
1556        if (machine__create_extra_kernel_maps(machine, kernel))
1557                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1558
1559        if (end == ~0ULL) {
1560                /* update end address of the kernel map using adjacent module address */
1561                map = map__next(machine__kernel_map(machine));
1562                if (map)
1563                        machine__set_kernel_mmap(machine, start, map->start);
1564        }
1565
1566out_put:
1567        dso__put(kernel);
1568        return ret;
1569}
1570
1571static bool machine__uses_kcore(struct machine *machine)
1572{
1573        struct dso *dso;
1574
1575        list_for_each_entry(dso, &machine->dsos.head, node) {
1576                if (dso__is_kcore(dso))
1577                        return true;
1578        }
1579
1580        return false;
1581}
1582
1583static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1584                                             union perf_event *event)
1585{
1586        return machine__is(machine, "x86_64") &&
1587               is_entry_trampoline(event->mmap.filename);
1588}
1589
1590static int machine__process_extra_kernel_map(struct machine *machine,
1591                                             union perf_event *event)
1592{
1593        struct dso *kernel = machine__kernel_dso(machine);
1594        struct extra_kernel_map xm = {
1595                .start = event->mmap.start,
1596                .end   = event->mmap.start + event->mmap.len,
1597                .pgoff = event->mmap.pgoff,
1598        };
1599
1600        if (kernel == NULL)
1601                return -1;
1602
1603        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1604
1605        return machine__create_extra_kernel_map(machine, kernel, &xm);
1606}
1607
1608static int machine__process_kernel_mmap_event(struct machine *machine,
1609                                              union perf_event *event)
1610{
1611        struct map *map;
1612        enum dso_space_type dso_space;
1613        bool is_kernel_mmap;
1614
1615        /* If we have maps from kcore then we do not need or want any others */
1616        if (machine__uses_kcore(machine))
1617                return 0;
1618
1619        if (machine__is_host(machine))
1620                dso_space = DSO_SPACE__KERNEL;
1621        else
1622                dso_space = DSO_SPACE__KERNEL_GUEST;
1623
1624        is_kernel_mmap = memcmp(event->mmap.filename,
1625                                machine->mmap_name,
1626                                strlen(machine->mmap_name) - 1) == 0;
1627        if (event->mmap.filename[0] == '/' ||
1628            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1629                map = machine__addnew_module_map(machine, event->mmap.start,
1630                                                 event->mmap.filename);
1631                if (map == NULL)
1632                        goto out_problem;
1633
1634                map->end = map->start + event->mmap.len;
1635        } else if (is_kernel_mmap) {
1636                const char *symbol_name = (event->mmap.filename +
1637                                strlen(machine->mmap_name));
1638                /*
1639                 * Should be there already, from the build-id table in
1640                 * the header.
1641                 */
1642                struct dso *kernel = NULL;
1643                struct dso *dso;
1644
1645                down_read(&machine->dsos.lock);
1646
1647                list_for_each_entry(dso, &machine->dsos.head, node) {
1648
1649                        /*
1650                         * The cpumode passed to is_kernel_module is not the
1651                         * cpumode of *this* event. If we insist on passing
1652                         * correct cpumode to is_kernel_module, we should
1653                         * record the cpumode when we adding this dso to the
1654                         * linked list.
1655                         *
1656                         * However we don't really need passing correct
1657                         * cpumode.  We know the correct cpumode must be kernel
1658                         * mode (if not, we should not link it onto kernel_dsos
1659                         * list).
1660                         *
1661                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1662                         * is_kernel_module() treats it as a kernel cpumode.
1663                         */
1664
1665                        if (!dso->kernel ||
1666                            is_kernel_module(dso->long_name,
1667                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1668                                continue;
1669
1670
1671                        kernel = dso;
1672                        break;
1673                }
1674
1675                up_read(&machine->dsos.lock);
1676
1677                if (kernel == NULL)
1678                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1679                if (kernel == NULL)
1680                        goto out_problem;
1681
1682                kernel->kernel = dso_space;
1683                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1684                        dso__put(kernel);
1685                        goto out_problem;
1686                }
1687
1688                if (strstr(kernel->long_name, "vmlinux"))
1689                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1690
1691                machine__update_kernel_mmap(machine, event->mmap.start,
1692                                         event->mmap.start + event->mmap.len);
1693
1694                /*
1695                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1696                 * symbol. Effectively having zero here means that at record
1697                 * time /proc/sys/kernel/kptr_restrict was non zero.
1698                 */
1699                if (event->mmap.pgoff != 0) {
1700                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1701                                                        symbol_name,
1702                                                        event->mmap.pgoff);
1703                }
1704
1705                if (machine__is_default_guest(machine)) {
1706                        /*
1707                         * preload dso of guest kernel and modules
1708                         */
1709                        dso__load(kernel, machine__kernel_map(machine));
1710                }
1711        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1712                return machine__process_extra_kernel_map(machine, event);
1713        }
1714        return 0;
1715out_problem:
1716        return -1;
1717}
1718
1719int machine__process_mmap2_event(struct machine *machine,
1720                                 union perf_event *event,
1721                                 struct perf_sample *sample)
1722{
1723        struct thread *thread;
1724        struct map *map;
1725        struct dso_id dso_id = {
1726                .maj = event->mmap2.maj,
1727                .min = event->mmap2.min,
1728                .ino = event->mmap2.ino,
1729                .ino_generation = event->mmap2.ino_generation,
1730        };
1731        int ret = 0;
1732
1733        if (dump_trace)
1734                perf_event__fprintf_mmap2(event, stdout);
1735
1736        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1737            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738                ret = machine__process_kernel_mmap_event(machine, event);
1739                if (ret < 0)
1740                        goto out_problem;
1741                return 0;
1742        }
1743
1744        thread = machine__findnew_thread(machine, event->mmap2.pid,
1745                                        event->mmap2.tid);
1746        if (thread == NULL)
1747                goto out_problem;
1748
1749        map = map__new(machine, event->mmap2.start,
1750                        event->mmap2.len, event->mmap2.pgoff,
1751                        &dso_id, event->mmap2.prot,
1752                        event->mmap2.flags,
1753                        event->mmap2.filename, thread);
1754
1755        if (map == NULL)
1756                goto out_problem_map;
1757
1758        ret = thread__insert_map(thread, map);
1759        if (ret)
1760                goto out_problem_insert;
1761
1762        thread__put(thread);
1763        map__put(map);
1764        return 0;
1765
1766out_problem_insert:
1767        map__put(map);
1768out_problem_map:
1769        thread__put(thread);
1770out_problem:
1771        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1772        return 0;
1773}
1774
1775int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1776                                struct perf_sample *sample)
1777{
1778        struct thread *thread;
1779        struct map *map;
1780        u32 prot = 0;
1781        int ret = 0;
1782
1783        if (dump_trace)
1784                perf_event__fprintf_mmap(event, stdout);
1785
1786        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1787            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1788                ret = machine__process_kernel_mmap_event(machine, event);
1789                if (ret < 0)
1790                        goto out_problem;
1791                return 0;
1792        }
1793
1794        thread = machine__findnew_thread(machine, event->mmap.pid,
1795                                         event->mmap.tid);
1796        if (thread == NULL)
1797                goto out_problem;
1798
1799        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1800                prot = PROT_EXEC;
1801
1802        map = map__new(machine, event->mmap.start,
1803                        event->mmap.len, event->mmap.pgoff,
1804                        NULL, prot, 0, event->mmap.filename, thread);
1805
1806        if (map == NULL)
1807                goto out_problem_map;
1808
1809        ret = thread__insert_map(thread, map);
1810        if (ret)
1811                goto out_problem_insert;
1812
1813        thread__put(thread);
1814        map__put(map);
1815        return 0;
1816
1817out_problem_insert:
1818        map__put(map);
1819out_problem_map:
1820        thread__put(thread);
1821out_problem:
1822        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1823        return 0;
1824}
1825
1826static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1827{
1828        struct threads *threads = machine__threads(machine, th->tid);
1829
1830        if (threads->last_match == th)
1831                threads__set_last_match(threads, NULL);
1832
1833        if (lock)
1834                down_write(&threads->lock);
1835
1836        BUG_ON(refcount_read(&th->refcnt) == 0);
1837
1838        rb_erase_cached(&th->rb_node, &threads->entries);
1839        RB_CLEAR_NODE(&th->rb_node);
1840        --threads->nr;
1841        /*
1842         * Move it first to the dead_threads list, then drop the reference,
1843         * if this is the last reference, then the thread__delete destructor
1844         * will be called and we will remove it from the dead_threads list.
1845         */
1846        list_add_tail(&th->node, &threads->dead);
1847
1848        /*
1849         * We need to do the put here because if this is the last refcount,
1850         * then we will be touching the threads->dead head when removing the
1851         * thread.
1852         */
1853        thread__put(th);
1854
1855        if (lock)
1856                up_write(&threads->lock);
1857}
1858
1859void machine__remove_thread(struct machine *machine, struct thread *th)
1860{
1861        return __machine__remove_thread(machine, th, true);
1862}
1863
1864int machine__process_fork_event(struct machine *machine, union perf_event *event,
1865                                struct perf_sample *sample)
1866{
1867        struct thread *thread = machine__find_thread(machine,
1868                                                     event->fork.pid,
1869                                                     event->fork.tid);
1870        struct thread *parent = machine__findnew_thread(machine,
1871                                                        event->fork.ppid,
1872                                                        event->fork.ptid);
1873        bool do_maps_clone = true;
1874        int err = 0;
1875
1876        if (dump_trace)
1877                perf_event__fprintf_task(event, stdout);
1878
1879        /*
1880         * There may be an existing thread that is not actually the parent,
1881         * either because we are processing events out of order, or because the
1882         * (fork) event that would have removed the thread was lost. Assume the
1883         * latter case and continue on as best we can.
1884         */
1885        if (parent->pid_ != (pid_t)event->fork.ppid) {
1886                dump_printf("removing erroneous parent thread %d/%d\n",
1887                            parent->pid_, parent->tid);
1888                machine__remove_thread(machine, parent);
1889                thread__put(parent);
1890                parent = machine__findnew_thread(machine, event->fork.ppid,
1891                                                 event->fork.ptid);
1892        }
1893
1894        /* if a thread currently exists for the thread id remove it */
1895        if (thread != NULL) {
1896                machine__remove_thread(machine, thread);
1897                thread__put(thread);
1898        }
1899
1900        thread = machine__findnew_thread(machine, event->fork.pid,
1901                                         event->fork.tid);
1902        /*
1903         * When synthesizing FORK events, we are trying to create thread
1904         * objects for the already running tasks on the machine.
1905         *
1906         * Normally, for a kernel FORK event, we want to clone the parent's
1907         * maps because that is what the kernel just did.
1908         *
1909         * But when synthesizing, this should not be done.  If we do, we end up
1910         * with overlapping maps as we process the sythesized MMAP2 events that
1911         * get delivered shortly thereafter.
1912         *
1913         * Use the FORK event misc flags in an internal way to signal this
1914         * situation, so we can elide the map clone when appropriate.
1915         */
1916        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1917                do_maps_clone = false;
1918
1919        if (thread == NULL || parent == NULL ||
1920            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1921                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1922                err = -1;
1923        }
1924        thread__put(thread);
1925        thread__put(parent);
1926
1927        return err;
1928}
1929
1930int machine__process_exit_event(struct machine *machine, union perf_event *event,
1931                                struct perf_sample *sample __maybe_unused)
1932{
1933        struct thread *thread = machine__find_thread(machine,
1934                                                     event->fork.pid,
1935                                                     event->fork.tid);
1936
1937        if (dump_trace)
1938                perf_event__fprintf_task(event, stdout);
1939
1940        if (thread != NULL) {
1941                thread__exited(thread);
1942                thread__put(thread);
1943        }
1944
1945        return 0;
1946}
1947
1948int machine__process_event(struct machine *machine, union perf_event *event,
1949                           struct perf_sample *sample)
1950{
1951        int ret;
1952
1953        switch (event->header.type) {
1954        case PERF_RECORD_COMM:
1955                ret = machine__process_comm_event(machine, event, sample); break;
1956        case PERF_RECORD_MMAP:
1957                ret = machine__process_mmap_event(machine, event, sample); break;
1958        case PERF_RECORD_NAMESPACES:
1959                ret = machine__process_namespaces_event(machine, event, sample); break;
1960        case PERF_RECORD_CGROUP:
1961                ret = machine__process_cgroup_event(machine, event, sample); break;
1962        case PERF_RECORD_MMAP2:
1963                ret = machine__process_mmap2_event(machine, event, sample); break;
1964        case PERF_RECORD_FORK:
1965                ret = machine__process_fork_event(machine, event, sample); break;
1966        case PERF_RECORD_EXIT:
1967                ret = machine__process_exit_event(machine, event, sample); break;
1968        case PERF_RECORD_LOST:
1969                ret = machine__process_lost_event(machine, event, sample); break;
1970        case PERF_RECORD_AUX:
1971                ret = machine__process_aux_event(machine, event); break;
1972        case PERF_RECORD_ITRACE_START:
1973                ret = machine__process_itrace_start_event(machine, event); break;
1974        case PERF_RECORD_LOST_SAMPLES:
1975                ret = machine__process_lost_samples_event(machine, event, sample); break;
1976        case PERF_RECORD_SWITCH:
1977        case PERF_RECORD_SWITCH_CPU_WIDE:
1978                ret = machine__process_switch_event(machine, event); break;
1979        case PERF_RECORD_KSYMBOL:
1980                ret = machine__process_ksymbol(machine, event, sample); break;
1981        case PERF_RECORD_BPF_EVENT:
1982                ret = machine__process_bpf(machine, event, sample); break;
1983        case PERF_RECORD_TEXT_POKE:
1984                ret = machine__process_text_poke(machine, event, sample); break;
1985        default:
1986                ret = -1;
1987                break;
1988        }
1989
1990        return ret;
1991}
1992
1993static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1994{
1995        if (!regexec(regex, sym->name, 0, NULL, 0))
1996                return 1;
1997        return 0;
1998}
1999
2000static void ip__resolve_ams(struct thread *thread,
2001                            struct addr_map_symbol *ams,
2002                            u64 ip)
2003{
2004        struct addr_location al;
2005
2006        memset(&al, 0, sizeof(al));
2007        /*
2008         * We cannot use the header.misc hint to determine whether a
2009         * branch stack address is user, kernel, guest, hypervisor.
2010         * Branches may straddle the kernel/user/hypervisor boundaries.
2011         * Thus, we have to try consecutively until we find a match
2012         * or else, the symbol is unknown
2013         */
2014        thread__find_cpumode_addr_location(thread, ip, &al);
2015
2016        ams->addr = ip;
2017        ams->al_addr = al.addr;
2018        ams->ms.maps = al.maps;
2019        ams->ms.sym = al.sym;
2020        ams->ms.map = al.map;
2021        ams->phys_addr = 0;
2022}
2023
2024static void ip__resolve_data(struct thread *thread,
2025                             u8 m, struct addr_map_symbol *ams,
2026                             u64 addr, u64 phys_addr)
2027{
2028        struct addr_location al;
2029
2030        memset(&al, 0, sizeof(al));
2031
2032        thread__find_symbol(thread, m, addr, &al);
2033
2034        ams->addr = addr;
2035        ams->al_addr = al.addr;
2036        ams->ms.maps = al.maps;
2037        ams->ms.sym = al.sym;
2038        ams->ms.map = al.map;
2039        ams->phys_addr = phys_addr;
2040}
2041
2042struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2043                                     struct addr_location *al)
2044{
2045        struct mem_info *mi = mem_info__new();
2046
2047        if (!mi)
2048                return NULL;
2049
2050        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2051        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2052                         sample->addr, sample->phys_addr);
2053        mi->data_src.val = sample->data_src;
2054
2055        return mi;
2056}
2057
2058static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2059{
2060        struct map *map = ms->map;
2061        char *srcline = NULL;
2062
2063        if (!map || callchain_param.key == CCKEY_FUNCTION)
2064                return srcline;
2065
2066        srcline = srcline__tree_find(&map->dso->srclines, ip);
2067        if (!srcline) {
2068                bool show_sym = false;
2069                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2070
2071                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2072                                      ms->sym, show_sym, show_addr, ip);
2073                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2074        }
2075
2076        return srcline;
2077}
2078
2079struct iterations {
2080        int nr_loop_iter;
2081        u64 cycles;
2082};
2083
2084static int add_callchain_ip(struct thread *thread,
2085                            struct callchain_cursor *cursor,
2086                            struct symbol **parent,
2087                            struct addr_location *root_al,
2088                            u8 *cpumode,
2089                            u64 ip,
2090                            bool branch,
2091                            struct branch_flags *flags,
2092                            struct iterations *iter,
2093                            u64 branch_from)
2094{
2095        struct map_symbol ms;
2096        struct addr_location al;
2097        int nr_loop_iter = 0;
2098        u64 iter_cycles = 0;
2099        const char *srcline = NULL;
2100
2101        al.filtered = 0;
2102        al.sym = NULL;
2103        if (!cpumode) {
2104                thread__find_cpumode_addr_location(thread, ip, &al);
2105        } else {
2106                if (ip >= PERF_CONTEXT_MAX) {
2107                        switch (ip) {
2108                        case PERF_CONTEXT_HV:
2109                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2110                                break;
2111                        case PERF_CONTEXT_KERNEL:
2112                                *cpumode = PERF_RECORD_MISC_KERNEL;
2113                                break;
2114                        case PERF_CONTEXT_USER:
2115                                *cpumode = PERF_RECORD_MISC_USER;
2116                                break;
2117                        default:
2118                                pr_debug("invalid callchain context: "
2119                                         "%"PRId64"\n", (s64) ip);
2120                                /*
2121                                 * It seems the callchain is corrupted.
2122                                 * Discard all.
2123                                 */
2124                                callchain_cursor_reset(cursor);
2125                                return 1;
2126                        }
2127                        return 0;
2128                }
2129                thread__find_symbol(thread, *cpumode, ip, &al);
2130        }
2131
2132        if (al.sym != NULL) {
2133                if (perf_hpp_list.parent && !*parent &&
2134                    symbol__match_regex(al.sym, &parent_regex))
2135                        *parent = al.sym;
2136                else if (have_ignore_callees && root_al &&
2137                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2138                        /* Treat this symbol as the root,
2139                           forgetting its callees. */
2140                        *root_al = al;
2141                        callchain_cursor_reset(cursor);
2142                }
2143        }
2144
2145        if (symbol_conf.hide_unresolved && al.sym == NULL)
2146                return 0;
2147
2148        if (iter) {
2149                nr_loop_iter = iter->nr_loop_iter;
2150                iter_cycles = iter->cycles;
2151        }
2152
2153        ms.maps = al.maps;
2154        ms.map = al.map;
2155        ms.sym = al.sym;
2156        srcline = callchain_srcline(&ms, al.addr);
2157        return callchain_cursor_append(cursor, ip, &ms,
2158                                       branch, flags, nr_loop_iter,
2159                                       iter_cycles, branch_from, srcline);
2160}
2161
2162struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2163                                           struct addr_location *al)
2164{
2165        unsigned int i;
2166        const struct branch_stack *bs = sample->branch_stack;
2167        struct branch_entry *entries = perf_sample__branch_entries(sample);
2168        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2169
2170        if (!bi)
2171                return NULL;
2172
2173        for (i = 0; i < bs->nr; i++) {
2174                ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2175                ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2176                bi[i].flags = entries[i].flags;
2177        }
2178        return bi;
2179}
2180
2181static void save_iterations(struct iterations *iter,
2182                            struct branch_entry *be, int nr)
2183{
2184        int i;
2185
2186        iter->nr_loop_iter++;
2187        iter->cycles = 0;
2188
2189        for (i = 0; i < nr; i++)
2190                iter->cycles += be[i].flags.cycles;
2191}
2192
2193#define CHASHSZ 127
2194#define CHASHBITS 7
2195#define NO_ENTRY 0xff
2196
2197#define PERF_MAX_BRANCH_DEPTH 127
2198
2199/* Remove loops. */
2200static int remove_loops(struct branch_entry *l, int nr,
2201                        struct iterations *iter)
2202{
2203        int i, j, off;
2204        unsigned char chash[CHASHSZ];
2205
2206        memset(chash, NO_ENTRY, sizeof(chash));
2207
2208        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2209
2210        for (i = 0; i < nr; i++) {
2211                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2212
2213                /* no collision handling for now */
2214                if (chash[h] == NO_ENTRY) {
2215                        chash[h] = i;
2216                } else if (l[chash[h]].from == l[i].from) {
2217                        bool is_loop = true;
2218                        /* check if it is a real loop */
2219                        off = 0;
2220                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2221                                if (l[j].from != l[i + off].from) {
2222                                        is_loop = false;
2223                                        break;
2224                                }
2225                        if (is_loop) {
2226                                j = nr - (i + off);
2227                                if (j > 0) {
2228                                        save_iterations(iter + i + off,
2229                                                l + i, off);
2230
2231                                        memmove(iter + i, iter + i + off,
2232                                                j * sizeof(*iter));
2233
2234                                        memmove(l + i, l + i + off,
2235                                                j * sizeof(*l));
2236                                }
2237
2238                                nr -= off;
2239                        }
2240                }
2241        }
2242        return nr;
2243}
2244
2245static int lbr_callchain_add_kernel_ip(struct thread *thread,
2246                                       struct callchain_cursor *cursor,
2247                                       struct perf_sample *sample,
2248                                       struct symbol **parent,
2249                                       struct addr_location *root_al,
2250                                       u64 branch_from,
2251                                       bool callee, int end)
2252{
2253        struct ip_callchain *chain = sample->callchain;
2254        u8 cpumode = PERF_RECORD_MISC_USER;
2255        int err, i;
2256
2257        if (callee) {
2258                for (i = 0; i < end + 1; i++) {
2259                        err = add_callchain_ip(thread, cursor, parent,
2260                                               root_al, &cpumode, chain->ips[i],
2261                                               false, NULL, NULL, branch_from);
2262                        if (err)
2263                                return err;
2264                }
2265                return 0;
2266        }
2267
2268        for (i = end; i >= 0; i--) {
2269                err = add_callchain_ip(thread, cursor, parent,
2270                                       root_al, &cpumode, chain->ips[i],
2271                                       false, NULL, NULL, branch_from);
2272                if (err)
2273                        return err;
2274        }
2275
2276        return 0;
2277}
2278
2279static void save_lbr_cursor_node(struct thread *thread,
2280                                 struct callchain_cursor *cursor,
2281                                 int idx)
2282{
2283        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2284
2285        if (!lbr_stitch)
2286                return;
2287
2288        if (cursor->pos == cursor->nr) {
2289                lbr_stitch->prev_lbr_cursor[idx].valid = false;
2290                return;
2291        }
2292
2293        if (!cursor->curr)
2294                cursor->curr = cursor->first;
2295        else
2296                cursor->curr = cursor->curr->next;
2297        memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2298               sizeof(struct callchain_cursor_node));
2299
2300        lbr_stitch->prev_lbr_cursor[idx].valid = true;
2301        cursor->pos++;
2302}
2303
2304static int lbr_callchain_add_lbr_ip(struct thread *thread,
2305                                    struct callchain_cursor *cursor,
2306                                    struct perf_sample *sample,
2307                                    struct symbol **parent,
2308                                    struct addr_location *root_al,
2309                                    u64 *branch_from,
2310                                    bool callee)
2311{
2312        struct branch_stack *lbr_stack = sample->branch_stack;
2313        struct branch_entry *entries = perf_sample__branch_entries(sample);
2314        u8 cpumode = PERF_RECORD_MISC_USER;
2315        int lbr_nr = lbr_stack->nr;
2316        struct branch_flags *flags;
2317        int err, i;
2318        u64 ip;
2319
2320        /*
2321         * The curr and pos are not used in writing session. They are cleared
2322         * in callchain_cursor_commit() when the writing session is closed.
2323         * Using curr and pos to track the current cursor node.
2324         */
2325        if (thread->lbr_stitch) {
2326                cursor->curr = NULL;
2327                cursor->pos = cursor->nr;
2328                if (cursor->nr) {
2329                        cursor->curr = cursor->first;
2330                        for (i = 0; i < (int)(cursor->nr - 1); i++)
2331                                cursor->curr = cursor->curr->next;
2332                }
2333        }
2334
2335        if (callee) {
2336                /* Add LBR ip from first entries.to */
2337                ip = entries[0].to;
2338                flags = &entries[0].flags;
2339                *branch_from = entries[0].from;
2340                err = add_callchain_ip(thread, cursor, parent,
2341                                       root_al, &cpumode, ip,
2342                                       true, flags, NULL,
2343                                       *branch_from);
2344                if (err)
2345                        return err;
2346
2347                /*
2348                 * The number of cursor node increases.
2349                 * Move the current cursor node.
2350                 * But does not need to save current cursor node for entry 0.
2351                 * It's impossible to stitch the whole LBRs of previous sample.
2352                 */
2353                if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2354                        if (!cursor->curr)
2355                                cursor->curr = cursor->first;
2356                        else
2357                                cursor->curr = cursor->curr->next;
2358                        cursor->pos++;
2359                }
2360
2361                /* Add LBR ip from entries.from one by one. */
2362                for (i = 0; i < lbr_nr; i++) {
2363                        ip = entries[i].from;
2364                        flags = &entries[i].flags;
2365                        err = add_callchain_ip(thread, cursor, parent,
2366                                               root_al, &cpumode, ip,
2367                                               true, flags, NULL,
2368                                               *branch_from);
2369                        if (err)
2370                                return err;
2371                        save_lbr_cursor_node(thread, cursor, i);
2372                }
2373                return 0;
2374        }
2375
2376        /* Add LBR ip from entries.from one by one. */
2377        for (i = lbr_nr - 1; i >= 0; i--) {
2378                ip = entries[i].from;
2379                flags = &entries[i].flags;
2380                err = add_callchain_ip(thread, cursor, parent,
2381                                       root_al, &cpumode, ip,
2382                                       true, flags, NULL,
2383                                       *branch_from);
2384                if (err)
2385                        return err;
2386                save_lbr_cursor_node(thread, cursor, i);
2387        }
2388
2389        /* Add LBR ip from first entries.to */
2390        ip = entries[0].to;
2391        flags = &entries[0].flags;
2392        *branch_from = entries[0].from;
2393        err = add_callchain_ip(thread, cursor, parent,
2394                               root_al, &cpumode, ip,
2395                               true, flags, NULL,
2396                               *branch_from);
2397        if (err)
2398                return err;
2399
2400        return 0;
2401}
2402
2403static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2404                                             struct callchain_cursor *cursor)
2405{
2406        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2407        struct callchain_cursor_node *cnode;
2408        struct stitch_list *stitch_node;
2409        int err;
2410
2411        list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2412                cnode = &stitch_node->cursor;
2413
2414                err = callchain_cursor_append(cursor, cnode->ip,
2415                                              &cnode->ms,
2416                                              cnode->branch,
2417                                              &cnode->branch_flags,
2418                                              cnode->nr_loop_iter,
2419                                              cnode->iter_cycles,
2420                                              cnode->branch_from,
2421                                              cnode->srcline);
2422                if (err)
2423                        return err;
2424        }
2425        return 0;
2426}
2427
2428static struct stitch_list *get_stitch_node(struct thread *thread)
2429{
2430        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2431        struct stitch_list *stitch_node;
2432
2433        if (!list_empty(&lbr_stitch->free_lists)) {
2434                stitch_node = list_first_entry(&lbr_stitch->free_lists,
2435                                               struct stitch_list, node);
2436                list_del(&stitch_node->node);
2437
2438                return stitch_node;
2439        }
2440
2441        return malloc(sizeof(struct stitch_list));
2442}
2443
2444static bool has_stitched_lbr(struct thread *thread,
2445                             struct perf_sample *cur,
2446                             struct perf_sample *prev,
2447                             unsigned int max_lbr,
2448                             bool callee)
2449{
2450        struct branch_stack *cur_stack = cur->branch_stack;
2451        struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2452        struct branch_stack *prev_stack = prev->branch_stack;
2453        struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2454        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2455        int i, j, nr_identical_branches = 0;
2456        struct stitch_list *stitch_node;
2457        u64 cur_base, distance;
2458
2459        if (!cur_stack || !prev_stack)
2460                return false;
2461
2462        /* Find the physical index of the base-of-stack for current sample. */
2463        cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2464
2465        distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2466                                                     (max_lbr + prev_stack->hw_idx - cur_base);
2467        /* Previous sample has shorter stack. Nothing can be stitched. */
2468        if (distance + 1 > prev_stack->nr)
2469                return false;
2470
2471        /*
2472         * Check if there are identical LBRs between two samples.
2473         * Identicall LBRs must have same from, to and flags values. Also,
2474         * they have to be saved in the same LBR registers (same physical
2475         * index).
2476         *
2477         * Starts from the base-of-stack of current sample.
2478         */
2479        for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2480                if ((prev_entries[i].from != cur_entries[j].from) ||
2481                    (prev_entries[i].to != cur_entries[j].to) ||
2482                    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2483                        break;
2484                nr_identical_branches++;
2485        }
2486
2487        if (!nr_identical_branches)
2488                return false;
2489
2490        /*
2491         * Save the LBRs between the base-of-stack of previous sample
2492         * and the base-of-stack of current sample into lbr_stitch->lists.
2493         * These LBRs will be stitched later.
2494         */
2495        for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2496
2497                if (!lbr_stitch->prev_lbr_cursor[i].valid)
2498                        continue;
2499
2500                stitch_node = get_stitch_node(thread);
2501                if (!stitch_node)
2502                        return false;
2503
2504                memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2505                       sizeof(struct callchain_cursor_node));
2506
2507                if (callee)
2508                        list_add(&stitch_node->node, &lbr_stitch->lists);
2509                else
2510                        list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2511        }
2512
2513        return true;
2514}
2515
2516static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2517{
2518        if (thread->lbr_stitch)
2519                return true;
2520
2521        thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2522        if (!thread->lbr_stitch)
2523                goto err;
2524
2525        thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2526        if (!thread->lbr_stitch->prev_lbr_cursor)
2527                goto free_lbr_stitch;
2528
2529        INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2530        INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2531
2532        return true;
2533
2534free_lbr_stitch:
2535        zfree(&thread->lbr_stitch);
2536err:
2537        pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2538        thread->lbr_stitch_enable = false;
2539        return false;
2540}
2541
2542/*
2543 * Recolve LBR callstack chain sample
2544 * Return:
2545 * 1 on success get LBR callchain information
2546 * 0 no available LBR callchain information, should try fp
2547 * negative error code on other errors.
2548 */
2549static int resolve_lbr_callchain_sample(struct thread *thread,
2550                                        struct callchain_cursor *cursor,
2551                                        struct perf_sample *sample,
2552                                        struct symbol **parent,
2553                                        struct addr_location *root_al,
2554                                        int max_stack,
2555                                        unsigned int max_lbr)
2556{
2557        bool callee = (callchain_param.order == ORDER_CALLEE);
2558        struct ip_callchain *chain = sample->callchain;
2559        int chain_nr = min(max_stack, (int)chain->nr), i;
2560        struct lbr_stitch *lbr_stitch;
2561        bool stitched_lbr = false;
2562        u64 branch_from = 0;
2563        int err;
2564
2565        for (i = 0; i < chain_nr; i++) {
2566                if (chain->ips[i] == PERF_CONTEXT_USER)
2567                        break;
2568        }
2569
2570        /* LBR only affects the user callchain */
2571        if (i == chain_nr)
2572                return 0;
2573
2574        if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2575            (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2576                lbr_stitch = thread->lbr_stitch;
2577
2578                stitched_lbr = has_stitched_lbr(thread, sample,
2579                                                &lbr_stitch->prev_sample,
2580                                                max_lbr, callee);
2581
2582                if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2583                        list_replace_init(&lbr_stitch->lists,
2584                                          &lbr_stitch->free_lists);
2585                }
2586                memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2587        }
2588
2589        if (callee) {
2590                /* Add kernel ip */
2591                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2592                                                  parent, root_al, branch_from,
2593                                                  true, i);
2594                if (err)
2595                        goto error;
2596
2597                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2598                                               root_al, &branch_from, true);
2599                if (err)
2600                        goto error;
2601
2602                if (stitched_lbr) {
2603                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2604                        if (err)
2605                                goto error;
2606                }
2607
2608        } else {
2609                if (stitched_lbr) {
2610                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2611                        if (err)
2612                                goto error;
2613                }
2614                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2615                                               root_al, &branch_from, false);
2616                if (err)
2617                        goto error;
2618
2619                /* Add kernel ip */
2620                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2621                                                  parent, root_al, branch_from,
2622                                                  false, i);
2623                if (err)
2624                        goto error;
2625        }
2626        return 1;
2627
2628error:
2629        return (err < 0) ? err : 0;
2630}
2631
2632static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2633                             struct callchain_cursor *cursor,
2634                             struct symbol **parent,
2635                             struct addr_location *root_al,
2636                             u8 *cpumode, int ent)
2637{
2638        int err = 0;
2639
2640        while (--ent >= 0) {
2641                u64 ip = chain->ips[ent];
2642
2643                if (ip >= PERF_CONTEXT_MAX) {
2644                        err = add_callchain_ip(thread, cursor, parent,
2645                                               root_al, cpumode, ip,
2646                                               false, NULL, NULL, 0);
2647                        break;
2648                }
2649        }
2650        return err;
2651}
2652
2653static int thread__resolve_callchain_sample(struct thread *thread,
2654                                            struct callchain_cursor *cursor,
2655                                            struct evsel *evsel,
2656                                            struct perf_sample *sample,
2657                                            struct symbol **parent,
2658                                            struct addr_location *root_al,
2659                                            int max_stack)
2660{
2661        struct branch_stack *branch = sample->branch_stack;
2662        struct branch_entry *entries = perf_sample__branch_entries(sample);
2663        struct ip_callchain *chain = sample->callchain;
2664        int chain_nr = 0;
2665        u8 cpumode = PERF_RECORD_MISC_USER;
2666        int i, j, err, nr_entries;
2667        int skip_idx = -1;
2668        int first_call = 0;
2669
2670        if (chain)
2671                chain_nr = chain->nr;
2672
2673        if (evsel__has_branch_callstack(evsel)) {
2674                struct perf_env *env = evsel__env(evsel);
2675
2676                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2677                                                   root_al, max_stack,
2678                                                   !env ? 0 : env->max_branches);
2679                if (err)
2680                        return (err < 0) ? err : 0;
2681        }
2682
2683        /*
2684         * Based on DWARF debug information, some architectures skip
2685         * a callchain entry saved by the kernel.
2686         */
2687        skip_idx = arch_skip_callchain_idx(thread, chain);
2688
2689        /*
2690         * Add branches to call stack for easier browsing. This gives
2691         * more context for a sample than just the callers.
2692         *
2693         * This uses individual histograms of paths compared to the
2694         * aggregated histograms the normal LBR mode uses.
2695         *
2696         * Limitations for now:
2697         * - No extra filters
2698         * - No annotations (should annotate somehow)
2699         */
2700
2701        if (branch && callchain_param.branch_callstack) {
2702                int nr = min(max_stack, (int)branch->nr);
2703                struct branch_entry be[nr];
2704                struct iterations iter[nr];
2705
2706                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2707                        pr_warning("corrupted branch chain. skipping...\n");
2708                        goto check_calls;
2709                }
2710
2711                for (i = 0; i < nr; i++) {
2712                        if (callchain_param.order == ORDER_CALLEE) {
2713                                be[i] = entries[i];
2714
2715                                if (chain == NULL)
2716                                        continue;
2717
2718                                /*
2719                                 * Check for overlap into the callchain.
2720                                 * The return address is one off compared to
2721                                 * the branch entry. To adjust for this
2722                                 * assume the calling instruction is not longer
2723                                 * than 8 bytes.
2724                                 */
2725                                if (i == skip_idx ||
2726                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2727                                        first_call++;
2728                                else if (be[i].from < chain->ips[first_call] &&
2729                                    be[i].from >= chain->ips[first_call] - 8)
2730                                        first_call++;
2731                        } else
2732                                be[i] = entries[branch->nr - i - 1];
2733                }
2734
2735                memset(iter, 0, sizeof(struct iterations) * nr);
2736                nr = remove_loops(be, nr, iter);
2737
2738                for (i = 0; i < nr; i++) {
2739                        err = add_callchain_ip(thread, cursor, parent,
2740                                               root_al,
2741                                               NULL, be[i].to,
2742                                               true, &be[i].flags,
2743                                               NULL, be[i].from);
2744
2745                        if (!err)
2746                                err = add_callchain_ip(thread, cursor, parent, root_al,
2747                                                       NULL, be[i].from,
2748                                                       true, &be[i].flags,
2749                                                       &iter[i], 0);
2750                        if (err == -EINVAL)
2751                                break;
2752                        if (err)
2753                                return err;
2754                }
2755
2756                if (chain_nr == 0)
2757                        return 0;
2758
2759                chain_nr -= nr;
2760        }
2761
2762check_calls:
2763        if (chain && callchain_param.order != ORDER_CALLEE) {
2764                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2765                                        &cpumode, chain->nr - first_call);
2766                if (err)
2767                        return (err < 0) ? err : 0;
2768        }
2769        for (i = first_call, nr_entries = 0;
2770             i < chain_nr && nr_entries < max_stack; i++) {
2771                u64 ip;
2772
2773                if (callchain_param.order == ORDER_CALLEE)
2774                        j = i;
2775                else
2776                        j = chain->nr - i - 1;
2777
2778#ifdef HAVE_SKIP_CALLCHAIN_IDX
2779                if (j == skip_idx)
2780                        continue;
2781#endif
2782                ip = chain->ips[j];
2783                if (ip < PERF_CONTEXT_MAX)
2784                       ++nr_entries;
2785                else if (callchain_param.order != ORDER_CALLEE) {
2786                        err = find_prev_cpumode(chain, thread, cursor, parent,
2787                                                root_al, &cpumode, j);
2788                        if (err)
2789                                return (err < 0) ? err : 0;
2790                        continue;
2791                }
2792
2793                err = add_callchain_ip(thread, cursor, parent,
2794                                       root_al, &cpumode, ip,
2795                                       false, NULL, NULL, 0);
2796
2797                if (err)
2798                        return (err < 0) ? err : 0;
2799        }
2800
2801        return 0;
2802}
2803
2804static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2805{
2806        struct symbol *sym = ms->sym;
2807        struct map *map = ms->map;
2808        struct inline_node *inline_node;
2809        struct inline_list *ilist;
2810        u64 addr;
2811        int ret = 1;
2812
2813        if (!symbol_conf.inline_name || !map || !sym)
2814                return ret;
2815
2816        addr = map__map_ip(map, ip);
2817        addr = map__rip_2objdump(map, addr);
2818
2819        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2820        if (!inline_node) {
2821                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2822                if (!inline_node)
2823                        return ret;
2824                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2825        }
2826
2827        list_for_each_entry(ilist, &inline_node->val, list) {
2828                struct map_symbol ilist_ms = {
2829                        .maps = ms->maps,
2830                        .map = map,
2831                        .sym = ilist->symbol,
2832                };
2833                ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2834                                              NULL, 0, 0, 0, ilist->srcline);
2835
2836                if (ret != 0)
2837                        return ret;
2838        }
2839
2840        return ret;
2841}
2842
2843static int unwind_entry(struct unwind_entry *entry, void *arg)
2844{
2845        struct callchain_cursor *cursor = arg;
2846        const char *srcline = NULL;
2847        u64 addr = entry->ip;
2848
2849        if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2850                return 0;
2851
2852        if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2853                return 0;
2854
2855        /*
2856         * Convert entry->ip from a virtual address to an offset in
2857         * its corresponding binary.
2858         */
2859        if (entry->ms.map)
2860                addr = map__map_ip(entry->ms.map, entry->ip);
2861
2862        srcline = callchain_srcline(&entry->ms, addr);
2863        return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2864                                       false, NULL, 0, 0, 0, srcline);
2865}
2866
2867static int thread__resolve_callchain_unwind(struct thread *thread,
2868                                            struct callchain_cursor *cursor,
2869                                            struct evsel *evsel,
2870                                            struct perf_sample *sample,
2871                                            int max_stack)
2872{
2873        /* Can we do dwarf post unwind? */
2874        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2875              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2876                return 0;
2877
2878        /* Bail out if nothing was captured. */
2879        if ((!sample->user_regs.regs) ||
2880            (!sample->user_stack.size))
2881                return 0;
2882
2883        return unwind__get_entries(unwind_entry, cursor,
2884                                   thread, sample, max_stack);
2885}
2886
2887int thread__resolve_callchain(struct thread *thread,
2888                              struct callchain_cursor *cursor,
2889                              struct evsel *evsel,
2890                              struct perf_sample *sample,
2891                              struct symbol **parent,
2892                              struct addr_location *root_al,
2893                              int max_stack)
2894{
2895        int ret = 0;
2896
2897        callchain_cursor_reset(cursor);
2898
2899        if (callchain_param.order == ORDER_CALLEE) {
2900                ret = thread__resolve_callchain_sample(thread, cursor,
2901                                                       evsel, sample,
2902                                                       parent, root_al,
2903                                                       max_stack);
2904                if (ret)
2905                        return ret;
2906                ret = thread__resolve_callchain_unwind(thread, cursor,
2907                                                       evsel, sample,
2908                                                       max_stack);
2909        } else {
2910                ret = thread__resolve_callchain_unwind(thread, cursor,
2911                                                       evsel, sample,
2912                                                       max_stack);
2913                if (ret)
2914                        return ret;
2915                ret = thread__resolve_callchain_sample(thread, cursor,
2916                                                       evsel, sample,
2917                                                       parent, root_al,
2918                                                       max_stack);
2919        }
2920
2921        return ret;
2922}
2923
2924int machine__for_each_thread(struct machine *machine,
2925                             int (*fn)(struct thread *thread, void *p),
2926                             void *priv)
2927{
2928        struct threads *threads;
2929        struct rb_node *nd;
2930        struct thread *thread;
2931        int rc = 0;
2932        int i;
2933
2934        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2935                threads = &machine->threads[i];
2936                for (nd = rb_first_cached(&threads->entries); nd;
2937                     nd = rb_next(nd)) {
2938                        thread = rb_entry(nd, struct thread, rb_node);
2939                        rc = fn(thread, priv);
2940                        if (rc != 0)
2941                                return rc;
2942                }
2943
2944                list_for_each_entry(thread, &threads->dead, node) {
2945                        rc = fn(thread, priv);
2946                        if (rc != 0)
2947                                return rc;
2948                }
2949        }
2950        return rc;
2951}
2952
2953int machines__for_each_thread(struct machines *machines,
2954                              int (*fn)(struct thread *thread, void *p),
2955                              void *priv)
2956{
2957        struct rb_node *nd;
2958        int rc = 0;
2959
2960        rc = machine__for_each_thread(&machines->host, fn, priv);
2961        if (rc != 0)
2962                return rc;
2963
2964        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2965                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2966
2967                rc = machine__for_each_thread(machine, fn, priv);
2968                if (rc != 0)
2969                        return rc;
2970        }
2971        return rc;
2972}
2973
2974pid_t machine__get_current_tid(struct machine *machine, int cpu)
2975{
2976        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2977
2978        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2979                return -1;
2980
2981        return machine->current_tid[cpu];
2982}
2983
2984int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2985                             pid_t tid)
2986{
2987        struct thread *thread;
2988        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2989
2990        if (cpu < 0)
2991                return -EINVAL;
2992
2993        if (!machine->current_tid) {
2994                int i;
2995
2996                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2997                if (!machine->current_tid)
2998                        return -ENOMEM;
2999                for (i = 0; i < nr_cpus; i++)
3000                        machine->current_tid[i] = -1;
3001        }
3002
3003        if (cpu >= nr_cpus) {
3004                pr_err("Requested CPU %d too large. ", cpu);
3005                pr_err("Consider raising MAX_NR_CPUS\n");
3006                return -EINVAL;
3007        }
3008
3009        machine->current_tid[cpu] = tid;
3010
3011        thread = machine__findnew_thread(machine, pid, tid);
3012        if (!thread)
3013                return -ENOMEM;
3014
3015        thread->cpu = cpu;
3016        thread__put(thread);
3017
3018        return 0;
3019}
3020
3021/*
3022 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3023 * normalized arch is needed.
3024 */
3025bool machine__is(struct machine *machine, const char *arch)
3026{
3027        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3028}
3029
3030int machine__nr_cpus_avail(struct machine *machine)
3031{
3032        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3033}
3034
3035int machine__get_kernel_start(struct machine *machine)
3036{
3037        struct map *map = machine__kernel_map(machine);
3038        int err = 0;
3039
3040        /*
3041         * The only addresses above 2^63 are kernel addresses of a 64-bit
3042         * kernel.  Note that addresses are unsigned so that on a 32-bit system
3043         * all addresses including kernel addresses are less than 2^32.  In
3044         * that case (32-bit system), if the kernel mapping is unknown, all
3045         * addresses will be assumed to be in user space - see
3046         * machine__kernel_ip().
3047         */
3048        machine->kernel_start = 1ULL << 63;
3049        if (map) {
3050                err = map__load(map);
3051                /*
3052                 * On x86_64, PTI entry trampolines are less than the
3053                 * start of kernel text, but still above 2^63. So leave
3054                 * kernel_start = 1ULL << 63 for x86_64.
3055                 */
3056                if (!err && !machine__is(machine, "x86_64"))
3057                        machine->kernel_start = map->start;
3058        }
3059        return err;
3060}
3061
3062u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3063{
3064        u8 addr_cpumode = cpumode;
3065        bool kernel_ip;
3066
3067        if (!machine->single_address_space)
3068                goto out;
3069
3070        kernel_ip = machine__kernel_ip(machine, addr);
3071        switch (cpumode) {
3072        case PERF_RECORD_MISC_KERNEL:
3073        case PERF_RECORD_MISC_USER:
3074                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3075                                           PERF_RECORD_MISC_USER;
3076                break;
3077        case PERF_RECORD_MISC_GUEST_KERNEL:
3078        case PERF_RECORD_MISC_GUEST_USER:
3079                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3080                                           PERF_RECORD_MISC_GUEST_USER;
3081                break;
3082        default:
3083                break;
3084        }
3085out:
3086        return addr_cpumode;
3087}
3088
3089struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3090{
3091        return dsos__findnew_id(&machine->dsos, filename, id);
3092}
3093
3094struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3095{
3096        return machine__findnew_dso_id(machine, filename, NULL);
3097}
3098
3099char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3100{
3101        struct machine *machine = vmachine;
3102        struct map *map;
3103        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3104
3105        if (sym == NULL)
3106                return NULL;
3107
3108        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3109        *addrp = map->unmap_ip(map, sym->start);
3110        return sym->name;
3111}
3112
3113int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3114{
3115        struct dso *pos;
3116        int err = 0;
3117
3118        list_for_each_entry(pos, &machine->dsos.head, node) {
3119                if (fn(pos, machine, priv))
3120                        err = -1;
3121        }
3122        return err;
3123}
3124