linux/arch/arm64/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/kernel/process.c
   4 *
   5 * Original Copyright (C) 1995  Linus Torvalds
   6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
   7 * Copyright (C) 2012 ARM Ltd.
   8 */
   9
  10#include <stdarg.h>
  11
  12#include <linux/compat.h>
  13#include <linux/efi.h>
  14#include <linux/elf.h>
  15#include <linux/export.h>
  16#include <linux/sched.h>
  17#include <linux/sched/debug.h>
  18#include <linux/sched/task.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/kernel.h>
  21#include <linux/lockdep.h>
  22#include <linux/mman.h>
  23#include <linux/mm.h>
  24#include <linux/nospec.h>
  25#include <linux/stddef.h>
  26#include <linux/sysctl.h>
  27#include <linux/unistd.h>
  28#include <linux/user.h>
  29#include <linux/delay.h>
  30#include <linux/reboot.h>
  31#include <linux/interrupt.h>
  32#include <linux/init.h>
  33#include <linux/cpu.h>
  34#include <linux/elfcore.h>
  35#include <linux/pm.h>
  36#include <linux/tick.h>
  37#include <linux/utsname.h>
  38#include <linux/uaccess.h>
  39#include <linux/random.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/personality.h>
  42#include <linux/notifier.h>
  43#include <trace/events/power.h>
  44#include <linux/percpu.h>
  45#include <linux/thread_info.h>
  46#include <linux/prctl.h>
  47
  48#include <asm/alternative.h>
  49#include <asm/arch_gicv3.h>
  50#include <asm/compat.h>
  51#include <asm/cpufeature.h>
  52#include <asm/cacheflush.h>
  53#include <asm/exec.h>
  54#include <asm/fpsimd.h>
  55#include <asm/mmu_context.h>
  56#include <asm/mte.h>
  57#include <asm/processor.h>
  58#include <asm/pointer_auth.h>
  59#include <asm/stacktrace.h>
  60
  61#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
  62#include <linux/stackprotector.h>
  63unsigned long __stack_chk_guard __read_mostly;
  64EXPORT_SYMBOL(__stack_chk_guard);
  65#endif
  66
  67/*
  68 * Function pointers to optional machine specific functions
  69 */
  70void (*pm_power_off)(void);
  71EXPORT_SYMBOL_GPL(pm_power_off);
  72
  73void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  74
  75static void noinstr __cpu_do_idle(void)
  76{
  77        dsb(sy);
  78        wfi();
  79}
  80
  81static void noinstr __cpu_do_idle_irqprio(void)
  82{
  83        unsigned long pmr;
  84        unsigned long daif_bits;
  85
  86        daif_bits = read_sysreg(daif);
  87        write_sysreg(daif_bits | PSR_I_BIT, daif);
  88
  89        /*
  90         * Unmask PMR before going idle to make sure interrupts can
  91         * be raised.
  92         */
  93        pmr = gic_read_pmr();
  94        gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
  95
  96        __cpu_do_idle();
  97
  98        gic_write_pmr(pmr);
  99        write_sysreg(daif_bits, daif);
 100}
 101
 102/*
 103 *      cpu_do_idle()
 104 *
 105 *      Idle the processor (wait for interrupt).
 106 *
 107 *      If the CPU supports priority masking we must do additional work to
 108 *      ensure that interrupts are not masked at the PMR (because the core will
 109 *      not wake up if we block the wake up signal in the interrupt controller).
 110 */
 111void noinstr cpu_do_idle(void)
 112{
 113        if (system_uses_irq_prio_masking())
 114                __cpu_do_idle_irqprio();
 115        else
 116                __cpu_do_idle();
 117}
 118
 119/*
 120 * This is our default idle handler.
 121 */
 122void noinstr arch_cpu_idle(void)
 123{
 124        /*
 125         * This should do all the clock switching and wait for interrupt
 126         * tricks
 127         */
 128        cpu_do_idle();
 129        raw_local_irq_enable();
 130}
 131
 132#ifdef CONFIG_HOTPLUG_CPU
 133void arch_cpu_idle_dead(void)
 134{
 135       cpu_die();
 136}
 137#endif
 138
 139/*
 140 * Called by kexec, immediately prior to machine_kexec().
 141 *
 142 * This must completely disable all secondary CPUs; simply causing those CPUs
 143 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 144 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 145 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 146 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 147 */
 148void machine_shutdown(void)
 149{
 150        smp_shutdown_nonboot_cpus(reboot_cpu);
 151}
 152
 153/*
 154 * Halting simply requires that the secondary CPUs stop performing any
 155 * activity (executing tasks, handling interrupts). smp_send_stop()
 156 * achieves this.
 157 */
 158void machine_halt(void)
 159{
 160        local_irq_disable();
 161        smp_send_stop();
 162        while (1);
 163}
 164
 165/*
 166 * Power-off simply requires that the secondary CPUs stop performing any
 167 * activity (executing tasks, handling interrupts). smp_send_stop()
 168 * achieves this. When the system power is turned off, it will take all CPUs
 169 * with it.
 170 */
 171void machine_power_off(void)
 172{
 173        local_irq_disable();
 174        smp_send_stop();
 175        if (pm_power_off)
 176                pm_power_off();
 177}
 178
 179/*
 180 * Restart requires that the secondary CPUs stop performing any activity
 181 * while the primary CPU resets the system. Systems with multiple CPUs must
 182 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 183 * This is required so that any code running after reset on the primary CPU
 184 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 185 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 186 * to use. Implementing such co-ordination would be essentially impossible.
 187 */
 188void machine_restart(char *cmd)
 189{
 190        /* Disable interrupts first */
 191        local_irq_disable();
 192        smp_send_stop();
 193
 194        /*
 195         * UpdateCapsule() depends on the system being reset via
 196         * ResetSystem().
 197         */
 198        if (efi_enabled(EFI_RUNTIME_SERVICES))
 199                efi_reboot(reboot_mode, NULL);
 200
 201        /* Now call the architecture specific reboot code. */
 202        if (arm_pm_restart)
 203                arm_pm_restart(reboot_mode, cmd);
 204        else
 205                do_kernel_restart(cmd);
 206
 207        /*
 208         * Whoops - the architecture was unable to reboot.
 209         */
 210        printk("Reboot failed -- System halted\n");
 211        while (1);
 212}
 213
 214#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
 215static const char *const btypes[] = {
 216        bstr(NONE, "--"),
 217        bstr(  JC, "jc"),
 218        bstr(   C, "-c"),
 219        bstr(  J , "j-")
 220};
 221#undef bstr
 222
 223static void print_pstate(struct pt_regs *regs)
 224{
 225        u64 pstate = regs->pstate;
 226
 227        if (compat_user_mode(regs)) {
 228                printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
 229                        pstate,
 230                        pstate & PSR_AA32_N_BIT ? 'N' : 'n',
 231                        pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
 232                        pstate & PSR_AA32_C_BIT ? 'C' : 'c',
 233                        pstate & PSR_AA32_V_BIT ? 'V' : 'v',
 234                        pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
 235                        pstate & PSR_AA32_T_BIT ? "T32" : "A32",
 236                        pstate & PSR_AA32_E_BIT ? "BE" : "LE",
 237                        pstate & PSR_AA32_A_BIT ? 'A' : 'a',
 238                        pstate & PSR_AA32_I_BIT ? 'I' : 'i',
 239                        pstate & PSR_AA32_F_BIT ? 'F' : 'f');
 240        } else {
 241                const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
 242                                               PSR_BTYPE_SHIFT];
 243
 244                printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
 245                        pstate,
 246                        pstate & PSR_N_BIT ? 'N' : 'n',
 247                        pstate & PSR_Z_BIT ? 'Z' : 'z',
 248                        pstate & PSR_C_BIT ? 'C' : 'c',
 249                        pstate & PSR_V_BIT ? 'V' : 'v',
 250                        pstate & PSR_D_BIT ? 'D' : 'd',
 251                        pstate & PSR_A_BIT ? 'A' : 'a',
 252                        pstate & PSR_I_BIT ? 'I' : 'i',
 253                        pstate & PSR_F_BIT ? 'F' : 'f',
 254                        pstate & PSR_PAN_BIT ? '+' : '-',
 255                        pstate & PSR_UAO_BIT ? '+' : '-',
 256                        pstate & PSR_TCO_BIT ? '+' : '-',
 257                        btype_str);
 258        }
 259}
 260
 261void __show_regs(struct pt_regs *regs)
 262{
 263        int i, top_reg;
 264        u64 lr, sp;
 265
 266        if (compat_user_mode(regs)) {
 267                lr = regs->compat_lr;
 268                sp = regs->compat_sp;
 269                top_reg = 12;
 270        } else {
 271                lr = regs->regs[30];
 272                sp = regs->sp;
 273                top_reg = 29;
 274        }
 275
 276        show_regs_print_info(KERN_DEFAULT);
 277        print_pstate(regs);
 278
 279        if (!user_mode(regs)) {
 280                printk("pc : %pS\n", (void *)regs->pc);
 281                printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
 282        } else {
 283                printk("pc : %016llx\n", regs->pc);
 284                printk("lr : %016llx\n", lr);
 285        }
 286
 287        printk("sp : %016llx\n", sp);
 288
 289        if (system_uses_irq_prio_masking())
 290                printk("pmr_save: %08llx\n", regs->pmr_save);
 291
 292        i = top_reg;
 293
 294        while (i >= 0) {
 295                printk("x%-2d: %016llx ", i, regs->regs[i]);
 296                i--;
 297
 298                if (i % 2 == 0) {
 299                        pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
 300                        i--;
 301                }
 302
 303                pr_cont("\n");
 304        }
 305}
 306
 307void show_regs(struct pt_regs * regs)
 308{
 309        __show_regs(regs);
 310        dump_backtrace(regs, NULL, KERN_DEFAULT);
 311}
 312
 313static void tls_thread_flush(void)
 314{
 315        write_sysreg(0, tpidr_el0);
 316
 317        if (is_compat_task()) {
 318                current->thread.uw.tp_value = 0;
 319
 320                /*
 321                 * We need to ensure ordering between the shadow state and the
 322                 * hardware state, so that we don't corrupt the hardware state
 323                 * with a stale shadow state during context switch.
 324                 */
 325                barrier();
 326                write_sysreg(0, tpidrro_el0);
 327        }
 328}
 329
 330static void flush_tagged_addr_state(void)
 331{
 332        if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
 333                clear_thread_flag(TIF_TAGGED_ADDR);
 334}
 335
 336void flush_thread(void)
 337{
 338        fpsimd_flush_thread();
 339        tls_thread_flush();
 340        flush_ptrace_hw_breakpoint(current);
 341        flush_tagged_addr_state();
 342        flush_mte_state();
 343}
 344
 345void release_thread(struct task_struct *dead_task)
 346{
 347}
 348
 349void arch_release_task_struct(struct task_struct *tsk)
 350{
 351        fpsimd_release_task(tsk);
 352}
 353
 354int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 355{
 356        if (current->mm)
 357                fpsimd_preserve_current_state();
 358        *dst = *src;
 359
 360        /* We rely on the above assignment to initialize dst's thread_flags: */
 361        BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
 362
 363        /*
 364         * Detach src's sve_state (if any) from dst so that it does not
 365         * get erroneously used or freed prematurely.  dst's sve_state
 366         * will be allocated on demand later on if dst uses SVE.
 367         * For consistency, also clear TIF_SVE here: this could be done
 368         * later in copy_process(), but to avoid tripping up future
 369         * maintainers it is best not to leave TIF_SVE and sve_state in
 370         * an inconsistent state, even temporarily.
 371         */
 372        dst->thread.sve_state = NULL;
 373        clear_tsk_thread_flag(dst, TIF_SVE);
 374
 375        /* clear any pending asynchronous tag fault raised by the parent */
 376        clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
 377
 378        return 0;
 379}
 380
 381asmlinkage void ret_from_fork(void) asm("ret_from_fork");
 382
 383int copy_thread(unsigned long clone_flags, unsigned long stack_start,
 384                unsigned long stk_sz, struct task_struct *p, unsigned long tls)
 385{
 386        struct pt_regs *childregs = task_pt_regs(p);
 387
 388        memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
 389
 390        /*
 391         * In case p was allocated the same task_struct pointer as some
 392         * other recently-exited task, make sure p is disassociated from
 393         * any cpu that may have run that now-exited task recently.
 394         * Otherwise we could erroneously skip reloading the FPSIMD
 395         * registers for p.
 396         */
 397        fpsimd_flush_task_state(p);
 398
 399        ptrauth_thread_init_kernel(p);
 400
 401        if (likely(!(p->flags & PF_KTHREAD))) {
 402                *childregs = *current_pt_regs();
 403                childregs->regs[0] = 0;
 404
 405                /*
 406                 * Read the current TLS pointer from tpidr_el0 as it may be
 407                 * out-of-sync with the saved value.
 408                 */
 409                *task_user_tls(p) = read_sysreg(tpidr_el0);
 410
 411                if (stack_start) {
 412                        if (is_compat_thread(task_thread_info(p)))
 413                                childregs->compat_sp = stack_start;
 414                        else
 415                                childregs->sp = stack_start;
 416                }
 417
 418                /*
 419                 * If a TLS pointer was passed to clone, use it for the new
 420                 * thread.
 421                 */
 422                if (clone_flags & CLONE_SETTLS)
 423                        p->thread.uw.tp_value = tls;
 424        } else {
 425                memset(childregs, 0, sizeof(struct pt_regs));
 426                childregs->pstate = PSR_MODE_EL1h;
 427                if (IS_ENABLED(CONFIG_ARM64_UAO) &&
 428                    cpus_have_const_cap(ARM64_HAS_UAO))
 429                        childregs->pstate |= PSR_UAO_BIT;
 430
 431                spectre_v4_enable_task_mitigation(p);
 432
 433                if (system_uses_irq_prio_masking())
 434                        childregs->pmr_save = GIC_PRIO_IRQON;
 435
 436                p->thread.cpu_context.x19 = stack_start;
 437                p->thread.cpu_context.x20 = stk_sz;
 438        }
 439        p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
 440        p->thread.cpu_context.sp = (unsigned long)childregs;
 441
 442        ptrace_hw_copy_thread(p);
 443
 444        return 0;
 445}
 446
 447void tls_preserve_current_state(void)
 448{
 449        *task_user_tls(current) = read_sysreg(tpidr_el0);
 450}
 451
 452static void tls_thread_switch(struct task_struct *next)
 453{
 454        tls_preserve_current_state();
 455
 456        if (is_compat_thread(task_thread_info(next)))
 457                write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
 458        else if (!arm64_kernel_unmapped_at_el0())
 459                write_sysreg(0, tpidrro_el0);
 460
 461        write_sysreg(*task_user_tls(next), tpidr_el0);
 462}
 463
 464/* Restore the UAO state depending on next's addr_limit */
 465void uao_thread_switch(struct task_struct *next)
 466{
 467        if (IS_ENABLED(CONFIG_ARM64_UAO)) {
 468                if (task_thread_info(next)->addr_limit == KERNEL_DS)
 469                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
 470                else
 471                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
 472        }
 473}
 474
 475/*
 476 * Force SSBS state on context-switch, since it may be lost after migrating
 477 * from a CPU which treats the bit as RES0 in a heterogeneous system.
 478 */
 479static void ssbs_thread_switch(struct task_struct *next)
 480{
 481        /*
 482         * Nothing to do for kernel threads, but 'regs' may be junk
 483         * (e.g. idle task) so check the flags and bail early.
 484         */
 485        if (unlikely(next->flags & PF_KTHREAD))
 486                return;
 487
 488        /*
 489         * If all CPUs implement the SSBS extension, then we just need to
 490         * context-switch the PSTATE field.
 491         */
 492        if (cpus_have_const_cap(ARM64_SSBS))
 493                return;
 494
 495        spectre_v4_enable_task_mitigation(next);
 496}
 497
 498/*
 499 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 500 * shadow copy so that we can restore this upon entry from userspace.
 501 *
 502 * This is *only* for exception entry from EL0, and is not valid until we
 503 * __switch_to() a user task.
 504 */
 505DEFINE_PER_CPU(struct task_struct *, __entry_task);
 506
 507static void entry_task_switch(struct task_struct *next)
 508{
 509        __this_cpu_write(__entry_task, next);
 510}
 511
 512/*
 513 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
 514 * Assuming the virtual counter is enabled at the beginning of times:
 515 *
 516 * - disable access when switching from a 64bit task to a 32bit task
 517 * - enable access when switching from a 32bit task to a 64bit task
 518 */
 519static void erratum_1418040_thread_switch(struct task_struct *prev,
 520                                          struct task_struct *next)
 521{
 522        bool prev32, next32;
 523        u64 val;
 524
 525        if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
 526                return;
 527
 528        prev32 = is_compat_thread(task_thread_info(prev));
 529        next32 = is_compat_thread(task_thread_info(next));
 530
 531        if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
 532                return;
 533
 534        val = read_sysreg(cntkctl_el1);
 535
 536        if (!next32)
 537                val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 538        else
 539                val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
 540
 541        write_sysreg(val, cntkctl_el1);
 542}
 543
 544/*
 545 * Thread switching.
 546 */
 547__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 548                                struct task_struct *next)
 549{
 550        struct task_struct *last;
 551
 552        fpsimd_thread_switch(next);
 553        tls_thread_switch(next);
 554        hw_breakpoint_thread_switch(next);
 555        contextidr_thread_switch(next);
 556        entry_task_switch(next);
 557        uao_thread_switch(next);
 558        ssbs_thread_switch(next);
 559        erratum_1418040_thread_switch(prev, next);
 560
 561        /*
 562         * Complete any pending TLB or cache maintenance on this CPU in case
 563         * the thread migrates to a different CPU.
 564         * This full barrier is also required by the membarrier system
 565         * call.
 566         */
 567        dsb(ish);
 568
 569        /*
 570         * MTE thread switching must happen after the DSB above to ensure that
 571         * any asynchronous tag check faults have been logged in the TFSR*_EL1
 572         * registers.
 573         */
 574        mte_thread_switch(next);
 575
 576        /* the actual thread switch */
 577        last = cpu_switch_to(prev, next);
 578
 579        return last;
 580}
 581
 582unsigned long get_wchan(struct task_struct *p)
 583{
 584        struct stackframe frame;
 585        unsigned long stack_page, ret = 0;
 586        int count = 0;
 587        if (!p || p == current || p->state == TASK_RUNNING)
 588                return 0;
 589
 590        stack_page = (unsigned long)try_get_task_stack(p);
 591        if (!stack_page)
 592                return 0;
 593
 594        start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
 595
 596        do {
 597                if (unwind_frame(p, &frame))
 598                        goto out;
 599                if (!in_sched_functions(frame.pc)) {
 600                        ret = frame.pc;
 601                        goto out;
 602                }
 603        } while (count ++ < 16);
 604
 605out:
 606        put_task_stack(p);
 607        return ret;
 608}
 609
 610unsigned long arch_align_stack(unsigned long sp)
 611{
 612        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 613                sp -= get_random_int() & ~PAGE_MASK;
 614        return sp & ~0xf;
 615}
 616
 617/*
 618 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 619 */
 620void arch_setup_new_exec(void)
 621{
 622        current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 623
 624        ptrauth_thread_init_user(current);
 625
 626        if (task_spec_ssb_noexec(current)) {
 627                arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
 628                                         PR_SPEC_ENABLE);
 629        }
 630}
 631
 632#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
 633/*
 634 * Control the relaxed ABI allowing tagged user addresses into the kernel.
 635 */
 636static unsigned int tagged_addr_disabled;
 637
 638long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
 639{
 640        unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
 641        struct thread_info *ti = task_thread_info(task);
 642
 643        if (is_compat_thread(ti))
 644                return -EINVAL;
 645
 646        if (system_supports_mte())
 647                valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
 648
 649        if (arg & ~valid_mask)
 650                return -EINVAL;
 651
 652        /*
 653         * Do not allow the enabling of the tagged address ABI if globally
 654         * disabled via sysctl abi.tagged_addr_disabled.
 655         */
 656        if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
 657                return -EINVAL;
 658
 659        if (set_mte_ctrl(task, arg) != 0)
 660                return -EINVAL;
 661
 662        update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
 663
 664        return 0;
 665}
 666
 667long get_tagged_addr_ctrl(struct task_struct *task)
 668{
 669        long ret = 0;
 670        struct thread_info *ti = task_thread_info(task);
 671
 672        if (is_compat_thread(ti))
 673                return -EINVAL;
 674
 675        if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
 676                ret = PR_TAGGED_ADDR_ENABLE;
 677
 678        ret |= get_mte_ctrl(task);
 679
 680        return ret;
 681}
 682
 683/*
 684 * Global sysctl to disable the tagged user addresses support. This control
 685 * only prevents the tagged address ABI enabling via prctl() and does not
 686 * disable it for tasks that already opted in to the relaxed ABI.
 687 */
 688
 689static struct ctl_table tagged_addr_sysctl_table[] = {
 690        {
 691                .procname       = "tagged_addr_disabled",
 692                .mode           = 0644,
 693                .data           = &tagged_addr_disabled,
 694                .maxlen         = sizeof(int),
 695                .proc_handler   = proc_dointvec_minmax,
 696                .extra1         = SYSCTL_ZERO,
 697                .extra2         = SYSCTL_ONE,
 698        },
 699        { }
 700};
 701
 702static int __init tagged_addr_init(void)
 703{
 704        if (!register_sysctl("abi", tagged_addr_sysctl_table))
 705                return -EINVAL;
 706        return 0;
 707}
 708
 709core_initcall(tagged_addr_init);
 710#endif  /* CONFIG_ARM64_TAGGED_ADDR_ABI */
 711
 712asmlinkage void __sched arm64_preempt_schedule_irq(void)
 713{
 714        lockdep_assert_irqs_disabled();
 715
 716        /*
 717         * Preempting a task from an IRQ means we leave copies of PSTATE
 718         * on the stack. cpufeature's enable calls may modify PSTATE, but
 719         * resuming one of these preempted tasks would undo those changes.
 720         *
 721         * Only allow a task to be preempted once cpufeatures have been
 722         * enabled.
 723         */
 724        if (system_capabilities_finalized())
 725                preempt_schedule_irq();
 726}
 727
 728#ifdef CONFIG_BINFMT_ELF
 729int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
 730                         bool has_interp, bool is_interp)
 731{
 732        /*
 733         * For dynamically linked executables the interpreter is
 734         * responsible for setting PROT_BTI on everything except
 735         * itself.
 736         */
 737        if (is_interp != has_interp)
 738                return prot;
 739
 740        if (!(state->flags & ARM64_ELF_BTI))
 741                return prot;
 742
 743        if (prot & PROT_EXEC)
 744                prot |= PROT_BTI;
 745
 746        return prot;
 747}
 748#endif
 749