linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Initialize MMU support.
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      David Mosberger-Tang <davidm@hpl.hp.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10
  11#include <linux/dma-map-ops.h>
  12#include <linux/dmar.h>
  13#include <linux/efi.h>
  14#include <linux/elf.h>
  15#include <linux/memblock.h>
  16#include <linux/mm.h>
  17#include <linux/sched/signal.h>
  18#include <linux/mmzone.h>
  19#include <linux/module.h>
  20#include <linux/personality.h>
  21#include <linux/reboot.h>
  22#include <linux/slab.h>
  23#include <linux/swap.h>
  24#include <linux/proc_fs.h>
  25#include <linux/bitops.h>
  26#include <linux/kexec.h>
  27#include <linux/swiotlb.h>
  28
  29#include <asm/dma.h>
  30#include <asm/io.h>
  31#include <asm/numa.h>
  32#include <asm/patch.h>
  33#include <asm/pgalloc.h>
  34#include <asm/sal.h>
  35#include <asm/sections.h>
  36#include <asm/tlb.h>
  37#include <linux/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/mca.h>
  40
  41extern void ia64_tlb_init (void);
  42
  43unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  44
  45#ifdef CONFIG_VIRTUAL_MEM_MAP
  46unsigned long VMALLOC_END = VMALLOC_END_INIT;
  47EXPORT_SYMBOL(VMALLOC_END);
  48struct page *vmem_map;
  49EXPORT_SYMBOL(vmem_map);
  50#endif
  51
  52struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  53EXPORT_SYMBOL(zero_page_memmap_ptr);
  54
  55void
  56__ia64_sync_icache_dcache (pte_t pte)
  57{
  58        unsigned long addr;
  59        struct page *page;
  60
  61        page = pte_page(pte);
  62        addr = (unsigned long) page_address(page);
  63
  64        if (test_bit(PG_arch_1, &page->flags))
  65                return;                         /* i-cache is already coherent with d-cache */
  66
  67        flush_icache_range(addr, addr + page_size(page));
  68        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  69}
  70
  71/*
  72 * Since DMA is i-cache coherent, any (complete) pages that were written via
  73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  74 * flush them when they get mapped into an executable vm-area.
  75 */
  76void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
  77{
  78        unsigned long pfn = PHYS_PFN(paddr);
  79
  80        do {
  81                set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
  82        } while (++pfn <= PHYS_PFN(paddr + size - 1));
  83}
  84
  85inline void
  86ia64_set_rbs_bot (void)
  87{
  88        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  89
  90        if (stack_size > MAX_USER_STACK_SIZE)
  91                stack_size = MAX_USER_STACK_SIZE;
  92        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  93}
  94
  95/*
  96 * This performs some platform-dependent address space initialization.
  97 * On IA-64, we want to setup the VM area for the register backing
  98 * store (which grows upwards) and install the gateway page which is
  99 * used for signal trampolines, etc.
 100 */
 101void
 102ia64_init_addr_space (void)
 103{
 104        struct vm_area_struct *vma;
 105
 106        ia64_set_rbs_bot();
 107
 108        /*
 109         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 110         * the problem.  When the process attempts to write to the register backing store
 111         * for the first time, it will get a SEGFAULT in this case.
 112         */
 113        vma = vm_area_alloc(current->mm);
 114        if (vma) {
 115                vma_set_anonymous(vma);
 116                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 117                vma->vm_end = vma->vm_start + PAGE_SIZE;
 118                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 119                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 120                mmap_write_lock(current->mm);
 121                if (insert_vm_struct(current->mm, vma)) {
 122                        mmap_write_unlock(current->mm);
 123                        vm_area_free(vma);
 124                        return;
 125                }
 126                mmap_write_unlock(current->mm);
 127        }
 128
 129        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 130        if (!(current->personality & MMAP_PAGE_ZERO)) {
 131                vma = vm_area_alloc(current->mm);
 132                if (vma) {
 133                        vma_set_anonymous(vma);
 134                        vma->vm_end = PAGE_SIZE;
 135                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 136                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 137                                        VM_DONTEXPAND | VM_DONTDUMP;
 138                        mmap_write_lock(current->mm);
 139                        if (insert_vm_struct(current->mm, vma)) {
 140                                mmap_write_unlock(current->mm);
 141                                vm_area_free(vma);
 142                                return;
 143                        }
 144                        mmap_write_unlock(current->mm);
 145                }
 146        }
 147}
 148
 149void
 150free_initmem (void)
 151{
 152        free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
 153                           -1, "unused kernel");
 154}
 155
 156void __init
 157free_initrd_mem (unsigned long start, unsigned long end)
 158{
 159        /*
 160         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 161         * Thus EFI and the kernel may have different page sizes. It is
 162         * therefore possible to have the initrd share the same page as
 163         * the end of the kernel (given current setup).
 164         *
 165         * To avoid freeing/using the wrong page (kernel sized) we:
 166         *      - align up the beginning of initrd
 167         *      - align down the end of initrd
 168         *
 169         *  |             |
 170         *  |=============| a000
 171         *  |             |
 172         *  |             |
 173         *  |             | 9000
 174         *  |/////////////|
 175         *  |/////////////|
 176         *  |=============| 8000
 177         *  |///INITRD////|
 178         *  |/////////////|
 179         *  |/////////////| 7000
 180         *  |             |
 181         *  |KKKKKKKKKKKKK|
 182         *  |=============| 6000
 183         *  |KKKKKKKKKKKKK|
 184         *  |KKKKKKKKKKKKK|
 185         *  K=kernel using 8KB pages
 186         *
 187         * In this example, we must free page 8000 ONLY. So we must align up
 188         * initrd_start and keep initrd_end as is.
 189         */
 190        start = PAGE_ALIGN(start);
 191        end = end & PAGE_MASK;
 192
 193        if (start < end)
 194                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 195
 196        for (; start < end; start += PAGE_SIZE) {
 197                if (!virt_addr_valid(start))
 198                        continue;
 199                free_reserved_page(virt_to_page(start));
 200        }
 201}
 202
 203/*
 204 * This installs a clean page in the kernel's page table.
 205 */
 206static struct page * __init
 207put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 208{
 209        pgd_t *pgd;
 210        p4d_t *p4d;
 211        pud_t *pud;
 212        pmd_t *pmd;
 213        pte_t *pte;
 214
 215        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 216
 217        {
 218                p4d = p4d_alloc(&init_mm, pgd, address);
 219                if (!p4d)
 220                        goto out;
 221                pud = pud_alloc(&init_mm, p4d, address);
 222                if (!pud)
 223                        goto out;
 224                pmd = pmd_alloc(&init_mm, pud, address);
 225                if (!pmd)
 226                        goto out;
 227                pte = pte_alloc_kernel(pmd, address);
 228                if (!pte)
 229                        goto out;
 230                if (!pte_none(*pte))
 231                        goto out;
 232                set_pte(pte, mk_pte(page, pgprot));
 233        }
 234  out:
 235        /* no need for flush_tlb */
 236        return page;
 237}
 238
 239static void __init
 240setup_gate (void)
 241{
 242        struct page *page;
 243
 244        /*
 245         * Map the gate page twice: once read-only to export the ELF
 246         * headers etc. and once execute-only page to enable
 247         * privilege-promotion via "epc":
 248         */
 249        page = virt_to_page(ia64_imva(__start_gate_section));
 250        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 251#ifdef HAVE_BUGGY_SEGREL
 252        page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 253        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 254#else
 255        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 256        /* Fill in the holes (if any) with read-only zero pages: */
 257        {
 258                unsigned long addr;
 259
 260                for (addr = GATE_ADDR + PAGE_SIZE;
 261                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 262                     addr += PAGE_SIZE)
 263                {
 264                        put_kernel_page(ZERO_PAGE(0), addr,
 265                                        PAGE_READONLY);
 266                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 267                                        PAGE_READONLY);
 268                }
 269        }
 270#endif
 271        ia64_patch_gate();
 272}
 273
 274static struct vm_area_struct gate_vma;
 275
 276static int __init gate_vma_init(void)
 277{
 278        vma_init(&gate_vma, NULL);
 279        gate_vma.vm_start = FIXADDR_USER_START;
 280        gate_vma.vm_end = FIXADDR_USER_END;
 281        gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
 282        gate_vma.vm_page_prot = __P101;
 283
 284        return 0;
 285}
 286__initcall(gate_vma_init);
 287
 288struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 289{
 290        return &gate_vma;
 291}
 292
 293int in_gate_area_no_mm(unsigned long addr)
 294{
 295        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 296                return 1;
 297        return 0;
 298}
 299
 300int in_gate_area(struct mm_struct *mm, unsigned long addr)
 301{
 302        return in_gate_area_no_mm(addr);
 303}
 304
 305void ia64_mmu_init(void *my_cpu_data)
 306{
 307        unsigned long pta, impl_va_bits;
 308        extern void tlb_init(void);
 309
 310#ifdef CONFIG_DISABLE_VHPT
 311#       define VHPT_ENABLE_BIT  0
 312#else
 313#       define VHPT_ENABLE_BIT  1
 314#endif
 315
 316        /*
 317         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 318         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 319         * virtual address space are implemented but if we pick a large enough page size
 320         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 321         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 322         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 323         * problem in practice.  Alternatively, we could truncate the top of the mapped
 324         * address space to not permit mappings that would overlap with the VMLPT.
 325         * --davidm 00/12/06
 326         */
 327#       define pte_bits                 3
 328#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 329        /*
 330         * The virtual page table has to cover the entire implemented address space within
 331         * a region even though not all of this space may be mappable.  The reason for
 332         * this is that the Access bit and Dirty bit fault handlers perform
 333         * non-speculative accesses to the virtual page table, so the address range of the
 334         * virtual page table itself needs to be covered by virtual page table.
 335         */
 336#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 337#       define POW2(n)                  (1ULL << (n))
 338
 339        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 340
 341        if (impl_va_bits < 51 || impl_va_bits > 61)
 342                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 343        /*
 344         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 345         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 346         * the test makes sure that our mapped space doesn't overlap the
 347         * unimplemented hole in the middle of the region.
 348         */
 349        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 350            (mapped_space_bits > impl_va_bits - 1))
 351                panic("Cannot build a big enough virtual-linear page table"
 352                      " to cover mapped address space.\n"
 353                      " Try using a smaller page size.\n");
 354
 355
 356        /* place the VMLPT at the end of each page-table mapped region: */
 357        pta = POW2(61) - POW2(vmlpt_bits);
 358
 359        /*
 360         * Set the (virtually mapped linear) page table address.  Bit
 361         * 8 selects between the short and long format, bits 2-7 the
 362         * size of the table, and bit 0 whether the VHPT walker is
 363         * enabled.
 364         */
 365        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 366
 367        ia64_tlb_init();
 368
 369#ifdef  CONFIG_HUGETLB_PAGE
 370        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 371        ia64_srlz_d();
 372#endif
 373}
 374
 375#ifdef CONFIG_VIRTUAL_MEM_MAP
 376int vmemmap_find_next_valid_pfn(int node, int i)
 377{
 378        unsigned long end_address, hole_next_pfn;
 379        unsigned long stop_address;
 380        pg_data_t *pgdat = NODE_DATA(node);
 381
 382        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 383        end_address = PAGE_ALIGN(end_address);
 384        stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
 385
 386        do {
 387                pgd_t *pgd;
 388                p4d_t *p4d;
 389                pud_t *pud;
 390                pmd_t *pmd;
 391                pte_t *pte;
 392
 393                pgd = pgd_offset_k(end_address);
 394                if (pgd_none(*pgd)) {
 395                        end_address += PGDIR_SIZE;
 396                        continue;
 397                }
 398
 399                p4d = p4d_offset(pgd, end_address);
 400                if (p4d_none(*p4d)) {
 401                        end_address += P4D_SIZE;
 402                        continue;
 403                }
 404
 405                pud = pud_offset(p4d, end_address);
 406                if (pud_none(*pud)) {
 407                        end_address += PUD_SIZE;
 408                        continue;
 409                }
 410
 411                pmd = pmd_offset(pud, end_address);
 412                if (pmd_none(*pmd)) {
 413                        end_address += PMD_SIZE;
 414                        continue;
 415                }
 416
 417                pte = pte_offset_kernel(pmd, end_address);
 418retry_pte:
 419                if (pte_none(*pte)) {
 420                        end_address += PAGE_SIZE;
 421                        pte++;
 422                        if ((end_address < stop_address) &&
 423                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 424                                goto retry_pte;
 425                        continue;
 426                }
 427                /* Found next valid vmem_map page */
 428                break;
 429        } while (end_address < stop_address);
 430
 431        end_address = min(end_address, stop_address);
 432        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 433        hole_next_pfn = end_address / sizeof(struct page);
 434        return hole_next_pfn - pgdat->node_start_pfn;
 435}
 436
 437int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 438{
 439        unsigned long address, start_page, end_page;
 440        struct page *map_start, *map_end;
 441        int node;
 442        pgd_t *pgd;
 443        p4d_t *p4d;
 444        pud_t *pud;
 445        pmd_t *pmd;
 446        pte_t *pte;
 447
 448        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 449        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 450
 451        start_page = (unsigned long) map_start & PAGE_MASK;
 452        end_page = PAGE_ALIGN((unsigned long) map_end);
 453        node = paddr_to_nid(__pa(start));
 454
 455        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 456                pgd = pgd_offset_k(address);
 457                if (pgd_none(*pgd)) {
 458                        p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
 459                        if (!p4d)
 460                                goto err_alloc;
 461                        pgd_populate(&init_mm, pgd, p4d);
 462                }
 463                p4d = p4d_offset(pgd, address);
 464
 465                if (p4d_none(*p4d)) {
 466                        pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
 467                        if (!pud)
 468                                goto err_alloc;
 469                        p4d_populate(&init_mm, p4d, pud);
 470                }
 471                pud = pud_offset(p4d, address);
 472
 473                if (pud_none(*pud)) {
 474                        pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
 475                        if (!pmd)
 476                                goto err_alloc;
 477                        pud_populate(&init_mm, pud, pmd);
 478                }
 479                pmd = pmd_offset(pud, address);
 480
 481                if (pmd_none(*pmd)) {
 482                        pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
 483                        if (!pte)
 484                                goto err_alloc;
 485                        pmd_populate_kernel(&init_mm, pmd, pte);
 486                }
 487                pte = pte_offset_kernel(pmd, address);
 488
 489                if (pte_none(*pte)) {
 490                        void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
 491                                                         node);
 492                        if (!page)
 493                                goto err_alloc;
 494                        set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
 495                                             PAGE_KERNEL));
 496                }
 497        }
 498        return 0;
 499
 500err_alloc:
 501        panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
 502              __func__, PAGE_SIZE, PAGE_SIZE, node);
 503        return -ENOMEM;
 504}
 505
 506struct memmap_init_callback_data {
 507        struct page *start;
 508        struct page *end;
 509        int nid;
 510        unsigned long zone;
 511};
 512
 513static int __meminit
 514virtual_memmap_init(u64 start, u64 end, void *arg)
 515{
 516        struct memmap_init_callback_data *args;
 517        struct page *map_start, *map_end;
 518
 519        args = (struct memmap_init_callback_data *) arg;
 520        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 521        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 522
 523        if (map_start < args->start)
 524                map_start = args->start;
 525        if (map_end > args->end)
 526                map_end = args->end;
 527
 528        /*
 529         * We have to initialize "out of bounds" struct page elements that fit completely
 530         * on the same pages that were allocated for the "in bounds" elements because they
 531         * may be referenced later (and found to be "reserved").
 532         */
 533        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 534        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 535                    / sizeof(struct page));
 536
 537        if (map_start < map_end)
 538                memmap_init_zone((unsigned long)(map_end - map_start),
 539                                 args->nid, args->zone, page_to_pfn(map_start),
 540                                 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
 541        return 0;
 542}
 543
 544void __meminit
 545memmap_init (unsigned long size, int nid, unsigned long zone,
 546             unsigned long start_pfn)
 547{
 548        if (!vmem_map) {
 549                memmap_init_zone(size, nid, zone, start_pfn,
 550                                 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
 551        } else {
 552                struct page *start;
 553                struct memmap_init_callback_data args;
 554
 555                start = pfn_to_page(start_pfn);
 556                args.start = start;
 557                args.end = start + size;
 558                args.nid = nid;
 559                args.zone = zone;
 560
 561                efi_memmap_walk(virtual_memmap_init, &args);
 562        }
 563}
 564
 565int
 566ia64_pfn_valid (unsigned long pfn)
 567{
 568        char byte;
 569        struct page *pg = pfn_to_page(pfn);
 570
 571        return     (__get_user(byte, (char __user *) pg) == 0)
 572                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 573                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 574}
 575EXPORT_SYMBOL(ia64_pfn_valid);
 576
 577int __init find_largest_hole(u64 start, u64 end, void *arg)
 578{
 579        u64 *max_gap = arg;
 580
 581        static u64 last_end = PAGE_OFFSET;
 582
 583        /* NOTE: this algorithm assumes efi memmap table is ordered */
 584
 585        if (*max_gap < (start - last_end))
 586                *max_gap = start - last_end;
 587        last_end = end;
 588        return 0;
 589}
 590
 591#endif /* CONFIG_VIRTUAL_MEM_MAP */
 592
 593int __init register_active_ranges(u64 start, u64 len, int nid)
 594{
 595        u64 end = start + len;
 596
 597#ifdef CONFIG_KEXEC
 598        if (start > crashk_res.start && start < crashk_res.end)
 599                start = crashk_res.end;
 600        if (end > crashk_res.start && end < crashk_res.end)
 601                end = crashk_res.start;
 602#endif
 603
 604        if (start < end)
 605                memblock_add_node(__pa(start), end - start, nid);
 606        return 0;
 607}
 608
 609int
 610find_max_min_low_pfn (u64 start, u64 end, void *arg)
 611{
 612        unsigned long pfn_start, pfn_end;
 613#ifdef CONFIG_FLATMEM
 614        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 615        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 616#else
 617        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 618        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 619#endif
 620        min_low_pfn = min(min_low_pfn, pfn_start);
 621        max_low_pfn = max(max_low_pfn, pfn_end);
 622        return 0;
 623}
 624
 625/*
 626 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 627 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 628 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 629 * useful for performance testing, but conceivably could also come in handy for debugging
 630 * purposes.
 631 */
 632
 633static int nolwsys __initdata;
 634
 635static int __init
 636nolwsys_setup (char *s)
 637{
 638        nolwsys = 1;
 639        return 1;
 640}
 641
 642__setup("nolwsys", nolwsys_setup);
 643
 644void __init
 645mem_init (void)
 646{
 647        int i;
 648
 649        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 650        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 651        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 652
 653        /*
 654         * This needs to be called _after_ the command line has been parsed but
 655         * _before_ any drivers that may need the PCI DMA interface are
 656         * initialized or bootmem has been freed.
 657         */
 658#ifdef CONFIG_INTEL_IOMMU
 659        detect_intel_iommu();
 660        if (!iommu_detected)
 661#endif
 662#ifdef CONFIG_SWIOTLB
 663                swiotlb_init(1);
 664#endif
 665
 666#ifdef CONFIG_FLATMEM
 667        BUG_ON(!mem_map);
 668#endif
 669
 670        set_max_mapnr(max_low_pfn);
 671        high_memory = __va(max_low_pfn * PAGE_SIZE);
 672        memblock_free_all();
 673        mem_init_print_info(NULL);
 674
 675        /*
 676         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 677         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 678         * code can tell them apart.
 679         */
 680        for (i = 0; i < NR_syscalls; ++i) {
 681                extern unsigned long fsyscall_table[NR_syscalls];
 682                extern unsigned long sys_call_table[NR_syscalls];
 683
 684                if (!fsyscall_table[i] || nolwsys)
 685                        fsyscall_table[i] = sys_call_table[i] | 1;
 686        }
 687        setup_gate();
 688}
 689
 690#ifdef CONFIG_MEMORY_HOTPLUG
 691int arch_add_memory(int nid, u64 start, u64 size,
 692                    struct mhp_params *params)
 693{
 694        unsigned long start_pfn = start >> PAGE_SHIFT;
 695        unsigned long nr_pages = size >> PAGE_SHIFT;
 696        int ret;
 697
 698        if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
 699                return -EINVAL;
 700
 701        ret = __add_pages(nid, start_pfn, nr_pages, params);
 702        if (ret)
 703                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 704                       __func__,  ret);
 705
 706        return ret;
 707}
 708
 709void arch_remove_memory(int nid, u64 start, u64 size,
 710                        struct vmem_altmap *altmap)
 711{
 712        unsigned long start_pfn = start >> PAGE_SHIFT;
 713        unsigned long nr_pages = size >> PAGE_SHIFT;
 714
 715        __remove_pages(start_pfn, nr_pages, altmap);
 716}
 717#endif
 718