linux/arch/powerpc/mm/book3s64/hash_pgtable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2005, Paul Mackerras, IBM Corporation.
   4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
   5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/mm_types.h>
  10#include <linux/mm.h>
  11
  12#include <asm/sections.h>
  13#include <asm/mmu.h>
  14#include <asm/tlb.h>
  15
  16#include <mm/mmu_decl.h>
  17
  18#define CREATE_TRACE_POINTS
  19#include <trace/events/thp.h>
  20
  21#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
  22#warning Limited user VSID range means pagetable space is wasted
  23#endif
  24
  25#ifdef CONFIG_SPARSEMEM_VMEMMAP
  26/*
  27 * vmemmap is the starting address of the virtual address space where
  28 * struct pages are allocated for all possible PFNs present on the system
  29 * including holes and bad memory (hence sparse). These virtual struct
  30 * pages are stored in sequence in this virtual address space irrespective
  31 * of the fact whether the corresponding PFN is valid or not. This achieves
  32 * constant relationship between address of struct page and its PFN.
  33 *
  34 * During boot or memory hotplug operation when a new memory section is
  35 * added, physical memory allocation (including hash table bolting) will
  36 * be performed for the set of struct pages which are part of the memory
  37 * section. This saves memory by not allocating struct pages for PFNs
  38 * which are not valid.
  39 *
  40 *              ----------------------------------------------
  41 *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
  42 *              ----------------------------------------------
  43 *
  44 *         f000000000000000                  c000000000000000
  45 * vmemmap +--------------+                  +--------------+
  46 *  +      |  page struct | +--------------> |  page struct |
  47 *  |      +--------------+                  +--------------+
  48 *  |      |  page struct | +--------------> |  page struct |
  49 *  |      +--------------+ |                +--------------+
  50 *  |      |  page struct | +       +------> |  page struct |
  51 *  |      +--------------+         |        +--------------+
  52 *  |      |  page struct |         |   +--> |  page struct |
  53 *  |      +--------------+         |   |    +--------------+
  54 *  |      |  page struct |         |   |
  55 *  |      +--------------+         |   |
  56 *  |      |  page struct |         |   |
  57 *  |      +--------------+         |   |
  58 *  |      |  page struct |         |   |
  59 *  |      +--------------+         |   |
  60 *  |      |  page struct |         |   |
  61 *  |      +--------------+         |   |
  62 *  |      |  page struct | +-------+   |
  63 *  |      +--------------+             |
  64 *  |      |  page struct | +-----------+
  65 *  |      +--------------+
  66 *  |      |  page struct | No mapping
  67 *  |      +--------------+
  68 *  |      |  page struct | No mapping
  69 *  v      +--------------+
  70 *
  71 *              -----------------------------------------
  72 *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
  73 *              -----------------------------------------
  74 *
  75 * vmemmap +--------------+                 +---------------+
  76 *  +      |  page struct | +-------------> |      PFN      |
  77 *  |      +--------------+                 +---------------+
  78 *  |      |  page struct | +-------------> |      PFN      |
  79 *  |      +--------------+                 +---------------+
  80 *  |      |  page struct | +-------------> |      PFN      |
  81 *  |      +--------------+                 +---------------+
  82 *  |      |  page struct | +-------------> |      PFN      |
  83 *  |      +--------------+                 +---------------+
  84 *  |      |              |
  85 *  |      +--------------+
  86 *  |      |              |
  87 *  |      +--------------+
  88 *  |      |              |
  89 *  |      +--------------+                 +---------------+
  90 *  |      |  page struct | +-------------> |      PFN      |
  91 *  |      +--------------+                 +---------------+
  92 *  |      |              |
  93 *  |      +--------------+
  94 *  |      |              |
  95 *  |      +--------------+                 +---------------+
  96 *  |      |  page struct | +-------------> |      PFN      |
  97 *  |      +--------------+                 +---------------+
  98 *  |      |  page struct | +-------------> |      PFN      |
  99 *  v      +--------------+                 +---------------+
 100 */
 101/*
 102 * On hash-based CPUs, the vmemmap is bolted in the hash table.
 103 *
 104 */
 105int __meminit hash__vmemmap_create_mapping(unsigned long start,
 106                                       unsigned long page_size,
 107                                       unsigned long phys)
 108{
 109        int rc;
 110
 111        if ((start + page_size) >= H_VMEMMAP_END) {
 112                pr_warn("Outside the supported range\n");
 113                return -1;
 114        }
 115
 116        rc = htab_bolt_mapping(start, start + page_size, phys,
 117                               pgprot_val(PAGE_KERNEL),
 118                               mmu_vmemmap_psize, mmu_kernel_ssize);
 119        if (rc < 0) {
 120                int rc2 = htab_remove_mapping(start, start + page_size,
 121                                              mmu_vmemmap_psize,
 122                                              mmu_kernel_ssize);
 123                BUG_ON(rc2 && (rc2 != -ENOENT));
 124        }
 125        return rc;
 126}
 127
 128#ifdef CONFIG_MEMORY_HOTPLUG
 129void hash__vmemmap_remove_mapping(unsigned long start,
 130                              unsigned long page_size)
 131{
 132        int rc = htab_remove_mapping(start, start + page_size,
 133                                     mmu_vmemmap_psize,
 134                                     mmu_kernel_ssize);
 135        BUG_ON((rc < 0) && (rc != -ENOENT));
 136        WARN_ON(rc == -ENOENT);
 137}
 138#endif
 139#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 140
 141/*
 142 * map_kernel_page currently only called by __ioremap
 143 * map_kernel_page adds an entry to the ioremap page table
 144 * and adds an entry to the HPT, possibly bolting it
 145 */
 146int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
 147{
 148        pgd_t *pgdp;
 149        p4d_t *p4dp;
 150        pud_t *pudp;
 151        pmd_t *pmdp;
 152        pte_t *ptep;
 153
 154        BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
 155        if (slab_is_available()) {
 156                pgdp = pgd_offset_k(ea);
 157                p4dp = p4d_offset(pgdp, ea);
 158                pudp = pud_alloc(&init_mm, p4dp, ea);
 159                if (!pudp)
 160                        return -ENOMEM;
 161                pmdp = pmd_alloc(&init_mm, pudp, ea);
 162                if (!pmdp)
 163                        return -ENOMEM;
 164                ptep = pte_alloc_kernel(pmdp, ea);
 165                if (!ptep)
 166                        return -ENOMEM;
 167                set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
 168        } else {
 169                /*
 170                 * If the mm subsystem is not fully up, we cannot create a
 171                 * linux page table entry for this mapping.  Simply bolt an
 172                 * entry in the hardware page table.
 173                 *
 174                 */
 175                if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
 176                                      mmu_io_psize, mmu_kernel_ssize)) {
 177                        printk(KERN_ERR "Failed to do bolted mapping IO "
 178                               "memory at %016lx !\n", pa);
 179                        return -ENOMEM;
 180                }
 181        }
 182
 183        smp_wmb();
 184        return 0;
 185}
 186
 187#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 188
 189unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 190                                    pmd_t *pmdp, unsigned long clr,
 191                                    unsigned long set)
 192{
 193        __be64 old_be, tmp;
 194        unsigned long old;
 195
 196#ifdef CONFIG_DEBUG_VM
 197        WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 198        assert_spin_locked(pmd_lockptr(mm, pmdp));
 199#endif
 200
 201        __asm__ __volatile__(
 202        "1:     ldarx   %0,0,%3\n\
 203                and.    %1,%0,%6\n\
 204                bne-    1b \n\
 205                andc    %1,%0,%4 \n\
 206                or      %1,%1,%7\n\
 207                stdcx.  %1,0,%3 \n\
 208                bne-    1b"
 209        : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
 210        : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
 211          "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
 212        : "cc" );
 213
 214        old = be64_to_cpu(old_be);
 215
 216        trace_hugepage_update(addr, old, clr, set);
 217        if (old & H_PAGE_HASHPTE)
 218                hpte_do_hugepage_flush(mm, addr, pmdp, old);
 219        return old;
 220}
 221
 222pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 223                            pmd_t *pmdp)
 224{
 225        pmd_t pmd;
 226
 227        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 228        VM_BUG_ON(pmd_trans_huge(*pmdp));
 229        VM_BUG_ON(pmd_devmap(*pmdp));
 230
 231        pmd = *pmdp;
 232        pmd_clear(pmdp);
 233        /*
 234         * Wait for all pending hash_page to finish. This is needed
 235         * in case of subpage collapse. When we collapse normal pages
 236         * to hugepage, we first clear the pmd, then invalidate all
 237         * the PTE entries. The assumption here is that any low level
 238         * page fault will see a none pmd and take the slow path that
 239         * will wait on mmap_lock. But we could very well be in a
 240         * hash_page with local ptep pointer value. Such a hash page
 241         * can result in adding new HPTE entries for normal subpages.
 242         * That means we could be modifying the page content as we
 243         * copy them to a huge page. So wait for parallel hash_page
 244         * to finish before invalidating HPTE entries. We can do this
 245         * by sending an IPI to all the cpus and executing a dummy
 246         * function there.
 247         */
 248        serialize_against_pte_lookup(vma->vm_mm);
 249        /*
 250         * Now invalidate the hpte entries in the range
 251         * covered by pmd. This make sure we take a
 252         * fault and will find the pmd as none, which will
 253         * result in a major fault which takes mmap_lock and
 254         * hence wait for collapse to complete. Without this
 255         * the __collapse_huge_page_copy can result in copying
 256         * the old content.
 257         */
 258        flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
 259        return pmd;
 260}
 261
 262/*
 263 * We want to put the pgtable in pmd and use pgtable for tracking
 264 * the base page size hptes
 265 */
 266void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 267                                  pgtable_t pgtable)
 268{
 269        pgtable_t *pgtable_slot;
 270
 271        assert_spin_locked(pmd_lockptr(mm, pmdp));
 272        /*
 273         * we store the pgtable in the second half of PMD
 274         */
 275        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 276        *pgtable_slot = pgtable;
 277        /*
 278         * expose the deposited pgtable to other cpus.
 279         * before we set the hugepage PTE at pmd level
 280         * hash fault code looks at the deposted pgtable
 281         * to store hash index values.
 282         */
 283        smp_wmb();
 284}
 285
 286pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 287{
 288        pgtable_t pgtable;
 289        pgtable_t *pgtable_slot;
 290
 291        assert_spin_locked(pmd_lockptr(mm, pmdp));
 292
 293        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 294        pgtable = *pgtable_slot;
 295        /*
 296         * Once we withdraw, mark the entry NULL.
 297         */
 298        *pgtable_slot = NULL;
 299        /*
 300         * We store HPTE information in the deposited PTE fragment.
 301         * zero out the content on withdraw.
 302         */
 303        memset(pgtable, 0, PTE_FRAG_SIZE);
 304        return pgtable;
 305}
 306
 307/*
 308 * A linux hugepage PMD was changed and the corresponding hash table entries
 309 * neesd to be flushed.
 310 */
 311void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 312                            pmd_t *pmdp, unsigned long old_pmd)
 313{
 314        int ssize;
 315        unsigned int psize;
 316        unsigned long vsid;
 317        unsigned long flags = 0;
 318
 319        /* get the base page size,vsid and segment size */
 320#ifdef CONFIG_DEBUG_VM
 321        psize = get_slice_psize(mm, addr);
 322        BUG_ON(psize == MMU_PAGE_16M);
 323#endif
 324        if (old_pmd & H_PAGE_COMBO)
 325                psize = MMU_PAGE_4K;
 326        else
 327                psize = MMU_PAGE_64K;
 328
 329        if (!is_kernel_addr(addr)) {
 330                ssize = user_segment_size(addr);
 331                vsid = get_user_vsid(&mm->context, addr, ssize);
 332                WARN_ON(vsid == 0);
 333        } else {
 334                vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 335                ssize = mmu_kernel_ssize;
 336        }
 337
 338        if (mm_is_thread_local(mm))
 339                flags |= HPTE_LOCAL_UPDATE;
 340
 341        return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
 342}
 343
 344pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
 345                                unsigned long addr, pmd_t *pmdp)
 346{
 347        pmd_t old_pmd;
 348        pgtable_t pgtable;
 349        unsigned long old;
 350        pgtable_t *pgtable_slot;
 351
 352        old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
 353        old_pmd = __pmd(old);
 354        /*
 355         * We have pmd == none and we are holding page_table_lock.
 356         * So we can safely go and clear the pgtable hash
 357         * index info.
 358         */
 359        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 360        pgtable = *pgtable_slot;
 361        /*
 362         * Let's zero out old valid and hash index details
 363         * hash fault look at them.
 364         */
 365        memset(pgtable, 0, PTE_FRAG_SIZE);
 366        return old_pmd;
 367}
 368
 369int hash__has_transparent_hugepage(void)
 370{
 371
 372        if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 373                return 0;
 374        /*
 375         * We support THP only if PMD_SIZE is 16MB.
 376         */
 377        if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
 378                return 0;
 379        /*
 380         * We need to make sure that we support 16MB hugepage in a segement
 381         * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
 382         * of 64K.
 383         */
 384        /*
 385         * If we have 64K HPTE, we will be using that by default
 386         */
 387        if (mmu_psize_defs[MMU_PAGE_64K].shift &&
 388            (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
 389                return 0;
 390        /*
 391         * Ok we only have 4K HPTE
 392         */
 393        if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
 394                return 0;
 395
 396        return 1;
 397}
 398EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
 399
 400#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 401
 402#ifdef CONFIG_STRICT_KERNEL_RWX
 403static bool hash__change_memory_range(unsigned long start, unsigned long end,
 404                                      unsigned long newpp)
 405{
 406        unsigned long idx;
 407        unsigned int step, shift;
 408
 409        shift = mmu_psize_defs[mmu_linear_psize].shift;
 410        step = 1 << shift;
 411
 412        start = ALIGN_DOWN(start, step);
 413        end = ALIGN(end, step); // aligns up
 414
 415        if (start >= end)
 416                return false;
 417
 418        pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
 419                 start, end, newpp, step);
 420
 421        for (idx = start; idx < end; idx += step)
 422                /* Not sure if we can do much with the return value */
 423                mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
 424                                                        mmu_kernel_ssize);
 425
 426        return true;
 427}
 428
 429void hash__mark_rodata_ro(void)
 430{
 431        unsigned long start, end;
 432
 433        start = (unsigned long)_stext;
 434        end = (unsigned long)__init_begin;
 435
 436        WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
 437}
 438
 439void hash__mark_initmem_nx(void)
 440{
 441        unsigned long start, end, pp;
 442
 443        start = (unsigned long)__init_begin;
 444        end = (unsigned long)__init_end;
 445
 446        pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
 447
 448        WARN_ON(!hash__change_memory_range(start, end, pp));
 449}
 450#endif
 451