linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
  42
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
  46#include <asm/realmode.h>
  47#include <asm/text-patching.h>
  48#include <asm/ftrace.h>
  49#include <asm/traps.h>
  50#include <asm/desc.h>
  51#include <asm/fpu/internal.h>
  52#include <asm/cpu.h>
  53#include <asm/cpu_entry_area.h>
  54#include <asm/mce.h>
  55#include <asm/fixmap.h>
  56#include <asm/mach_traps.h>
  57#include <asm/alternative.h>
  58#include <asm/fpu/xstate.h>
  59#include <asm/vm86.h>
  60#include <asm/umip.h>
  61#include <asm/insn.h>
  62#include <asm/insn-eval.h>
  63
  64#ifdef CONFIG_X86_64
  65#include <asm/x86_init.h>
  66#include <asm/proto.h>
  67#else
  68#include <asm/processor-flags.h>
  69#include <asm/setup.h>
  70#include <asm/proto.h>
  71#endif
  72
  73DECLARE_BITMAP(system_vectors, NR_VECTORS);
  74
  75static inline void cond_local_irq_enable(struct pt_regs *regs)
  76{
  77        if (regs->flags & X86_EFLAGS_IF)
  78                local_irq_enable();
  79}
  80
  81static inline void cond_local_irq_disable(struct pt_regs *regs)
  82{
  83        if (regs->flags & X86_EFLAGS_IF)
  84                local_irq_disable();
  85}
  86
  87__always_inline int is_valid_bugaddr(unsigned long addr)
  88{
  89        if (addr < TASK_SIZE_MAX)
  90                return 0;
  91
  92        /*
  93         * We got #UD, if the text isn't readable we'd have gotten
  94         * a different exception.
  95         */
  96        return *(unsigned short *)addr == INSN_UD2;
  97}
  98
  99static nokprobe_inline int
 100do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 101                  struct pt_regs *regs, long error_code)
 102{
 103        if (v8086_mode(regs)) {
 104                /*
 105                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 106                 * On nmi (interrupt 2), do_trap should not be called.
 107                 */
 108                if (trapnr < X86_TRAP_UD) {
 109                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 110                                                error_code, trapnr))
 111                                return 0;
 112                }
 113        } else if (!user_mode(regs)) {
 114                if (fixup_exception(regs, trapnr, error_code, 0))
 115                        return 0;
 116
 117                tsk->thread.error_code = error_code;
 118                tsk->thread.trap_nr = trapnr;
 119                die(str, regs, error_code);
 120        }
 121
 122        /*
 123         * We want error_code and trap_nr set for userspace faults and
 124         * kernelspace faults which result in die(), but not
 125         * kernelspace faults which are fixed up.  die() gives the
 126         * process no chance to handle the signal and notice the
 127         * kernel fault information, so that won't result in polluting
 128         * the information about previously queued, but not yet
 129         * delivered, faults.  See also exc_general_protection below.
 130         */
 131        tsk->thread.error_code = error_code;
 132        tsk->thread.trap_nr = trapnr;
 133
 134        return -1;
 135}
 136
 137static void show_signal(struct task_struct *tsk, int signr,
 138                        const char *type, const char *desc,
 139                        struct pt_regs *regs, long error_code)
 140{
 141        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 142            printk_ratelimit()) {
 143                pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 144                        tsk->comm, task_pid_nr(tsk), type, desc,
 145                        regs->ip, regs->sp, error_code);
 146                print_vma_addr(KERN_CONT " in ", regs->ip);
 147                pr_cont("\n");
 148        }
 149}
 150
 151static void
 152do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 153        long error_code, int sicode, void __user *addr)
 154{
 155        struct task_struct *tsk = current;
 156
 157        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 158                return;
 159
 160        show_signal(tsk, signr, "trap ", str, regs, error_code);
 161
 162        if (!sicode)
 163                force_sig(signr);
 164        else
 165                force_sig_fault(signr, sicode, addr);
 166}
 167NOKPROBE_SYMBOL(do_trap);
 168
 169static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 170        unsigned long trapnr, int signr, int sicode, void __user *addr)
 171{
 172        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 173
 174        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 175                        NOTIFY_STOP) {
 176                cond_local_irq_enable(regs);
 177                do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 178                cond_local_irq_disable(regs);
 179        }
 180}
 181
 182/*
 183 * Posix requires to provide the address of the faulting instruction for
 184 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 185 *
 186 * This address is usually regs->ip, but when an uprobe moved the code out
 187 * of line then regs->ip points to the XOL code which would confuse
 188 * anything which analyzes the fault address vs. the unmodified binary. If
 189 * a trap happened in XOL code then uprobe maps regs->ip back to the
 190 * original instruction address.
 191 */
 192static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 193{
 194        return (void __user *)uprobe_get_trap_addr(regs);
 195}
 196
 197DEFINE_IDTENTRY(exc_divide_error)
 198{
 199        do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
 200                      FPE_INTDIV, error_get_trap_addr(regs));
 201}
 202
 203DEFINE_IDTENTRY(exc_overflow)
 204{
 205        do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 206}
 207
 208#ifdef CONFIG_X86_F00F_BUG
 209void handle_invalid_op(struct pt_regs *regs)
 210#else
 211static inline void handle_invalid_op(struct pt_regs *regs)
 212#endif
 213{
 214        do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 215                      ILL_ILLOPN, error_get_trap_addr(regs));
 216}
 217
 218static noinstr bool handle_bug(struct pt_regs *regs)
 219{
 220        bool handled = false;
 221
 222        if (!is_valid_bugaddr(regs->ip))
 223                return handled;
 224
 225        /*
 226         * All lies, just get the WARN/BUG out.
 227         */
 228        instrumentation_begin();
 229        /*
 230         * Since we're emulating a CALL with exceptions, restore the interrupt
 231         * state to what it was at the exception site.
 232         */
 233        if (regs->flags & X86_EFLAGS_IF)
 234                raw_local_irq_enable();
 235        if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 236                regs->ip += LEN_UD2;
 237                handled = true;
 238        }
 239        if (regs->flags & X86_EFLAGS_IF)
 240                raw_local_irq_disable();
 241        instrumentation_end();
 242
 243        return handled;
 244}
 245
 246DEFINE_IDTENTRY_RAW(exc_invalid_op)
 247{
 248        irqentry_state_t state;
 249
 250        /*
 251         * We use UD2 as a short encoding for 'CALL __WARN', as such
 252         * handle it before exception entry to avoid recursive WARN
 253         * in case exception entry is the one triggering WARNs.
 254         */
 255        if (!user_mode(regs) && handle_bug(regs))
 256                return;
 257
 258        state = irqentry_enter(regs);
 259        instrumentation_begin();
 260        handle_invalid_op(regs);
 261        instrumentation_end();
 262        irqentry_exit(regs, state);
 263}
 264
 265DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 266{
 267        do_error_trap(regs, 0, "coprocessor segment overrun",
 268                      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 269}
 270
 271DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 272{
 273        do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 274                      0, NULL);
 275}
 276
 277DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 278{
 279        do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 280                      SIGBUS, 0, NULL);
 281}
 282
 283DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 284{
 285        do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 286                      0, NULL);
 287}
 288
 289DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 290{
 291        char *str = "alignment check";
 292
 293        if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 294                return;
 295
 296        if (!user_mode(regs))
 297                die("Split lock detected\n", regs, error_code);
 298
 299        local_irq_enable();
 300
 301        if (handle_user_split_lock(regs, error_code))
 302                return;
 303
 304        do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 305                error_code, BUS_ADRALN, NULL);
 306
 307        local_irq_disable();
 308}
 309
 310#ifdef CONFIG_VMAP_STACK
 311__visible void __noreturn handle_stack_overflow(const char *message,
 312                                                struct pt_regs *regs,
 313                                                unsigned long fault_address)
 314{
 315        printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 316                 (void *)fault_address, current->stack,
 317                 (char *)current->stack + THREAD_SIZE - 1);
 318        die(message, regs, 0);
 319
 320        /* Be absolutely certain we don't return. */
 321        panic("%s", message);
 322}
 323#endif
 324
 325/*
 326 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 327 *
 328 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 329 * SDM's warnings about double faults being unrecoverable, returning works as
 330 * expected.  Presumably what the SDM actually means is that the CPU may get
 331 * the register state wrong on entry, so returning could be a bad idea.
 332 *
 333 * Various CPU engineers have promised that double faults due to an IRET fault
 334 * while the stack is read-only are, in fact, recoverable.
 335 *
 336 * On x86_32, this is entered through a task gate, and regs are synthesized
 337 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 338 * be lost.  If, for some reason, we need to return to a context with modified
 339 * regs, the shim code could be adjusted to synchronize the registers.
 340 *
 341 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 342 * to be read before doing anything else.
 343 */
 344DEFINE_IDTENTRY_DF(exc_double_fault)
 345{
 346        static const char str[] = "double fault";
 347        struct task_struct *tsk = current;
 348
 349#ifdef CONFIG_VMAP_STACK
 350        unsigned long address = read_cr2();
 351#endif
 352
 353#ifdef CONFIG_X86_ESPFIX64
 354        extern unsigned char native_irq_return_iret[];
 355
 356        /*
 357         * If IRET takes a non-IST fault on the espfix64 stack, then we
 358         * end up promoting it to a doublefault.  In that case, take
 359         * advantage of the fact that we're not using the normal (TSS.sp0)
 360         * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 361         * and then modify our own IRET frame so that, when we return,
 362         * we land directly at the #GP(0) vector with the stack already
 363         * set up according to its expectations.
 364         *
 365         * The net result is that our #GP handler will think that we
 366         * entered from usermode with the bad user context.
 367         *
 368         * No need for nmi_enter() here because we don't use RCU.
 369         */
 370        if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 371                regs->cs == __KERNEL_CS &&
 372                regs->ip == (unsigned long)native_irq_return_iret)
 373        {
 374                struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 375                unsigned long *p = (unsigned long *)regs->sp;
 376
 377                /*
 378                 * regs->sp points to the failing IRET frame on the
 379                 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 380                 * in gpregs->ss through gpregs->ip.
 381                 *
 382                 */
 383                gpregs->ip      = p[0];
 384                gpregs->cs      = p[1];
 385                gpregs->flags   = p[2];
 386                gpregs->sp      = p[3];
 387                gpregs->ss      = p[4];
 388                gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 389
 390                /*
 391                 * Adjust our frame so that we return straight to the #GP
 392                 * vector with the expected RSP value.  This is safe because
 393                 * we won't enable interupts or schedule before we invoke
 394                 * general_protection, so nothing will clobber the stack
 395                 * frame we just set up.
 396                 *
 397                 * We will enter general_protection with kernel GSBASE,
 398                 * which is what the stub expects, given that the faulting
 399                 * RIP will be the IRET instruction.
 400                 */
 401                regs->ip = (unsigned long)asm_exc_general_protection;
 402                regs->sp = (unsigned long)&gpregs->orig_ax;
 403
 404                return;
 405        }
 406#endif
 407
 408        idtentry_enter_nmi(regs);
 409        instrumentation_begin();
 410        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 411
 412        tsk->thread.error_code = error_code;
 413        tsk->thread.trap_nr = X86_TRAP_DF;
 414
 415#ifdef CONFIG_VMAP_STACK
 416        /*
 417         * If we overflow the stack into a guard page, the CPU will fail
 418         * to deliver #PF and will send #DF instead.  Similarly, if we
 419         * take any non-IST exception while too close to the bottom of
 420         * the stack, the processor will get a page fault while
 421         * delivering the exception and will generate a double fault.
 422         *
 423         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 424         * Page-Fault Exception (#PF):
 425         *
 426         *   Processors update CR2 whenever a page fault is detected. If a
 427         *   second page fault occurs while an earlier page fault is being
 428         *   delivered, the faulting linear address of the second fault will
 429         *   overwrite the contents of CR2 (replacing the previous
 430         *   address). These updates to CR2 occur even if the page fault
 431         *   results in a double fault or occurs during the delivery of a
 432         *   double fault.
 433         *
 434         * The logic below has a small possibility of incorrectly diagnosing
 435         * some errors as stack overflows.  For example, if the IDT or GDT
 436         * gets corrupted such that #GP delivery fails due to a bad descriptor
 437         * causing #GP and we hit this condition while CR2 coincidentally
 438         * points to the stack guard page, we'll think we overflowed the
 439         * stack.  Given that we're going to panic one way or another
 440         * if this happens, this isn't necessarily worth fixing.
 441         *
 442         * If necessary, we could improve the test by only diagnosing
 443         * a stack overflow if the saved RSP points within 47 bytes of
 444         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 445         * take an exception, the stack is already aligned and there
 446         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 447         * possible error code, so a stack overflow would *not* double
 448         * fault.  With any less space left, exception delivery could
 449         * fail, and, as a practical matter, we've overflowed the
 450         * stack even if the actual trigger for the double fault was
 451         * something else.
 452         */
 453        if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
 454                handle_stack_overflow("kernel stack overflow (double-fault)",
 455                                      regs, address);
 456        }
 457#endif
 458
 459        pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 460        die("double fault", regs, error_code);
 461        panic("Machine halted.");
 462        instrumentation_end();
 463}
 464
 465DEFINE_IDTENTRY(exc_bounds)
 466{
 467        if (notify_die(DIE_TRAP, "bounds", regs, 0,
 468                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 469                return;
 470        cond_local_irq_enable(regs);
 471
 472        if (!user_mode(regs))
 473                die("bounds", regs, 0);
 474
 475        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 476
 477        cond_local_irq_disable(regs);
 478}
 479
 480enum kernel_gp_hint {
 481        GP_NO_HINT,
 482        GP_NON_CANONICAL,
 483        GP_CANONICAL
 484};
 485
 486/*
 487 * When an uncaught #GP occurs, try to determine the memory address accessed by
 488 * the instruction and return that address to the caller. Also, try to figure
 489 * out whether any part of the access to that address was non-canonical.
 490 */
 491static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 492                                                 unsigned long *addr)
 493{
 494        u8 insn_buf[MAX_INSN_SIZE];
 495        struct insn insn;
 496
 497        if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 498                        MAX_INSN_SIZE))
 499                return GP_NO_HINT;
 500
 501        kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
 502        insn_get_modrm(&insn);
 503        insn_get_sib(&insn);
 504
 505        *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 506        if (*addr == -1UL)
 507                return GP_NO_HINT;
 508
 509#ifdef CONFIG_X86_64
 510        /*
 511         * Check that:
 512         *  - the operand is not in the kernel half
 513         *  - the last byte of the operand is not in the user canonical half
 514         */
 515        if (*addr < ~__VIRTUAL_MASK &&
 516            *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 517                return GP_NON_CANONICAL;
 518#endif
 519
 520        return GP_CANONICAL;
 521}
 522
 523#define GPFSTR "general protection fault"
 524
 525DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 526{
 527        char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 528        enum kernel_gp_hint hint = GP_NO_HINT;
 529        struct task_struct *tsk;
 530        unsigned long gp_addr;
 531        int ret;
 532
 533        cond_local_irq_enable(regs);
 534
 535        if (static_cpu_has(X86_FEATURE_UMIP)) {
 536                if (user_mode(regs) && fixup_umip_exception(regs))
 537                        goto exit;
 538        }
 539
 540        if (v8086_mode(regs)) {
 541                local_irq_enable();
 542                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 543                local_irq_disable();
 544                return;
 545        }
 546
 547        tsk = current;
 548
 549        if (user_mode(regs)) {
 550                tsk->thread.error_code = error_code;
 551                tsk->thread.trap_nr = X86_TRAP_GP;
 552
 553                show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 554                force_sig(SIGSEGV);
 555                goto exit;
 556        }
 557
 558        if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 559                goto exit;
 560
 561        tsk->thread.error_code = error_code;
 562        tsk->thread.trap_nr = X86_TRAP_GP;
 563
 564        /*
 565         * To be potentially processing a kprobe fault and to trust the result
 566         * from kprobe_running(), we have to be non-preemptible.
 567         */
 568        if (!preemptible() &&
 569            kprobe_running() &&
 570            kprobe_fault_handler(regs, X86_TRAP_GP))
 571                goto exit;
 572
 573        ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 574        if (ret == NOTIFY_STOP)
 575                goto exit;
 576
 577        if (error_code)
 578                snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 579        else
 580                hint = get_kernel_gp_address(regs, &gp_addr);
 581
 582        if (hint != GP_NO_HINT)
 583                snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 584                         (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 585                                                    : "maybe for address",
 586                         gp_addr);
 587
 588        /*
 589         * KASAN is interested only in the non-canonical case, clear it
 590         * otherwise.
 591         */
 592        if (hint != GP_NON_CANONICAL)
 593                gp_addr = 0;
 594
 595        die_addr(desc, regs, error_code, gp_addr);
 596
 597exit:
 598        cond_local_irq_disable(regs);
 599}
 600
 601static bool do_int3(struct pt_regs *regs)
 602{
 603        int res;
 604
 605#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 606        if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 607                         SIGTRAP) == NOTIFY_STOP)
 608                return true;
 609#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 610
 611#ifdef CONFIG_KPROBES
 612        if (kprobe_int3_handler(regs))
 613                return true;
 614#endif
 615        res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 616
 617        return res == NOTIFY_STOP;
 618}
 619
 620static void do_int3_user(struct pt_regs *regs)
 621{
 622        if (do_int3(regs))
 623                return;
 624
 625        cond_local_irq_enable(regs);
 626        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 627        cond_local_irq_disable(regs);
 628}
 629
 630DEFINE_IDTENTRY_RAW(exc_int3)
 631{
 632        /*
 633         * poke_int3_handler() is completely self contained code; it does (and
 634         * must) *NOT* call out to anything, lest it hits upon yet another
 635         * INT3.
 636         */
 637        if (poke_int3_handler(regs))
 638                return;
 639
 640        /*
 641         * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 642         * and therefore can trigger INT3, hence poke_int3_handler() must
 643         * be done before. If the entry came from kernel mode, then use
 644         * nmi_enter() because the INT3 could have been hit in any context
 645         * including NMI.
 646         */
 647        if (user_mode(regs)) {
 648                irqentry_enter_from_user_mode(regs);
 649                instrumentation_begin();
 650                do_int3_user(regs);
 651                instrumentation_end();
 652                irqentry_exit_to_user_mode(regs);
 653        } else {
 654                bool irq_state = idtentry_enter_nmi(regs);
 655                instrumentation_begin();
 656                if (!do_int3(regs))
 657                        die("int3", regs, 0);
 658                instrumentation_end();
 659                idtentry_exit_nmi(regs, irq_state);
 660        }
 661}
 662
 663#ifdef CONFIG_X86_64
 664/*
 665 * Help handler running on a per-cpu (IST or entry trampoline) stack
 666 * to switch to the normal thread stack if the interrupted code was in
 667 * user mode. The actual stack switch is done in entry_64.S
 668 */
 669asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 670{
 671        struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 672        if (regs != eregs)
 673                *regs = *eregs;
 674        return regs;
 675}
 676
 677#ifdef CONFIG_AMD_MEM_ENCRYPT
 678asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
 679{
 680        unsigned long sp, *stack;
 681        struct stack_info info;
 682        struct pt_regs *regs_ret;
 683
 684        /*
 685         * In the SYSCALL entry path the RSP value comes from user-space - don't
 686         * trust it and switch to the current kernel stack
 687         */
 688        if (regs->ip >= (unsigned long)entry_SYSCALL_64 &&
 689            regs->ip <  (unsigned long)entry_SYSCALL_64_safe_stack) {
 690                sp = this_cpu_read(cpu_current_top_of_stack);
 691                goto sync;
 692        }
 693
 694        /*
 695         * From here on the RSP value is trusted. Now check whether entry
 696         * happened from a safe stack. Not safe are the entry or unknown stacks,
 697         * use the fall-back stack instead in this case.
 698         */
 699        sp    = regs->sp;
 700        stack = (unsigned long *)sp;
 701
 702        if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
 703            info.type >= STACK_TYPE_EXCEPTION_LAST)
 704                sp = __this_cpu_ist_top_va(VC2);
 705
 706sync:
 707        /*
 708         * Found a safe stack - switch to it as if the entry didn't happen via
 709         * IST stack. The code below only copies pt_regs, the real switch happens
 710         * in assembly code.
 711         */
 712        sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
 713
 714        regs_ret = (struct pt_regs *)sp;
 715        *regs_ret = *regs;
 716
 717        return regs_ret;
 718}
 719#endif
 720
 721struct bad_iret_stack {
 722        void *error_entry_ret;
 723        struct pt_regs regs;
 724};
 725
 726asmlinkage __visible noinstr
 727struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 728{
 729        /*
 730         * This is called from entry_64.S early in handling a fault
 731         * caused by a bad iret to user mode.  To handle the fault
 732         * correctly, we want to move our stack frame to where it would
 733         * be had we entered directly on the entry stack (rather than
 734         * just below the IRET frame) and we want to pretend that the
 735         * exception came from the IRET target.
 736         */
 737        struct bad_iret_stack tmp, *new_stack =
 738                (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 739
 740        /* Copy the IRET target to the temporary storage. */
 741        __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 742
 743        /* Copy the remainder of the stack from the current stack. */
 744        __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 745
 746        /* Update the entry stack */
 747        __memcpy(new_stack, &tmp, sizeof(tmp));
 748
 749        BUG_ON(!user_mode(&new_stack->regs));
 750        return new_stack;
 751}
 752#endif
 753
 754static bool is_sysenter_singlestep(struct pt_regs *regs)
 755{
 756        /*
 757         * We don't try for precision here.  If we're anywhere in the region of
 758         * code that can be single-stepped in the SYSENTER entry path, then
 759         * assume that this is a useless single-step trap due to SYSENTER
 760         * being invoked with TF set.  (We don't know in advance exactly
 761         * which instructions will be hit because BTF could plausibly
 762         * be set.)
 763         */
 764#ifdef CONFIG_X86_32
 765        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 766                (unsigned long)__end_SYSENTER_singlestep_region -
 767                (unsigned long)__begin_SYSENTER_singlestep_region;
 768#elif defined(CONFIG_IA32_EMULATION)
 769        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 770                (unsigned long)__end_entry_SYSENTER_compat -
 771                (unsigned long)entry_SYSENTER_compat;
 772#else
 773        return false;
 774#endif
 775}
 776
 777static __always_inline unsigned long debug_read_clear_dr6(void)
 778{
 779        unsigned long dr6;
 780
 781        /*
 782         * The Intel SDM says:
 783         *
 784         *   Certain debug exceptions may clear bits 0-3. The remaining
 785         *   contents of the DR6 register are never cleared by the
 786         *   processor. To avoid confusion in identifying debug
 787         *   exceptions, debug handlers should clear the register before
 788         *   returning to the interrupted task.
 789         *
 790         * Keep it simple: clear DR6 immediately.
 791         */
 792        get_debugreg(dr6, 6);
 793        set_debugreg(DR6_RESERVED, 6);
 794        dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
 795
 796        return dr6;
 797}
 798
 799/*
 800 * Our handling of the processor debug registers is non-trivial.
 801 * We do not clear them on entry and exit from the kernel. Therefore
 802 * it is possible to get a watchpoint trap here from inside the kernel.
 803 * However, the code in ./ptrace.c has ensured that the user can
 804 * only set watchpoints on userspace addresses. Therefore the in-kernel
 805 * watchpoint trap can only occur in code which is reading/writing
 806 * from user space. Such code must not hold kernel locks (since it
 807 * can equally take a page fault), therefore it is safe to call
 808 * force_sig_info even though that claims and releases locks.
 809 *
 810 * Code in ./signal.c ensures that the debug control register
 811 * is restored before we deliver any signal, and therefore that
 812 * user code runs with the correct debug control register even though
 813 * we clear it here.
 814 *
 815 * Being careful here means that we don't have to be as careful in a
 816 * lot of more complicated places (task switching can be a bit lazy
 817 * about restoring all the debug state, and ptrace doesn't have to
 818 * find every occurrence of the TF bit that could be saved away even
 819 * by user code)
 820 *
 821 * May run on IST stack.
 822 */
 823
 824static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
 825{
 826        /*
 827         * Notifiers will clear bits in @dr6 to indicate the event has been
 828         * consumed - hw_breakpoint_handler(), single_stop_cont().
 829         *
 830         * Notifiers will set bits in @virtual_dr6 to indicate the desire
 831         * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
 832         */
 833        if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
 834                return true;
 835
 836        return false;
 837}
 838
 839static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 840                                             unsigned long dr6)
 841{
 842        /*
 843         * Disable breakpoints during exception handling; recursive exceptions
 844         * are exceedingly 'fun'.
 845         *
 846         * Since this function is NOKPROBE, and that also applies to
 847         * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 848         * HW_BREAKPOINT_W on our stack)
 849         *
 850         * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 851         * includes the entry stack is excluded for everything.
 852         */
 853        unsigned long dr7 = local_db_save();
 854        bool irq_state = idtentry_enter_nmi(regs);
 855        instrumentation_begin();
 856
 857        /*
 858         * If something gets miswired and we end up here for a user mode
 859         * #DB, we will malfunction.
 860         */
 861        WARN_ON_ONCE(user_mode(regs));
 862
 863        if (test_thread_flag(TIF_BLOCKSTEP)) {
 864                /*
 865                 * The SDM says "The processor clears the BTF flag when it
 866                 * generates a debug exception." but PTRACE_BLOCKSTEP requested
 867                 * it for userspace, but we just took a kernel #DB, so re-set
 868                 * BTF.
 869                 */
 870                unsigned long debugctl;
 871
 872                rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 873                debugctl |= DEBUGCTLMSR_BTF;
 874                wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 875        }
 876
 877        /*
 878         * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 879         * watchpoint at the same time then that will still be handled.
 880         */
 881        if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 882                dr6 &= ~DR_STEP;
 883
 884        if (kprobe_debug_handler(regs))
 885                goto out;
 886
 887        /*
 888         * The kernel doesn't use INT1
 889         */
 890        if (!dr6)
 891                goto out;
 892
 893        if (notify_debug(regs, &dr6))
 894                goto out;
 895
 896        /*
 897         * The kernel doesn't use TF single-step outside of:
 898         *
 899         *  - Kprobes, consumed through kprobe_debug_handler()
 900         *  - KGDB, consumed through notify_debug()
 901         *
 902         * So if we get here with DR_STEP set, something is wonky.
 903         *
 904         * A known way to trigger this is through QEMU's GDB stub,
 905         * which leaks #DB into the guest and causes IST recursion.
 906         */
 907        if (WARN_ON_ONCE(dr6 & DR_STEP))
 908                regs->flags &= ~X86_EFLAGS_TF;
 909out:
 910        instrumentation_end();
 911        idtentry_exit_nmi(regs, irq_state);
 912
 913        local_db_restore(dr7);
 914}
 915
 916static __always_inline void exc_debug_user(struct pt_regs *regs,
 917                                           unsigned long dr6)
 918{
 919        bool icebp;
 920
 921        /*
 922         * If something gets miswired and we end up here for a kernel mode
 923         * #DB, we will malfunction.
 924         */
 925        WARN_ON_ONCE(!user_mode(regs));
 926
 927        /*
 928         * NB: We can't easily clear DR7 here because
 929         * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
 930         * user memory, etc.  This means that a recursive #DB is possible.  If
 931         * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 932         * Since we're not on the IST stack right now, everything will be
 933         * fine.
 934         */
 935
 936        irqentry_enter_from_user_mode(regs);
 937        instrumentation_begin();
 938
 939        /*
 940         * Start the virtual/ptrace DR6 value with just the DR_STEP mask
 941         * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
 942         *
 943         * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
 944         * even if it is not the result of PTRACE_SINGLESTEP.
 945         */
 946        current->thread.virtual_dr6 = (dr6 & DR_STEP);
 947
 948        /*
 949         * The SDM says "The processor clears the BTF flag when it
 950         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 951         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 952         */
 953        clear_thread_flag(TIF_BLOCKSTEP);
 954
 955        /*
 956         * If dr6 has no reason to give us about the origin of this trap,
 957         * then it's very likely the result of an icebp/int01 trap.
 958         * User wants a sigtrap for that.
 959         */
 960        icebp = !dr6;
 961
 962        if (notify_debug(regs, &dr6))
 963                goto out;
 964
 965        /* It's safe to allow irq's after DR6 has been saved */
 966        local_irq_enable();
 967
 968        if (v8086_mode(regs)) {
 969                handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
 970                goto out_irq;
 971        }
 972
 973        /* Add the virtual_dr6 bits for signals. */
 974        dr6 |= current->thread.virtual_dr6;
 975        if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
 976                send_sigtrap(regs, 0, get_si_code(dr6));
 977
 978out_irq:
 979        local_irq_disable();
 980out:
 981        instrumentation_end();
 982        irqentry_exit_to_user_mode(regs);
 983}
 984
 985#ifdef CONFIG_X86_64
 986/* IST stack entry */
 987DEFINE_IDTENTRY_DEBUG(exc_debug)
 988{
 989        exc_debug_kernel(regs, debug_read_clear_dr6());
 990}
 991
 992/* User entry, runs on regular task stack */
 993DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
 994{
 995        exc_debug_user(regs, debug_read_clear_dr6());
 996}
 997#else
 998/* 32 bit does not have separate entry points. */
 999DEFINE_IDTENTRY_RAW(exc_debug)
1000{
1001        unsigned long dr6 = debug_read_clear_dr6();
1002
1003        if (user_mode(regs))
1004                exc_debug_user(regs, dr6);
1005        else
1006                exc_debug_kernel(regs, dr6);
1007}
1008#endif
1009
1010/*
1011 * Note that we play around with the 'TS' bit in an attempt to get
1012 * the correct behaviour even in the presence of the asynchronous
1013 * IRQ13 behaviour
1014 */
1015static void math_error(struct pt_regs *regs, int trapnr)
1016{
1017        struct task_struct *task = current;
1018        struct fpu *fpu = &task->thread.fpu;
1019        int si_code;
1020        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1021                                                "simd exception";
1022
1023        cond_local_irq_enable(regs);
1024
1025        if (!user_mode(regs)) {
1026                if (fixup_exception(regs, trapnr, 0, 0))
1027                        goto exit;
1028
1029                task->thread.error_code = 0;
1030                task->thread.trap_nr = trapnr;
1031
1032                if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1033                               SIGFPE) != NOTIFY_STOP)
1034                        die(str, regs, 0);
1035                goto exit;
1036        }
1037
1038        /*
1039         * Save the info for the exception handler and clear the error.
1040         */
1041        fpu__save(fpu);
1042
1043        task->thread.trap_nr    = trapnr;
1044        task->thread.error_code = 0;
1045
1046        si_code = fpu__exception_code(fpu, trapnr);
1047        /* Retry when we get spurious exceptions: */
1048        if (!si_code)
1049                goto exit;
1050
1051        force_sig_fault(SIGFPE, si_code,
1052                        (void __user *)uprobe_get_trap_addr(regs));
1053exit:
1054        cond_local_irq_disable(regs);
1055}
1056
1057DEFINE_IDTENTRY(exc_coprocessor_error)
1058{
1059        math_error(regs, X86_TRAP_MF);
1060}
1061
1062DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1063{
1064        if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1065                /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1066                if (!static_cpu_has(X86_FEATURE_XMM)) {
1067                        __exc_general_protection(regs, 0);
1068                        return;
1069                }
1070        }
1071        math_error(regs, X86_TRAP_XF);
1072}
1073
1074DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1075{
1076        /*
1077         * This addresses a Pentium Pro Erratum:
1078         *
1079         * PROBLEM: If the APIC subsystem is configured in mixed mode with
1080         * Virtual Wire mode implemented through the local APIC, an
1081         * interrupt vector of 0Fh (Intel reserved encoding) may be
1082         * generated by the local APIC (Int 15).  This vector may be
1083         * generated upon receipt of a spurious interrupt (an interrupt
1084         * which is removed before the system receives the INTA sequence)
1085         * instead of the programmed 8259 spurious interrupt vector.
1086         *
1087         * IMPLICATION: The spurious interrupt vector programmed in the
1088         * 8259 is normally handled by an operating system's spurious
1089         * interrupt handler. However, a vector of 0Fh is unknown to some
1090         * operating systems, which would crash if this erratum occurred.
1091         *
1092         * In theory this could be limited to 32bit, but the handler is not
1093         * hurting and who knows which other CPUs suffer from this.
1094         */
1095}
1096
1097DEFINE_IDTENTRY(exc_device_not_available)
1098{
1099        unsigned long cr0 = read_cr0();
1100
1101#ifdef CONFIG_MATH_EMULATION
1102        if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1103                struct math_emu_info info = { };
1104
1105                cond_local_irq_enable(regs);
1106
1107                info.regs = regs;
1108                math_emulate(&info);
1109
1110                cond_local_irq_disable(regs);
1111                return;
1112        }
1113#endif
1114
1115        /* This should not happen. */
1116        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1117                /* Try to fix it up and carry on. */
1118                write_cr0(cr0 & ~X86_CR0_TS);
1119        } else {
1120                /*
1121                 * Something terrible happened, and we're better off trying
1122                 * to kill the task than getting stuck in a never-ending
1123                 * loop of #NM faults.
1124                 */
1125                die("unexpected #NM exception", regs, 0);
1126        }
1127}
1128
1129#ifdef CONFIG_X86_32
1130DEFINE_IDTENTRY_SW(iret_error)
1131{
1132        local_irq_enable();
1133        if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1134                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1135                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1136                        ILL_BADSTK, (void __user *)NULL);
1137        }
1138        local_irq_disable();
1139}
1140#endif
1141
1142void __init trap_init(void)
1143{
1144        /* Init cpu_entry_area before IST entries are set up */
1145        setup_cpu_entry_areas();
1146
1147        /* Init GHCB memory pages when running as an SEV-ES guest */
1148        sev_es_init_vc_handling();
1149
1150        idt_setup_traps();
1151
1152        /*
1153         * Should be a barrier for any external CPU state:
1154         */
1155        cpu_init();
1156
1157        idt_setup_ist_traps();
1158}
1159