linux/crypto/ecc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
   3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/random.h>
  29#include <linux/slab.h>
  30#include <linux/swab.h>
  31#include <linux/fips.h>
  32#include <crypto/ecdh.h>
  33#include <crypto/rng.h>
  34#include <asm/unaligned.h>
  35#include <linux/ratelimit.h>
  36
  37#include "ecc.h"
  38#include "ecc_curve_defs.h"
  39
  40typedef struct {
  41        u64 m_low;
  42        u64 m_high;
  43} uint128_t;
  44
  45static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
  46{
  47        switch (curve_id) {
  48        /* In FIPS mode only allow P256 and higher */
  49        case ECC_CURVE_NIST_P192:
  50                return fips_enabled ? NULL : &nist_p192;
  51        case ECC_CURVE_NIST_P256:
  52                return &nist_p256;
  53        default:
  54                return NULL;
  55        }
  56}
  57
  58static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  59{
  60        size_t len = ndigits * sizeof(u64);
  61
  62        if (!len)
  63                return NULL;
  64
  65        return kmalloc(len, GFP_KERNEL);
  66}
  67
  68static void ecc_free_digits_space(u64 *space)
  69{
  70        kfree_sensitive(space);
  71}
  72
  73static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
  74{
  75        struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
  76
  77        if (!p)
  78                return NULL;
  79
  80        p->x = ecc_alloc_digits_space(ndigits);
  81        if (!p->x)
  82                goto err_alloc_x;
  83
  84        p->y = ecc_alloc_digits_space(ndigits);
  85        if (!p->y)
  86                goto err_alloc_y;
  87
  88        p->ndigits = ndigits;
  89
  90        return p;
  91
  92err_alloc_y:
  93        ecc_free_digits_space(p->x);
  94err_alloc_x:
  95        kfree(p);
  96        return NULL;
  97}
  98
  99static void ecc_free_point(struct ecc_point *p)
 100{
 101        if (!p)
 102                return;
 103
 104        kfree_sensitive(p->x);
 105        kfree_sensitive(p->y);
 106        kfree_sensitive(p);
 107}
 108
 109static void vli_clear(u64 *vli, unsigned int ndigits)
 110{
 111        int i;
 112
 113        for (i = 0; i < ndigits; i++)
 114                vli[i] = 0;
 115}
 116
 117/* Returns true if vli == 0, false otherwise. */
 118bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 119{
 120        int i;
 121
 122        for (i = 0; i < ndigits; i++) {
 123                if (vli[i])
 124                        return false;
 125        }
 126
 127        return true;
 128}
 129EXPORT_SYMBOL(vli_is_zero);
 130
 131/* Returns nonzero if bit bit of vli is set. */
 132static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 133{
 134        return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 135}
 136
 137static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
 138{
 139        return vli_test_bit(vli, ndigits * 64 - 1);
 140}
 141
 142/* Counts the number of 64-bit "digits" in vli. */
 143static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 144{
 145        int i;
 146
 147        /* Search from the end until we find a non-zero digit.
 148         * We do it in reverse because we expect that most digits will
 149         * be nonzero.
 150         */
 151        for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 152
 153        return (i + 1);
 154}
 155
 156/* Counts the number of bits required for vli. */
 157static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 158{
 159        unsigned int i, num_digits;
 160        u64 digit;
 161
 162        num_digits = vli_num_digits(vli, ndigits);
 163        if (num_digits == 0)
 164                return 0;
 165
 166        digit = vli[num_digits - 1];
 167        for (i = 0; digit; i++)
 168                digit >>= 1;
 169
 170        return ((num_digits - 1) * 64 + i);
 171}
 172
 173/* Set dest from unaligned bit string src. */
 174void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
 175{
 176        int i;
 177        const u64 *from = src;
 178
 179        for (i = 0; i < ndigits; i++)
 180                dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
 181}
 182EXPORT_SYMBOL(vli_from_be64);
 183
 184void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
 185{
 186        int i;
 187        const u64 *from = src;
 188
 189        for (i = 0; i < ndigits; i++)
 190                dest[i] = get_unaligned_le64(&from[i]);
 191}
 192EXPORT_SYMBOL(vli_from_le64);
 193
 194/* Sets dest = src. */
 195static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 196{
 197        int i;
 198
 199        for (i = 0; i < ndigits; i++)
 200                dest[i] = src[i];
 201}
 202
 203/* Returns sign of left - right. */
 204int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 205{
 206        int i;
 207
 208        for (i = ndigits - 1; i >= 0; i--) {
 209                if (left[i] > right[i])
 210                        return 1;
 211                else if (left[i] < right[i])
 212                        return -1;
 213        }
 214
 215        return 0;
 216}
 217EXPORT_SYMBOL(vli_cmp);
 218
 219/* Computes result = in << c, returning carry. Can modify in place
 220 * (if result == in). 0 < shift < 64.
 221 */
 222static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 223                      unsigned int ndigits)
 224{
 225        u64 carry = 0;
 226        int i;
 227
 228        for (i = 0; i < ndigits; i++) {
 229                u64 temp = in[i];
 230
 231                result[i] = (temp << shift) | carry;
 232                carry = temp >> (64 - shift);
 233        }
 234
 235        return carry;
 236}
 237
 238/* Computes vli = vli >> 1. */
 239static void vli_rshift1(u64 *vli, unsigned int ndigits)
 240{
 241        u64 *end = vli;
 242        u64 carry = 0;
 243
 244        vli += ndigits;
 245
 246        while (vli-- > end) {
 247                u64 temp = *vli;
 248                *vli = (temp >> 1) | carry;
 249                carry = temp << 63;
 250        }
 251}
 252
 253/* Computes result = left + right, returning carry. Can modify in place. */
 254static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 255                   unsigned int ndigits)
 256{
 257        u64 carry = 0;
 258        int i;
 259
 260        for (i = 0; i < ndigits; i++) {
 261                u64 sum;
 262
 263                sum = left[i] + right[i] + carry;
 264                if (sum != left[i])
 265                        carry = (sum < left[i]);
 266
 267                result[i] = sum;
 268        }
 269
 270        return carry;
 271}
 272
 273/* Computes result = left + right, returning carry. Can modify in place. */
 274static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
 275                    unsigned int ndigits)
 276{
 277        u64 carry = right;
 278        int i;
 279
 280        for (i = 0; i < ndigits; i++) {
 281                u64 sum;
 282
 283                sum = left[i] + carry;
 284                if (sum != left[i])
 285                        carry = (sum < left[i]);
 286                else
 287                        carry = !!carry;
 288
 289                result[i] = sum;
 290        }
 291
 292        return carry;
 293}
 294
 295/* Computes result = left - right, returning borrow. Can modify in place. */
 296u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 297                   unsigned int ndigits)
 298{
 299        u64 borrow = 0;
 300        int i;
 301
 302        for (i = 0; i < ndigits; i++) {
 303                u64 diff;
 304
 305                diff = left[i] - right[i] - borrow;
 306                if (diff != left[i])
 307                        borrow = (diff > left[i]);
 308
 309                result[i] = diff;
 310        }
 311
 312        return borrow;
 313}
 314EXPORT_SYMBOL(vli_sub);
 315
 316/* Computes result = left - right, returning borrow. Can modify in place. */
 317static u64 vli_usub(u64 *result, const u64 *left, u64 right,
 318             unsigned int ndigits)
 319{
 320        u64 borrow = right;
 321        int i;
 322
 323        for (i = 0; i < ndigits; i++) {
 324                u64 diff;
 325
 326                diff = left[i] - borrow;
 327                if (diff != left[i])
 328                        borrow = (diff > left[i]);
 329
 330                result[i] = diff;
 331        }
 332
 333        return borrow;
 334}
 335
 336static uint128_t mul_64_64(u64 left, u64 right)
 337{
 338        uint128_t result;
 339#if defined(CONFIG_ARCH_SUPPORTS_INT128)
 340        unsigned __int128 m = (unsigned __int128)left * right;
 341
 342        result.m_low  = m;
 343        result.m_high = m >> 64;
 344#else
 345        u64 a0 = left & 0xffffffffull;
 346        u64 a1 = left >> 32;
 347        u64 b0 = right & 0xffffffffull;
 348        u64 b1 = right >> 32;
 349        u64 m0 = a0 * b0;
 350        u64 m1 = a0 * b1;
 351        u64 m2 = a1 * b0;
 352        u64 m3 = a1 * b1;
 353
 354        m2 += (m0 >> 32);
 355        m2 += m1;
 356
 357        /* Overflow */
 358        if (m2 < m1)
 359                m3 += 0x100000000ull;
 360
 361        result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 362        result.m_high = m3 + (m2 >> 32);
 363#endif
 364        return result;
 365}
 366
 367static uint128_t add_128_128(uint128_t a, uint128_t b)
 368{
 369        uint128_t result;
 370
 371        result.m_low = a.m_low + b.m_low;
 372        result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 373
 374        return result;
 375}
 376
 377static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 378                     unsigned int ndigits)
 379{
 380        uint128_t r01 = { 0, 0 };
 381        u64 r2 = 0;
 382        unsigned int i, k;
 383
 384        /* Compute each digit of result in sequence, maintaining the
 385         * carries.
 386         */
 387        for (k = 0; k < ndigits * 2 - 1; k++) {
 388                unsigned int min;
 389
 390                if (k < ndigits)
 391                        min = 0;
 392                else
 393                        min = (k + 1) - ndigits;
 394
 395                for (i = min; i <= k && i < ndigits; i++) {
 396                        uint128_t product;
 397
 398                        product = mul_64_64(left[i], right[k - i]);
 399
 400                        r01 = add_128_128(r01, product);
 401                        r2 += (r01.m_high < product.m_high);
 402                }
 403
 404                result[k] = r01.m_low;
 405                r01.m_low = r01.m_high;
 406                r01.m_high = r2;
 407                r2 = 0;
 408        }
 409
 410        result[ndigits * 2 - 1] = r01.m_low;
 411}
 412
 413/* Compute product = left * right, for a small right value. */
 414static void vli_umult(u64 *result, const u64 *left, u32 right,
 415                      unsigned int ndigits)
 416{
 417        uint128_t r01 = { 0 };
 418        unsigned int k;
 419
 420        for (k = 0; k < ndigits; k++) {
 421                uint128_t product;
 422
 423                product = mul_64_64(left[k], right);
 424                r01 = add_128_128(r01, product);
 425                /* no carry */
 426                result[k] = r01.m_low;
 427                r01.m_low = r01.m_high;
 428                r01.m_high = 0;
 429        }
 430        result[k] = r01.m_low;
 431        for (++k; k < ndigits * 2; k++)
 432                result[k] = 0;
 433}
 434
 435static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 436{
 437        uint128_t r01 = { 0, 0 };
 438        u64 r2 = 0;
 439        int i, k;
 440
 441        for (k = 0; k < ndigits * 2 - 1; k++) {
 442                unsigned int min;
 443
 444                if (k < ndigits)
 445                        min = 0;
 446                else
 447                        min = (k + 1) - ndigits;
 448
 449                for (i = min; i <= k && i <= k - i; i++) {
 450                        uint128_t product;
 451
 452                        product = mul_64_64(left[i], left[k - i]);
 453
 454                        if (i < k - i) {
 455                                r2 += product.m_high >> 63;
 456                                product.m_high = (product.m_high << 1) |
 457                                                 (product.m_low >> 63);
 458                                product.m_low <<= 1;
 459                        }
 460
 461                        r01 = add_128_128(r01, product);
 462                        r2 += (r01.m_high < product.m_high);
 463                }
 464
 465                result[k] = r01.m_low;
 466                r01.m_low = r01.m_high;
 467                r01.m_high = r2;
 468                r2 = 0;
 469        }
 470
 471        result[ndigits * 2 - 1] = r01.m_low;
 472}
 473
 474/* Computes result = (left + right) % mod.
 475 * Assumes that left < mod and right < mod, result != mod.
 476 */
 477static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 478                        const u64 *mod, unsigned int ndigits)
 479{
 480        u64 carry;
 481
 482        carry = vli_add(result, left, right, ndigits);
 483
 484        /* result > mod (result = mod + remainder), so subtract mod to
 485         * get remainder.
 486         */
 487        if (carry || vli_cmp(result, mod, ndigits) >= 0)
 488                vli_sub(result, result, mod, ndigits);
 489}
 490
 491/* Computes result = (left - right) % mod.
 492 * Assumes that left < mod and right < mod, result != mod.
 493 */
 494static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 495                        const u64 *mod, unsigned int ndigits)
 496{
 497        u64 borrow = vli_sub(result, left, right, ndigits);
 498
 499        /* In this case, p_result == -diff == (max int) - diff.
 500         * Since -x % d == d - x, we can get the correct result from
 501         * result + mod (with overflow).
 502         */
 503        if (borrow)
 504                vli_add(result, result, mod, ndigits);
 505}
 506
 507/*
 508 * Computes result = product % mod
 509 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
 510 *
 511 * References:
 512 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
 513 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
 514 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
 515 */
 516static void vli_mmod_special(u64 *result, const u64 *product,
 517                              const u64 *mod, unsigned int ndigits)
 518{
 519        u64 c = -mod[0];
 520        u64 t[ECC_MAX_DIGITS * 2];
 521        u64 r[ECC_MAX_DIGITS * 2];
 522
 523        vli_set(r, product, ndigits * 2);
 524        while (!vli_is_zero(r + ndigits, ndigits)) {
 525                vli_umult(t, r + ndigits, c, ndigits);
 526                vli_clear(r + ndigits, ndigits);
 527                vli_add(r, r, t, ndigits * 2);
 528        }
 529        vli_set(t, mod, ndigits);
 530        vli_clear(t + ndigits, ndigits);
 531        while (vli_cmp(r, t, ndigits * 2) >= 0)
 532                vli_sub(r, r, t, ndigits * 2);
 533        vli_set(result, r, ndigits);
 534}
 535
 536/*
 537 * Computes result = product % mod
 538 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
 539 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
 540
 541 * References (loosely based on):
 542 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
 543 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
 544 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
 545 *
 546 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
 547 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
 548 * Algorithm 10.25 Fast reduction for special form moduli
 549 */
 550static void vli_mmod_special2(u64 *result, const u64 *product,
 551                               const u64 *mod, unsigned int ndigits)
 552{
 553        u64 c2 = mod[0] * 2;
 554        u64 q[ECC_MAX_DIGITS];
 555        u64 r[ECC_MAX_DIGITS * 2];
 556        u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
 557        int carry; /* last bit that doesn't fit into q */
 558        int i;
 559
 560        vli_set(m, mod, ndigits);
 561        vli_clear(m + ndigits, ndigits);
 562
 563        vli_set(r, product, ndigits);
 564        /* q and carry are top bits */
 565        vli_set(q, product + ndigits, ndigits);
 566        vli_clear(r + ndigits, ndigits);
 567        carry = vli_is_negative(r, ndigits);
 568        if (carry)
 569                r[ndigits - 1] &= (1ull << 63) - 1;
 570        for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
 571                u64 qc[ECC_MAX_DIGITS * 2];
 572
 573                vli_umult(qc, q, c2, ndigits);
 574                if (carry)
 575                        vli_uadd(qc, qc, mod[0], ndigits * 2);
 576                vli_set(q, qc + ndigits, ndigits);
 577                vli_clear(qc + ndigits, ndigits);
 578                carry = vli_is_negative(qc, ndigits);
 579                if (carry)
 580                        qc[ndigits - 1] &= (1ull << 63) - 1;
 581                if (i & 1)
 582                        vli_sub(r, r, qc, ndigits * 2);
 583                else
 584                        vli_add(r, r, qc, ndigits * 2);
 585        }
 586        while (vli_is_negative(r, ndigits * 2))
 587                vli_add(r, r, m, ndigits * 2);
 588        while (vli_cmp(r, m, ndigits * 2) >= 0)
 589                vli_sub(r, r, m, ndigits * 2);
 590
 591        vli_set(result, r, ndigits);
 592}
 593
 594/*
 595 * Computes result = product % mod, where product is 2N words long.
 596 * Reference: Ken MacKay's micro-ecc.
 597 * Currently only designed to work for curve_p or curve_n.
 598 */
 599static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
 600                          unsigned int ndigits)
 601{
 602        u64 mod_m[2 * ECC_MAX_DIGITS];
 603        u64 tmp[2 * ECC_MAX_DIGITS];
 604        u64 *v[2] = { tmp, product };
 605        u64 carry = 0;
 606        unsigned int i;
 607        /* Shift mod so its highest set bit is at the maximum position. */
 608        int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
 609        int word_shift = shift / 64;
 610        int bit_shift = shift % 64;
 611
 612        vli_clear(mod_m, word_shift);
 613        if (bit_shift > 0) {
 614                for (i = 0; i < ndigits; ++i) {
 615                        mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
 616                        carry = mod[i] >> (64 - bit_shift);
 617                }
 618        } else
 619                vli_set(mod_m + word_shift, mod, ndigits);
 620
 621        for (i = 1; shift >= 0; --shift) {
 622                u64 borrow = 0;
 623                unsigned int j;
 624
 625                for (j = 0; j < ndigits * 2; ++j) {
 626                        u64 diff = v[i][j] - mod_m[j] - borrow;
 627
 628                        if (diff != v[i][j])
 629                                borrow = (diff > v[i][j]);
 630                        v[1 - i][j] = diff;
 631                }
 632                i = !(i ^ borrow); /* Swap the index if there was no borrow */
 633                vli_rshift1(mod_m, ndigits);
 634                mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
 635                vli_rshift1(mod_m + ndigits, ndigits);
 636        }
 637        vli_set(result, v[i], ndigits);
 638}
 639
 640/* Computes result = product % mod using Barrett's reduction with precomputed
 641 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
 642 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
 643 * boundary.
 644 *
 645 * Reference:
 646 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
 647 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
 648 */
 649static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
 650                             unsigned int ndigits)
 651{
 652        u64 q[ECC_MAX_DIGITS * 2];
 653        u64 r[ECC_MAX_DIGITS * 2];
 654        const u64 *mu = mod + ndigits;
 655
 656        vli_mult(q, product + ndigits, mu, ndigits);
 657        if (mu[ndigits])
 658                vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
 659        vli_mult(r, mod, q + ndigits, ndigits);
 660        vli_sub(r, product, r, ndigits * 2);
 661        while (!vli_is_zero(r + ndigits, ndigits) ||
 662               vli_cmp(r, mod, ndigits) != -1) {
 663                u64 carry;
 664
 665                carry = vli_sub(r, r, mod, ndigits);
 666                vli_usub(r + ndigits, r + ndigits, carry, ndigits);
 667        }
 668        vli_set(result, r, ndigits);
 669}
 670
 671/* Computes p_result = p_product % curve_p.
 672 * See algorithm 5 and 6 from
 673 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 674 */
 675static void vli_mmod_fast_192(u64 *result, const u64 *product,
 676                              const u64 *curve_prime, u64 *tmp)
 677{
 678        const unsigned int ndigits = 3;
 679        int carry;
 680
 681        vli_set(result, product, ndigits);
 682
 683        vli_set(tmp, &product[3], ndigits);
 684        carry = vli_add(result, result, tmp, ndigits);
 685
 686        tmp[0] = 0;
 687        tmp[1] = product[3];
 688        tmp[2] = product[4];
 689        carry += vli_add(result, result, tmp, ndigits);
 690
 691        tmp[0] = tmp[1] = product[5];
 692        tmp[2] = 0;
 693        carry += vli_add(result, result, tmp, ndigits);
 694
 695        while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 696                carry -= vli_sub(result, result, curve_prime, ndigits);
 697}
 698
 699/* Computes result = product % curve_prime
 700 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 701 */
 702static void vli_mmod_fast_256(u64 *result, const u64 *product,
 703                              const u64 *curve_prime, u64 *tmp)
 704{
 705        int carry;
 706        const unsigned int ndigits = 4;
 707
 708        /* t */
 709        vli_set(result, product, ndigits);
 710
 711        /* s1 */
 712        tmp[0] = 0;
 713        tmp[1] = product[5] & 0xffffffff00000000ull;
 714        tmp[2] = product[6];
 715        tmp[3] = product[7];
 716        carry = vli_lshift(tmp, tmp, 1, ndigits);
 717        carry += vli_add(result, result, tmp, ndigits);
 718
 719        /* s2 */
 720        tmp[1] = product[6] << 32;
 721        tmp[2] = (product[6] >> 32) | (product[7] << 32);
 722        tmp[3] = product[7] >> 32;
 723        carry += vli_lshift(tmp, tmp, 1, ndigits);
 724        carry += vli_add(result, result, tmp, ndigits);
 725
 726        /* s3 */
 727        tmp[0] = product[4];
 728        tmp[1] = product[5] & 0xffffffff;
 729        tmp[2] = 0;
 730        tmp[3] = product[7];
 731        carry += vli_add(result, result, tmp, ndigits);
 732
 733        /* s4 */
 734        tmp[0] = (product[4] >> 32) | (product[5] << 32);
 735        tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 736        tmp[2] = product[7];
 737        tmp[3] = (product[6] >> 32) | (product[4] << 32);
 738        carry += vli_add(result, result, tmp, ndigits);
 739
 740        /* d1 */
 741        tmp[0] = (product[5] >> 32) | (product[6] << 32);
 742        tmp[1] = (product[6] >> 32);
 743        tmp[2] = 0;
 744        tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 745        carry -= vli_sub(result, result, tmp, ndigits);
 746
 747        /* d2 */
 748        tmp[0] = product[6];
 749        tmp[1] = product[7];
 750        tmp[2] = 0;
 751        tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 752        carry -= vli_sub(result, result, tmp, ndigits);
 753
 754        /* d3 */
 755        tmp[0] = (product[6] >> 32) | (product[7] << 32);
 756        tmp[1] = (product[7] >> 32) | (product[4] << 32);
 757        tmp[2] = (product[4] >> 32) | (product[5] << 32);
 758        tmp[3] = (product[6] << 32);
 759        carry -= vli_sub(result, result, tmp, ndigits);
 760
 761        /* d4 */
 762        tmp[0] = product[7];
 763        tmp[1] = product[4] & 0xffffffff00000000ull;
 764        tmp[2] = product[5];
 765        tmp[3] = product[6] & 0xffffffff00000000ull;
 766        carry -= vli_sub(result, result, tmp, ndigits);
 767
 768        if (carry < 0) {
 769                do {
 770                        carry += vli_add(result, result, curve_prime, ndigits);
 771                } while (carry < 0);
 772        } else {
 773                while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 774                        carry -= vli_sub(result, result, curve_prime, ndigits);
 775        }
 776}
 777
 778/* Computes result = product % curve_prime for different curve_primes.
 779 *
 780 * Note that curve_primes are distinguished just by heuristic check and
 781 * not by complete conformance check.
 782 */
 783static bool vli_mmod_fast(u64 *result, u64 *product,
 784                          const u64 *curve_prime, unsigned int ndigits)
 785{
 786        u64 tmp[2 * ECC_MAX_DIGITS];
 787
 788        /* Currently, both NIST primes have -1 in lowest qword. */
 789        if (curve_prime[0] != -1ull) {
 790                /* Try to handle Pseudo-Marsenne primes. */
 791                if (curve_prime[ndigits - 1] == -1ull) {
 792                        vli_mmod_special(result, product, curve_prime,
 793                                         ndigits);
 794                        return true;
 795                } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
 796                           curve_prime[ndigits - 2] == 0) {
 797                        vli_mmod_special2(result, product, curve_prime,
 798                                          ndigits);
 799                        return true;
 800                }
 801                vli_mmod_barrett(result, product, curve_prime, ndigits);
 802                return true;
 803        }
 804
 805        switch (ndigits) {
 806        case 3:
 807                vli_mmod_fast_192(result, product, curve_prime, tmp);
 808                break;
 809        case 4:
 810                vli_mmod_fast_256(result, product, curve_prime, tmp);
 811                break;
 812        default:
 813                pr_err_ratelimited("ecc: unsupported digits size!\n");
 814                return false;
 815        }
 816
 817        return true;
 818}
 819
 820/* Computes result = (left * right) % mod.
 821 * Assumes that mod is big enough curve order.
 822 */
 823void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
 824                       const u64 *mod, unsigned int ndigits)
 825{
 826        u64 product[ECC_MAX_DIGITS * 2];
 827
 828        vli_mult(product, left, right, ndigits);
 829        vli_mmod_slow(result, product, mod, ndigits);
 830}
 831EXPORT_SYMBOL(vli_mod_mult_slow);
 832
 833/* Computes result = (left * right) % curve_prime. */
 834static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
 835                              const u64 *curve_prime, unsigned int ndigits)
 836{
 837        u64 product[2 * ECC_MAX_DIGITS];
 838
 839        vli_mult(product, left, right, ndigits);
 840        vli_mmod_fast(result, product, curve_prime, ndigits);
 841}
 842
 843/* Computes result = left^2 % curve_prime. */
 844static void vli_mod_square_fast(u64 *result, const u64 *left,
 845                                const u64 *curve_prime, unsigned int ndigits)
 846{
 847        u64 product[2 * ECC_MAX_DIGITS];
 848
 849        vli_square(product, left, ndigits);
 850        vli_mmod_fast(result, product, curve_prime, ndigits);
 851}
 852
 853#define EVEN(vli) (!(vli[0] & 1))
 854/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 855 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 856 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 857 */
 858void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 859                        unsigned int ndigits)
 860{
 861        u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
 862        u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
 863        u64 carry;
 864        int cmp_result;
 865
 866        if (vli_is_zero(input, ndigits)) {
 867                vli_clear(result, ndigits);
 868                return;
 869        }
 870
 871        vli_set(a, input, ndigits);
 872        vli_set(b, mod, ndigits);
 873        vli_clear(u, ndigits);
 874        u[0] = 1;
 875        vli_clear(v, ndigits);
 876
 877        while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
 878                carry = 0;
 879
 880                if (EVEN(a)) {
 881                        vli_rshift1(a, ndigits);
 882
 883                        if (!EVEN(u))
 884                                carry = vli_add(u, u, mod, ndigits);
 885
 886                        vli_rshift1(u, ndigits);
 887                        if (carry)
 888                                u[ndigits - 1] |= 0x8000000000000000ull;
 889                } else if (EVEN(b)) {
 890                        vli_rshift1(b, ndigits);
 891
 892                        if (!EVEN(v))
 893                                carry = vli_add(v, v, mod, ndigits);
 894
 895                        vli_rshift1(v, ndigits);
 896                        if (carry)
 897                                v[ndigits - 1] |= 0x8000000000000000ull;
 898                } else if (cmp_result > 0) {
 899                        vli_sub(a, a, b, ndigits);
 900                        vli_rshift1(a, ndigits);
 901
 902                        if (vli_cmp(u, v, ndigits) < 0)
 903                                vli_add(u, u, mod, ndigits);
 904
 905                        vli_sub(u, u, v, ndigits);
 906                        if (!EVEN(u))
 907                                carry = vli_add(u, u, mod, ndigits);
 908
 909                        vli_rshift1(u, ndigits);
 910                        if (carry)
 911                                u[ndigits - 1] |= 0x8000000000000000ull;
 912                } else {
 913                        vli_sub(b, b, a, ndigits);
 914                        vli_rshift1(b, ndigits);
 915
 916                        if (vli_cmp(v, u, ndigits) < 0)
 917                                vli_add(v, v, mod, ndigits);
 918
 919                        vli_sub(v, v, u, ndigits);
 920                        if (!EVEN(v))
 921                                carry = vli_add(v, v, mod, ndigits);
 922
 923                        vli_rshift1(v, ndigits);
 924                        if (carry)
 925                                v[ndigits - 1] |= 0x8000000000000000ull;
 926                }
 927        }
 928
 929        vli_set(result, u, ndigits);
 930}
 931EXPORT_SYMBOL(vli_mod_inv);
 932
 933/* ------ Point operations ------ */
 934
 935/* Returns true if p_point is the point at infinity, false otherwise. */
 936static bool ecc_point_is_zero(const struct ecc_point *point)
 937{
 938        return (vli_is_zero(point->x, point->ndigits) &&
 939                vli_is_zero(point->y, point->ndigits));
 940}
 941
 942/* Point multiplication algorithm using Montgomery's ladder with co-Z
 943 * coordinates. From https://eprint.iacr.org/2011/338.pdf
 944 */
 945
 946/* Double in place */
 947static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
 948                                      u64 *curve_prime, unsigned int ndigits)
 949{
 950        /* t1 = x, t2 = y, t3 = z */
 951        u64 t4[ECC_MAX_DIGITS];
 952        u64 t5[ECC_MAX_DIGITS];
 953
 954        if (vli_is_zero(z1, ndigits))
 955                return;
 956
 957        /* t4 = y1^2 */
 958        vli_mod_square_fast(t4, y1, curve_prime, ndigits);
 959        /* t5 = x1*y1^2 = A */
 960        vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
 961        /* t4 = y1^4 */
 962        vli_mod_square_fast(t4, t4, curve_prime, ndigits);
 963        /* t2 = y1*z1 = z3 */
 964        vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
 965        /* t3 = z1^2 */
 966        vli_mod_square_fast(z1, z1, curve_prime, ndigits);
 967
 968        /* t1 = x1 + z1^2 */
 969        vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 970        /* t3 = 2*z1^2 */
 971        vli_mod_add(z1, z1, z1, curve_prime, ndigits);
 972        /* t3 = x1 - z1^2 */
 973        vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
 974        /* t1 = x1^2 - z1^4 */
 975        vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
 976
 977        /* t3 = 2*(x1^2 - z1^4) */
 978        vli_mod_add(z1, x1, x1, curve_prime, ndigits);
 979        /* t1 = 3*(x1^2 - z1^4) */
 980        vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 981        if (vli_test_bit(x1, 0)) {
 982                u64 carry = vli_add(x1, x1, curve_prime, ndigits);
 983
 984                vli_rshift1(x1, ndigits);
 985                x1[ndigits - 1] |= carry << 63;
 986        } else {
 987                vli_rshift1(x1, ndigits);
 988        }
 989        /* t1 = 3/2*(x1^2 - z1^4) = B */
 990
 991        /* t3 = B^2 */
 992        vli_mod_square_fast(z1, x1, curve_prime, ndigits);
 993        /* t3 = B^2 - A */
 994        vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 995        /* t3 = B^2 - 2A = x3 */
 996        vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 997        /* t5 = A - x3 */
 998        vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
 999        /* t1 = B * (A - x3) */
1000        vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1001        /* t4 = B * (A - x3) - y1^4 = y3 */
1002        vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1003
1004        vli_set(x1, z1, ndigits);
1005        vli_set(z1, y1, ndigits);
1006        vli_set(y1, t4, ndigits);
1007}
1008
1009/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1010static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
1011                    unsigned int ndigits)
1012{
1013        u64 t1[ECC_MAX_DIGITS];
1014
1015        vli_mod_square_fast(t1, z, curve_prime, ndigits);    /* z^2 */
1016        vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
1017        vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits);  /* z^3 */
1018        vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
1019}
1020
1021/* P = (x1, y1) => 2P, (x2, y2) => P' */
1022static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1023                                u64 *p_initial_z, u64 *curve_prime,
1024                                unsigned int ndigits)
1025{
1026        u64 z[ECC_MAX_DIGITS];
1027
1028        vli_set(x2, x1, ndigits);
1029        vli_set(y2, y1, ndigits);
1030
1031        vli_clear(z, ndigits);
1032        z[0] = 1;
1033
1034        if (p_initial_z)
1035                vli_set(z, p_initial_z, ndigits);
1036
1037        apply_z(x1, y1, z, curve_prime, ndigits);
1038
1039        ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
1040
1041        apply_z(x2, y2, z, curve_prime, ndigits);
1042}
1043
1044/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1045 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1046 * or P => P', Q => P + Q
1047 */
1048static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
1049                     unsigned int ndigits)
1050{
1051        /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1052        u64 t5[ECC_MAX_DIGITS];
1053
1054        /* t5 = x2 - x1 */
1055        vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1056        /* t5 = (x2 - x1)^2 = A */
1057        vli_mod_square_fast(t5, t5, curve_prime, ndigits);
1058        /* t1 = x1*A = B */
1059        vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1060        /* t3 = x2*A = C */
1061        vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
1062        /* t4 = y2 - y1 */
1063        vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1064        /* t5 = (y2 - y1)^2 = D */
1065        vli_mod_square_fast(t5, y2, curve_prime, ndigits);
1066
1067        /* t5 = D - B */
1068        vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1069        /* t5 = D - B - C = x3 */
1070        vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1071        /* t3 = C - B */
1072        vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1073        /* t2 = y1*(C - B) */
1074        vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
1075        /* t3 = B - x3 */
1076        vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1077        /* t4 = (y2 - y1)*(B - x3) */
1078        vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
1079        /* t4 = y3 */
1080        vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1081
1082        vli_set(x2, t5, ndigits);
1083}
1084
1085/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1086 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1087 * or P => P - Q, Q => P + Q
1088 */
1089static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
1090                       unsigned int ndigits)
1091{
1092        /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1093        u64 t5[ECC_MAX_DIGITS];
1094        u64 t6[ECC_MAX_DIGITS];
1095        u64 t7[ECC_MAX_DIGITS];
1096
1097        /* t5 = x2 - x1 */
1098        vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1099        /* t5 = (x2 - x1)^2 = A */
1100        vli_mod_square_fast(t5, t5, curve_prime, ndigits);
1101        /* t1 = x1*A = B */
1102        vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1103        /* t3 = x2*A = C */
1104        vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
1105        /* t4 = y2 + y1 */
1106        vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1107        /* t4 = y2 - y1 */
1108        vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1109
1110        /* t6 = C - B */
1111        vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1112        /* t2 = y1 * (C - B) */
1113        vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
1114        /* t6 = B + C */
1115        vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1116        /* t3 = (y2 - y1)^2 */
1117        vli_mod_square_fast(x2, y2, curve_prime, ndigits);
1118        /* t3 = x3 */
1119        vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1120
1121        /* t7 = B - x3 */
1122        vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1123        /* t4 = (y2 - y1)*(B - x3) */
1124        vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
1125        /* t4 = y3 */
1126        vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1127
1128        /* t7 = (y2 + y1)^2 = F */
1129        vli_mod_square_fast(t7, t5, curve_prime, ndigits);
1130        /* t7 = x3' */
1131        vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1132        /* t6 = x3' - B */
1133        vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1134        /* t6 = (y2 + y1)*(x3' - B) */
1135        vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
1136        /* t2 = y3' */
1137        vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1138
1139        vli_set(x1, t7, ndigits);
1140}
1141
1142static void ecc_point_mult(struct ecc_point *result,
1143                           const struct ecc_point *point, const u64 *scalar,
1144                           u64 *initial_z, const struct ecc_curve *curve,
1145                           unsigned int ndigits)
1146{
1147        /* R0 and R1 */
1148        u64 rx[2][ECC_MAX_DIGITS];
1149        u64 ry[2][ECC_MAX_DIGITS];
1150        u64 z[ECC_MAX_DIGITS];
1151        u64 sk[2][ECC_MAX_DIGITS];
1152        u64 *curve_prime = curve->p;
1153        int i, nb;
1154        int num_bits;
1155        int carry;
1156
1157        carry = vli_add(sk[0], scalar, curve->n, ndigits);
1158        vli_add(sk[1], sk[0], curve->n, ndigits);
1159        scalar = sk[!carry];
1160        num_bits = sizeof(u64) * ndigits * 8 + 1;
1161
1162        vli_set(rx[1], point->x, ndigits);
1163        vli_set(ry[1], point->y, ndigits);
1164
1165        xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
1166                            ndigits);
1167
1168        for (i = num_bits - 2; i > 0; i--) {
1169                nb = !vli_test_bit(scalar, i);
1170                xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
1171                           ndigits);
1172                xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
1173                         ndigits);
1174        }
1175
1176        nb = !vli_test_bit(scalar, 0);
1177        xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
1178                   ndigits);
1179
1180        /* Find final 1/Z value. */
1181        /* X1 - X0 */
1182        vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1183        /* Yb * (X1 - X0) */
1184        vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
1185        /* xP * Yb * (X1 - X0) */
1186        vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
1187
1188        /* 1 / (xP * Yb * (X1 - X0)) */
1189        vli_mod_inv(z, z, curve_prime, point->ndigits);
1190
1191        /* yP / (xP * Yb * (X1 - X0)) */
1192        vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
1193        /* Xb * yP / (xP * Yb * (X1 - X0)) */
1194        vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
1195        /* End 1/Z calculation */
1196
1197        xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
1198
1199        apply_z(rx[0], ry[0], z, curve_prime, ndigits);
1200
1201        vli_set(result->x, rx[0], ndigits);
1202        vli_set(result->y, ry[0], ndigits);
1203}
1204
1205/* Computes R = P + Q mod p */
1206static void ecc_point_add(const struct ecc_point *result,
1207                   const struct ecc_point *p, const struct ecc_point *q,
1208                   const struct ecc_curve *curve)
1209{
1210        u64 z[ECC_MAX_DIGITS];
1211        u64 px[ECC_MAX_DIGITS];
1212        u64 py[ECC_MAX_DIGITS];
1213        unsigned int ndigits = curve->g.ndigits;
1214
1215        vli_set(result->x, q->x, ndigits);
1216        vli_set(result->y, q->y, ndigits);
1217        vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1218        vli_set(px, p->x, ndigits);
1219        vli_set(py, p->y, ndigits);
1220        xycz_add(px, py, result->x, result->y, curve->p, ndigits);
1221        vli_mod_inv(z, z, curve->p, ndigits);
1222        apply_z(result->x, result->y, z, curve->p, ndigits);
1223}
1224
1225/* Computes R = u1P + u2Q mod p using Shamir's trick.
1226 * Based on: Kenneth MacKay's micro-ecc (2014).
1227 */
1228void ecc_point_mult_shamir(const struct ecc_point *result,
1229                           const u64 *u1, const struct ecc_point *p,
1230                           const u64 *u2, const struct ecc_point *q,
1231                           const struct ecc_curve *curve)
1232{
1233        u64 z[ECC_MAX_DIGITS];
1234        u64 sump[2][ECC_MAX_DIGITS];
1235        u64 *rx = result->x;
1236        u64 *ry = result->y;
1237        unsigned int ndigits = curve->g.ndigits;
1238        unsigned int num_bits;
1239        struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1240        const struct ecc_point *points[4];
1241        const struct ecc_point *point;
1242        unsigned int idx;
1243        int i;
1244
1245        ecc_point_add(&sum, p, q, curve);
1246        points[0] = NULL;
1247        points[1] = p;
1248        points[2] = q;
1249        points[3] = &sum;
1250
1251        num_bits = max(vli_num_bits(u1, ndigits),
1252                       vli_num_bits(u2, ndigits));
1253        i = num_bits - 1;
1254        idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1255        point = points[idx];
1256
1257        vli_set(rx, point->x, ndigits);
1258        vli_set(ry, point->y, ndigits);
1259        vli_clear(z + 1, ndigits - 1);
1260        z[0] = 1;
1261
1262        for (--i; i >= 0; i--) {
1263                ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits);
1264                idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1265                point = points[idx];
1266                if (point) {
1267                        u64 tx[ECC_MAX_DIGITS];
1268                        u64 ty[ECC_MAX_DIGITS];
1269                        u64 tz[ECC_MAX_DIGITS];
1270
1271                        vli_set(tx, point->x, ndigits);
1272                        vli_set(ty, point->y, ndigits);
1273                        apply_z(tx, ty, z, curve->p, ndigits);
1274                        vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1275                        xycz_add(tx, ty, rx, ry, curve->p, ndigits);
1276                        vli_mod_mult_fast(z, z, tz, curve->p, ndigits);
1277                }
1278        }
1279        vli_mod_inv(z, z, curve->p, ndigits);
1280        apply_z(rx, ry, z, curve->p, ndigits);
1281}
1282EXPORT_SYMBOL(ecc_point_mult_shamir);
1283
1284static inline void ecc_swap_digits(const u64 *in, u64 *out,
1285                                   unsigned int ndigits)
1286{
1287        const __be64 *src = (__force __be64 *)in;
1288        int i;
1289
1290        for (i = 0; i < ndigits; i++)
1291                out[i] = be64_to_cpu(src[ndigits - 1 - i]);
1292}
1293
1294static int __ecc_is_key_valid(const struct ecc_curve *curve,
1295                              const u64 *private_key, unsigned int ndigits)
1296{
1297        u64 one[ECC_MAX_DIGITS] = { 1, };
1298        u64 res[ECC_MAX_DIGITS];
1299
1300        if (!private_key)
1301                return -EINVAL;
1302
1303        if (curve->g.ndigits != ndigits)
1304                return -EINVAL;
1305
1306        /* Make sure the private key is in the range [2, n-3]. */
1307        if (vli_cmp(one, private_key, ndigits) != -1)
1308                return -EINVAL;
1309        vli_sub(res, curve->n, one, ndigits);
1310        vli_sub(res, res, one, ndigits);
1311        if (vli_cmp(res, private_key, ndigits) != 1)
1312                return -EINVAL;
1313
1314        return 0;
1315}
1316
1317int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1318                     const u64 *private_key, unsigned int private_key_len)
1319{
1320        int nbytes;
1321        const struct ecc_curve *curve = ecc_get_curve(curve_id);
1322
1323        nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1324
1325        if (private_key_len != nbytes)
1326                return -EINVAL;
1327
1328        return __ecc_is_key_valid(curve, private_key, ndigits);
1329}
1330EXPORT_SYMBOL(ecc_is_key_valid);
1331
1332/*
1333 * ECC private keys are generated using the method of extra random bits,
1334 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1335 *
1336 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1337 *                         than requested
1338 * 0 <= c mod(n-1) <= n-2  and implies that
1339 * 1 <= d <= n-1
1340 *
1341 * This method generates a private key uniformly distributed in the range
1342 * [1, n-1].
1343 */
1344int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1345{
1346        const struct ecc_curve *curve = ecc_get_curve(curve_id);
1347        u64 priv[ECC_MAX_DIGITS];
1348        unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1349        unsigned int nbits = vli_num_bits(curve->n, ndigits);
1350        int err;
1351
1352        /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1353        if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1354                return -EINVAL;
1355
1356        /*
1357         * FIPS 186-4 recommends that the private key should be obtained from a
1358         * RBG with a security strength equal to or greater than the security
1359         * strength associated with N.
1360         *
1361         * The maximum security strength identified by NIST SP800-57pt1r4 for
1362         * ECC is 256 (N >= 512).
1363         *
1364         * This condition is met by the default RNG because it selects a favored
1365         * DRBG with a security strength of 256.
1366         */
1367        if (crypto_get_default_rng())
1368                return -EFAULT;
1369
1370        err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1371        crypto_put_default_rng();
1372        if (err)
1373                return err;
1374
1375        /* Make sure the private key is in the valid range. */
1376        if (__ecc_is_key_valid(curve, priv, ndigits))
1377                return -EINVAL;
1378
1379        ecc_swap_digits(priv, privkey, ndigits);
1380
1381        return 0;
1382}
1383EXPORT_SYMBOL(ecc_gen_privkey);
1384
1385int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1386                     const u64 *private_key, u64 *public_key)
1387{
1388        int ret = 0;
1389        struct ecc_point *pk;
1390        u64 priv[ECC_MAX_DIGITS];
1391        const struct ecc_curve *curve = ecc_get_curve(curve_id);
1392
1393        if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1394                ret = -EINVAL;
1395                goto out;
1396        }
1397
1398        ecc_swap_digits(private_key, priv, ndigits);
1399
1400        pk = ecc_alloc_point(ndigits);
1401        if (!pk) {
1402                ret = -ENOMEM;
1403                goto out;
1404        }
1405
1406        ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1407
1408        /* SP800-56A rev 3 5.6.2.1.3 key check */
1409        if (ecc_is_pubkey_valid_full(curve, pk)) {
1410                ret = -EAGAIN;
1411                goto err_free_point;
1412        }
1413
1414        ecc_swap_digits(pk->x, public_key, ndigits);
1415        ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1416
1417err_free_point:
1418        ecc_free_point(pk);
1419out:
1420        return ret;
1421}
1422EXPORT_SYMBOL(ecc_make_pub_key);
1423
1424/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1425int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1426                                struct ecc_point *pk)
1427{
1428        u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1429
1430        if (WARN_ON(pk->ndigits != curve->g.ndigits))
1431                return -EINVAL;
1432
1433        /* Check 1: Verify key is not the zero point. */
1434        if (ecc_point_is_zero(pk))
1435                return -EINVAL;
1436
1437        /* Check 2: Verify key is in the range [1, p-1]. */
1438        if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1439                return -EINVAL;
1440        if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1441                return -EINVAL;
1442
1443        /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1444        vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */
1445        vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */
1446        vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */
1447        vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */
1448        vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1449        vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1450        if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1451                return -EINVAL;
1452
1453        return 0;
1454}
1455EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1456
1457/* SP800-56A section 5.6.2.3.3 full verification */
1458int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1459                             struct ecc_point *pk)
1460{
1461        struct ecc_point *nQ;
1462
1463        /* Checks 1 through 3 */
1464        int ret = ecc_is_pubkey_valid_partial(curve, pk);
1465
1466        if (ret)
1467                return ret;
1468
1469        /* Check 4: Verify that nQ is the zero point. */
1470        nQ = ecc_alloc_point(pk->ndigits);
1471        if (!nQ)
1472                return -ENOMEM;
1473
1474        ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1475        if (!ecc_point_is_zero(nQ))
1476                ret = -EINVAL;
1477
1478        ecc_free_point(nQ);
1479
1480        return ret;
1481}
1482EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1483
1484int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1485                              const u64 *private_key, const u64 *public_key,
1486                              u64 *secret)
1487{
1488        int ret = 0;
1489        struct ecc_point *product, *pk;
1490        u64 priv[ECC_MAX_DIGITS];
1491        u64 rand_z[ECC_MAX_DIGITS];
1492        unsigned int nbytes;
1493        const struct ecc_curve *curve = ecc_get_curve(curve_id);
1494
1495        if (!private_key || !public_key || !curve ||
1496            ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1497                ret = -EINVAL;
1498                goto out;
1499        }
1500
1501        nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1502
1503        get_random_bytes(rand_z, nbytes);
1504
1505        pk = ecc_alloc_point(ndigits);
1506        if (!pk) {
1507                ret = -ENOMEM;
1508                goto out;
1509        }
1510
1511        ecc_swap_digits(public_key, pk->x, ndigits);
1512        ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1513        ret = ecc_is_pubkey_valid_partial(curve, pk);
1514        if (ret)
1515                goto err_alloc_product;
1516
1517        ecc_swap_digits(private_key, priv, ndigits);
1518
1519        product = ecc_alloc_point(ndigits);
1520        if (!product) {
1521                ret = -ENOMEM;
1522                goto err_alloc_product;
1523        }
1524
1525        ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1526
1527        if (ecc_point_is_zero(product)) {
1528                ret = -EFAULT;
1529                goto err_validity;
1530        }
1531
1532        ecc_swap_digits(product->x, secret, ndigits);
1533
1534err_validity:
1535        memzero_explicit(priv, sizeof(priv));
1536        memzero_explicit(rand_z, sizeof(rand_z));
1537        ecc_free_point(product);
1538err_alloc_product:
1539        ecc_free_point(pk);
1540out:
1541        return ret;
1542}
1543EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1544
1545MODULE_LICENSE("Dual BSD/GPL");
1546