linux/drivers/cpufreq/tegra194-cpufreq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
   4 */
   5
   6#include <linux/cpu.h>
   7#include <linux/cpufreq.h>
   8#include <linux/delay.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_platform.h>
  13#include <linux/platform_device.h>
  14#include <linux/slab.h>
  15
  16#include <asm/smp_plat.h>
  17
  18#include <soc/tegra/bpmp.h>
  19#include <soc/tegra/bpmp-abi.h>
  20
  21#define KHZ                     1000
  22#define REF_CLK_MHZ             408 /* 408 MHz */
  23#define US_DELAY                500
  24#define US_DELAY_MIN            2
  25#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
  26#define MAX_CNT                 ~0U
  27
  28/* cpufreq transisition latency */
  29#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
  30
  31enum cluster {
  32        CLUSTER0,
  33        CLUSTER1,
  34        CLUSTER2,
  35        CLUSTER3,
  36        MAX_CLUSTERS,
  37};
  38
  39struct tegra194_cpufreq_data {
  40        void __iomem *regs;
  41        size_t num_clusters;
  42        struct cpufreq_frequency_table **tables;
  43};
  44
  45struct tegra_cpu_ctr {
  46        u32 cpu;
  47        u32 delay;
  48        u32 coreclk_cnt, last_coreclk_cnt;
  49        u32 refclk_cnt, last_refclk_cnt;
  50};
  51
  52struct read_counters_work {
  53        struct work_struct work;
  54        struct tegra_cpu_ctr c;
  55};
  56
  57static struct workqueue_struct *read_counters_wq;
  58
  59static void get_cpu_cluster(void *cluster)
  60{
  61        u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  62
  63        *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  64}
  65
  66/*
  67 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
  68 * The register provides frequency feedback information to
  69 * determine the average actual frequency a core has run at over
  70 * a period of time.
  71 *      [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
  72 *      [63:32] Core clock counter: counts on every core clock cycle
  73 *                      where the core is architecturally clocking
  74 */
  75static u64 read_freq_feedback(void)
  76{
  77        u64 val = 0;
  78
  79        asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
  80
  81        return val;
  82}
  83
  84static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
  85                                   *nltbl, u16 ndiv)
  86{
  87        return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
  88}
  89
  90static void tegra_read_counters(struct work_struct *work)
  91{
  92        struct read_counters_work *read_counters_work;
  93        struct tegra_cpu_ctr *c;
  94        u64 val;
  95
  96        /*
  97         * ref_clk_counter(32 bit counter) runs on constant clk,
  98         * pll_p(408MHz).
  99         * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
 100         *              = 10526880 usec = 10.527 sec to overflow
 101         *
 102         * Like wise core_clk_counter(32 bit counter) runs on core clock.
 103         * It's synchronized to crab_clk (cpu_crab_clk) which runs at
 104         * freq of cluster. Assuming max cluster clock ~2000MHz,
 105         * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
 106         *              = ~2.147 sec to overflow
 107         */
 108        read_counters_work = container_of(work, struct read_counters_work,
 109                                          work);
 110        c = &read_counters_work->c;
 111
 112        val = read_freq_feedback();
 113        c->last_refclk_cnt = lower_32_bits(val);
 114        c->last_coreclk_cnt = upper_32_bits(val);
 115        udelay(c->delay);
 116        val = read_freq_feedback();
 117        c->refclk_cnt = lower_32_bits(val);
 118        c->coreclk_cnt = upper_32_bits(val);
 119}
 120
 121/*
 122 * Return instantaneous cpu speed
 123 * Instantaneous freq is calculated as -
 124 * -Takes sample on every query of getting the freq.
 125 *      - Read core and ref clock counters;
 126 *      - Delay for X us
 127 *      - Read above cycle counters again
 128 *      - Calculates freq by subtracting current and previous counters
 129 *        divided by the delay time or eqv. of ref_clk_counter in delta time
 130 *      - Return Kcycles/second, freq in KHz
 131 *
 132 *      delta time period = x sec
 133 *                        = delta ref_clk_counter / (408 * 10^6) sec
 134 *      freq in Hz = cycles/sec
 135 *                 = (delta cycles / x sec
 136 *                 = (delta cycles * 408 * 10^6) / delta ref_clk_counter
 137 *      in KHz     = (delta cycles * 408 * 10^3) / delta ref_clk_counter
 138 *
 139 * @cpu - logical cpu whose freq to be updated
 140 * Returns freq in KHz on success, 0 if cpu is offline
 141 */
 142static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
 143{
 144        struct read_counters_work read_counters_work;
 145        struct tegra_cpu_ctr c;
 146        u32 delta_refcnt;
 147        u32 delta_ccnt;
 148        u32 rate_mhz;
 149
 150        /*
 151         * udelay() is required to reconstruct cpu frequency over an
 152         * observation window. Using workqueue to call udelay() with
 153         * interrupts enabled.
 154         */
 155        read_counters_work.c.cpu = cpu;
 156        read_counters_work.c.delay = delay;
 157        INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
 158        queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
 159        flush_work(&read_counters_work.work);
 160        c = read_counters_work.c;
 161
 162        if (c.coreclk_cnt < c.last_coreclk_cnt)
 163                delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
 164        else
 165                delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
 166        if (!delta_ccnt)
 167                return 0;
 168
 169        /* ref clock is 32 bits */
 170        if (c.refclk_cnt < c.last_refclk_cnt)
 171                delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
 172        else
 173                delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
 174        if (!delta_refcnt) {
 175                pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
 176                return 0;
 177        }
 178        rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
 179
 180        return (rate_mhz * KHZ); /* in KHz */
 181}
 182
 183static unsigned int tegra194_get_speed(u32 cpu)
 184{
 185        return tegra194_get_speed_common(cpu, US_DELAY);
 186}
 187
 188static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
 189{
 190        struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
 191        u32 cpu;
 192        u32 cl;
 193
 194        smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
 195
 196        if (cl >= data->num_clusters)
 197                return -EINVAL;
 198
 199        /* boot freq */
 200        policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
 201
 202        /* set same policy for all cpus in a cluster */
 203        for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
 204                cpumask_set_cpu(cpu, policy->cpus);
 205
 206        policy->freq_table = data->tables[cl];
 207        policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
 208
 209        return 0;
 210}
 211
 212static void set_cpu_ndiv(void *data)
 213{
 214        struct cpufreq_frequency_table *tbl = data;
 215        u64 ndiv_val = (u64)tbl->driver_data;
 216
 217        asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
 218}
 219
 220static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
 221                                       unsigned int index)
 222{
 223        struct cpufreq_frequency_table *tbl = policy->freq_table + index;
 224
 225        /*
 226         * Each core writes frequency in per core register. Then both cores
 227         * in a cluster run at same frequency which is the maximum frequency
 228         * request out of the values requested by both cores in that cluster.
 229         */
 230        on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
 231
 232        return 0;
 233}
 234
 235static struct cpufreq_driver tegra194_cpufreq_driver = {
 236        .name = "tegra194",
 237        .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
 238                CPUFREQ_NEED_INITIAL_FREQ_CHECK,
 239        .verify = cpufreq_generic_frequency_table_verify,
 240        .target_index = tegra194_cpufreq_set_target,
 241        .get = tegra194_get_speed,
 242        .init = tegra194_cpufreq_init,
 243        .attr = cpufreq_generic_attr,
 244};
 245
 246static void tegra194_cpufreq_free_resources(void)
 247{
 248        destroy_workqueue(read_counters_wq);
 249}
 250
 251static struct cpufreq_frequency_table *
 252init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
 253                unsigned int cluster_id)
 254{
 255        struct cpufreq_frequency_table *freq_table;
 256        struct mrq_cpu_ndiv_limits_response resp;
 257        unsigned int num_freqs, ndiv, delta_ndiv;
 258        struct mrq_cpu_ndiv_limits_request req;
 259        struct tegra_bpmp_message msg;
 260        u16 freq_table_step_size;
 261        int err, index;
 262
 263        memset(&req, 0, sizeof(req));
 264        req.cluster_id = cluster_id;
 265
 266        memset(&msg, 0, sizeof(msg));
 267        msg.mrq = MRQ_CPU_NDIV_LIMITS;
 268        msg.tx.data = &req;
 269        msg.tx.size = sizeof(req);
 270        msg.rx.data = &resp;
 271        msg.rx.size = sizeof(resp);
 272
 273        err = tegra_bpmp_transfer(bpmp, &msg);
 274        if (err)
 275                return ERR_PTR(err);
 276
 277        /*
 278         * Make sure frequency table step is a multiple of mdiv to match
 279         * vhint table granularity.
 280         */
 281        freq_table_step_size = resp.mdiv *
 282                        DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
 283
 284        dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
 285                cluster_id, freq_table_step_size);
 286
 287        delta_ndiv = resp.ndiv_max - resp.ndiv_min;
 288
 289        if (unlikely(delta_ndiv == 0)) {
 290                num_freqs = 1;
 291        } else {
 292                /* We store both ndiv_min and ndiv_max hence the +1 */
 293                num_freqs = delta_ndiv / freq_table_step_size + 1;
 294        }
 295
 296        num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
 297
 298        freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
 299                                  sizeof(*freq_table), GFP_KERNEL);
 300        if (!freq_table)
 301                return ERR_PTR(-ENOMEM);
 302
 303        for (index = 0, ndiv = resp.ndiv_min;
 304                        ndiv < resp.ndiv_max;
 305                        index++, ndiv += freq_table_step_size) {
 306                freq_table[index].driver_data = ndiv;
 307                freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
 308        }
 309
 310        freq_table[index].driver_data = resp.ndiv_max;
 311        freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
 312        freq_table[index].frequency = CPUFREQ_TABLE_END;
 313
 314        return freq_table;
 315}
 316
 317static int tegra194_cpufreq_probe(struct platform_device *pdev)
 318{
 319        struct tegra194_cpufreq_data *data;
 320        struct tegra_bpmp *bpmp;
 321        int err, i;
 322
 323        data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
 324        if (!data)
 325                return -ENOMEM;
 326
 327        data->num_clusters = MAX_CLUSTERS;
 328        data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
 329                                    sizeof(*data->tables), GFP_KERNEL);
 330        if (!data->tables)
 331                return -ENOMEM;
 332
 333        platform_set_drvdata(pdev, data);
 334
 335        bpmp = tegra_bpmp_get(&pdev->dev);
 336        if (IS_ERR(bpmp))
 337                return PTR_ERR(bpmp);
 338
 339        read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
 340        if (!read_counters_wq) {
 341                dev_err(&pdev->dev, "fail to create_workqueue\n");
 342                err = -EINVAL;
 343                goto put_bpmp;
 344        }
 345
 346        for (i = 0; i < data->num_clusters; i++) {
 347                data->tables[i] = init_freq_table(pdev, bpmp, i);
 348                if (IS_ERR(data->tables[i])) {
 349                        err = PTR_ERR(data->tables[i]);
 350                        goto err_free_res;
 351                }
 352        }
 353
 354        tegra194_cpufreq_driver.driver_data = data;
 355
 356        err = cpufreq_register_driver(&tegra194_cpufreq_driver);
 357        if (!err)
 358                goto put_bpmp;
 359
 360err_free_res:
 361        tegra194_cpufreq_free_resources();
 362put_bpmp:
 363        tegra_bpmp_put(bpmp);
 364        return err;
 365}
 366
 367static int tegra194_cpufreq_remove(struct platform_device *pdev)
 368{
 369        cpufreq_unregister_driver(&tegra194_cpufreq_driver);
 370        tegra194_cpufreq_free_resources();
 371
 372        return 0;
 373}
 374
 375static const struct of_device_id tegra194_cpufreq_of_match[] = {
 376        { .compatible = "nvidia,tegra194-ccplex", },
 377        { /* sentinel */ }
 378};
 379MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
 380
 381static struct platform_driver tegra194_ccplex_driver = {
 382        .driver = {
 383                .name = "tegra194-cpufreq",
 384                .of_match_table = tegra194_cpufreq_of_match,
 385        },
 386        .probe = tegra194_cpufreq_probe,
 387        .remove = tegra194_cpufreq_remove,
 388};
 389module_platform_driver(tegra194_ccplex_driver);
 390
 391MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
 392MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
 393MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
 394MODULE_LICENSE("GPL v2");
 395