linux/drivers/firewire/core-iso.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Isochronous I/O functionality:
   4 *   - Isochronous DMA context management
   5 *   - Isochronous bus resource management (channels, bandwidth), client side
   6 *
   7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
   8 */
   9
  10#include <linux/dma-mapping.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/kernel.h>
  15#include <linux/mm.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/vmalloc.h>
  19#include <linux/export.h>
  20
  21#include <asm/byteorder.h>
  22
  23#include "core.h"
  24
  25/*
  26 * Isochronous DMA context management
  27 */
  28
  29int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
  30{
  31        int i;
  32
  33        buffer->page_count = 0;
  34        buffer->page_count_mapped = 0;
  35        buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
  36                                      GFP_KERNEL);
  37        if (buffer->pages == NULL)
  38                return -ENOMEM;
  39
  40        for (i = 0; i < page_count; i++) {
  41                buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  42                if (buffer->pages[i] == NULL)
  43                        break;
  44        }
  45        buffer->page_count = i;
  46        if (i < page_count) {
  47                fw_iso_buffer_destroy(buffer, NULL);
  48                return -ENOMEM;
  49        }
  50
  51        return 0;
  52}
  53
  54int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
  55                          enum dma_data_direction direction)
  56{
  57        dma_addr_t address;
  58        int i;
  59
  60        buffer->direction = direction;
  61
  62        for (i = 0; i < buffer->page_count; i++) {
  63                address = dma_map_page(card->device, buffer->pages[i],
  64                                       0, PAGE_SIZE, direction);
  65                if (dma_mapping_error(card->device, address))
  66                        break;
  67
  68                set_page_private(buffer->pages[i], address);
  69        }
  70        buffer->page_count_mapped = i;
  71        if (i < buffer->page_count)
  72                return -ENOMEM;
  73
  74        return 0;
  75}
  76
  77int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
  78                       int page_count, enum dma_data_direction direction)
  79{
  80        int ret;
  81
  82        ret = fw_iso_buffer_alloc(buffer, page_count);
  83        if (ret < 0)
  84                return ret;
  85
  86        ret = fw_iso_buffer_map_dma(buffer, card, direction);
  87        if (ret < 0)
  88                fw_iso_buffer_destroy(buffer, card);
  89
  90        return ret;
  91}
  92EXPORT_SYMBOL(fw_iso_buffer_init);
  93
  94void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
  95                           struct fw_card *card)
  96{
  97        int i;
  98        dma_addr_t address;
  99
 100        for (i = 0; i < buffer->page_count_mapped; i++) {
 101                address = page_private(buffer->pages[i]);
 102                dma_unmap_page(card->device, address,
 103                               PAGE_SIZE, buffer->direction);
 104        }
 105        for (i = 0; i < buffer->page_count; i++)
 106                __free_page(buffer->pages[i]);
 107
 108        kfree(buffer->pages);
 109        buffer->pages = NULL;
 110        buffer->page_count = 0;
 111        buffer->page_count_mapped = 0;
 112}
 113EXPORT_SYMBOL(fw_iso_buffer_destroy);
 114
 115/* Convert DMA address to offset into virtually contiguous buffer. */
 116size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
 117{
 118        size_t i;
 119        dma_addr_t address;
 120        ssize_t offset;
 121
 122        for (i = 0; i < buffer->page_count; i++) {
 123                address = page_private(buffer->pages[i]);
 124                offset = (ssize_t)completed - (ssize_t)address;
 125                if (offset > 0 && offset <= PAGE_SIZE)
 126                        return (i << PAGE_SHIFT) + offset;
 127        }
 128
 129        return 0;
 130}
 131
 132struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
 133                int type, int channel, int speed, size_t header_size,
 134                fw_iso_callback_t callback, void *callback_data)
 135{
 136        struct fw_iso_context *ctx;
 137
 138        ctx = card->driver->allocate_iso_context(card,
 139                                                 type, channel, header_size);
 140        if (IS_ERR(ctx))
 141                return ctx;
 142
 143        ctx->card = card;
 144        ctx->type = type;
 145        ctx->channel = channel;
 146        ctx->speed = speed;
 147        ctx->header_size = header_size;
 148        ctx->callback.sc = callback;
 149        ctx->callback_data = callback_data;
 150
 151        return ctx;
 152}
 153EXPORT_SYMBOL(fw_iso_context_create);
 154
 155void fw_iso_context_destroy(struct fw_iso_context *ctx)
 156{
 157        ctx->card->driver->free_iso_context(ctx);
 158}
 159EXPORT_SYMBOL(fw_iso_context_destroy);
 160
 161int fw_iso_context_start(struct fw_iso_context *ctx,
 162                         int cycle, int sync, int tags)
 163{
 164        return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
 165}
 166EXPORT_SYMBOL(fw_iso_context_start);
 167
 168int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
 169{
 170        return ctx->card->driver->set_iso_channels(ctx, channels);
 171}
 172
 173int fw_iso_context_queue(struct fw_iso_context *ctx,
 174                         struct fw_iso_packet *packet,
 175                         struct fw_iso_buffer *buffer,
 176                         unsigned long payload)
 177{
 178        return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
 179}
 180EXPORT_SYMBOL(fw_iso_context_queue);
 181
 182void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
 183{
 184        ctx->card->driver->flush_queue_iso(ctx);
 185}
 186EXPORT_SYMBOL(fw_iso_context_queue_flush);
 187
 188int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
 189{
 190        return ctx->card->driver->flush_iso_completions(ctx);
 191}
 192EXPORT_SYMBOL(fw_iso_context_flush_completions);
 193
 194int fw_iso_context_stop(struct fw_iso_context *ctx)
 195{
 196        return ctx->card->driver->stop_iso(ctx);
 197}
 198EXPORT_SYMBOL(fw_iso_context_stop);
 199
 200/*
 201 * Isochronous bus resource management (channels, bandwidth), client side
 202 */
 203
 204static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
 205                            int bandwidth, bool allocate)
 206{
 207        int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
 208        __be32 data[2];
 209
 210        /*
 211         * On a 1394a IRM with low contention, try < 1 is enough.
 212         * On a 1394-1995 IRM, we need at least try < 2.
 213         * Let's just do try < 5.
 214         */
 215        for (try = 0; try < 5; try++) {
 216                new = allocate ? old - bandwidth : old + bandwidth;
 217                if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
 218                        return -EBUSY;
 219
 220                data[0] = cpu_to_be32(old);
 221                data[1] = cpu_to_be32(new);
 222                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 223                                irm_id, generation, SCODE_100,
 224                                CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
 225                                data, 8)) {
 226                case RCODE_GENERATION:
 227                        /* A generation change frees all bandwidth. */
 228                        return allocate ? -EAGAIN : bandwidth;
 229
 230                case RCODE_COMPLETE:
 231                        if (be32_to_cpup(data) == old)
 232                                return bandwidth;
 233
 234                        old = be32_to_cpup(data);
 235                        /* Fall through. */
 236                }
 237        }
 238
 239        return -EIO;
 240}
 241
 242static int manage_channel(struct fw_card *card, int irm_id, int generation,
 243                u32 channels_mask, u64 offset, bool allocate)
 244{
 245        __be32 bit, all, old;
 246        __be32 data[2];
 247        int channel, ret = -EIO, retry = 5;
 248
 249        old = all = allocate ? cpu_to_be32(~0) : 0;
 250
 251        for (channel = 0; channel < 32; channel++) {
 252                if (!(channels_mask & 1 << channel))
 253                        continue;
 254
 255                ret = -EBUSY;
 256
 257                bit = cpu_to_be32(1 << (31 - channel));
 258                if ((old & bit) != (all & bit))
 259                        continue;
 260
 261                data[0] = old;
 262                data[1] = old ^ bit;
 263                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 264                                           irm_id, generation, SCODE_100,
 265                                           offset, data, 8)) {
 266                case RCODE_GENERATION:
 267                        /* A generation change frees all channels. */
 268                        return allocate ? -EAGAIN : channel;
 269
 270                case RCODE_COMPLETE:
 271                        if (data[0] == old)
 272                                return channel;
 273
 274                        old = data[0];
 275
 276                        /* Is the IRM 1394a-2000 compliant? */
 277                        if ((data[0] & bit) == (data[1] & bit))
 278                                continue;
 279
 280                        fallthrough;    /* It's a 1394-1995 IRM, retry */
 281                default:
 282                        if (retry) {
 283                                retry--;
 284                                channel--;
 285                        } else {
 286                                ret = -EIO;
 287                        }
 288                }
 289        }
 290
 291        return ret;
 292}
 293
 294static void deallocate_channel(struct fw_card *card, int irm_id,
 295                               int generation, int channel)
 296{
 297        u32 mask;
 298        u64 offset;
 299
 300        mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
 301        offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
 302                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
 303
 304        manage_channel(card, irm_id, generation, mask, offset, false);
 305}
 306
 307/**
 308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
 309 * @card: card interface for this action
 310 * @generation: bus generation
 311 * @channels_mask: bitmask for channel allocation
 312 * @channel: pointer for returning channel allocation result
 313 * @bandwidth: pointer for returning bandwidth allocation result
 314 * @allocate: whether to allocate (true) or deallocate (false)
 315 *
 316 * In parameters: card, generation, channels_mask, bandwidth, allocate
 317 * Out parameters: channel, bandwidth
 318 *
 319 * This function blocks (sleeps) during communication with the IRM.
 320 *
 321 * Allocates or deallocates at most one channel out of channels_mask.
 322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 324 * channel 0 and LSB for channel 63.)
 325 * Allocates or deallocates as many bandwidth allocation units as specified.
 326 *
 327 * Returns channel < 0 if no channel was allocated or deallocated.
 328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 329 *
 330 * If generation is stale, deallocations succeed but allocations fail with
 331 * channel = -EAGAIN.
 332 *
 333 * If channel allocation fails, no bandwidth will be allocated either.
 334 * If bandwidth allocation fails, no channel will be allocated either.
 335 * But deallocations of channel and bandwidth are tried independently
 336 * of each other's success.
 337 */
 338void fw_iso_resource_manage(struct fw_card *card, int generation,
 339                            u64 channels_mask, int *channel, int *bandwidth,
 340                            bool allocate)
 341{
 342        u32 channels_hi = channels_mask;        /* channels 31...0 */
 343        u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
 344        int irm_id, ret, c = -EINVAL;
 345
 346        spin_lock_irq(&card->lock);
 347        irm_id = card->irm_node->node_id;
 348        spin_unlock_irq(&card->lock);
 349
 350        if (channels_hi)
 351                c = manage_channel(card, irm_id, generation, channels_hi,
 352                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
 353                                allocate);
 354        if (channels_lo && c < 0) {
 355                c = manage_channel(card, irm_id, generation, channels_lo,
 356                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
 357                                allocate);
 358                if (c >= 0)
 359                        c += 32;
 360        }
 361        *channel = c;
 362
 363        if (allocate && channels_mask != 0 && c < 0)
 364                *bandwidth = 0;
 365
 366        if (*bandwidth == 0)
 367                return;
 368
 369        ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
 370        if (ret < 0)
 371                *bandwidth = 0;
 372
 373        if (allocate && ret < 0) {
 374                if (c >= 0)
 375                        deallocate_channel(card, irm_id, generation, c);
 376                *channel = ret;
 377        }
 378}
 379EXPORT_SYMBOL(fw_iso_resource_manage);
 380