linux/drivers/firmware/efi/libstub/efi-stub-helper.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Helper functions used by the EFI stub on multiple
   4 * architectures. This should be #included by the EFI stub
   5 * implementation files.
   6 *
   7 * Copyright 2011 Intel Corporation; author Matt Fleming
   8 */
   9
  10#include <stdarg.h>
  11
  12#include <linux/ctype.h>
  13#include <linux/efi.h>
  14#include <linux/kernel.h>
  15#include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */
  16#include <asm/efi.h>
  17#include <asm/setup.h>
  18
  19#include "efistub.h"
  20
  21bool efi_nochunk;
  22bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
  23bool efi_noinitrd;
  24int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
  25bool efi_novamap;
  26
  27static bool efi_nosoftreserve;
  28static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
  29
  30bool __pure __efi_soft_reserve_enabled(void)
  31{
  32        return !efi_nosoftreserve;
  33}
  34
  35/**
  36 * efi_char16_puts() - Write a UCS-2 encoded string to the console
  37 * @str:        UCS-2 encoded string
  38 */
  39void efi_char16_puts(efi_char16_t *str)
  40{
  41        efi_call_proto(efi_table_attr(efi_system_table, con_out),
  42                       output_string, str);
  43}
  44
  45static
  46u32 utf8_to_utf32(const u8 **s8)
  47{
  48        u32 c32;
  49        u8 c0, cx;
  50        size_t clen, i;
  51
  52        c0 = cx = *(*s8)++;
  53        /*
  54         * The position of the most-significant 0 bit gives us the length of
  55         * a multi-octet encoding.
  56         */
  57        for (clen = 0; cx & 0x80; ++clen)
  58                cx <<= 1;
  59        /*
  60         * If the 0 bit is in position 8, this is a valid single-octet
  61         * encoding. If the 0 bit is in position 7 or positions 1-3, the
  62         * encoding is invalid.
  63         * In either case, we just return the first octet.
  64         */
  65        if (clen < 2 || clen > 4)
  66                return c0;
  67        /* Get the bits from the first octet. */
  68        c32 = cx >> clen--;
  69        for (i = 0; i < clen; ++i) {
  70                /* Trailing octets must have 10 in most significant bits. */
  71                cx = (*s8)[i] ^ 0x80;
  72                if (cx & 0xc0)
  73                        return c0;
  74                c32 = (c32 << 6) | cx;
  75        }
  76        /*
  77         * Check for validity:
  78         * - The character must be in the Unicode range.
  79         * - It must not be a surrogate.
  80         * - It must be encoded using the correct number of octets.
  81         */
  82        if (c32 > 0x10ffff ||
  83            (c32 & 0xf800) == 0xd800 ||
  84            clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000))
  85                return c0;
  86        *s8 += clen;
  87        return c32;
  88}
  89
  90/**
  91 * efi_puts() - Write a UTF-8 encoded string to the console
  92 * @str:        UTF-8 encoded string
  93 */
  94void efi_puts(const char *str)
  95{
  96        efi_char16_t buf[128];
  97        size_t pos = 0, lim = ARRAY_SIZE(buf);
  98        const u8 *s8 = (const u8 *)str;
  99        u32 c32;
 100
 101        while (*s8) {
 102                if (*s8 == '\n')
 103                        buf[pos++] = L'\r';
 104                c32 = utf8_to_utf32(&s8);
 105                if (c32 < 0x10000) {
 106                        /* Characters in plane 0 use a single word. */
 107                        buf[pos++] = c32;
 108                } else {
 109                        /*
 110                         * Characters in other planes encode into a surrogate
 111                         * pair.
 112                         */
 113                        buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10);
 114                        buf[pos++] = 0xdc00 + (c32 & 0x3ff);
 115                }
 116                if (*s8 == '\0' || pos >= lim - 2) {
 117                        buf[pos] = L'\0';
 118                        efi_char16_puts(buf);
 119                        pos = 0;
 120                }
 121        }
 122}
 123
 124/**
 125 * efi_printk() - Print a kernel message
 126 * @fmt:        format string
 127 *
 128 * The first letter of the format string is used to determine the logging level
 129 * of the message. If the level is less then the current EFI logging level, the
 130 * message is suppressed. The message will be truncated to 255 bytes.
 131 *
 132 * Return:      number of printed characters
 133 */
 134int efi_printk(const char *fmt, ...)
 135{
 136        char printf_buf[256];
 137        va_list args;
 138        int printed;
 139        int loglevel = printk_get_level(fmt);
 140
 141        switch (loglevel) {
 142        case '0' ... '9':
 143                loglevel -= '0';
 144                break;
 145        default:
 146                /*
 147                 * Use loglevel -1 for cases where we just want to print to
 148                 * the screen.
 149                 */
 150                loglevel = -1;
 151                break;
 152        }
 153
 154        if (loglevel >= efi_loglevel)
 155                return 0;
 156
 157        if (loglevel >= 0)
 158                efi_puts("EFI stub: ");
 159
 160        fmt = printk_skip_level(fmt);
 161
 162        va_start(args, fmt);
 163        printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args);
 164        va_end(args);
 165
 166        efi_puts(printf_buf);
 167        if (printed >= sizeof(printf_buf)) {
 168                efi_puts("[Message truncated]\n");
 169                return -1;
 170        }
 171
 172        return printed;
 173}
 174
 175/**
 176 * efi_parse_options() - Parse EFI command line options
 177 * @cmdline:    kernel command line
 178 *
 179 * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
 180 * option, e.g. efi=nochunk.
 181 *
 182 * It should be noted that efi= is parsed in two very different
 183 * environments, first in the early boot environment of the EFI boot
 184 * stub, and subsequently during the kernel boot.
 185 *
 186 * Return:      status code
 187 */
 188efi_status_t efi_parse_options(char const *cmdline)
 189{
 190        size_t len;
 191        efi_status_t status;
 192        char *str, *buf;
 193
 194        if (!cmdline)
 195                return EFI_SUCCESS;
 196
 197        len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
 198        status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
 199        if (status != EFI_SUCCESS)
 200                return status;
 201
 202        memcpy(buf, cmdline, len - 1);
 203        buf[len - 1] = '\0';
 204        str = skip_spaces(buf);
 205
 206        while (*str) {
 207                char *param, *val;
 208
 209                str = next_arg(str, &param, &val);
 210                if (!val && !strcmp(param, "--"))
 211                        break;
 212
 213                if (!strcmp(param, "nokaslr")) {
 214                        efi_nokaslr = true;
 215                } else if (!strcmp(param, "quiet")) {
 216                        efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
 217                } else if (!strcmp(param, "noinitrd")) {
 218                        efi_noinitrd = true;
 219                } else if (!strcmp(param, "efi") && val) {
 220                        efi_nochunk = parse_option_str(val, "nochunk");
 221                        efi_novamap = parse_option_str(val, "novamap");
 222
 223                        efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
 224                                            parse_option_str(val, "nosoftreserve");
 225
 226                        if (parse_option_str(val, "disable_early_pci_dma"))
 227                                efi_disable_pci_dma = true;
 228                        if (parse_option_str(val, "no_disable_early_pci_dma"))
 229                                efi_disable_pci_dma = false;
 230                        if (parse_option_str(val, "debug"))
 231                                efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
 232                } else if (!strcmp(param, "video") &&
 233                           val && strstarts(val, "efifb:")) {
 234                        efi_parse_option_graphics(val + strlen("efifb:"));
 235                }
 236        }
 237        efi_bs_call(free_pool, buf);
 238        return EFI_SUCCESS;
 239}
 240
 241/*
 242 * The EFI_LOAD_OPTION descriptor has the following layout:
 243 *      u32 Attributes;
 244 *      u16 FilePathListLength;
 245 *      u16 Description[];
 246 *      efi_device_path_protocol_t FilePathList[];
 247 *      u8 OptionalData[];
 248 *
 249 * This function validates and unpacks the variable-size data fields.
 250 */
 251static
 252bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
 253                            const efi_load_option_t *src, size_t size)
 254{
 255        const void *pos;
 256        u16 c;
 257        efi_device_path_protocol_t header;
 258        const efi_char16_t *description;
 259        const efi_device_path_protocol_t *file_path_list;
 260
 261        if (size < offsetof(efi_load_option_t, variable_data))
 262                return false;
 263        pos = src->variable_data;
 264        size -= offsetof(efi_load_option_t, variable_data);
 265
 266        if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
 267                return false;
 268
 269        /* Scan description. */
 270        description = pos;
 271        do {
 272                if (size < sizeof(c))
 273                        return false;
 274                c = *(const u16 *)pos;
 275                pos += sizeof(c);
 276                size -= sizeof(c);
 277        } while (c != L'\0');
 278
 279        /* Scan file_path_list. */
 280        file_path_list = pos;
 281        do {
 282                if (size < sizeof(header))
 283                        return false;
 284                header = *(const efi_device_path_protocol_t *)pos;
 285                if (header.length < sizeof(header))
 286                        return false;
 287                if (size < header.length)
 288                        return false;
 289                pos += header.length;
 290                size -= header.length;
 291        } while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
 292                 (header.sub_type != EFI_DEV_END_ENTIRE));
 293        if (pos != (const void *)file_path_list + src->file_path_list_length)
 294                return false;
 295
 296        dest->attributes = src->attributes;
 297        dest->file_path_list_length = src->file_path_list_length;
 298        dest->description = description;
 299        dest->file_path_list = file_path_list;
 300        dest->optional_data_size = size;
 301        dest->optional_data = size ? pos : NULL;
 302
 303        return true;
 304}
 305
 306/*
 307 * At least some versions of Dell firmware pass the entire contents of the
 308 * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
 309 * OptionalData field.
 310 *
 311 * Detect this case and extract OptionalData.
 312 */
 313void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size)
 314{
 315        const efi_load_option_t *load_option = *load_options;
 316        efi_load_option_unpacked_t load_option_unpacked;
 317
 318        if (!IS_ENABLED(CONFIG_X86))
 319                return;
 320        if (!load_option)
 321                return;
 322        if (*load_options_size < sizeof(*load_option))
 323                return;
 324        if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
 325                return;
 326
 327        if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
 328                return;
 329
 330        efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
 331        efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
 332
 333        *load_options = load_option_unpacked.optional_data;
 334        *load_options_size = load_option_unpacked.optional_data_size;
 335}
 336
 337/*
 338 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 339 * Size of memory allocated return in *cmd_line_len.
 340 * Returns NULL on error.
 341 */
 342char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
 343{
 344        const u16 *s2;
 345        unsigned long cmdline_addr = 0;
 346        int options_chars = efi_table_attr(image, load_options_size);
 347        const u16 *options = efi_table_attr(image, load_options);
 348        int options_bytes = 0, safe_options_bytes = 0;  /* UTF-8 bytes */
 349        bool in_quote = false;
 350        efi_status_t status;
 351
 352        efi_apply_loadoptions_quirk((const void **)&options, &options_chars);
 353        options_chars /= sizeof(*options);
 354
 355        if (options) {
 356                s2 = options;
 357                while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
 358                        u16 c = *s2++;
 359
 360                        if (c < 0x80) {
 361                                if (c == L'\0' || c == L'\n')
 362                                        break;
 363                                if (c == L'"')
 364                                        in_quote = !in_quote;
 365                                else if (!in_quote && isspace((char)c))
 366                                        safe_options_bytes = options_bytes;
 367
 368                                options_bytes++;
 369                                continue;
 370                        }
 371
 372                        /*
 373                         * Get the number of UTF-8 bytes corresponding to a
 374                         * UTF-16 character.
 375                         * The first part handles everything in the BMP.
 376                         */
 377                        options_bytes += 2 + (c >= 0x800);
 378                        /*
 379                         * Add one more byte for valid surrogate pairs. Invalid
 380                         * surrogates will be replaced with 0xfffd and take up
 381                         * only 3 bytes.
 382                         */
 383                        if ((c & 0xfc00) == 0xd800) {
 384                                /*
 385                                 * If the very last word is a high surrogate,
 386                                 * we must ignore it since we can't access the
 387                                 * low surrogate.
 388                                 */
 389                                if (!options_chars) {
 390                                        options_bytes -= 3;
 391                                } else if ((*s2 & 0xfc00) == 0xdc00) {
 392                                        options_bytes++;
 393                                        options_chars--;
 394                                        s2++;
 395                                }
 396                        }
 397                }
 398                if (options_bytes >= COMMAND_LINE_SIZE) {
 399                        options_bytes = safe_options_bytes;
 400                        efi_err("Command line is too long: truncated to %d bytes\n",
 401                                options_bytes);
 402                }
 403        }
 404
 405        options_bytes++;        /* NUL termination */
 406
 407        status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
 408                             (void **)&cmdline_addr);
 409        if (status != EFI_SUCCESS)
 410                return NULL;
 411
 412        snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
 413                 options_bytes - 1, options);
 414
 415        *cmd_line_len = options_bytes;
 416        return (char *)cmdline_addr;
 417}
 418
 419/**
 420 * efi_exit_boot_services() - Exit boot services
 421 * @handle:     handle of the exiting image
 422 * @map:        pointer to receive the memory map
 423 * @priv:       argument to be passed to @priv_func
 424 * @priv_func:  function to process the memory map before exiting boot services
 425 *
 426 * Handle calling ExitBootServices according to the requirements set out by the
 427 * spec.  Obtains the current memory map, and returns that info after calling
 428 * ExitBootServices.  The client must specify a function to perform any
 429 * processing of the memory map data prior to ExitBootServices.  A client
 430 * specific structure may be passed to the function via priv.  The client
 431 * function may be called multiple times.
 432 *
 433 * Return:      status code
 434 */
 435efi_status_t efi_exit_boot_services(void *handle,
 436                                    struct efi_boot_memmap *map,
 437                                    void *priv,
 438                                    efi_exit_boot_map_processing priv_func)
 439{
 440        efi_status_t status;
 441
 442        status = efi_get_memory_map(map);
 443
 444        if (status != EFI_SUCCESS)
 445                goto fail;
 446
 447        status = priv_func(map, priv);
 448        if (status != EFI_SUCCESS)
 449                goto free_map;
 450
 451        if (efi_disable_pci_dma)
 452                efi_pci_disable_bridge_busmaster();
 453
 454        status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
 455
 456        if (status == EFI_INVALID_PARAMETER) {
 457                /*
 458                 * The memory map changed between efi_get_memory_map() and
 459                 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
 460                 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
 461                 * updated map, and try again.  The spec implies one retry
 462                 * should be sufficent, which is confirmed against the EDK2
 463                 * implementation.  Per the spec, we can only invoke
 464                 * get_memory_map() and exit_boot_services() - we cannot alloc
 465                 * so efi_get_memory_map() cannot be used, and we must reuse
 466                 * the buffer.  For all practical purposes, the headroom in the
 467                 * buffer should account for any changes in the map so the call
 468                 * to get_memory_map() is expected to succeed here.
 469                 */
 470                *map->map_size = *map->buff_size;
 471                status = efi_bs_call(get_memory_map,
 472                                     map->map_size,
 473                                     *map->map,
 474                                     map->key_ptr,
 475                                     map->desc_size,
 476                                     map->desc_ver);
 477
 478                /* exit_boot_services() was called, thus cannot free */
 479                if (status != EFI_SUCCESS)
 480                        goto fail;
 481
 482                status = priv_func(map, priv);
 483                /* exit_boot_services() was called, thus cannot free */
 484                if (status != EFI_SUCCESS)
 485                        goto fail;
 486
 487                status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
 488        }
 489
 490        /* exit_boot_services() was called, thus cannot free */
 491        if (status != EFI_SUCCESS)
 492                goto fail;
 493
 494        return EFI_SUCCESS;
 495
 496free_map:
 497        efi_bs_call(free_pool, *map->map);
 498fail:
 499        return status;
 500}
 501
 502/**
 503 * get_efi_config_table() - retrieve UEFI configuration table
 504 * @guid:       GUID of the configuration table to be retrieved
 505 * Return:      pointer to the configuration table or NULL
 506 */
 507void *get_efi_config_table(efi_guid_t guid)
 508{
 509        unsigned long tables = efi_table_attr(efi_system_table, tables);
 510        int nr_tables = efi_table_attr(efi_system_table, nr_tables);
 511        int i;
 512
 513        for (i = 0; i < nr_tables; i++) {
 514                efi_config_table_t *t = (void *)tables;
 515
 516                if (efi_guidcmp(t->guid, guid) == 0)
 517                        return efi_table_attr(t, table);
 518
 519                tables += efi_is_native() ? sizeof(efi_config_table_t)
 520                                          : sizeof(efi_config_table_32_t);
 521        }
 522        return NULL;
 523}
 524
 525/*
 526 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
 527 * for the firmware or bootloader to expose the initrd data directly to the stub
 528 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
 529 * very easy to implement. It is a simple Linux initrd specific conduit between
 530 * kernel and firmware, allowing us to put the EFI stub (being part of the
 531 * kernel) in charge of where and when to load the initrd, while leaving it up
 532 * to the firmware to decide whether it needs to expose its filesystem hierarchy
 533 * via EFI protocols.
 534 */
 535static const struct {
 536        struct efi_vendor_dev_path      vendor;
 537        struct efi_generic_dev_path     end;
 538} __packed initrd_dev_path = {
 539        {
 540                {
 541                        EFI_DEV_MEDIA,
 542                        EFI_DEV_MEDIA_VENDOR,
 543                        sizeof(struct efi_vendor_dev_path),
 544                },
 545                LINUX_EFI_INITRD_MEDIA_GUID
 546        }, {
 547                EFI_DEV_END_PATH,
 548                EFI_DEV_END_ENTIRE,
 549                sizeof(struct efi_generic_dev_path)
 550        }
 551};
 552
 553/**
 554 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
 555 * @load_addr:  pointer to store the address where the initrd was loaded
 556 * @load_size:  pointer to store the size of the loaded initrd
 557 * @max:        upper limit for the initrd memory allocation
 558 *
 559 * Return:
 560 * * %EFI_SUCCESS if the initrd was loaded successfully, in which
 561 *   case @load_addr and @load_size are assigned accordingly
 562 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
 563 * * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL
 564 * * %EFI_OUT_OF_RESOURCES if memory allocation failed
 565 * * %EFI_LOAD_ERROR in all other cases
 566 */
 567static
 568efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr,
 569                                      unsigned long *load_size,
 570                                      unsigned long max)
 571{
 572        efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
 573        efi_device_path_protocol_t *dp;
 574        efi_load_file2_protocol_t *lf2;
 575        unsigned long initrd_addr;
 576        unsigned long initrd_size;
 577        efi_handle_t handle;
 578        efi_status_t status;
 579
 580        dp = (efi_device_path_protocol_t *)&initrd_dev_path;
 581        status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
 582        if (status != EFI_SUCCESS)
 583                return status;
 584
 585        status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
 586                             (void **)&lf2);
 587        if (status != EFI_SUCCESS)
 588                return status;
 589
 590        status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL);
 591        if (status != EFI_BUFFER_TOO_SMALL)
 592                return EFI_LOAD_ERROR;
 593
 594        status = efi_allocate_pages(initrd_size, &initrd_addr, max);
 595        if (status != EFI_SUCCESS)
 596                return status;
 597
 598        status = efi_call_proto(lf2, load_file, dp, false, &initrd_size,
 599                                (void *)initrd_addr);
 600        if (status != EFI_SUCCESS) {
 601                efi_free(initrd_size, initrd_addr);
 602                return EFI_LOAD_ERROR;
 603        }
 604
 605        *load_addr = initrd_addr;
 606        *load_size = initrd_size;
 607        return EFI_SUCCESS;
 608}
 609
 610static
 611efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
 612                                     unsigned long *load_addr,
 613                                     unsigned long *load_size,
 614                                     unsigned long soft_limit,
 615                                     unsigned long hard_limit)
 616{
 617        if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) ||
 618            (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) {
 619                *load_addr = *load_size = 0;
 620                return EFI_SUCCESS;
 621        }
 622
 623        return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
 624                                    soft_limit, hard_limit,
 625                                    load_addr, load_size);
 626}
 627
 628/**
 629 * efi_load_initrd() - Load initial RAM disk
 630 * @image:      EFI loaded image protocol
 631 * @load_addr:  pointer to loaded initrd
 632 * @load_size:  size of loaded initrd
 633 * @soft_limit: preferred size of allocated memory for loading the initrd
 634 * @hard_limit: minimum size of allocated memory
 635 *
 636 * Return:      status code
 637 */
 638efi_status_t efi_load_initrd(efi_loaded_image_t *image,
 639                             unsigned long *load_addr,
 640                             unsigned long *load_size,
 641                             unsigned long soft_limit,
 642                             unsigned long hard_limit)
 643{
 644        efi_status_t status;
 645
 646        if (!load_addr || !load_size)
 647                return EFI_INVALID_PARAMETER;
 648
 649        status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit);
 650        if (status == EFI_SUCCESS) {
 651                efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
 652        } else if (status == EFI_NOT_FOUND) {
 653                status = efi_load_initrd_cmdline(image, load_addr, load_size,
 654                                                 soft_limit, hard_limit);
 655                if (status == EFI_SUCCESS && *load_size > 0)
 656                        efi_info("Loaded initrd from command line option\n");
 657        }
 658
 659        return status;
 660}
 661
 662/**
 663 * efi_wait_for_key() - Wait for key stroke
 664 * @usec:       number of microseconds to wait for key stroke
 665 * @key:        key entered
 666 *
 667 * Wait for up to @usec microseconds for a key stroke.
 668 *
 669 * Return:      status code, EFI_SUCCESS if key received
 670 */
 671efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
 672{
 673        efi_event_t events[2], timer;
 674        unsigned long index;
 675        efi_simple_text_input_protocol_t *con_in;
 676        efi_status_t status;
 677
 678        con_in = efi_table_attr(efi_system_table, con_in);
 679        if (!con_in)
 680                return EFI_UNSUPPORTED;
 681        efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
 682
 683        status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
 684        if (status != EFI_SUCCESS)
 685                return status;
 686
 687        status = efi_bs_call(set_timer, timer, EfiTimerRelative,
 688                             EFI_100NSEC_PER_USEC * usec);
 689        if (status != EFI_SUCCESS)
 690                return status;
 691        efi_set_event_at(events, 1, timer);
 692
 693        status = efi_bs_call(wait_for_event, 2, events, &index);
 694        if (status == EFI_SUCCESS) {
 695                if (index == 0)
 696                        status = efi_call_proto(con_in, read_keystroke, key);
 697                else
 698                        status = EFI_TIMEOUT;
 699        }
 700
 701        efi_bs_call(close_event, timer);
 702
 703        return status;
 704}
 705