linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
<<
>>
Prefs
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/hmm.h>
  36#include <linux/pagemap.h>
  37#include <linux/sched/task.h>
  38#include <linux/sched/mm.h>
  39#include <linux/seq_file.h>
  40#include <linux/slab.h>
  41#include <linux/swap.h>
  42#include <linux/swiotlb.h>
  43#include <linux/dma-buf.h>
  44#include <linux/sizes.h>
  45
  46#include <drm/ttm/ttm_bo_api.h>
  47#include <drm/ttm/ttm_bo_driver.h>
  48#include <drm/ttm/ttm_placement.h>
  49#include <drm/ttm/ttm_module.h>
  50#include <drm/ttm/ttm_page_alloc.h>
  51
  52#include <drm/drm_debugfs.h>
  53#include <drm/amdgpu_drm.h>
  54
  55#include "amdgpu.h"
  56#include "amdgpu_object.h"
  57#include "amdgpu_trace.h"
  58#include "amdgpu_amdkfd.h"
  59#include "amdgpu_sdma.h"
  60#include "amdgpu_ras.h"
  61#include "amdgpu_atomfirmware.h"
  62#include "bif/bif_4_1_d.h"
  63
  64#define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
  65
  66static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
  67                                   struct ttm_tt *ttm,
  68                                   struct ttm_resource *bo_mem);
  69
  70static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  71                                    unsigned int type,
  72                                    uint64_t size_in_page)
  73{
  74        return ttm_range_man_init(&adev->mman.bdev, type,
  75                                  false, size_in_page);
  76}
  77
  78/**
  79 * amdgpu_evict_flags - Compute placement flags
  80 *
  81 * @bo: The buffer object to evict
  82 * @placement: Possible destination(s) for evicted BO
  83 *
  84 * Fill in placement data when ttm_bo_evict() is called
  85 */
  86static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  87                                struct ttm_placement *placement)
  88{
  89        struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  90        struct amdgpu_bo *abo;
  91        static const struct ttm_place placements = {
  92                .fpfn = 0,
  93                .lpfn = 0,
  94                .mem_type = TTM_PL_SYSTEM,
  95                .flags = TTM_PL_MASK_CACHING
  96        };
  97
  98        /* Don't handle scatter gather BOs */
  99        if (bo->type == ttm_bo_type_sg) {
 100                placement->num_placement = 0;
 101                placement->num_busy_placement = 0;
 102                return;
 103        }
 104
 105        /* Object isn't an AMDGPU object so ignore */
 106        if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 107                placement->placement = &placements;
 108                placement->busy_placement = &placements;
 109                placement->num_placement = 1;
 110                placement->num_busy_placement = 1;
 111                return;
 112        }
 113
 114        abo = ttm_to_amdgpu_bo(bo);
 115        switch (bo->mem.mem_type) {
 116        case AMDGPU_PL_GDS:
 117        case AMDGPU_PL_GWS:
 118        case AMDGPU_PL_OA:
 119                placement->num_placement = 0;
 120                placement->num_busy_placement = 0;
 121                return;
 122
 123        case TTM_PL_VRAM:
 124                if (!adev->mman.buffer_funcs_enabled) {
 125                        /* Move to system memory */
 126                        amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 127                } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 128                           !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 129                           amdgpu_bo_in_cpu_visible_vram(abo)) {
 130
 131                        /* Try evicting to the CPU inaccessible part of VRAM
 132                         * first, but only set GTT as busy placement, so this
 133                         * BO will be evicted to GTT rather than causing other
 134                         * BOs to be evicted from VRAM
 135                         */
 136                        amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 137                                                         AMDGPU_GEM_DOMAIN_GTT);
 138                        abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 139                        abo->placements[0].lpfn = 0;
 140                        abo->placement.busy_placement = &abo->placements[1];
 141                        abo->placement.num_busy_placement = 1;
 142                } else {
 143                        /* Move to GTT memory */
 144                        amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 145                }
 146                break;
 147        case TTM_PL_TT:
 148        default:
 149                amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 150                break;
 151        }
 152        *placement = abo->placement;
 153}
 154
 155/**
 156 * amdgpu_verify_access - Verify access for a mmap call
 157 *
 158 * @bo: The buffer object to map
 159 * @filp: The file pointer from the process performing the mmap
 160 *
 161 * This is called by ttm_bo_mmap() to verify whether a process
 162 * has the right to mmap a BO to their process space.
 163 */
 164static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 165{
 166        struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 167
 168        /*
 169         * Don't verify access for KFD BOs. They don't have a GEM
 170         * object associated with them.
 171         */
 172        if (abo->kfd_bo)
 173                return 0;
 174
 175        if (amdgpu_ttm_tt_get_usermm(bo->ttm))
 176                return -EPERM;
 177        return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
 178                                          filp->private_data);
 179}
 180
 181/**
 182 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
 183 *
 184 * @bo: The bo to assign the memory to.
 185 * @mm_node: Memory manager node for drm allocator.
 186 * @mem: The region where the bo resides.
 187 *
 188 */
 189static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
 190                                    struct drm_mm_node *mm_node,
 191                                    struct ttm_resource *mem)
 192{
 193        uint64_t addr = 0;
 194
 195        if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
 196                addr = mm_node->start << PAGE_SHIFT;
 197                addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
 198                                                mem->mem_type);
 199        }
 200        return addr;
 201}
 202
 203/**
 204 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
 205 * @offset. It also modifies the offset to be within the drm_mm_node returned
 206 *
 207 * @mem: The region where the bo resides.
 208 * @offset: The offset that drm_mm_node is used for finding.
 209 *
 210 */
 211static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
 212                                               uint64_t *offset)
 213{
 214        struct drm_mm_node *mm_node = mem->mm_node;
 215
 216        while (*offset >= (mm_node->size << PAGE_SHIFT)) {
 217                *offset -= (mm_node->size << PAGE_SHIFT);
 218                ++mm_node;
 219        }
 220        return mm_node;
 221}
 222
 223/**
 224 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 225 * @bo: buffer object to map
 226 * @mem: memory object to map
 227 * @mm_node: drm_mm node object to map
 228 * @num_pages: number of pages to map
 229 * @offset: offset into @mm_node where to start
 230 * @window: which GART window to use
 231 * @ring: DMA ring to use for the copy
 232 * @tmz: if we should setup a TMZ enabled mapping
 233 * @addr: resulting address inside the MC address space
 234 *
 235 * Setup one of the GART windows to access a specific piece of memory or return
 236 * the physical address for local memory.
 237 */
 238static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 239                                 struct ttm_resource *mem,
 240                                 struct drm_mm_node *mm_node,
 241                                 unsigned num_pages, uint64_t offset,
 242                                 unsigned window, struct amdgpu_ring *ring,
 243                                 bool tmz, uint64_t *addr)
 244{
 245        struct amdgpu_device *adev = ring->adev;
 246        struct amdgpu_job *job;
 247        unsigned num_dw, num_bytes;
 248        struct dma_fence *fence;
 249        uint64_t src_addr, dst_addr;
 250        void *cpu_addr;
 251        uint64_t flags;
 252        unsigned int i;
 253        int r;
 254
 255        BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 256               AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 257
 258        /* Map only what can't be accessed directly */
 259        if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 260                *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
 261                return 0;
 262        }
 263
 264        *addr = adev->gmc.gart_start;
 265        *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 266                AMDGPU_GPU_PAGE_SIZE;
 267        *addr += offset & ~PAGE_MASK;
 268
 269        num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 270        num_bytes = num_pages * 8;
 271
 272        r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
 273                                     AMDGPU_IB_POOL_DELAYED, &job);
 274        if (r)
 275                return r;
 276
 277        src_addr = num_dw * 4;
 278        src_addr += job->ibs[0].gpu_addr;
 279
 280        dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 281        dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 282        amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 283                                dst_addr, num_bytes, false);
 284
 285        amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 286        WARN_ON(job->ibs[0].length_dw > num_dw);
 287
 288        flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 289        if (tmz)
 290                flags |= AMDGPU_PTE_TMZ;
 291
 292        cpu_addr = &job->ibs[0].ptr[num_dw];
 293
 294        if (mem->mem_type == TTM_PL_TT) {
 295                struct ttm_dma_tt *dma;
 296                dma_addr_t *dma_address;
 297
 298                dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
 299                dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
 300                r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
 301                                    cpu_addr);
 302                if (r)
 303                        goto error_free;
 304        } else {
 305                dma_addr_t dma_address;
 306
 307                dma_address = (mm_node->start << PAGE_SHIFT) + offset;
 308                dma_address += adev->vm_manager.vram_base_offset;
 309
 310                for (i = 0; i < num_pages; ++i) {
 311                        r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
 312                                            &dma_address, flags, cpu_addr);
 313                        if (r)
 314                                goto error_free;
 315
 316                        dma_address += PAGE_SIZE;
 317                }
 318        }
 319
 320        r = amdgpu_job_submit(job, &adev->mman.entity,
 321                              AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 322        if (r)
 323                goto error_free;
 324
 325        dma_fence_put(fence);
 326
 327        return r;
 328
 329error_free:
 330        amdgpu_job_free(job);
 331        return r;
 332}
 333
 334/**
 335 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
 336 * @adev: amdgpu device
 337 * @src: buffer/address where to read from
 338 * @dst: buffer/address where to write to
 339 * @size: number of bytes to copy
 340 * @tmz: if a secure copy should be used
 341 * @resv: resv object to sync to
 342 * @f: Returns the last fence if multiple jobs are submitted.
 343 *
 344 * The function copies @size bytes from {src->mem + src->offset} to
 345 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 346 * move and different for a BO to BO copy.
 347 *
 348 */
 349int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 350                               const struct amdgpu_copy_mem *src,
 351                               const struct amdgpu_copy_mem *dst,
 352                               uint64_t size, bool tmz,
 353                               struct dma_resv *resv,
 354                               struct dma_fence **f)
 355{
 356        const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 357                                        AMDGPU_GPU_PAGE_SIZE);
 358
 359        uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
 360        struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 361        struct drm_mm_node *src_mm, *dst_mm;
 362        struct dma_fence *fence = NULL;
 363        int r = 0;
 364
 365        if (!adev->mman.buffer_funcs_enabled) {
 366                DRM_ERROR("Trying to move memory with ring turned off.\n");
 367                return -EINVAL;
 368        }
 369
 370        src_offset = src->offset;
 371        if (src->mem->mm_node) {
 372                src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
 373                src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
 374        } else {
 375                src_mm = NULL;
 376                src_node_size = ULLONG_MAX;
 377        }
 378
 379        dst_offset = dst->offset;
 380        if (dst->mem->mm_node) {
 381                dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
 382                dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
 383        } else {
 384                dst_mm = NULL;
 385                dst_node_size = ULLONG_MAX;
 386        }
 387
 388        mutex_lock(&adev->mman.gtt_window_lock);
 389
 390        while (size) {
 391                uint32_t src_page_offset = src_offset & ~PAGE_MASK;
 392                uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
 393                struct dma_fence *next;
 394                uint32_t cur_size;
 395                uint64_t from, to;
 396
 397                /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 398                 * begins at an offset, then adjust the size accordingly
 399                 */
 400                cur_size = max(src_page_offset, dst_page_offset);
 401                cur_size = min(min3(src_node_size, dst_node_size, size),
 402                               (uint64_t)(GTT_MAX_BYTES - cur_size));
 403
 404                /* Map src to window 0 and dst to window 1. */
 405                r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
 406                                          PFN_UP(cur_size + src_page_offset),
 407                                          src_offset, 0, ring, tmz, &from);
 408                if (r)
 409                        goto error;
 410
 411                r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
 412                                          PFN_UP(cur_size + dst_page_offset),
 413                                          dst_offset, 1, ring, tmz, &to);
 414                if (r)
 415                        goto error;
 416
 417                r = amdgpu_copy_buffer(ring, from, to, cur_size,
 418                                       resv, &next, false, true, tmz);
 419                if (r)
 420                        goto error;
 421
 422                dma_fence_put(fence);
 423                fence = next;
 424
 425                size -= cur_size;
 426                if (!size)
 427                        break;
 428
 429                src_node_size -= cur_size;
 430                if (!src_node_size) {
 431                        ++src_mm;
 432                        src_node_size = src_mm->size << PAGE_SHIFT;
 433                        src_offset = 0;
 434                } else {
 435                        src_offset += cur_size;
 436                }
 437
 438                dst_node_size -= cur_size;
 439                if (!dst_node_size) {
 440                        ++dst_mm;
 441                        dst_node_size = dst_mm->size << PAGE_SHIFT;
 442                        dst_offset = 0;
 443                } else {
 444                        dst_offset += cur_size;
 445                }
 446        }
 447error:
 448        mutex_unlock(&adev->mman.gtt_window_lock);
 449        if (f)
 450                *f = dma_fence_get(fence);
 451        dma_fence_put(fence);
 452        return r;
 453}
 454
 455/**
 456 * amdgpu_move_blit - Copy an entire buffer to another buffer
 457 *
 458 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 459 * help move buffers to and from VRAM.
 460 */
 461static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 462                            bool evict,
 463                            struct ttm_resource *new_mem,
 464                            struct ttm_resource *old_mem)
 465{
 466        struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 467        struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 468        struct amdgpu_copy_mem src, dst;
 469        struct dma_fence *fence = NULL;
 470        int r;
 471
 472        src.bo = bo;
 473        dst.bo = bo;
 474        src.mem = old_mem;
 475        dst.mem = new_mem;
 476        src.offset = 0;
 477        dst.offset = 0;
 478
 479        r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 480                                       new_mem->num_pages << PAGE_SHIFT,
 481                                       amdgpu_bo_encrypted(abo),
 482                                       bo->base.resv, &fence);
 483        if (r)
 484                goto error;
 485
 486        /* clear the space being freed */
 487        if (old_mem->mem_type == TTM_PL_VRAM &&
 488            (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 489                struct dma_fence *wipe_fence = NULL;
 490
 491                r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 492                                       NULL, &wipe_fence);
 493                if (r) {
 494                        goto error;
 495                } else if (wipe_fence) {
 496                        dma_fence_put(fence);
 497                        fence = wipe_fence;
 498                }
 499        }
 500
 501        /* Always block for VM page tables before committing the new location */
 502        if (bo->type == ttm_bo_type_kernel)
 503                r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 504        else
 505                r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 506        dma_fence_put(fence);
 507        return r;
 508
 509error:
 510        if (fence)
 511                dma_fence_wait(fence, false);
 512        dma_fence_put(fence);
 513        return r;
 514}
 515
 516/**
 517 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
 518 *
 519 * Called by amdgpu_bo_move().
 520 */
 521static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
 522                                struct ttm_operation_ctx *ctx,
 523                                struct ttm_resource *new_mem)
 524{
 525        struct ttm_resource *old_mem = &bo->mem;
 526        struct ttm_resource tmp_mem;
 527        struct ttm_place placements;
 528        struct ttm_placement placement;
 529        int r;
 530
 531        /* create space/pages for new_mem in GTT space */
 532        tmp_mem = *new_mem;
 533        tmp_mem.mm_node = NULL;
 534        placement.num_placement = 1;
 535        placement.placement = &placements;
 536        placement.num_busy_placement = 1;
 537        placement.busy_placement = &placements;
 538        placements.fpfn = 0;
 539        placements.lpfn = 0;
 540        placements.mem_type = TTM_PL_TT;
 541        placements.flags = TTM_PL_MASK_CACHING;
 542        r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 543        if (unlikely(r)) {
 544                pr_err("Failed to find GTT space for blit from VRAM\n");
 545                return r;
 546        }
 547
 548        /* set caching flags */
 549        r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
 550        if (unlikely(r)) {
 551                goto out_cleanup;
 552        }
 553
 554        r = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
 555        if (unlikely(r))
 556                goto out_cleanup;
 557
 558        /* Bind the memory to the GTT space */
 559        r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem);
 560        if (unlikely(r)) {
 561                goto out_cleanup;
 562        }
 563
 564        /* blit VRAM to GTT */
 565        r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
 566        if (unlikely(r)) {
 567                goto out_cleanup;
 568        }
 569
 570        /* move BO (in tmp_mem) to new_mem */
 571        r = ttm_bo_move_ttm(bo, ctx, new_mem);
 572out_cleanup:
 573        ttm_resource_free(bo, &tmp_mem);
 574        return r;
 575}
 576
 577/**
 578 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
 579 *
 580 * Called by amdgpu_bo_move().
 581 */
 582static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
 583                                struct ttm_operation_ctx *ctx,
 584                                struct ttm_resource *new_mem)
 585{
 586        struct ttm_resource *old_mem = &bo->mem;
 587        struct ttm_resource tmp_mem;
 588        struct ttm_placement placement;
 589        struct ttm_place placements;
 590        int r;
 591
 592        /* make space in GTT for old_mem buffer */
 593        tmp_mem = *new_mem;
 594        tmp_mem.mm_node = NULL;
 595        placement.num_placement = 1;
 596        placement.placement = &placements;
 597        placement.num_busy_placement = 1;
 598        placement.busy_placement = &placements;
 599        placements.fpfn = 0;
 600        placements.lpfn = 0;
 601        placements.mem_type = TTM_PL_TT;
 602        placements.flags = TTM_PL_MASK_CACHING;
 603        r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 604        if (unlikely(r)) {
 605                pr_err("Failed to find GTT space for blit to VRAM\n");
 606                return r;
 607        }
 608
 609        /* move/bind old memory to GTT space */
 610        r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
 611        if (unlikely(r)) {
 612                goto out_cleanup;
 613        }
 614
 615        /* copy to VRAM */
 616        r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 617        if (unlikely(r)) {
 618                goto out_cleanup;
 619        }
 620out_cleanup:
 621        ttm_resource_free(bo, &tmp_mem);
 622        return r;
 623}
 624
 625/**
 626 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 627 *
 628 * Called by amdgpu_bo_move()
 629 */
 630static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 631                               struct ttm_resource *mem)
 632{
 633        struct drm_mm_node *nodes = mem->mm_node;
 634
 635        if (mem->mem_type == TTM_PL_SYSTEM ||
 636            mem->mem_type == TTM_PL_TT)
 637                return true;
 638        if (mem->mem_type != TTM_PL_VRAM)
 639                return false;
 640
 641        /* ttm_resource_ioremap only supports contiguous memory */
 642        if (nodes->size != mem->num_pages)
 643                return false;
 644
 645        return ((nodes->start + nodes->size) << PAGE_SHIFT)
 646                <= adev->gmc.visible_vram_size;
 647}
 648
 649/**
 650 * amdgpu_bo_move - Move a buffer object to a new memory location
 651 *
 652 * Called by ttm_bo_handle_move_mem()
 653 */
 654static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 655                          struct ttm_operation_ctx *ctx,
 656                          struct ttm_resource *new_mem)
 657{
 658        struct amdgpu_device *adev;
 659        struct amdgpu_bo *abo;
 660        struct ttm_resource *old_mem = &bo->mem;
 661        int r;
 662
 663        /* Can't move a pinned BO */
 664        abo = ttm_to_amdgpu_bo(bo);
 665        if (WARN_ON_ONCE(abo->pin_count > 0))
 666                return -EINVAL;
 667
 668        adev = amdgpu_ttm_adev(bo->bdev);
 669
 670        if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 671                ttm_bo_move_null(bo, new_mem);
 672                return 0;
 673        }
 674        if ((old_mem->mem_type == TTM_PL_TT &&
 675             new_mem->mem_type == TTM_PL_SYSTEM) ||
 676            (old_mem->mem_type == TTM_PL_SYSTEM &&
 677             new_mem->mem_type == TTM_PL_TT)) {
 678                /* bind is enough */
 679                ttm_bo_move_null(bo, new_mem);
 680                return 0;
 681        }
 682        if (old_mem->mem_type == AMDGPU_PL_GDS ||
 683            old_mem->mem_type == AMDGPU_PL_GWS ||
 684            old_mem->mem_type == AMDGPU_PL_OA ||
 685            new_mem->mem_type == AMDGPU_PL_GDS ||
 686            new_mem->mem_type == AMDGPU_PL_GWS ||
 687            new_mem->mem_type == AMDGPU_PL_OA) {
 688                /* Nothing to save here */
 689                ttm_bo_move_null(bo, new_mem);
 690                return 0;
 691        }
 692
 693        if (!adev->mman.buffer_funcs_enabled) {
 694                r = -ENODEV;
 695                goto memcpy;
 696        }
 697
 698        if (old_mem->mem_type == TTM_PL_VRAM &&
 699            new_mem->mem_type == TTM_PL_SYSTEM) {
 700                r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
 701        } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
 702                   new_mem->mem_type == TTM_PL_VRAM) {
 703                r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
 704        } else {
 705                r = amdgpu_move_blit(bo, evict,
 706                                     new_mem, old_mem);
 707        }
 708
 709        if (r) {
 710memcpy:
 711                /* Check that all memory is CPU accessible */
 712                if (!amdgpu_mem_visible(adev, old_mem) ||
 713                    !amdgpu_mem_visible(adev, new_mem)) {
 714                        pr_err("Move buffer fallback to memcpy unavailable\n");
 715                        return r;
 716                }
 717
 718                r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 719                if (r)
 720                        return r;
 721        }
 722
 723        if (bo->type == ttm_bo_type_device &&
 724            new_mem->mem_type == TTM_PL_VRAM &&
 725            old_mem->mem_type != TTM_PL_VRAM) {
 726                /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 727                 * accesses the BO after it's moved.
 728                 */
 729                abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 730        }
 731
 732        /* update statistics */
 733        atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
 734        return 0;
 735}
 736
 737/**
 738 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 739 *
 740 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 741 */
 742static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
 743{
 744        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 745        struct drm_mm_node *mm_node = mem->mm_node;
 746        size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
 747
 748        switch (mem->mem_type) {
 749        case TTM_PL_SYSTEM:
 750                /* system memory */
 751                return 0;
 752        case TTM_PL_TT:
 753                break;
 754        case TTM_PL_VRAM:
 755                mem->bus.offset = mem->start << PAGE_SHIFT;
 756                /* check if it's visible */
 757                if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 758                        return -EINVAL;
 759                /* Only physically contiguous buffers apply. In a contiguous
 760                 * buffer, size of the first mm_node would match the number of
 761                 * pages in ttm_resource.
 762                 */
 763                if (adev->mman.aper_base_kaddr &&
 764                    (mm_node->size == mem->num_pages))
 765                        mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 766                                        mem->bus.offset;
 767
 768                mem->bus.offset += adev->gmc.aper_base;
 769                mem->bus.is_iomem = true;
 770                break;
 771        default:
 772                return -EINVAL;
 773        }
 774        return 0;
 775}
 776
 777static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 778                                           unsigned long page_offset)
 779{
 780        struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 781        uint64_t offset = (page_offset << PAGE_SHIFT);
 782        struct drm_mm_node *mm;
 783
 784        mm = amdgpu_find_mm_node(&bo->mem, &offset);
 785        offset += adev->gmc.aper_base;
 786        return mm->start + (offset >> PAGE_SHIFT);
 787}
 788
 789/**
 790 * amdgpu_ttm_domain_start - Returns GPU start address
 791 * @adev: amdgpu device object
 792 * @type: type of the memory
 793 *
 794 * Returns:
 795 * GPU start address of a memory domain
 796 */
 797
 798uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 799{
 800        switch (type) {
 801        case TTM_PL_TT:
 802                return adev->gmc.gart_start;
 803        case TTM_PL_VRAM:
 804                return adev->gmc.vram_start;
 805        }
 806
 807        return 0;
 808}
 809
 810/*
 811 * TTM backend functions.
 812 */
 813struct amdgpu_ttm_tt {
 814        struct ttm_dma_tt       ttm;
 815        struct drm_gem_object   *gobj;
 816        u64                     offset;
 817        uint64_t                userptr;
 818        struct task_struct      *usertask;
 819        uint32_t                userflags;
 820        bool                    bound;
 821#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 822        struct hmm_range        *range;
 823#endif
 824};
 825
 826#ifdef CONFIG_DRM_AMDGPU_USERPTR
 827/**
 828 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 829 * memory and start HMM tracking CPU page table update
 830 *
 831 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 832 * once afterwards to stop HMM tracking
 833 */
 834int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 835{
 836        struct ttm_tt *ttm = bo->tbo.ttm;
 837        struct amdgpu_ttm_tt *gtt = (void *)ttm;
 838        unsigned long start = gtt->userptr;
 839        struct vm_area_struct *vma;
 840        struct hmm_range *range;
 841        unsigned long timeout;
 842        struct mm_struct *mm;
 843        unsigned long i;
 844        int r = 0;
 845
 846        mm = bo->notifier.mm;
 847        if (unlikely(!mm)) {
 848                DRM_DEBUG_DRIVER("BO is not registered?\n");
 849                return -EFAULT;
 850        }
 851
 852        /* Another get_user_pages is running at the same time?? */
 853        if (WARN_ON(gtt->range))
 854                return -EFAULT;
 855
 856        if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 857                return -ESRCH;
 858
 859        range = kzalloc(sizeof(*range), GFP_KERNEL);
 860        if (unlikely(!range)) {
 861                r = -ENOMEM;
 862                goto out;
 863        }
 864        range->notifier = &bo->notifier;
 865        range->start = bo->notifier.interval_tree.start;
 866        range->end = bo->notifier.interval_tree.last + 1;
 867        range->default_flags = HMM_PFN_REQ_FAULT;
 868        if (!amdgpu_ttm_tt_is_readonly(ttm))
 869                range->default_flags |= HMM_PFN_REQ_WRITE;
 870
 871        range->hmm_pfns = kvmalloc_array(ttm->num_pages,
 872                                         sizeof(*range->hmm_pfns), GFP_KERNEL);
 873        if (unlikely(!range->hmm_pfns)) {
 874                r = -ENOMEM;
 875                goto out_free_ranges;
 876        }
 877
 878        mmap_read_lock(mm);
 879        vma = find_vma(mm, start);
 880        if (unlikely(!vma || start < vma->vm_start)) {
 881                r = -EFAULT;
 882                goto out_unlock;
 883        }
 884        if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 885                vma->vm_file)) {
 886                r = -EPERM;
 887                goto out_unlock;
 888        }
 889        mmap_read_unlock(mm);
 890        timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 891
 892retry:
 893        range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
 894
 895        mmap_read_lock(mm);
 896        r = hmm_range_fault(range);
 897        mmap_read_unlock(mm);
 898        if (unlikely(r)) {
 899                /*
 900                 * FIXME: This timeout should encompass the retry from
 901                 * mmu_interval_read_retry() as well.
 902                 */
 903                if (r == -EBUSY && !time_after(jiffies, timeout))
 904                        goto retry;
 905                goto out_free_pfns;
 906        }
 907
 908        /*
 909         * Due to default_flags, all pages are HMM_PFN_VALID or
 910         * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
 911         * the notifier_lock, and mmu_interval_read_retry() must be done first.
 912         */
 913        for (i = 0; i < ttm->num_pages; i++)
 914                pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
 915
 916        gtt->range = range;
 917        mmput(mm);
 918
 919        return 0;
 920
 921out_unlock:
 922        mmap_read_unlock(mm);
 923out_free_pfns:
 924        kvfree(range->hmm_pfns);
 925out_free_ranges:
 926        kfree(range);
 927out:
 928        mmput(mm);
 929        return r;
 930}
 931
 932/**
 933 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 934 * Check if the pages backing this ttm range have been invalidated
 935 *
 936 * Returns: true if pages are still valid
 937 */
 938bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
 939{
 940        struct amdgpu_ttm_tt *gtt = (void *)ttm;
 941        bool r = false;
 942
 943        if (!gtt || !gtt->userptr)
 944                return false;
 945
 946        DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
 947                gtt->userptr, ttm->num_pages);
 948
 949        WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
 950                "No user pages to check\n");
 951
 952        if (gtt->range) {
 953                /*
 954                 * FIXME: Must always hold notifier_lock for this, and must
 955                 * not ignore the return code.
 956                 */
 957                r = mmu_interval_read_retry(gtt->range->notifier,
 958                                         gtt->range->notifier_seq);
 959                kvfree(gtt->range->hmm_pfns);
 960                kfree(gtt->range);
 961                gtt->range = NULL;
 962        }
 963
 964        return !r;
 965}
 966#endif
 967
 968/**
 969 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 970 *
 971 * Called by amdgpu_cs_list_validate(). This creates the page list
 972 * that backs user memory and will ultimately be mapped into the device
 973 * address space.
 974 */
 975void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 976{
 977        unsigned long i;
 978
 979        for (i = 0; i < ttm->num_pages; ++i)
 980                ttm->pages[i] = pages ? pages[i] : NULL;
 981}
 982
 983/**
 984 * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
 985 *
 986 * Called by amdgpu_ttm_backend_bind()
 987 **/
 988static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
 989                                     struct ttm_tt *ttm)
 990{
 991        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 992        struct amdgpu_ttm_tt *gtt = (void *)ttm;
 993        int r;
 994
 995        int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 996        enum dma_data_direction direction = write ?
 997                DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 998
 999        /* Allocate an SG array and squash pages into it */
1000        r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1001                                      ttm->num_pages << PAGE_SHIFT,
1002                                      GFP_KERNEL);
1003        if (r)
1004                goto release_sg;
1005
1006        /* Map SG to device */
1007        r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1008        if (r)
1009                goto release_sg;
1010
1011        /* convert SG to linear array of pages and dma addresses */
1012        drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1013                                         gtt->ttm.dma_address, ttm->num_pages);
1014
1015        return 0;
1016
1017release_sg:
1018        kfree(ttm->sg);
1019        ttm->sg = NULL;
1020        return r;
1021}
1022
1023/**
1024 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1025 */
1026static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
1027                                        struct ttm_tt *ttm)
1028{
1029        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1031
1032        int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1033        enum dma_data_direction direction = write ?
1034                DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1035
1036        /* double check that we don't free the table twice */
1037        if (!ttm->sg->sgl)
1038                return;
1039
1040        /* unmap the pages mapped to the device */
1041        dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1042        sg_free_table(ttm->sg);
1043
1044#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1045        if (gtt->range) {
1046                unsigned long i;
1047
1048                for (i = 0; i < ttm->num_pages; i++) {
1049                        if (ttm->pages[i] !=
1050                            hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1051                                break;
1052                }
1053
1054                WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1055        }
1056#endif
1057}
1058
1059static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1060                                struct ttm_buffer_object *tbo,
1061                                uint64_t flags)
1062{
1063        struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1064        struct ttm_tt *ttm = tbo->ttm;
1065        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1066        int r;
1067
1068        if (amdgpu_bo_encrypted(abo))
1069                flags |= AMDGPU_PTE_TMZ;
1070
1071        if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1072                uint64_t page_idx = 1;
1073
1074                r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1075                                ttm->pages, gtt->ttm.dma_address, flags);
1076                if (r)
1077                        goto gart_bind_fail;
1078
1079                /* The memory type of the first page defaults to UC. Now
1080                 * modify the memory type to NC from the second page of
1081                 * the BO onward.
1082                 */
1083                flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1084                flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1085
1086                r = amdgpu_gart_bind(adev,
1087                                gtt->offset + (page_idx << PAGE_SHIFT),
1088                                ttm->num_pages - page_idx,
1089                                &ttm->pages[page_idx],
1090                                &(gtt->ttm.dma_address[page_idx]), flags);
1091        } else {
1092                r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1093                                     ttm->pages, gtt->ttm.dma_address, flags);
1094        }
1095
1096gart_bind_fail:
1097        if (r)
1098                DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1099                          ttm->num_pages, gtt->offset);
1100
1101        return r;
1102}
1103
1104/**
1105 * amdgpu_ttm_backend_bind - Bind GTT memory
1106 *
1107 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1108 * This handles binding GTT memory to the device address space.
1109 */
1110static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1111                                   struct ttm_tt *ttm,
1112                                   struct ttm_resource *bo_mem)
1113{
1114        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1115        struct amdgpu_ttm_tt *gtt = (void*)ttm;
1116        uint64_t flags;
1117        int r = 0;
1118
1119        if (!bo_mem)
1120                return -EINVAL;
1121
1122        if (gtt->bound)
1123                return 0;
1124
1125        if (gtt->userptr) {
1126                r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1127                if (r) {
1128                        DRM_ERROR("failed to pin userptr\n");
1129                        return r;
1130                }
1131        }
1132        if (!ttm->num_pages) {
1133                WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1134                     ttm->num_pages, bo_mem, ttm);
1135        }
1136
1137        if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1138            bo_mem->mem_type == AMDGPU_PL_GWS ||
1139            bo_mem->mem_type == AMDGPU_PL_OA)
1140                return -EINVAL;
1141
1142        if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1143                gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1144                return 0;
1145        }
1146
1147        /* compute PTE flags relevant to this BO memory */
1148        flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1149
1150        /* bind pages into GART page tables */
1151        gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1152        r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1153                ttm->pages, gtt->ttm.dma_address, flags);
1154
1155        if (r)
1156                DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1157                          ttm->num_pages, gtt->offset);
1158        gtt->bound = true;
1159        return r;
1160}
1161
1162/**
1163 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1164 * through AGP or GART aperture.
1165 *
1166 * If bo is accessible through AGP aperture, then use AGP aperture
1167 * to access bo; otherwise allocate logical space in GART aperture
1168 * and map bo to GART aperture.
1169 */
1170int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1171{
1172        struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1173        struct ttm_operation_ctx ctx = { false, false };
1174        struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1175        struct ttm_resource tmp;
1176        struct ttm_placement placement;
1177        struct ttm_place placements;
1178        uint64_t addr, flags;
1179        int r;
1180
1181        if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1182                return 0;
1183
1184        addr = amdgpu_gmc_agp_addr(bo);
1185        if (addr != AMDGPU_BO_INVALID_OFFSET) {
1186                bo->mem.start = addr >> PAGE_SHIFT;
1187        } else {
1188
1189                /* allocate GART space */
1190                tmp = bo->mem;
1191                tmp.mm_node = NULL;
1192                placement.num_placement = 1;
1193                placement.placement = &placements;
1194                placement.num_busy_placement = 1;
1195                placement.busy_placement = &placements;
1196                placements.fpfn = 0;
1197                placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1198                placements.mem_type = TTM_PL_TT;
1199                placements.flags = bo->mem.placement;
1200
1201                r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1202                if (unlikely(r))
1203                        return r;
1204
1205                /* compute PTE flags for this buffer object */
1206                flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1207
1208                /* Bind pages */
1209                gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1210                r = amdgpu_ttm_gart_bind(adev, bo, flags);
1211                if (unlikely(r)) {
1212                        ttm_resource_free(bo, &tmp);
1213                        return r;
1214                }
1215
1216                ttm_resource_free(bo, &bo->mem);
1217                bo->mem = tmp;
1218        }
1219
1220        return 0;
1221}
1222
1223/**
1224 * amdgpu_ttm_recover_gart - Rebind GTT pages
1225 *
1226 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1227 * rebind GTT pages during a GPU reset.
1228 */
1229int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1230{
1231        struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1232        uint64_t flags;
1233        int r;
1234
1235        if (!tbo->ttm)
1236                return 0;
1237
1238        flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1239        r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1240
1241        return r;
1242}
1243
1244/**
1245 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1246 *
1247 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1248 * ttm_tt_destroy().
1249 */
1250static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1251                                      struct ttm_tt *ttm)
1252{
1253        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1254        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1255        int r;
1256
1257        if (!gtt->bound)
1258                return;
1259
1260        /* if the pages have userptr pinning then clear that first */
1261        if (gtt->userptr)
1262                amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1263
1264        if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1265                return;
1266
1267        /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1268        r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1269        if (r)
1270                DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1271                          gtt->ttm.ttm.num_pages, gtt->offset);
1272        gtt->bound = false;
1273}
1274
1275static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1276                                       struct ttm_tt *ttm)
1277{
1278        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279
1280        amdgpu_ttm_backend_unbind(bdev, ttm);
1281        ttm_tt_destroy_common(bdev, ttm);
1282        if (gtt->usertask)
1283                put_task_struct(gtt->usertask);
1284
1285        ttm_dma_tt_fini(&gtt->ttm);
1286        kfree(gtt);
1287}
1288
1289/**
1290 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1291 *
1292 * @bo: The buffer object to create a GTT ttm_tt object around
1293 *
1294 * Called by ttm_tt_create().
1295 */
1296static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1297                                           uint32_t page_flags)
1298{
1299        struct amdgpu_ttm_tt *gtt;
1300
1301        gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1302        if (gtt == NULL) {
1303                return NULL;
1304        }
1305        gtt->gobj = &bo->base;
1306
1307        /* allocate space for the uninitialized page entries */
1308        if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1309                kfree(gtt);
1310                return NULL;
1311        }
1312        return &gtt->ttm.ttm;
1313}
1314
1315/**
1316 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1317 *
1318 * Map the pages of a ttm_tt object to an address space visible
1319 * to the underlying device.
1320 */
1321static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1322                                  struct ttm_tt *ttm,
1323                                  struct ttm_operation_ctx *ctx)
1324{
1325        struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1326        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327
1328        /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1329        if (gtt && gtt->userptr) {
1330                ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1331                if (!ttm->sg)
1332                        return -ENOMEM;
1333
1334                ttm->page_flags |= TTM_PAGE_FLAG_SG;
1335                ttm_tt_set_populated(ttm);
1336                return 0;
1337        }
1338
1339        if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1340                if (!ttm->sg) {
1341                        struct dma_buf_attachment *attach;
1342                        struct sg_table *sgt;
1343
1344                        attach = gtt->gobj->import_attach;
1345                        sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1346                        if (IS_ERR(sgt))
1347                                return PTR_ERR(sgt);
1348
1349                        ttm->sg = sgt;
1350                }
1351
1352                drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1353                                                 gtt->ttm.dma_address,
1354                                                 ttm->num_pages);
1355                ttm_tt_set_populated(ttm);
1356                return 0;
1357        }
1358
1359#ifdef CONFIG_SWIOTLB
1360        if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1361                return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1362        }
1363#endif
1364
1365        /* fall back to generic helper to populate the page array
1366         * and map them to the device */
1367        return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1368}
1369
1370/**
1371 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1372 *
1373 * Unmaps pages of a ttm_tt object from the device address space and
1374 * unpopulates the page array backing it.
1375 */
1376static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
1377{
1378        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1379        struct amdgpu_device *adev;
1380
1381        if (gtt && gtt->userptr) {
1382                amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1383                kfree(ttm->sg);
1384                ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1385                return;
1386        }
1387
1388        if (ttm->sg && gtt->gobj->import_attach) {
1389                struct dma_buf_attachment *attach;
1390
1391                attach = gtt->gobj->import_attach;
1392                dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1393                ttm->sg = NULL;
1394                return;
1395        }
1396
1397        if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1398                return;
1399
1400        adev = amdgpu_ttm_adev(bdev);
1401
1402#ifdef CONFIG_SWIOTLB
1403        if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1404                ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1405                return;
1406        }
1407#endif
1408
1409        /* fall back to generic helper to unmap and unpopulate array */
1410        ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1411}
1412
1413/**
1414 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1415 * task
1416 *
1417 * @bo: The ttm_buffer_object to bind this userptr to
1418 * @addr:  The address in the current tasks VM space to use
1419 * @flags: Requirements of userptr object.
1420 *
1421 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1422 * to current task
1423 */
1424int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1425                              uint64_t addr, uint32_t flags)
1426{
1427        struct amdgpu_ttm_tt *gtt;
1428
1429        if (!bo->ttm) {
1430                /* TODO: We want a separate TTM object type for userptrs */
1431                bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1432                if (bo->ttm == NULL)
1433                        return -ENOMEM;
1434        }
1435
1436        gtt = (void*)bo->ttm;
1437        gtt->userptr = addr;
1438        gtt->userflags = flags;
1439
1440        if (gtt->usertask)
1441                put_task_struct(gtt->usertask);
1442        gtt->usertask = current->group_leader;
1443        get_task_struct(gtt->usertask);
1444
1445        return 0;
1446}
1447
1448/**
1449 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1450 */
1451struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1452{
1453        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1454
1455        if (gtt == NULL)
1456                return NULL;
1457
1458        if (gtt->usertask == NULL)
1459                return NULL;
1460
1461        return gtt->usertask->mm;
1462}
1463
1464/**
1465 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1466 * address range for the current task.
1467 *
1468 */
1469bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1470                                  unsigned long end)
1471{
1472        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1473        unsigned long size;
1474
1475        if (gtt == NULL || !gtt->userptr)
1476                return false;
1477
1478        /* Return false if no part of the ttm_tt object lies within
1479         * the range
1480         */
1481        size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1482        if (gtt->userptr > end || gtt->userptr + size <= start)
1483                return false;
1484
1485        return true;
1486}
1487
1488/**
1489 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1490 */
1491bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1492{
1493        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1494
1495        if (gtt == NULL || !gtt->userptr)
1496                return false;
1497
1498        return true;
1499}
1500
1501/**
1502 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1503 */
1504bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1505{
1506        struct amdgpu_ttm_tt *gtt = (void *)ttm;
1507
1508        if (gtt == NULL)
1509                return false;
1510
1511        return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1512}
1513
1514/**
1515 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1516 *
1517 * @ttm: The ttm_tt object to compute the flags for
1518 * @mem: The memory registry backing this ttm_tt object
1519 *
1520 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1521 */
1522uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1523{
1524        uint64_t flags = 0;
1525
1526        if (mem && mem->mem_type != TTM_PL_SYSTEM)
1527                flags |= AMDGPU_PTE_VALID;
1528
1529        if (mem && mem->mem_type == TTM_PL_TT) {
1530                flags |= AMDGPU_PTE_SYSTEM;
1531
1532                if (ttm->caching_state == tt_cached)
1533                        flags |= AMDGPU_PTE_SNOOPED;
1534        }
1535
1536        return flags;
1537}
1538
1539/**
1540 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1541 *
1542 * @ttm: The ttm_tt object to compute the flags for
1543 * @mem: The memory registry backing this ttm_tt object
1544
1545 * Figure out the flags to use for a VM PTE (Page Table Entry).
1546 */
1547uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1548                                 struct ttm_resource *mem)
1549{
1550        uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1551
1552        flags |= adev->gart.gart_pte_flags;
1553        flags |= AMDGPU_PTE_READABLE;
1554
1555        if (!amdgpu_ttm_tt_is_readonly(ttm))
1556                flags |= AMDGPU_PTE_WRITEABLE;
1557
1558        return flags;
1559}
1560
1561/**
1562 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1563 * object.
1564 *
1565 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1566 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1567 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1568 * used to clean out a memory space.
1569 */
1570static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1571                                            const struct ttm_place *place)
1572{
1573        unsigned long num_pages = bo->mem.num_pages;
1574        struct drm_mm_node *node = bo->mem.mm_node;
1575        struct dma_resv_list *flist;
1576        struct dma_fence *f;
1577        int i;
1578
1579        if (bo->type == ttm_bo_type_kernel &&
1580            !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1581                return false;
1582
1583        /* If bo is a KFD BO, check if the bo belongs to the current process.
1584         * If true, then return false as any KFD process needs all its BOs to
1585         * be resident to run successfully
1586         */
1587        flist = dma_resv_get_list(bo->base.resv);
1588        if (flist) {
1589                for (i = 0; i < flist->shared_count; ++i) {
1590                        f = rcu_dereference_protected(flist->shared[i],
1591                                dma_resv_held(bo->base.resv));
1592                        if (amdkfd_fence_check_mm(f, current->mm))
1593                                return false;
1594                }
1595        }
1596
1597        switch (bo->mem.mem_type) {
1598        case TTM_PL_TT:
1599                if (amdgpu_bo_is_amdgpu_bo(bo) &&
1600                    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1601                        return false;
1602                return true;
1603
1604        case TTM_PL_VRAM:
1605                /* Check each drm MM node individually */
1606                while (num_pages) {
1607                        if (place->fpfn < (node->start + node->size) &&
1608                            !(place->lpfn && place->lpfn <= node->start))
1609                                return true;
1610
1611                        num_pages -= node->size;
1612                        ++node;
1613                }
1614                return false;
1615
1616        default:
1617                break;
1618        }
1619
1620        return ttm_bo_eviction_valuable(bo, place);
1621}
1622
1623/**
1624 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1625 *
1626 * @bo:  The buffer object to read/write
1627 * @offset:  Offset into buffer object
1628 * @buf:  Secondary buffer to write/read from
1629 * @len: Length in bytes of access
1630 * @write:  true if writing
1631 *
1632 * This is used to access VRAM that backs a buffer object via MMIO
1633 * access for debugging purposes.
1634 */
1635static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1636                                    unsigned long offset,
1637                                    void *buf, int len, int write)
1638{
1639        struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1640        struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1641        struct drm_mm_node *nodes;
1642        uint32_t value = 0;
1643        int ret = 0;
1644        uint64_t pos;
1645        unsigned long flags;
1646
1647        if (bo->mem.mem_type != TTM_PL_VRAM)
1648                return -EIO;
1649
1650        pos = offset;
1651        nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1652        pos += (nodes->start << PAGE_SHIFT);
1653
1654        while (len && pos < adev->gmc.mc_vram_size) {
1655                uint64_t aligned_pos = pos & ~(uint64_t)3;
1656                uint64_t bytes = 4 - (pos & 3);
1657                uint32_t shift = (pos & 3) * 8;
1658                uint32_t mask = 0xffffffff << shift;
1659
1660                if (len < bytes) {
1661                        mask &= 0xffffffff >> (bytes - len) * 8;
1662                        bytes = len;
1663                }
1664
1665                if (mask != 0xffffffff) {
1666                        spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1667                        WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1668                        WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1669                        if (!write || mask != 0xffffffff)
1670                                value = RREG32_NO_KIQ(mmMM_DATA);
1671                        if (write) {
1672                                value &= ~mask;
1673                                value |= (*(uint32_t *)buf << shift) & mask;
1674                                WREG32_NO_KIQ(mmMM_DATA, value);
1675                        }
1676                        spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1677                        if (!write) {
1678                                value = (value & mask) >> shift;
1679                                memcpy(buf, &value, bytes);
1680                        }
1681                } else {
1682                        bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1683                        bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1684
1685                        amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1686                                                  bytes, write);
1687                }
1688
1689                ret += bytes;
1690                buf = (uint8_t *)buf + bytes;
1691                pos += bytes;
1692                len -= bytes;
1693                if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1694                        ++nodes;
1695                        pos = (nodes->start << PAGE_SHIFT);
1696                }
1697        }
1698
1699        return ret;
1700}
1701
1702static struct ttm_bo_driver amdgpu_bo_driver = {
1703        .ttm_tt_create = &amdgpu_ttm_tt_create,
1704        .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1705        .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1706        .ttm_tt_bind = &amdgpu_ttm_backend_bind,
1707        .ttm_tt_unbind = &amdgpu_ttm_backend_unbind,
1708        .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1709        .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1710        .evict_flags = &amdgpu_evict_flags,
1711        .move = &amdgpu_bo_move,
1712        .verify_access = &amdgpu_verify_access,
1713        .move_notify = &amdgpu_bo_move_notify,
1714        .release_notify = &amdgpu_bo_release_notify,
1715        .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1716        .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1717        .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1718        .access_memory = &amdgpu_ttm_access_memory,
1719        .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1720};
1721
1722/*
1723 * Firmware Reservation functions
1724 */
1725/**
1726 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1727 *
1728 * @adev: amdgpu_device pointer
1729 *
1730 * free fw reserved vram if it has been reserved.
1731 */
1732static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1733{
1734        amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1735                NULL, &adev->mman.fw_vram_usage_va);
1736}
1737
1738/**
1739 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1740 *
1741 * @adev: amdgpu_device pointer
1742 *
1743 * create bo vram reservation from fw.
1744 */
1745static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1746{
1747        uint64_t vram_size = adev->gmc.visible_vram_size;
1748
1749        adev->mman.fw_vram_usage_va = NULL;
1750        adev->mman.fw_vram_usage_reserved_bo = NULL;
1751
1752        if (adev->mman.fw_vram_usage_size == 0 ||
1753            adev->mman.fw_vram_usage_size > vram_size)
1754                return 0;
1755
1756        return amdgpu_bo_create_kernel_at(adev,
1757                                          adev->mman.fw_vram_usage_start_offset,
1758                                          adev->mman.fw_vram_usage_size,
1759                                          AMDGPU_GEM_DOMAIN_VRAM,
1760                                          &adev->mman.fw_vram_usage_reserved_bo,
1761                                          &adev->mman.fw_vram_usage_va);
1762}
1763
1764/*
1765 * Memoy training reservation functions
1766 */
1767
1768/**
1769 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1770 *
1771 * @adev: amdgpu_device pointer
1772 *
1773 * free memory training reserved vram if it has been reserved.
1774 */
1775static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1776{
1777        struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1778
1779        ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1780        amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1781        ctx->c2p_bo = NULL;
1782
1783        return 0;
1784}
1785
1786static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1787{
1788        struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1789
1790        memset(ctx, 0, sizeof(*ctx));
1791
1792        ctx->c2p_train_data_offset =
1793                ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1794        ctx->p2c_train_data_offset =
1795                (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1796        ctx->train_data_size =
1797                GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1798        
1799        DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1800                        ctx->train_data_size,
1801                        ctx->p2c_train_data_offset,
1802                        ctx->c2p_train_data_offset);
1803}
1804
1805/*
1806 * reserve TMR memory at the top of VRAM which holds
1807 * IP Discovery data and is protected by PSP.
1808 */
1809static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1810{
1811        int ret;
1812        struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1813        bool mem_train_support = false;
1814
1815        if (!amdgpu_sriov_vf(adev)) {
1816                ret = amdgpu_mem_train_support(adev);
1817                if (ret == 1)
1818                        mem_train_support = true;
1819                else if (ret == -1)
1820                        return -EINVAL;
1821                else
1822                        DRM_DEBUG("memory training does not support!\n");
1823        }
1824
1825        /*
1826         * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1827         * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1828         *
1829         * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1830         * discovery data and G6 memory training data respectively
1831         */
1832        adev->mman.discovery_tmr_size =
1833                amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1834        if (!adev->mman.discovery_tmr_size)
1835                adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1836
1837        if (mem_train_support) {
1838                /* reserve vram for mem train according to TMR location */
1839                amdgpu_ttm_training_data_block_init(adev);
1840                ret = amdgpu_bo_create_kernel_at(adev,
1841                                         ctx->c2p_train_data_offset,
1842                                         ctx->train_data_size,
1843                                         AMDGPU_GEM_DOMAIN_VRAM,
1844                                         &ctx->c2p_bo,
1845                                         NULL);
1846                if (ret) {
1847                        DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1848                        amdgpu_ttm_training_reserve_vram_fini(adev);
1849                        return ret;
1850                }
1851                ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1852        }
1853
1854        ret = amdgpu_bo_create_kernel_at(adev,
1855                                adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1856                                adev->mman.discovery_tmr_size,
1857                                AMDGPU_GEM_DOMAIN_VRAM,
1858                                &adev->mman.discovery_memory,
1859                                NULL);
1860        if (ret) {
1861                DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1862                amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1863                return ret;
1864        }
1865
1866        return 0;
1867}
1868
1869/**
1870 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1871 * gtt/vram related fields.
1872 *
1873 * This initializes all of the memory space pools that the TTM layer
1874 * will need such as the GTT space (system memory mapped to the device),
1875 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1876 * can be mapped per VMID.
1877 */
1878int amdgpu_ttm_init(struct amdgpu_device *adev)
1879{
1880        uint64_t gtt_size;
1881        int r;
1882        u64 vis_vram_limit;
1883
1884        mutex_init(&adev->mman.gtt_window_lock);
1885
1886        /* No others user of address space so set it to 0 */
1887        r = ttm_bo_device_init(&adev->mman.bdev,
1888                               &amdgpu_bo_driver,
1889                               adev_to_drm(adev)->anon_inode->i_mapping,
1890                               adev_to_drm(adev)->vma_offset_manager,
1891                               dma_addressing_limited(adev->dev));
1892        if (r) {
1893                DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1894                return r;
1895        }
1896        adev->mman.initialized = true;
1897
1898        /* We opt to avoid OOM on system pages allocations */
1899        adev->mman.bdev.no_retry = true;
1900
1901        /* Initialize VRAM pool with all of VRAM divided into pages */
1902        r = amdgpu_vram_mgr_init(adev);
1903        if (r) {
1904                DRM_ERROR("Failed initializing VRAM heap.\n");
1905                return r;
1906        }
1907
1908        /* Reduce size of CPU-visible VRAM if requested */
1909        vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1910        if (amdgpu_vis_vram_limit > 0 &&
1911            vis_vram_limit <= adev->gmc.visible_vram_size)
1912                adev->gmc.visible_vram_size = vis_vram_limit;
1913
1914        /* Change the size here instead of the init above so only lpfn is affected */
1915        amdgpu_ttm_set_buffer_funcs_status(adev, false);
1916#ifdef CONFIG_64BIT
1917        adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1918                                                adev->gmc.visible_vram_size);
1919#endif
1920
1921        /*
1922         *The reserved vram for firmware must be pinned to the specified
1923         *place on the VRAM, so reserve it early.
1924         */
1925        r = amdgpu_ttm_fw_reserve_vram_init(adev);
1926        if (r) {
1927                return r;
1928        }
1929
1930        /*
1931         * only NAVI10 and onwards ASIC support for IP discovery.
1932         * If IP discovery enabled, a block of memory should be
1933         * reserved for IP discovey.
1934         */
1935        if (adev->mman.discovery_bin) {
1936                r = amdgpu_ttm_reserve_tmr(adev);
1937                if (r)
1938                        return r;
1939        }
1940
1941        /* allocate memory as required for VGA
1942         * This is used for VGA emulation and pre-OS scanout buffers to
1943         * avoid display artifacts while transitioning between pre-OS
1944         * and driver.  */
1945        r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1946                                       AMDGPU_GEM_DOMAIN_VRAM,
1947                                       &adev->mman.stolen_vga_memory,
1948                                       NULL);
1949        if (r)
1950                return r;
1951        r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1952                                       adev->mman.stolen_extended_size,
1953                                       AMDGPU_GEM_DOMAIN_VRAM,
1954                                       &adev->mman.stolen_extended_memory,
1955                                       NULL);
1956        if (r)
1957                return r;
1958
1959        DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1960                 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1961
1962        /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1963         * or whatever the user passed on module init */
1964        if (amdgpu_gtt_size == -1) {
1965                struct sysinfo si;
1966
1967                si_meminfo(&si);
1968                gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1969                               adev->gmc.mc_vram_size),
1970                               ((uint64_t)si.totalram * si.mem_unit * 3/4));
1971        }
1972        else
1973                gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1974
1975        /* Initialize GTT memory pool */
1976        r = amdgpu_gtt_mgr_init(adev, gtt_size);
1977        if (r) {
1978                DRM_ERROR("Failed initializing GTT heap.\n");
1979                return r;
1980        }
1981        DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1982                 (unsigned)(gtt_size / (1024 * 1024)));
1983
1984        /* Initialize various on-chip memory pools */
1985        r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1986        if (r) {
1987                DRM_ERROR("Failed initializing GDS heap.\n");
1988                return r;
1989        }
1990
1991        r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1992        if (r) {
1993                DRM_ERROR("Failed initializing gws heap.\n");
1994                return r;
1995        }
1996
1997        r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1998        if (r) {
1999                DRM_ERROR("Failed initializing oa heap.\n");
2000                return r;
2001        }
2002
2003        return 0;
2004}
2005
2006/**
2007 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2008 */
2009void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2010{
2011        /* return the VGA stolen memory (if any) back to VRAM */
2012        if (!adev->mman.keep_stolen_vga_memory)
2013                amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2014        amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2015}
2016
2017/**
2018 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2019 */
2020void amdgpu_ttm_fini(struct amdgpu_device *adev)
2021{
2022        if (!adev->mman.initialized)
2023                return;
2024
2025        amdgpu_ttm_training_reserve_vram_fini(adev);
2026        /* return the stolen vga memory back to VRAM */
2027        if (adev->mman.keep_stolen_vga_memory)
2028                amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2029        /* return the IP Discovery TMR memory back to VRAM */
2030        amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2031        amdgpu_ttm_fw_reserve_vram_fini(adev);
2032
2033        if (adev->mman.aper_base_kaddr)
2034                iounmap(adev->mman.aper_base_kaddr);
2035        adev->mman.aper_base_kaddr = NULL;
2036
2037        amdgpu_vram_mgr_fini(adev);
2038        amdgpu_gtt_mgr_fini(adev);
2039        ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2040        ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2041        ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2042        ttm_bo_device_release(&adev->mman.bdev);
2043        adev->mman.initialized = false;
2044        DRM_INFO("amdgpu: ttm finalized\n");
2045}
2046
2047/**
2048 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2049 *
2050 * @adev: amdgpu_device pointer
2051 * @enable: true when we can use buffer functions.
2052 *
2053 * Enable/disable use of buffer functions during suspend/resume. This should
2054 * only be called at bootup or when userspace isn't running.
2055 */
2056void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2057{
2058        struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2059        uint64_t size;
2060        int r;
2061
2062        if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2063            adev->mman.buffer_funcs_enabled == enable)
2064                return;
2065
2066        if (enable) {
2067                struct amdgpu_ring *ring;
2068                struct drm_gpu_scheduler *sched;
2069
2070                ring = adev->mman.buffer_funcs_ring;
2071                sched = &ring->sched;
2072                r = drm_sched_entity_init(&adev->mman.entity,
2073                                          DRM_SCHED_PRIORITY_KERNEL, &sched,
2074                                          1, NULL);
2075                if (r) {
2076                        DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2077                                  r);
2078                        return;
2079                }
2080        } else {
2081                drm_sched_entity_destroy(&adev->mman.entity);
2082                dma_fence_put(man->move);
2083                man->move = NULL;
2084        }
2085
2086        /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087        if (enable)
2088                size = adev->gmc.real_vram_size;
2089        else
2090                size = adev->gmc.visible_vram_size;
2091        man->size = size >> PAGE_SHIFT;
2092        adev->mman.buffer_funcs_enabled = enable;
2093}
2094
2095int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2096{
2097        struct drm_file *file_priv = filp->private_data;
2098        struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2099
2100        if (adev == NULL)
2101                return -EINVAL;
2102
2103        return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2104}
2105
2106int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2107                       uint64_t dst_offset, uint32_t byte_count,
2108                       struct dma_resv *resv,
2109                       struct dma_fence **fence, bool direct_submit,
2110                       bool vm_needs_flush, bool tmz)
2111{
2112        enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2113                AMDGPU_IB_POOL_DELAYED;
2114        struct amdgpu_device *adev = ring->adev;
2115        struct amdgpu_job *job;
2116
2117        uint32_t max_bytes;
2118        unsigned num_loops, num_dw;
2119        unsigned i;
2120        int r;
2121
2122        if (direct_submit && !ring->sched.ready) {
2123                DRM_ERROR("Trying to move memory with ring turned off.\n");
2124                return -EINVAL;
2125        }
2126
2127        max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2128        num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2129        num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2130
2131        r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2132        if (r)
2133                return r;
2134
2135        if (vm_needs_flush) {
2136                job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2137                job->vm_needs_flush = true;
2138        }
2139        if (resv) {
2140                r = amdgpu_sync_resv(adev, &job->sync, resv,
2141                                     AMDGPU_SYNC_ALWAYS,
2142                                     AMDGPU_FENCE_OWNER_UNDEFINED);
2143                if (r) {
2144                        DRM_ERROR("sync failed (%d).\n", r);
2145                        goto error_free;
2146                }
2147        }
2148
2149        for (i = 0; i < num_loops; i++) {
2150                uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2151
2152                amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2153                                        dst_offset, cur_size_in_bytes, tmz);
2154
2155                src_offset += cur_size_in_bytes;
2156                dst_offset += cur_size_in_bytes;
2157                byte_count -= cur_size_in_bytes;
2158        }
2159
2160        amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2161        WARN_ON(job->ibs[0].length_dw > num_dw);
2162        if (direct_submit)
2163                r = amdgpu_job_submit_direct(job, ring, fence);
2164        else
2165                r = amdgpu_job_submit(job, &adev->mman.entity,
2166                                      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2167        if (r)
2168                goto error_free;
2169
2170        return r;
2171
2172error_free:
2173        amdgpu_job_free(job);
2174        DRM_ERROR("Error scheduling IBs (%d)\n", r);
2175        return r;
2176}
2177
2178int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2179                       uint32_t src_data,
2180                       struct dma_resv *resv,
2181                       struct dma_fence **fence)
2182{
2183        struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2184        uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2185        struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2186
2187        struct drm_mm_node *mm_node;
2188        unsigned long num_pages;
2189        unsigned int num_loops, num_dw;
2190
2191        struct amdgpu_job *job;
2192        int r;
2193
2194        if (!adev->mman.buffer_funcs_enabled) {
2195                DRM_ERROR("Trying to clear memory with ring turned off.\n");
2196                return -EINVAL;
2197        }
2198
2199        if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2200                r = amdgpu_ttm_alloc_gart(&bo->tbo);
2201                if (r)
2202                        return r;
2203        }
2204
2205        num_pages = bo->tbo.num_pages;
2206        mm_node = bo->tbo.mem.mm_node;
2207        num_loops = 0;
2208        while (num_pages) {
2209                uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2210
2211                num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2212                num_pages -= mm_node->size;
2213                ++mm_node;
2214        }
2215        num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2216
2217        /* for IB padding */
2218        num_dw += 64;
2219
2220        r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2221                                     &job);
2222        if (r)
2223                return r;
2224
2225        if (resv) {
2226                r = amdgpu_sync_resv(adev, &job->sync, resv,
2227                                     AMDGPU_SYNC_ALWAYS,
2228                                     AMDGPU_FENCE_OWNER_UNDEFINED);
2229                if (r) {
2230                        DRM_ERROR("sync failed (%d).\n", r);
2231                        goto error_free;
2232                }
2233        }
2234
2235        num_pages = bo->tbo.num_pages;
2236        mm_node = bo->tbo.mem.mm_node;
2237
2238        while (num_pages) {
2239                uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2240                uint64_t dst_addr;
2241
2242                dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2243                while (byte_count) {
2244                        uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2245                                                           max_bytes);
2246
2247                        amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2248                                                dst_addr, cur_size_in_bytes);
2249
2250                        dst_addr += cur_size_in_bytes;
2251                        byte_count -= cur_size_in_bytes;
2252                }
2253
2254                num_pages -= mm_node->size;
2255                ++mm_node;
2256        }
2257
2258        amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2259        WARN_ON(job->ibs[0].length_dw > num_dw);
2260        r = amdgpu_job_submit(job, &adev->mman.entity,
2261                              AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2262        if (r)
2263                goto error_free;
2264
2265        return 0;
2266
2267error_free:
2268        amdgpu_job_free(job);
2269        return r;
2270}
2271
2272#if defined(CONFIG_DEBUG_FS)
2273
2274static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2275{
2276        struct drm_info_node *node = (struct drm_info_node *)m->private;
2277        unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2278        struct drm_device *dev = node->minor->dev;
2279        struct amdgpu_device *adev = drm_to_adev(dev);
2280        struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2281        struct drm_printer p = drm_seq_file_printer(m);
2282
2283        man->func->debug(man, &p);
2284        return 0;
2285}
2286
2287static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2288        {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2289        {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2290        {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2291        {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2292        {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2293        {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2294#ifdef CONFIG_SWIOTLB
2295        {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2296#endif
2297};
2298
2299/**
2300 * amdgpu_ttm_vram_read - Linear read access to VRAM
2301 *
2302 * Accesses VRAM via MMIO for debugging purposes.
2303 */
2304static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2305                                    size_t size, loff_t *pos)
2306{
2307        struct amdgpu_device *adev = file_inode(f)->i_private;
2308        ssize_t result = 0;
2309
2310        if (size & 0x3 || *pos & 0x3)
2311                return -EINVAL;
2312
2313        if (*pos >= adev->gmc.mc_vram_size)
2314                return -ENXIO;
2315
2316        size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2317        while (size) {
2318                size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2319                uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2320
2321                amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2322                if (copy_to_user(buf, value, bytes))
2323                        return -EFAULT;
2324
2325                result += bytes;
2326                buf += bytes;
2327                *pos += bytes;
2328                size -= bytes;
2329        }
2330
2331        return result;
2332}
2333
2334/**
2335 * amdgpu_ttm_vram_write - Linear write access to VRAM
2336 *
2337 * Accesses VRAM via MMIO for debugging purposes.
2338 */
2339static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2340                                    size_t size, loff_t *pos)
2341{
2342        struct amdgpu_device *adev = file_inode(f)->i_private;
2343        ssize_t result = 0;
2344        int r;
2345
2346        if (size & 0x3 || *pos & 0x3)
2347                return -EINVAL;
2348
2349        if (*pos >= adev->gmc.mc_vram_size)
2350                return -ENXIO;
2351
2352        while (size) {
2353                unsigned long flags;
2354                uint32_t value;
2355
2356                if (*pos >= adev->gmc.mc_vram_size)
2357                        return result;
2358
2359                r = get_user(value, (uint32_t *)buf);
2360                if (r)
2361                        return r;
2362
2363                spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2364                WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2365                WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2366                WREG32_NO_KIQ(mmMM_DATA, value);
2367                spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2368
2369                result += 4;
2370                buf += 4;
2371                *pos += 4;
2372                size -= 4;
2373        }
2374
2375        return result;
2376}
2377
2378static const struct file_operations amdgpu_ttm_vram_fops = {
2379        .owner = THIS_MODULE,
2380        .read = amdgpu_ttm_vram_read,
2381        .write = amdgpu_ttm_vram_write,
2382        .llseek = default_llseek,
2383};
2384
2385#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2386
2387/**
2388 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2389 */
2390static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2391                                   size_t size, loff_t *pos)
2392{
2393        struct amdgpu_device *adev = file_inode(f)->i_private;
2394        ssize_t result = 0;
2395        int r;
2396
2397        while (size) {
2398                loff_t p = *pos / PAGE_SIZE;
2399                unsigned off = *pos & ~PAGE_MASK;
2400                size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2401                struct page *page;
2402                void *ptr;
2403
2404                if (p >= adev->gart.num_cpu_pages)
2405                        return result;
2406
2407                page = adev->gart.pages[p];
2408                if (page) {
2409                        ptr = kmap(page);
2410                        ptr += off;
2411
2412                        r = copy_to_user(buf, ptr, cur_size);
2413                        kunmap(adev->gart.pages[p]);
2414                } else
2415                        r = clear_user(buf, cur_size);
2416
2417                if (r)
2418                        return -EFAULT;
2419
2420                result += cur_size;
2421                buf += cur_size;
2422                *pos += cur_size;
2423                size -= cur_size;
2424        }
2425
2426        return result;
2427}
2428
2429static const struct file_operations amdgpu_ttm_gtt_fops = {
2430        .owner = THIS_MODULE,
2431        .read = amdgpu_ttm_gtt_read,
2432        .llseek = default_llseek
2433};
2434
2435#endif
2436
2437/**
2438 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2439 *
2440 * This function is used to read memory that has been mapped to the
2441 * GPU and the known addresses are not physical addresses but instead
2442 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2443 */
2444static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2445                                 size_t size, loff_t *pos)
2446{
2447        struct amdgpu_device *adev = file_inode(f)->i_private;
2448        struct iommu_domain *dom;
2449        ssize_t result = 0;
2450        int r;
2451
2452        /* retrieve the IOMMU domain if any for this device */
2453        dom = iommu_get_domain_for_dev(adev->dev);
2454
2455        while (size) {
2456                phys_addr_t addr = *pos & PAGE_MASK;
2457                loff_t off = *pos & ~PAGE_MASK;
2458                size_t bytes = PAGE_SIZE - off;
2459                unsigned long pfn;
2460                struct page *p;
2461                void *ptr;
2462
2463                bytes = bytes < size ? bytes : size;
2464
2465                /* Translate the bus address to a physical address.  If
2466                 * the domain is NULL it means there is no IOMMU active
2467                 * and the address translation is the identity
2468                 */
2469                addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2470
2471                pfn = addr >> PAGE_SHIFT;
2472                if (!pfn_valid(pfn))
2473                        return -EPERM;
2474
2475                p = pfn_to_page(pfn);
2476                if (p->mapping != adev->mman.bdev.dev_mapping)
2477                        return -EPERM;
2478
2479                ptr = kmap(p);
2480                r = copy_to_user(buf, ptr + off, bytes);
2481                kunmap(p);
2482                if (r)
2483                        return -EFAULT;
2484
2485                size -= bytes;
2486                *pos += bytes;
2487                result += bytes;
2488        }
2489
2490        return result;
2491}
2492
2493/**
2494 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2495 *
2496 * This function is used to write memory that has been mapped to the
2497 * GPU and the known addresses are not physical addresses but instead
2498 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2499 */
2500static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2501                                 size_t size, loff_t *pos)
2502{
2503        struct amdgpu_device *adev = file_inode(f)->i_private;
2504        struct iommu_domain *dom;
2505        ssize_t result = 0;
2506        int r;
2507
2508        dom = iommu_get_domain_for_dev(adev->dev);
2509
2510        while (size) {
2511                phys_addr_t addr = *pos & PAGE_MASK;
2512                loff_t off = *pos & ~PAGE_MASK;
2513                size_t bytes = PAGE_SIZE - off;
2514                unsigned long pfn;
2515                struct page *p;
2516                void *ptr;
2517
2518                bytes = bytes < size ? bytes : size;
2519
2520                addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2521
2522                pfn = addr >> PAGE_SHIFT;
2523                if (!pfn_valid(pfn))
2524                        return -EPERM;
2525
2526                p = pfn_to_page(pfn);
2527                if (p->mapping != adev->mman.bdev.dev_mapping)
2528                        return -EPERM;
2529
2530                ptr = kmap(p);
2531                r = copy_from_user(ptr + off, buf, bytes);
2532                kunmap(p);
2533                if (r)
2534                        return -EFAULT;
2535
2536                size -= bytes;
2537                *pos += bytes;
2538                result += bytes;
2539        }
2540
2541        return result;
2542}
2543
2544static const struct file_operations amdgpu_ttm_iomem_fops = {
2545        .owner = THIS_MODULE,
2546        .read = amdgpu_iomem_read,
2547        .write = amdgpu_iomem_write,
2548        .llseek = default_llseek
2549};
2550
2551static const struct {
2552        char *name;
2553        const struct file_operations *fops;
2554        int domain;
2555} ttm_debugfs_entries[] = {
2556        { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2557#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2558        { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2559#endif
2560        { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2561};
2562
2563#endif
2564
2565int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2566{
2567#if defined(CONFIG_DEBUG_FS)
2568        unsigned count;
2569
2570        struct drm_minor *minor = adev_to_drm(adev)->primary;
2571        struct dentry *ent, *root = minor->debugfs_root;
2572
2573        for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2574                ent = debugfs_create_file(
2575                                ttm_debugfs_entries[count].name,
2576                                S_IFREG | S_IRUGO, root,
2577                                adev,
2578                                ttm_debugfs_entries[count].fops);
2579                if (IS_ERR(ent))
2580                        return PTR_ERR(ent);
2581                if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2582                        i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2583                else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2584                        i_size_write(ent->d_inode, adev->gmc.gart_size);
2585                adev->mman.debugfs_entries[count] = ent;
2586        }
2587
2588        count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2589
2590#ifdef CONFIG_SWIOTLB
2591        if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2592                --count;
2593#endif
2594
2595        return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2596#else
2597        return 0;
2598#endif
2599}
2600