linux/drivers/gpu/drm/i915/i915_active.c
<<
>>
Prefs
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16#include "i915_globals.h"
  17
  18/*
  19 * Active refs memory management
  20 *
  21 * To be more economical with memory, we reap all the i915_active trees as
  22 * they idle (when we know the active requests are inactive) and allocate the
  23 * nodes from a local slab cache to hopefully reduce the fragmentation.
  24 */
  25static struct i915_global_active {
  26        struct i915_global base;
  27        struct kmem_cache *slab_cache;
  28} global;
  29
  30struct active_node {
  31        struct rb_node node;
  32        struct i915_active_fence base;
  33        struct i915_active *ref;
  34        u64 timeline;
  35};
  36
  37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  38
  39static inline struct active_node *
  40node_from_active(struct i915_active_fence *active)
  41{
  42        return container_of(active, struct active_node, base);
  43}
  44
  45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  46
  47static inline bool is_barrier(const struct i915_active_fence *active)
  48{
  49        return IS_ERR(rcu_access_pointer(active->fence));
  50}
  51
  52static inline struct llist_node *barrier_to_ll(struct active_node *node)
  53{
  54        GEM_BUG_ON(!is_barrier(&node->base));
  55        return (struct llist_node *)&node->base.cb.node;
  56}
  57
  58static inline struct intel_engine_cs *
  59__barrier_to_engine(struct active_node *node)
  60{
  61        return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  62}
  63
  64static inline struct intel_engine_cs *
  65barrier_to_engine(struct active_node *node)
  66{
  67        GEM_BUG_ON(!is_barrier(&node->base));
  68        return __barrier_to_engine(node);
  69}
  70
  71static inline struct active_node *barrier_from_ll(struct llist_node *x)
  72{
  73        return container_of((struct list_head *)x,
  74                            struct active_node, base.cb.node);
  75}
  76
  77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  78
  79static void *active_debug_hint(void *addr)
  80{
  81        struct i915_active *ref = addr;
  82
  83        return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  84}
  85
  86static const struct debug_obj_descr active_debug_desc = {
  87        .name = "i915_active",
  88        .debug_hint = active_debug_hint,
  89};
  90
  91static void debug_active_init(struct i915_active *ref)
  92{
  93        debug_object_init(ref, &active_debug_desc);
  94}
  95
  96static void debug_active_activate(struct i915_active *ref)
  97{
  98        lockdep_assert_held(&ref->tree_lock);
  99        if (!atomic_read(&ref->count)) /* before the first inc */
 100                debug_object_activate(ref, &active_debug_desc);
 101}
 102
 103static void debug_active_deactivate(struct i915_active *ref)
 104{
 105        lockdep_assert_held(&ref->tree_lock);
 106        if (!atomic_read(&ref->count)) /* after the last dec */
 107                debug_object_deactivate(ref, &active_debug_desc);
 108}
 109
 110static void debug_active_fini(struct i915_active *ref)
 111{
 112        debug_object_free(ref, &active_debug_desc);
 113}
 114
 115static void debug_active_assert(struct i915_active *ref)
 116{
 117        debug_object_assert_init(ref, &active_debug_desc);
 118}
 119
 120#else
 121
 122static inline void debug_active_init(struct i915_active *ref) { }
 123static inline void debug_active_activate(struct i915_active *ref) { }
 124static inline void debug_active_deactivate(struct i915_active *ref) { }
 125static inline void debug_active_fini(struct i915_active *ref) { }
 126static inline void debug_active_assert(struct i915_active *ref) { }
 127
 128#endif
 129
 130static void
 131__active_retire(struct i915_active *ref)
 132{
 133        struct rb_root root = RB_ROOT;
 134        struct active_node *it, *n;
 135        unsigned long flags;
 136
 137        GEM_BUG_ON(i915_active_is_idle(ref));
 138
 139        /* return the unused nodes to our slabcache -- flushing the allocator */
 140        if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 141                return;
 142
 143        GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 144        debug_active_deactivate(ref);
 145
 146        /* Even if we have not used the cache, we may still have a barrier */
 147        if (!ref->cache)
 148                ref->cache = fetch_node(ref->tree.rb_node);
 149
 150        /* Keep the MRU cached node for reuse */
 151        if (ref->cache) {
 152                /* Discard all other nodes in the tree */
 153                rb_erase(&ref->cache->node, &ref->tree);
 154                root = ref->tree;
 155
 156                /* Rebuild the tree with only the cached node */
 157                rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 158                rb_insert_color(&ref->cache->node, &ref->tree);
 159                GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 160
 161                /* Make the cached node available for reuse with any timeline */
 162                if (IS_ENABLED(CONFIG_64BIT))
 163                        ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 164        }
 165
 166        spin_unlock_irqrestore(&ref->tree_lock, flags);
 167
 168        /* After the final retire, the entire struct may be freed */
 169        if (ref->retire)
 170                ref->retire(ref);
 171
 172        /* ... except if you wait on it, you must manage your own references! */
 173        wake_up_var(ref);
 174
 175        /* Finally free the discarded timeline tree  */
 176        rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 177                GEM_BUG_ON(i915_active_fence_isset(&it->base));
 178                kmem_cache_free(global.slab_cache, it);
 179        }
 180}
 181
 182static void
 183active_work(struct work_struct *wrk)
 184{
 185        struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 186
 187        GEM_BUG_ON(!atomic_read(&ref->count));
 188        if (atomic_add_unless(&ref->count, -1, 1))
 189                return;
 190
 191        __active_retire(ref);
 192}
 193
 194static void
 195active_retire(struct i915_active *ref)
 196{
 197        GEM_BUG_ON(!atomic_read(&ref->count));
 198        if (atomic_add_unless(&ref->count, -1, 1))
 199                return;
 200
 201        if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 202                queue_work(system_unbound_wq, &ref->work);
 203                return;
 204        }
 205
 206        __active_retire(ref);
 207}
 208
 209static inline struct dma_fence **
 210__active_fence_slot(struct i915_active_fence *active)
 211{
 212        return (struct dma_fence ** __force)&active->fence;
 213}
 214
 215static inline bool
 216active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 217{
 218        struct i915_active_fence *active =
 219                container_of(cb, typeof(*active), cb);
 220
 221        return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
 222}
 223
 224static void
 225node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 226{
 227        if (active_fence_cb(fence, cb))
 228                active_retire(container_of(cb, struct active_node, base.cb)->ref);
 229}
 230
 231static void
 232excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 233{
 234        if (active_fence_cb(fence, cb))
 235                active_retire(container_of(cb, struct i915_active, excl.cb));
 236}
 237
 238static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 239{
 240        struct active_node *it;
 241
 242        GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 243
 244        /*
 245         * We track the most recently used timeline to skip a rbtree search
 246         * for the common case, under typical loads we never need the rbtree
 247         * at all. We can reuse the last slot if it is empty, that is
 248         * after the previous activity has been retired, or if it matches the
 249         * current timeline.
 250         */
 251        it = READ_ONCE(ref->cache);
 252        if (it) {
 253                u64 cached = READ_ONCE(it->timeline);
 254
 255                /* Once claimed, this slot will only belong to this idx */
 256                if (cached == idx)
 257                        return it;
 258
 259#ifdef CONFIG_64BIT /* for cmpxchg(u64) */
 260                /*
 261                 * An unclaimed cache [.timeline=0] can only be claimed once.
 262                 *
 263                 * If the value is already non-zero, some other thread has
 264                 * claimed the cache and we know that is does not match our
 265                 * idx. If, and only if, the timeline is currently zero is it
 266                 * worth competing to claim it atomically for ourselves (for
 267                 * only the winner of that race will cmpxchg return the old
 268                 * value of 0).
 269                 */
 270                if (!cached && !cmpxchg(&it->timeline, 0, idx))
 271                        return it;
 272#endif
 273        }
 274
 275        BUILD_BUG_ON(offsetof(typeof(*it), node));
 276
 277        /* While active, the tree can only be built; not destroyed */
 278        GEM_BUG_ON(i915_active_is_idle(ref));
 279
 280        it = fetch_node(ref->tree.rb_node);
 281        while (it) {
 282                if (it->timeline < idx) {
 283                        it = fetch_node(it->node.rb_right);
 284                } else if (it->timeline > idx) {
 285                        it = fetch_node(it->node.rb_left);
 286                } else {
 287                        WRITE_ONCE(ref->cache, it);
 288                        break;
 289                }
 290        }
 291
 292        /* NB: If the tree rotated beneath us, we may miss our target. */
 293        return it;
 294}
 295
 296static struct i915_active_fence *
 297active_instance(struct i915_active *ref, u64 idx)
 298{
 299        struct active_node *node, *prealloc;
 300        struct rb_node **p, *parent;
 301
 302        node = __active_lookup(ref, idx);
 303        if (likely(node))
 304                return &node->base;
 305
 306        /* Preallocate a replacement, just in case */
 307        prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 308        if (!prealloc)
 309                return NULL;
 310
 311        spin_lock_irq(&ref->tree_lock);
 312        GEM_BUG_ON(i915_active_is_idle(ref));
 313
 314        parent = NULL;
 315        p = &ref->tree.rb_node;
 316        while (*p) {
 317                parent = *p;
 318
 319                node = rb_entry(parent, struct active_node, node);
 320                if (node->timeline == idx) {
 321                        kmem_cache_free(global.slab_cache, prealloc);
 322                        goto out;
 323                }
 324
 325                if (node->timeline < idx)
 326                        p = &parent->rb_right;
 327                else
 328                        p = &parent->rb_left;
 329        }
 330
 331        node = prealloc;
 332        __i915_active_fence_init(&node->base, NULL, node_retire);
 333        node->ref = ref;
 334        node->timeline = idx;
 335
 336        rb_link_node(&node->node, parent, p);
 337        rb_insert_color(&node->node, &ref->tree);
 338
 339out:
 340        WRITE_ONCE(ref->cache, node);
 341        spin_unlock_irq(&ref->tree_lock);
 342
 343        return &node->base;
 344}
 345
 346void __i915_active_init(struct i915_active *ref,
 347                        int (*active)(struct i915_active *ref),
 348                        void (*retire)(struct i915_active *ref),
 349                        struct lock_class_key *mkey,
 350                        struct lock_class_key *wkey)
 351{
 352        unsigned long bits;
 353
 354        debug_active_init(ref);
 355
 356        ref->flags = 0;
 357        ref->active = active;
 358        ref->retire = ptr_unpack_bits(retire, &bits, 2);
 359        if (bits & I915_ACTIVE_MAY_SLEEP)
 360                ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
 361
 362        spin_lock_init(&ref->tree_lock);
 363        ref->tree = RB_ROOT;
 364        ref->cache = NULL;
 365
 366        init_llist_head(&ref->preallocated_barriers);
 367        atomic_set(&ref->count, 0);
 368        __mutex_init(&ref->mutex, "i915_active", mkey);
 369        __i915_active_fence_init(&ref->excl, NULL, excl_retire);
 370        INIT_WORK(&ref->work, active_work);
 371#if IS_ENABLED(CONFIG_LOCKDEP)
 372        lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 373#endif
 374}
 375
 376static bool ____active_del_barrier(struct i915_active *ref,
 377                                   struct active_node *node,
 378                                   struct intel_engine_cs *engine)
 379
 380{
 381        struct llist_node *head = NULL, *tail = NULL;
 382        struct llist_node *pos, *next;
 383
 384        GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 385
 386        /*
 387         * Rebuild the llist excluding our node. We may perform this
 388         * outside of the kernel_context timeline mutex and so someone
 389         * else may be manipulating the engine->barrier_tasks, in
 390         * which case either we or they will be upset :)
 391         *
 392         * A second __active_del_barrier() will report failure to claim
 393         * the active_node and the caller will just shrug and know not to
 394         * claim ownership of its node.
 395         *
 396         * A concurrent i915_request_add_active_barriers() will miss adding
 397         * any of the tasks, but we will try again on the next -- and since
 398         * we are actively using the barrier, we know that there will be
 399         * at least another opportunity when we idle.
 400         */
 401        llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 402                if (node == barrier_from_ll(pos)) {
 403                        node = NULL;
 404                        continue;
 405                }
 406
 407                pos->next = head;
 408                head = pos;
 409                if (!tail)
 410                        tail = pos;
 411        }
 412        if (head)
 413                llist_add_batch(head, tail, &engine->barrier_tasks);
 414
 415        return !node;
 416}
 417
 418static bool
 419__active_del_barrier(struct i915_active *ref, struct active_node *node)
 420{
 421        return ____active_del_barrier(ref, node, barrier_to_engine(node));
 422}
 423
 424static bool
 425replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 426{
 427        if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 428                return false;
 429
 430        /*
 431         * This request is on the kernel_context timeline, and so
 432         * we can use it to substitute for the pending idle-barrer
 433         * request that we want to emit on the kernel_context.
 434         */
 435        __active_del_barrier(ref, node_from_active(active));
 436        return true;
 437}
 438
 439int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 440{
 441        struct i915_active_fence *active;
 442        int err;
 443
 444        /* Prevent reaping in case we malloc/wait while building the tree */
 445        err = i915_active_acquire(ref);
 446        if (err)
 447                return err;
 448
 449        active = active_instance(ref, idx);
 450        if (!active) {
 451                err = -ENOMEM;
 452                goto out;
 453        }
 454
 455        if (replace_barrier(ref, active)) {
 456                RCU_INIT_POINTER(active->fence, NULL);
 457                atomic_dec(&ref->count);
 458        }
 459        if (!__i915_active_fence_set(active, fence))
 460                __i915_active_acquire(ref);
 461
 462out:
 463        i915_active_release(ref);
 464        return err;
 465}
 466
 467static struct dma_fence *
 468__i915_active_set_fence(struct i915_active *ref,
 469                        struct i915_active_fence *active,
 470                        struct dma_fence *fence)
 471{
 472        struct dma_fence *prev;
 473
 474        if (replace_barrier(ref, active)) {
 475                RCU_INIT_POINTER(active->fence, fence);
 476                return NULL;
 477        }
 478
 479        rcu_read_lock();
 480        prev = __i915_active_fence_set(active, fence);
 481        if (prev)
 482                prev = dma_fence_get_rcu(prev);
 483        else
 484                __i915_active_acquire(ref);
 485        rcu_read_unlock();
 486
 487        return prev;
 488}
 489
 490static struct i915_active_fence *
 491__active_fence(struct i915_active *ref, u64 idx)
 492{
 493        struct active_node *it;
 494
 495        it = __active_lookup(ref, idx);
 496        if (unlikely(!it)) { /* Contention with parallel tree builders! */
 497                spin_lock_irq(&ref->tree_lock);
 498                it = __active_lookup(ref, idx);
 499                spin_unlock_irq(&ref->tree_lock);
 500        }
 501        GEM_BUG_ON(!it); /* slot must be preallocated */
 502
 503        return &it->base;
 504}
 505
 506struct dma_fence *
 507__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 508{
 509        /* Only valid while active, see i915_active_acquire_for_context() */
 510        return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
 511}
 512
 513struct dma_fence *
 514i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 515{
 516        /* We expect the caller to manage the exclusive timeline ordering */
 517        return __i915_active_set_fence(ref, &ref->excl, f);
 518}
 519
 520bool i915_active_acquire_if_busy(struct i915_active *ref)
 521{
 522        debug_active_assert(ref);
 523        return atomic_add_unless(&ref->count, 1, 0);
 524}
 525
 526static void __i915_active_activate(struct i915_active *ref)
 527{
 528        spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 529        if (!atomic_fetch_inc(&ref->count))
 530                debug_active_activate(ref);
 531        spin_unlock_irq(&ref->tree_lock);
 532}
 533
 534int i915_active_acquire(struct i915_active *ref)
 535{
 536        int err;
 537
 538        if (i915_active_acquire_if_busy(ref))
 539                return 0;
 540
 541        if (!ref->active) {
 542                __i915_active_activate(ref);
 543                return 0;
 544        }
 545
 546        err = mutex_lock_interruptible(&ref->mutex);
 547        if (err)
 548                return err;
 549
 550        if (likely(!i915_active_acquire_if_busy(ref))) {
 551                err = ref->active(ref);
 552                if (!err)
 553                        __i915_active_activate(ref);
 554        }
 555
 556        mutex_unlock(&ref->mutex);
 557
 558        return err;
 559}
 560
 561int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 562{
 563        struct i915_active_fence *active;
 564        int err;
 565
 566        err = i915_active_acquire(ref);
 567        if (err)
 568                return err;
 569
 570        active = active_instance(ref, idx);
 571        if (!active) {
 572                i915_active_release(ref);
 573                return -ENOMEM;
 574        }
 575
 576        return 0; /* return with active ref */
 577}
 578
 579void i915_active_release(struct i915_active *ref)
 580{
 581        debug_active_assert(ref);
 582        active_retire(ref);
 583}
 584
 585static void enable_signaling(struct i915_active_fence *active)
 586{
 587        struct dma_fence *fence;
 588
 589        if (unlikely(is_barrier(active)))
 590                return;
 591
 592        fence = i915_active_fence_get(active);
 593        if (!fence)
 594                return;
 595
 596        dma_fence_enable_sw_signaling(fence);
 597        dma_fence_put(fence);
 598}
 599
 600static int flush_barrier(struct active_node *it)
 601{
 602        struct intel_engine_cs *engine;
 603
 604        if (likely(!is_barrier(&it->base)))
 605                return 0;
 606
 607        engine = __barrier_to_engine(it);
 608        smp_rmb(); /* serialise with add_active_barriers */
 609        if (!is_barrier(&it->base))
 610                return 0;
 611
 612        return intel_engine_flush_barriers(engine);
 613}
 614
 615static int flush_lazy_signals(struct i915_active *ref)
 616{
 617        struct active_node *it, *n;
 618        int err = 0;
 619
 620        enable_signaling(&ref->excl);
 621        rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 622                err = flush_barrier(it); /* unconnected idle barrier? */
 623                if (err)
 624                        break;
 625
 626                enable_signaling(&it->base);
 627        }
 628
 629        return err;
 630}
 631
 632int __i915_active_wait(struct i915_active *ref, int state)
 633{
 634        int err;
 635
 636        might_sleep();
 637
 638        if (!i915_active_acquire_if_busy(ref))
 639                return 0;
 640
 641        /* Any fence added after the wait begins will not be auto-signaled */
 642        err = flush_lazy_signals(ref);
 643        i915_active_release(ref);
 644        if (err)
 645                return err;
 646
 647        if (!i915_active_is_idle(ref) &&
 648            ___wait_var_event(ref, i915_active_is_idle(ref),
 649                              state, 0, 0, schedule()))
 650                return -EINTR;
 651
 652        flush_work(&ref->work);
 653        return 0;
 654}
 655
 656static int __await_active(struct i915_active_fence *active,
 657                          int (*fn)(void *arg, struct dma_fence *fence),
 658                          void *arg)
 659{
 660        struct dma_fence *fence;
 661
 662        if (is_barrier(active)) /* XXX flush the barrier? */
 663                return 0;
 664
 665        fence = i915_active_fence_get(active);
 666        if (fence) {
 667                int err;
 668
 669                err = fn(arg, fence);
 670                dma_fence_put(fence);
 671                if (err < 0)
 672                        return err;
 673        }
 674
 675        return 0;
 676}
 677
 678struct wait_barrier {
 679        struct wait_queue_entry base;
 680        struct i915_active *ref;
 681};
 682
 683static int
 684barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 685{
 686        struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 687
 688        if (i915_active_is_idle(wb->ref)) {
 689                list_del(&wq->entry);
 690                i915_sw_fence_complete(wq->private);
 691                kfree(wq);
 692        }
 693
 694        return 0;
 695}
 696
 697static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 698{
 699        struct wait_barrier *wb;
 700
 701        wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 702        if (unlikely(!wb))
 703                return -ENOMEM;
 704
 705        GEM_BUG_ON(i915_active_is_idle(ref));
 706        if (!i915_sw_fence_await(fence)) {
 707                kfree(wb);
 708                return -EINVAL;
 709        }
 710
 711        wb->base.flags = 0;
 712        wb->base.func = barrier_wake;
 713        wb->base.private = fence;
 714        wb->ref = ref;
 715
 716        add_wait_queue(__var_waitqueue(ref), &wb->base);
 717        return 0;
 718}
 719
 720static int await_active(struct i915_active *ref,
 721                        unsigned int flags,
 722                        int (*fn)(void *arg, struct dma_fence *fence),
 723                        void *arg, struct i915_sw_fence *barrier)
 724{
 725        int err = 0;
 726
 727        if (!i915_active_acquire_if_busy(ref))
 728                return 0;
 729
 730        if (flags & I915_ACTIVE_AWAIT_EXCL &&
 731            rcu_access_pointer(ref->excl.fence)) {
 732                err = __await_active(&ref->excl, fn, arg);
 733                if (err)
 734                        goto out;
 735        }
 736
 737        if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 738                struct active_node *it, *n;
 739
 740                rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 741                        err = __await_active(&it->base, fn, arg);
 742                        if (err)
 743                                goto out;
 744                }
 745        }
 746
 747        if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 748                err = flush_lazy_signals(ref);
 749                if (err)
 750                        goto out;
 751
 752                err = __await_barrier(ref, barrier);
 753                if (err)
 754                        goto out;
 755        }
 756
 757out:
 758        i915_active_release(ref);
 759        return err;
 760}
 761
 762static int rq_await_fence(void *arg, struct dma_fence *fence)
 763{
 764        return i915_request_await_dma_fence(arg, fence);
 765}
 766
 767int i915_request_await_active(struct i915_request *rq,
 768                              struct i915_active *ref,
 769                              unsigned int flags)
 770{
 771        return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 772}
 773
 774static int sw_await_fence(void *arg, struct dma_fence *fence)
 775{
 776        return i915_sw_fence_await_dma_fence(arg, fence, 0,
 777                                             GFP_NOWAIT | __GFP_NOWARN);
 778}
 779
 780int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 781                               struct i915_active *ref,
 782                               unsigned int flags)
 783{
 784        return await_active(ref, flags, sw_await_fence, fence, fence);
 785}
 786
 787void i915_active_fini(struct i915_active *ref)
 788{
 789        debug_active_fini(ref);
 790        GEM_BUG_ON(atomic_read(&ref->count));
 791        GEM_BUG_ON(work_pending(&ref->work));
 792        mutex_destroy(&ref->mutex);
 793
 794        if (ref->cache)
 795                kmem_cache_free(global.slab_cache, ref->cache);
 796}
 797
 798static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 799{
 800        return node->timeline == idx && !i915_active_fence_isset(&node->base);
 801}
 802
 803static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 804{
 805        struct rb_node *prev, *p;
 806
 807        if (RB_EMPTY_ROOT(&ref->tree))
 808                return NULL;
 809
 810        GEM_BUG_ON(i915_active_is_idle(ref));
 811
 812        /*
 813         * Try to reuse any existing barrier nodes already allocated for this
 814         * i915_active, due to overlapping active phases there is likely a
 815         * node kept alive (as we reuse before parking). We prefer to reuse
 816         * completely idle barriers (less hassle in manipulating the llists),
 817         * but otherwise any will do.
 818         */
 819        if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 820                p = &ref->cache->node;
 821                goto match;
 822        }
 823
 824        prev = NULL;
 825        p = ref->tree.rb_node;
 826        while (p) {
 827                struct active_node *node =
 828                        rb_entry(p, struct active_node, node);
 829
 830                if (is_idle_barrier(node, idx))
 831                        goto match;
 832
 833                prev = p;
 834                if (node->timeline < idx)
 835                        p = READ_ONCE(p->rb_right);
 836                else
 837                        p = READ_ONCE(p->rb_left);
 838        }
 839
 840        /*
 841         * No quick match, but we did find the leftmost rb_node for the
 842         * kernel_context. Walk the rb_tree in-order to see if there were
 843         * any idle-barriers on this timeline that we missed, or just use
 844         * the first pending barrier.
 845         */
 846        for (p = prev; p; p = rb_next(p)) {
 847                struct active_node *node =
 848                        rb_entry(p, struct active_node, node);
 849                struct intel_engine_cs *engine;
 850
 851                if (node->timeline > idx)
 852                        break;
 853
 854                if (node->timeline < idx)
 855                        continue;
 856
 857                if (is_idle_barrier(node, idx))
 858                        goto match;
 859
 860                /*
 861                 * The list of pending barriers is protected by the
 862                 * kernel_context timeline, which notably we do not hold
 863                 * here. i915_request_add_active_barriers() may consume
 864                 * the barrier before we claim it, so we have to check
 865                 * for success.
 866                 */
 867                engine = __barrier_to_engine(node);
 868                smp_rmb(); /* serialise with add_active_barriers */
 869                if (is_barrier(&node->base) &&
 870                    ____active_del_barrier(ref, node, engine))
 871                        goto match;
 872        }
 873
 874        return NULL;
 875
 876match:
 877        spin_lock_irq(&ref->tree_lock);
 878        rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 879        if (p == &ref->cache->node)
 880                WRITE_ONCE(ref->cache, NULL);
 881        spin_unlock_irq(&ref->tree_lock);
 882
 883        return rb_entry(p, struct active_node, node);
 884}
 885
 886int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 887                                            struct intel_engine_cs *engine)
 888{
 889        intel_engine_mask_t tmp, mask = engine->mask;
 890        struct llist_node *first = NULL, *last = NULL;
 891        struct intel_gt *gt = engine->gt;
 892
 893        GEM_BUG_ON(i915_active_is_idle(ref));
 894
 895        /* Wait until the previous preallocation is completed */
 896        while (!llist_empty(&ref->preallocated_barriers))
 897                cond_resched();
 898
 899        /*
 900         * Preallocate a node for each physical engine supporting the target
 901         * engine (remember virtual engines have more than one sibling).
 902         * We can then use the preallocated nodes in
 903         * i915_active_acquire_barrier()
 904         */
 905        GEM_BUG_ON(!mask);
 906        for_each_engine_masked(engine, gt, mask, tmp) {
 907                u64 idx = engine->kernel_context->timeline->fence_context;
 908                struct llist_node *prev = first;
 909                struct active_node *node;
 910
 911                rcu_read_lock();
 912                node = reuse_idle_barrier(ref, idx);
 913                rcu_read_unlock();
 914                if (!node) {
 915                        node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 916                        if (!node)
 917                                goto unwind;
 918
 919                        RCU_INIT_POINTER(node->base.fence, NULL);
 920                        node->base.cb.func = node_retire;
 921                        node->timeline = idx;
 922                        node->ref = ref;
 923                }
 924
 925                if (!i915_active_fence_isset(&node->base)) {
 926                        /*
 927                         * Mark this as being *our* unconnected proto-node.
 928                         *
 929                         * Since this node is not in any list, and we have
 930                         * decoupled it from the rbtree, we can reuse the
 931                         * request to indicate this is an idle-barrier node
 932                         * and then we can use the rb_node and list pointers
 933                         * for our tracking of the pending barrier.
 934                         */
 935                        RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 936                        node->base.cb.node.prev = (void *)engine;
 937                        __i915_active_acquire(ref);
 938                }
 939                GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 940
 941                GEM_BUG_ON(barrier_to_engine(node) != engine);
 942                first = barrier_to_ll(node);
 943                first->next = prev;
 944                if (!last)
 945                        last = first;
 946                intel_engine_pm_get(engine);
 947        }
 948
 949        GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 950        llist_add_batch(first, last, &ref->preallocated_barriers);
 951
 952        return 0;
 953
 954unwind:
 955        while (first) {
 956                struct active_node *node = barrier_from_ll(first);
 957
 958                first = first->next;
 959
 960                atomic_dec(&ref->count);
 961                intel_engine_pm_put(barrier_to_engine(node));
 962
 963                kmem_cache_free(global.slab_cache, node);
 964        }
 965        return -ENOMEM;
 966}
 967
 968void i915_active_acquire_barrier(struct i915_active *ref)
 969{
 970        struct llist_node *pos, *next;
 971        unsigned long flags;
 972
 973        GEM_BUG_ON(i915_active_is_idle(ref));
 974
 975        /*
 976         * Transfer the list of preallocated barriers into the
 977         * i915_active rbtree, but only as proto-nodes. They will be
 978         * populated by i915_request_add_active_barriers() to point to the
 979         * request that will eventually release them.
 980         */
 981        llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 982                struct active_node *node = barrier_from_ll(pos);
 983                struct intel_engine_cs *engine = barrier_to_engine(node);
 984                struct rb_node **p, *parent;
 985
 986                spin_lock_irqsave_nested(&ref->tree_lock, flags,
 987                                         SINGLE_DEPTH_NESTING);
 988                parent = NULL;
 989                p = &ref->tree.rb_node;
 990                while (*p) {
 991                        struct active_node *it;
 992
 993                        parent = *p;
 994
 995                        it = rb_entry(parent, struct active_node, node);
 996                        if (it->timeline < node->timeline)
 997                                p = &parent->rb_right;
 998                        else
 999                                p = &parent->rb_left;
1000                }
1001                rb_link_node(&node->node, parent, p);
1002                rb_insert_color(&node->node, &ref->tree);
1003                spin_unlock_irqrestore(&ref->tree_lock, flags);
1004
1005                GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1006                llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1007                intel_engine_pm_put_delay(engine, 1);
1008        }
1009}
1010
1011static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1012{
1013        return __active_fence_slot(&barrier_from_ll(node)->base);
1014}
1015
1016void i915_request_add_active_barriers(struct i915_request *rq)
1017{
1018        struct intel_engine_cs *engine = rq->engine;
1019        struct llist_node *node, *next;
1020        unsigned long flags;
1021
1022        GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1023        GEM_BUG_ON(intel_engine_is_virtual(engine));
1024        GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1025
1026        node = llist_del_all(&engine->barrier_tasks);
1027        if (!node)
1028                return;
1029        /*
1030         * Attach the list of proto-fences to the in-flight request such
1031         * that the parent i915_active will be released when this request
1032         * is retired.
1033         */
1034        spin_lock_irqsave(&rq->lock, flags);
1035        llist_for_each_safe(node, next, node) {
1036                /* serialise with reuse_idle_barrier */
1037                smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1038                list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1039        }
1040        spin_unlock_irqrestore(&rq->lock, flags);
1041}
1042
1043/*
1044 * __i915_active_fence_set: Update the last active fence along its timeline
1045 * @active: the active tracker
1046 * @fence: the new fence (under construction)
1047 *
1048 * Records the new @fence as the last active fence along its timeline in
1049 * this active tracker, moving the tracking callbacks from the previous
1050 * fence onto this one. Returns the previous fence (if not already completed),
1051 * which the caller must ensure is executed before the new fence. To ensure
1052 * that the order of fences within the timeline of the i915_active_fence is
1053 * understood, it should be locked by the caller.
1054 */
1055struct dma_fence *
1056__i915_active_fence_set(struct i915_active_fence *active,
1057                        struct dma_fence *fence)
1058{
1059        struct dma_fence *prev;
1060        unsigned long flags;
1061
1062        if (fence == rcu_access_pointer(active->fence))
1063                return fence;
1064
1065        GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1066
1067        /*
1068         * Consider that we have two threads arriving (A and B), with
1069         * C already resident as the active->fence.
1070         *
1071         * A does the xchg first, and so it sees C or NULL depending
1072         * on the timing of the interrupt handler. If it is NULL, the
1073         * previous fence must have been signaled and we know that
1074         * we are first on the timeline. If it is still present,
1075         * we acquire the lock on that fence and serialise with the interrupt
1076         * handler, in the process removing it from any future interrupt
1077         * callback. A will then wait on C before executing (if present).
1078         *
1079         * As B is second, it sees A as the previous fence and so waits for
1080         * it to complete its transition and takes over the occupancy for
1081         * itself -- remembering that it needs to wait on A before executing.
1082         *
1083         * Note the strong ordering of the timeline also provides consistent
1084         * nesting rules for the fence->lock; the inner lock is always the
1085         * older lock.
1086         */
1087        spin_lock_irqsave(fence->lock, flags);
1088        prev = xchg(__active_fence_slot(active), fence);
1089        if (prev) {
1090                GEM_BUG_ON(prev == fence);
1091                spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1092                __list_del_entry(&active->cb.node);
1093                spin_unlock(prev->lock); /* serialise with prev->cb_list */
1094        }
1095        list_add_tail(&active->cb.node, &fence->cb_list);
1096        spin_unlock_irqrestore(fence->lock, flags);
1097
1098        return prev;
1099}
1100
1101int i915_active_fence_set(struct i915_active_fence *active,
1102                          struct i915_request *rq)
1103{
1104        struct dma_fence *fence;
1105        int err = 0;
1106
1107        /* Must maintain timeline ordering wrt previous active requests */
1108        rcu_read_lock();
1109        fence = __i915_active_fence_set(active, &rq->fence);
1110        if (fence) /* but the previous fence may not belong to that timeline! */
1111                fence = dma_fence_get_rcu(fence);
1112        rcu_read_unlock();
1113        if (fence) {
1114                err = i915_request_await_dma_fence(rq, fence);
1115                dma_fence_put(fence);
1116        }
1117
1118        return err;
1119}
1120
1121void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1122{
1123        active_fence_cb(fence, cb);
1124}
1125
1126struct auto_active {
1127        struct i915_active base;
1128        struct kref ref;
1129};
1130
1131struct i915_active *i915_active_get(struct i915_active *ref)
1132{
1133        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1134
1135        kref_get(&aa->ref);
1136        return &aa->base;
1137}
1138
1139static void auto_release(struct kref *ref)
1140{
1141        struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1142
1143        i915_active_fini(&aa->base);
1144        kfree(aa);
1145}
1146
1147void i915_active_put(struct i915_active *ref)
1148{
1149        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1150
1151        kref_put(&aa->ref, auto_release);
1152}
1153
1154static int auto_active(struct i915_active *ref)
1155{
1156        i915_active_get(ref);
1157        return 0;
1158}
1159
1160static void auto_retire(struct i915_active *ref)
1161{
1162        i915_active_put(ref);
1163}
1164
1165struct i915_active *i915_active_create(void)
1166{
1167        struct auto_active *aa;
1168
1169        aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1170        if (!aa)
1171                return NULL;
1172
1173        kref_init(&aa->ref);
1174        i915_active_init(&aa->base, auto_active, auto_retire);
1175
1176        return &aa->base;
1177}
1178
1179#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180#include "selftests/i915_active.c"
1181#endif
1182
1183static void i915_global_active_shrink(void)
1184{
1185        kmem_cache_shrink(global.slab_cache);
1186}
1187
1188static void i915_global_active_exit(void)
1189{
1190        kmem_cache_destroy(global.slab_cache);
1191}
1192
1193static struct i915_global_active global = { {
1194        .shrink = i915_global_active_shrink,
1195        .exit = i915_global_active_exit,
1196} };
1197
1198int __init i915_global_active_init(void)
1199{
1200        global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1201        if (!global.slab_cache)
1202                return -ENOMEM;
1203
1204        i915_global_register(&global.base);
1205        return 0;
1206}
1207