linux/drivers/hwmon/fschmd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * fschmd.c
   4 *
   5 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
   6 */
   7
   8/*
   9 *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
  10 *  Scylla, Heracles, Heimdall, Hades and Syleus chips
  11 *
  12 *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
  13 *  (candidate) fschmd drivers:
  14 *  Copyright (C) 2006 Thilo Cestonaro
  15 *                      <thilo.cestonaro.external@fujitsu-siemens.com>
  16 *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
  17 *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
  18 *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
  19 *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/i2c.h>
  27#include <linux/hwmon.h>
  28#include <linux/hwmon-sysfs.h>
  29#include <linux/err.h>
  30#include <linux/mutex.h>
  31#include <linux/sysfs.h>
  32#include <linux/dmi.h>
  33#include <linux/fs.h>
  34#include <linux/watchdog.h>
  35#include <linux/miscdevice.h>
  36#include <linux/uaccess.h>
  37#include <linux/kref.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
  41
  42/* Insmod parameters */
  43static bool nowayout = WATCHDOG_NOWAYOUT;
  44module_param(nowayout, bool, 0);
  45MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
  46        __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
  47
  48enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
  49
  50/*
  51 * The FSCHMD registers and other defines
  52 */
  53
  54/* chip identification */
  55#define FSCHMD_REG_IDENT_0              0x00
  56#define FSCHMD_REG_IDENT_1              0x01
  57#define FSCHMD_REG_IDENT_2              0x02
  58#define FSCHMD_REG_REVISION             0x03
  59
  60/* global control and status */
  61#define FSCHMD_REG_EVENT_STATE          0x04
  62#define FSCHMD_REG_CONTROL              0x05
  63
  64#define FSCHMD_CONTROL_ALERT_LED        0x01
  65
  66/* watchdog */
  67static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
  68        0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
  69static const u8 FSCHMD_REG_WDOG_STATE[7] = {
  70        0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
  71static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
  72        0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
  73
  74#define FSCHMD_WDOG_CONTROL_TRIGGER     0x10
  75#define FSCHMD_WDOG_CONTROL_STARTED     0x10 /* the same as trigger */
  76#define FSCHMD_WDOG_CONTROL_STOP        0x20
  77#define FSCHMD_WDOG_CONTROL_RESOLUTION  0x40
  78
  79#define FSCHMD_WDOG_STATE_CARDRESET     0x02
  80
  81/* voltages, weird order is to keep the same order as the old drivers */
  82static const u8 FSCHMD_REG_VOLT[7][6] = {
  83        { 0x45, 0x42, 0x48 },                           /* pos */
  84        { 0x45, 0x42, 0x48 },                           /* her */
  85        { 0x45, 0x42, 0x48 },                           /* scy */
  86        { 0x45, 0x42, 0x48 },                           /* hrc */
  87        { 0x45, 0x42, 0x48 },                           /* hmd */
  88        { 0x21, 0x20, 0x22 },                           /* hds */
  89        { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },         /* syl */
  90};
  91
  92static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
  93
  94/*
  95 * minimum pwm at which the fan is driven (pwm can be increased depending on
  96 * the temp. Notice that for the scy some fans share there minimum speed.
  97 * Also notice that with the scy the sensor order is different than with the
  98 * other chips, this order was in the 2.4 driver and kept for consistency.
  99 */
 100static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
 101        { 0x55, 0x65 },                                 /* pos */
 102        { 0x55, 0x65, 0xb5 },                           /* her */
 103        { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },         /* scy */
 104        { 0x55, 0x65, 0xa5, 0xb5 },                     /* hrc */
 105        { 0x55, 0x65, 0xa5, 0xb5, 0xc5 },               /* hmd */
 106        { 0x55, 0x65, 0xa5, 0xb5, 0xc5 },               /* hds */
 107        { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },   /* syl */
 108};
 109
 110/* actual fan speed */
 111static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
 112        { 0x0e, 0x6b, 0xab },                           /* pos */
 113        { 0x0e, 0x6b, 0xbb },                           /* her */
 114        { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },         /* scy */
 115        { 0x0e, 0x6b, 0xab, 0xbb },                     /* hrc */
 116        { 0x5b, 0x6b, 0xab, 0xbb, 0xcb },               /* hmd */
 117        { 0x5b, 0x6b, 0xab, 0xbb, 0xcb },               /* hds */
 118        { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },   /* syl */
 119};
 120
 121/* fan status registers */
 122static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
 123        { 0x0d, 0x62, 0xa2 },                           /* pos */
 124        { 0x0d, 0x62, 0xb2 },                           /* her */
 125        { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },         /* scy */
 126        { 0x0d, 0x62, 0xa2, 0xb2 },                     /* hrc */
 127        { 0x52, 0x62, 0xa2, 0xb2, 0xc2 },               /* hmd */
 128        { 0x52, 0x62, 0xa2, 0xb2, 0xc2 },               /* hds */
 129        { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },   /* syl */
 130};
 131
 132/* fan ripple / divider registers */
 133static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
 134        { 0x0f, 0x6f, 0xaf },                           /* pos */
 135        { 0x0f, 0x6f, 0xbf },                           /* her */
 136        { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },         /* scy */
 137        { 0x0f, 0x6f, 0xaf, 0xbf },                     /* hrc */
 138        { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },               /* hmd */
 139        { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },               /* hds */
 140        { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },   /* syl */
 141};
 142
 143static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
 144
 145/* Fan status register bitmasks */
 146#define FSCHMD_FAN_ALARM        0x04 /* called fault by FSC! */
 147#define FSCHMD_FAN_NOT_PRESENT  0x08
 148#define FSCHMD_FAN_DISABLED     0x80
 149
 150
 151/* actual temperature registers */
 152static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
 153        { 0x64, 0x32, 0x35 },                           /* pos */
 154        { 0x64, 0x32, 0x35 },                           /* her */
 155        { 0x64, 0xD0, 0x32, 0x35 },                     /* scy */
 156        { 0x64, 0x32, 0x35 },                           /* hrc */
 157        { 0x70, 0x80, 0x90, 0xd0, 0xe0 },               /* hmd */
 158        { 0x70, 0x80, 0x90, 0xd0, 0xe0 },               /* hds */
 159        { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,           /* syl */
 160          0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
 161};
 162
 163/* temperature state registers */
 164static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
 165        { 0x71, 0x81, 0x91 },                           /* pos */
 166        { 0x71, 0x81, 0x91 },                           /* her */
 167        { 0x71, 0xd1, 0x81, 0x91 },                     /* scy */
 168        { 0x71, 0x81, 0x91 },                           /* hrc */
 169        { 0x71, 0x81, 0x91, 0xd1, 0xe1 },               /* hmd */
 170        { 0x71, 0x81, 0x91, 0xd1, 0xe1 },               /* hds */
 171        { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,           /* syl */
 172          0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
 173};
 174
 175/*
 176 * temperature high limit registers, FSC does not document these. Proven to be
 177 * there with field testing on the fscher and fschrc, already supported / used
 178 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
 179 * at these addresses, but doesn't want to confirm they are the same as with
 180 * the fscher??
 181 */
 182static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
 183        { 0, 0, 0 },                                    /* pos */
 184        { 0x76, 0x86, 0x96 },                           /* her */
 185        { 0x76, 0xd6, 0x86, 0x96 },                     /* scy */
 186        { 0x76, 0x86, 0x96 },                           /* hrc */
 187        { 0x76, 0x86, 0x96, 0xd6, 0xe6 },               /* hmd */
 188        { 0x76, 0x86, 0x96, 0xd6, 0xe6 },               /* hds */
 189        { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,           /* syl */
 190          0xba, 0xca, 0xda, 0xea, 0xfa },
 191};
 192
 193/*
 194 * These were found through experimenting with an fscher, currently they are
 195 * not used, but we keep them around for future reference.
 196 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
 197 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
 198 * the fan speed.
 199 * static const u8 FSCHER_REG_TEMP_AUTOP1[] =   { 0x73, 0x83, 0x93 };
 200 * static const u8 FSCHER_REG_TEMP_AUTOP2[] =   { 0x75, 0x85, 0x95 };
 201 */
 202
 203static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
 204
 205/* temp status register bitmasks */
 206#define FSCHMD_TEMP_WORKING     0x01
 207#define FSCHMD_TEMP_ALERT       0x02
 208#define FSCHMD_TEMP_DISABLED    0x80
 209/* there only really is an alarm if the sensor is working and alert == 1 */
 210#define FSCHMD_TEMP_ALARM_MASK \
 211        (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
 212
 213/*
 214 * Functions declarations
 215 */
 216
 217static int fschmd_probe(struct i2c_client *client);
 218static int fschmd_detect(struct i2c_client *client,
 219                         struct i2c_board_info *info);
 220static int fschmd_remove(struct i2c_client *client);
 221static struct fschmd_data *fschmd_update_device(struct device *dev);
 222
 223/*
 224 * Driver data (common to all clients)
 225 */
 226
 227static const struct i2c_device_id fschmd_id[] = {
 228        { "fscpos", fscpos },
 229        { "fscher", fscher },
 230        { "fscscy", fscscy },
 231        { "fschrc", fschrc },
 232        { "fschmd", fschmd },
 233        { "fschds", fschds },
 234        { "fscsyl", fscsyl },
 235        { }
 236};
 237MODULE_DEVICE_TABLE(i2c, fschmd_id);
 238
 239static struct i2c_driver fschmd_driver = {
 240        .class          = I2C_CLASS_HWMON,
 241        .driver = {
 242                .name   = "fschmd",
 243        },
 244        .probe_new      = fschmd_probe,
 245        .remove         = fschmd_remove,
 246        .id_table       = fschmd_id,
 247        .detect         = fschmd_detect,
 248        .address_list   = normal_i2c,
 249};
 250
 251/*
 252 * Client data (each client gets its own)
 253 */
 254
 255struct fschmd_data {
 256        struct i2c_client *client;
 257        struct device *hwmon_dev;
 258        struct mutex update_lock;
 259        struct mutex watchdog_lock;
 260        struct list_head list; /* member of the watchdog_data_list */
 261        struct kref kref;
 262        struct miscdevice watchdog_miscdev;
 263        enum chips kind;
 264        unsigned long watchdog_is_open;
 265        char watchdog_expect_close;
 266        char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
 267        char valid; /* zero until following fields are valid */
 268        unsigned long last_updated; /* in jiffies */
 269
 270        /* register values */
 271        u8 revision;            /* chip revision */
 272        u8 global_control;      /* global control register */
 273        u8 watchdog_control;    /* watchdog control register */
 274        u8 watchdog_state;      /* watchdog status register */
 275        u8 watchdog_preset;     /* watchdog counter preset on trigger val */
 276        u8 volt[6];             /* voltage */
 277        u8 temp_act[11];        /* temperature */
 278        u8 temp_status[11];     /* status of sensor */
 279        u8 temp_max[11];        /* high temp limit, notice: undocumented! */
 280        u8 fan_act[7];          /* fans revolutions per second */
 281        u8 fan_status[7];       /* fan status */
 282        u8 fan_min[7];          /* fan min value for rps */
 283        u8 fan_ripple[7];       /* divider for rps */
 284};
 285
 286/*
 287 * Global variables to hold information read from special DMI tables, which are
 288 * available on FSC machines with an fscher or later chip. There is no need to
 289 * protect these with a lock as they are only modified from our attach function
 290 * which always gets called with the i2c-core lock held and never accessed
 291 * before the attach function is done with them.
 292 */
 293static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
 294static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
 295static int dmi_vref = -1;
 296
 297/*
 298 * Somewhat ugly :( global data pointer list with all fschmd devices, so that
 299 * we can find our device data as when using misc_register there is no other
 300 * method to get to ones device data from the open fop.
 301 */
 302static LIST_HEAD(watchdog_data_list);
 303/* Note this lock not only protect list access, but also data.kref access */
 304static DEFINE_MUTEX(watchdog_data_mutex);
 305
 306/*
 307 * Release our data struct when we're detached from the i2c client *and* all
 308 * references to our watchdog device are released
 309 */
 310static void fschmd_release_resources(struct kref *ref)
 311{
 312        struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
 313        kfree(data);
 314}
 315
 316/*
 317 * Sysfs attr show / store functions
 318 */
 319
 320static ssize_t in_value_show(struct device *dev,
 321                             struct device_attribute *devattr, char *buf)
 322{
 323        const int max_reading[3] = { 14200, 6600, 3300 };
 324        int index = to_sensor_dev_attr(devattr)->index;
 325        struct fschmd_data *data = fschmd_update_device(dev);
 326
 327        if (data->kind == fscher || data->kind >= fschrc)
 328                return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
 329                        dmi_mult[index]) / 255 + dmi_offset[index]);
 330        else
 331                return sprintf(buf, "%d\n", (data->volt[index] *
 332                        max_reading[index] + 128) / 255);
 333}
 334
 335
 336#define TEMP_FROM_REG(val)      (((val) - 128) * 1000)
 337
 338static ssize_t temp_value_show(struct device *dev,
 339                               struct device_attribute *devattr, char *buf)
 340{
 341        int index = to_sensor_dev_attr(devattr)->index;
 342        struct fschmd_data *data = fschmd_update_device(dev);
 343
 344        return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
 345}
 346
 347static ssize_t temp_max_show(struct device *dev,
 348                             struct device_attribute *devattr, char *buf)
 349{
 350        int index = to_sensor_dev_attr(devattr)->index;
 351        struct fschmd_data *data = fschmd_update_device(dev);
 352
 353        return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
 354}
 355
 356static ssize_t temp_max_store(struct device *dev,
 357                              struct device_attribute *devattr,
 358                              const char *buf, size_t count)
 359{
 360        int index = to_sensor_dev_attr(devattr)->index;
 361        struct fschmd_data *data = dev_get_drvdata(dev);
 362        long v;
 363        int err;
 364
 365        err = kstrtol(buf, 10, &v);
 366        if (err)
 367                return err;
 368
 369        v = clamp_val(v / 1000, -128, 127) + 128;
 370
 371        mutex_lock(&data->update_lock);
 372        i2c_smbus_write_byte_data(to_i2c_client(dev),
 373                FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
 374        data->temp_max[index] = v;
 375        mutex_unlock(&data->update_lock);
 376
 377        return count;
 378}
 379
 380static ssize_t temp_fault_show(struct device *dev,
 381                               struct device_attribute *devattr, char *buf)
 382{
 383        int index = to_sensor_dev_attr(devattr)->index;
 384        struct fschmd_data *data = fschmd_update_device(dev);
 385
 386        /* bit 0 set means sensor working ok, so no fault! */
 387        if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
 388                return sprintf(buf, "0\n");
 389        else
 390                return sprintf(buf, "1\n");
 391}
 392
 393static ssize_t temp_alarm_show(struct device *dev,
 394                               struct device_attribute *devattr, char *buf)
 395{
 396        int index = to_sensor_dev_attr(devattr)->index;
 397        struct fschmd_data *data = fschmd_update_device(dev);
 398
 399        if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
 400                        FSCHMD_TEMP_ALARM_MASK)
 401                return sprintf(buf, "1\n");
 402        else
 403                return sprintf(buf, "0\n");
 404}
 405
 406
 407#define RPM_FROM_REG(val)       ((val) * 60)
 408
 409static ssize_t fan_value_show(struct device *dev,
 410                              struct device_attribute *devattr, char *buf)
 411{
 412        int index = to_sensor_dev_attr(devattr)->index;
 413        struct fschmd_data *data = fschmd_update_device(dev);
 414
 415        return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
 416}
 417
 418static ssize_t fan_div_show(struct device *dev,
 419                            struct device_attribute *devattr, char *buf)
 420{
 421        int index = to_sensor_dev_attr(devattr)->index;
 422        struct fschmd_data *data = fschmd_update_device(dev);
 423
 424        /* bits 2..7 reserved => mask with 3 */
 425        return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
 426}
 427
 428static ssize_t fan_div_store(struct device *dev,
 429                             struct device_attribute *devattr,
 430                             const char *buf, size_t count)
 431{
 432        u8 reg;
 433        int index = to_sensor_dev_attr(devattr)->index;
 434        struct fschmd_data *data = dev_get_drvdata(dev);
 435        /* supported values: 2, 4, 8 */
 436        unsigned long v;
 437        int err;
 438
 439        err = kstrtoul(buf, 10, &v);
 440        if (err)
 441                return err;
 442
 443        switch (v) {
 444        case 2:
 445                v = 1;
 446                break;
 447        case 4:
 448                v = 2;
 449                break;
 450        case 8:
 451                v = 3;
 452                break;
 453        default:
 454                dev_err(dev,
 455                        "fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
 456                        v);
 457                return -EINVAL;
 458        }
 459
 460        mutex_lock(&data->update_lock);
 461
 462        reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
 463                FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
 464
 465        /* bits 2..7 reserved => mask with 0x03 */
 466        reg &= ~0x03;
 467        reg |= v;
 468
 469        i2c_smbus_write_byte_data(to_i2c_client(dev),
 470                FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
 471
 472        data->fan_ripple[index] = reg;
 473
 474        mutex_unlock(&data->update_lock);
 475
 476        return count;
 477}
 478
 479static ssize_t fan_alarm_show(struct device *dev,
 480                              struct device_attribute *devattr, char *buf)
 481{
 482        int index = to_sensor_dev_attr(devattr)->index;
 483        struct fschmd_data *data = fschmd_update_device(dev);
 484
 485        if (data->fan_status[index] & FSCHMD_FAN_ALARM)
 486                return sprintf(buf, "1\n");
 487        else
 488                return sprintf(buf, "0\n");
 489}
 490
 491static ssize_t fan_fault_show(struct device *dev,
 492                              struct device_attribute *devattr, char *buf)
 493{
 494        int index = to_sensor_dev_attr(devattr)->index;
 495        struct fschmd_data *data = fschmd_update_device(dev);
 496
 497        if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
 498                return sprintf(buf, "1\n");
 499        else
 500                return sprintf(buf, "0\n");
 501}
 502
 503
 504static ssize_t pwm_auto_point1_pwm_show(struct device *dev,
 505                                        struct device_attribute *devattr,
 506                                        char *buf)
 507{
 508        int index = to_sensor_dev_attr(devattr)->index;
 509        struct fschmd_data *data = fschmd_update_device(dev);
 510        int val = data->fan_min[index];
 511
 512        /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
 513        if (val || data->kind == fscsyl)
 514                val = val / 2 + 128;
 515
 516        return sprintf(buf, "%d\n", val);
 517}
 518
 519static ssize_t pwm_auto_point1_pwm_store(struct device *dev,
 520                                         struct device_attribute *devattr,
 521                                         const char *buf, size_t count)
 522{
 523        int index = to_sensor_dev_attr(devattr)->index;
 524        struct fschmd_data *data = dev_get_drvdata(dev);
 525        unsigned long v;
 526        int err;
 527
 528        err = kstrtoul(buf, 10, &v);
 529        if (err)
 530                return err;
 531
 532        /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
 533        if (v || data->kind == fscsyl) {
 534                v = clamp_val(v, 128, 255);
 535                v = (v - 128) * 2 + 1;
 536        }
 537
 538        mutex_lock(&data->update_lock);
 539
 540        i2c_smbus_write_byte_data(to_i2c_client(dev),
 541                FSCHMD_REG_FAN_MIN[data->kind][index], v);
 542        data->fan_min[index] = v;
 543
 544        mutex_unlock(&data->update_lock);
 545
 546        return count;
 547}
 548
 549
 550/*
 551 * The FSC hwmon family has the ability to force an attached alert led to flash
 552 * from software, we export this as an alert_led sysfs attr
 553 */
 554static ssize_t alert_led_show(struct device *dev,
 555        struct device_attribute *devattr, char *buf)
 556{
 557        struct fschmd_data *data = fschmd_update_device(dev);
 558
 559        if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
 560                return sprintf(buf, "1\n");
 561        else
 562                return sprintf(buf, "0\n");
 563}
 564
 565static ssize_t alert_led_store(struct device *dev,
 566        struct device_attribute *devattr, const char *buf, size_t count)
 567{
 568        u8 reg;
 569        struct fschmd_data *data = dev_get_drvdata(dev);
 570        unsigned long v;
 571        int err;
 572
 573        err = kstrtoul(buf, 10, &v);
 574        if (err)
 575                return err;
 576
 577        mutex_lock(&data->update_lock);
 578
 579        reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
 580
 581        if (v)
 582                reg |= FSCHMD_CONTROL_ALERT_LED;
 583        else
 584                reg &= ~FSCHMD_CONTROL_ALERT_LED;
 585
 586        i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
 587
 588        data->global_control = reg;
 589
 590        mutex_unlock(&data->update_lock);
 591
 592        return count;
 593}
 594
 595static DEVICE_ATTR_RW(alert_led);
 596
 597static struct sensor_device_attribute fschmd_attr[] = {
 598        SENSOR_ATTR_RO(in0_input, in_value, 0),
 599        SENSOR_ATTR_RO(in1_input, in_value, 1),
 600        SENSOR_ATTR_RO(in2_input, in_value, 2),
 601        SENSOR_ATTR_RO(in3_input, in_value, 3),
 602        SENSOR_ATTR_RO(in4_input, in_value, 4),
 603        SENSOR_ATTR_RO(in5_input, in_value, 5),
 604};
 605
 606static struct sensor_device_attribute fschmd_temp_attr[] = {
 607        SENSOR_ATTR_RO(temp1_input, temp_value, 0),
 608        SENSOR_ATTR_RW(temp1_max, temp_max, 0),
 609        SENSOR_ATTR_RO(temp1_fault, temp_fault, 0),
 610        SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0),
 611        SENSOR_ATTR_RO(temp2_input, temp_value, 1),
 612        SENSOR_ATTR_RW(temp2_max, temp_max, 1),
 613        SENSOR_ATTR_RO(temp2_fault, temp_fault, 1),
 614        SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1),
 615        SENSOR_ATTR_RO(temp3_input, temp_value, 2),
 616        SENSOR_ATTR_RW(temp3_max, temp_max, 2),
 617        SENSOR_ATTR_RO(temp3_fault, temp_fault, 2),
 618        SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2),
 619        SENSOR_ATTR_RO(temp4_input, temp_value, 3),
 620        SENSOR_ATTR_RW(temp4_max, temp_max, 3),
 621        SENSOR_ATTR_RO(temp4_fault, temp_fault, 3),
 622        SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3),
 623        SENSOR_ATTR_RO(temp5_input, temp_value, 4),
 624        SENSOR_ATTR_RW(temp5_max, temp_max, 4),
 625        SENSOR_ATTR_RO(temp5_fault, temp_fault, 4),
 626        SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4),
 627        SENSOR_ATTR_RO(temp6_input, temp_value, 5),
 628        SENSOR_ATTR_RW(temp6_max, temp_max, 5),
 629        SENSOR_ATTR_RO(temp6_fault, temp_fault, 5),
 630        SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5),
 631        SENSOR_ATTR_RO(temp7_input, temp_value, 6),
 632        SENSOR_ATTR_RW(temp7_max, temp_max, 6),
 633        SENSOR_ATTR_RO(temp7_fault, temp_fault, 6),
 634        SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6),
 635        SENSOR_ATTR_RO(temp8_input, temp_value, 7),
 636        SENSOR_ATTR_RW(temp8_max, temp_max, 7),
 637        SENSOR_ATTR_RO(temp8_fault, temp_fault, 7),
 638        SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7),
 639        SENSOR_ATTR_RO(temp9_input, temp_value, 8),
 640        SENSOR_ATTR_RW(temp9_max, temp_max, 8),
 641        SENSOR_ATTR_RO(temp9_fault, temp_fault, 8),
 642        SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8),
 643        SENSOR_ATTR_RO(temp10_input, temp_value, 9),
 644        SENSOR_ATTR_RW(temp10_max, temp_max, 9),
 645        SENSOR_ATTR_RO(temp10_fault, temp_fault, 9),
 646        SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9),
 647        SENSOR_ATTR_RO(temp11_input, temp_value, 10),
 648        SENSOR_ATTR_RW(temp11_max, temp_max, 10),
 649        SENSOR_ATTR_RO(temp11_fault, temp_fault, 10),
 650        SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10),
 651};
 652
 653static struct sensor_device_attribute fschmd_fan_attr[] = {
 654        SENSOR_ATTR_RO(fan1_input, fan_value, 0),
 655        SENSOR_ATTR_RW(fan1_div, fan_div, 0),
 656        SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0),
 657        SENSOR_ATTR_RO(fan1_fault, fan_fault, 0),
 658        SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0),
 659        SENSOR_ATTR_RO(fan2_input, fan_value, 1),
 660        SENSOR_ATTR_RW(fan2_div, fan_div, 1),
 661        SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1),
 662        SENSOR_ATTR_RO(fan2_fault, fan_fault, 1),
 663        SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1),
 664        SENSOR_ATTR_RO(fan3_input, fan_value, 2),
 665        SENSOR_ATTR_RW(fan3_div, fan_div, 2),
 666        SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2),
 667        SENSOR_ATTR_RO(fan3_fault, fan_fault, 2),
 668        SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2),
 669        SENSOR_ATTR_RO(fan4_input, fan_value, 3),
 670        SENSOR_ATTR_RW(fan4_div, fan_div, 3),
 671        SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3),
 672        SENSOR_ATTR_RO(fan4_fault, fan_fault, 3),
 673        SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3),
 674        SENSOR_ATTR_RO(fan5_input, fan_value, 4),
 675        SENSOR_ATTR_RW(fan5_div, fan_div, 4),
 676        SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4),
 677        SENSOR_ATTR_RO(fan5_fault, fan_fault, 4),
 678        SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4),
 679        SENSOR_ATTR_RO(fan6_input, fan_value, 5),
 680        SENSOR_ATTR_RW(fan6_div, fan_div, 5),
 681        SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5),
 682        SENSOR_ATTR_RO(fan6_fault, fan_fault, 5),
 683        SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5),
 684        SENSOR_ATTR_RO(fan7_input, fan_value, 6),
 685        SENSOR_ATTR_RW(fan7_div, fan_div, 6),
 686        SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6),
 687        SENSOR_ATTR_RO(fan7_fault, fan_fault, 6),
 688        SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6),
 689};
 690
 691
 692/*
 693 * Watchdog routines
 694 */
 695
 696static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
 697{
 698        int ret, resolution;
 699        int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
 700
 701        /* 2 second or 60 second resolution? */
 702        if (timeout <= 510 || kind == fscpos || kind == fscscy)
 703                resolution = 2;
 704        else
 705                resolution = 60;
 706
 707        if (timeout < resolution || timeout > (resolution * 255))
 708                return -EINVAL;
 709
 710        mutex_lock(&data->watchdog_lock);
 711        if (!data->client) {
 712                ret = -ENODEV;
 713                goto leave;
 714        }
 715
 716        if (resolution == 2)
 717                data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
 718        else
 719                data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
 720
 721        data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
 722
 723        /* Write new timeout value */
 724        i2c_smbus_write_byte_data(data->client,
 725                FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
 726        /* Write new control register, do not trigger! */
 727        i2c_smbus_write_byte_data(data->client,
 728                FSCHMD_REG_WDOG_CONTROL[data->kind],
 729                data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
 730
 731        ret = data->watchdog_preset * resolution;
 732
 733leave:
 734        mutex_unlock(&data->watchdog_lock);
 735        return ret;
 736}
 737
 738static int watchdog_get_timeout(struct fschmd_data *data)
 739{
 740        int timeout;
 741
 742        mutex_lock(&data->watchdog_lock);
 743        if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
 744                timeout = data->watchdog_preset * 60;
 745        else
 746                timeout = data->watchdog_preset * 2;
 747        mutex_unlock(&data->watchdog_lock);
 748
 749        return timeout;
 750}
 751
 752static int watchdog_trigger(struct fschmd_data *data)
 753{
 754        int ret = 0;
 755
 756        mutex_lock(&data->watchdog_lock);
 757        if (!data->client) {
 758                ret = -ENODEV;
 759                goto leave;
 760        }
 761
 762        data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
 763        i2c_smbus_write_byte_data(data->client,
 764                                  FSCHMD_REG_WDOG_CONTROL[data->kind],
 765                                  data->watchdog_control);
 766leave:
 767        mutex_unlock(&data->watchdog_lock);
 768        return ret;
 769}
 770
 771static int watchdog_stop(struct fschmd_data *data)
 772{
 773        int ret = 0;
 774
 775        mutex_lock(&data->watchdog_lock);
 776        if (!data->client) {
 777                ret = -ENODEV;
 778                goto leave;
 779        }
 780
 781        data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
 782        /*
 783         * Don't store the stop flag in our watchdog control register copy, as
 784         * its a write only bit (read always returns 0)
 785         */
 786        i2c_smbus_write_byte_data(data->client,
 787                FSCHMD_REG_WDOG_CONTROL[data->kind],
 788                data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
 789leave:
 790        mutex_unlock(&data->watchdog_lock);
 791        return ret;
 792}
 793
 794static int watchdog_open(struct inode *inode, struct file *filp)
 795{
 796        struct fschmd_data *pos, *data = NULL;
 797        int watchdog_is_open;
 798
 799        /*
 800         * We get called from drivers/char/misc.c with misc_mtx hold, and we
 801         * call misc_register() from fschmd_probe() with watchdog_data_mutex
 802         * hold, as misc_register() takes the misc_mtx lock, this is a possible
 803         * deadlock, so we use mutex_trylock here.
 804         */
 805        if (!mutex_trylock(&watchdog_data_mutex))
 806                return -ERESTARTSYS;
 807        list_for_each_entry(pos, &watchdog_data_list, list) {
 808                if (pos->watchdog_miscdev.minor == iminor(inode)) {
 809                        data = pos;
 810                        break;
 811                }
 812        }
 813        /* Note we can never not have found data, so we don't check for this */
 814        watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
 815        if (!watchdog_is_open)
 816                kref_get(&data->kref);
 817        mutex_unlock(&watchdog_data_mutex);
 818
 819        if (watchdog_is_open)
 820                return -EBUSY;
 821
 822        /* Start the watchdog */
 823        watchdog_trigger(data);
 824        filp->private_data = data;
 825
 826        return stream_open(inode, filp);
 827}
 828
 829static int watchdog_release(struct inode *inode, struct file *filp)
 830{
 831        struct fschmd_data *data = filp->private_data;
 832
 833        if (data->watchdog_expect_close) {
 834                watchdog_stop(data);
 835                data->watchdog_expect_close = 0;
 836        } else {
 837                watchdog_trigger(data);
 838                dev_crit(&data->client->dev,
 839                        "unexpected close, not stopping watchdog!\n");
 840        }
 841
 842        clear_bit(0, &data->watchdog_is_open);
 843
 844        mutex_lock(&watchdog_data_mutex);
 845        kref_put(&data->kref, fschmd_release_resources);
 846        mutex_unlock(&watchdog_data_mutex);
 847
 848        return 0;
 849}
 850
 851static ssize_t watchdog_write(struct file *filp, const char __user *buf,
 852        size_t count, loff_t *offset)
 853{
 854        int ret;
 855        struct fschmd_data *data = filp->private_data;
 856
 857        if (count) {
 858                if (!nowayout) {
 859                        size_t i;
 860
 861                        /* Clear it in case it was set with a previous write */
 862                        data->watchdog_expect_close = 0;
 863
 864                        for (i = 0; i != count; i++) {
 865                                char c;
 866                                if (get_user(c, buf + i))
 867                                        return -EFAULT;
 868                                if (c == 'V')
 869                                        data->watchdog_expect_close = 1;
 870                        }
 871                }
 872                ret = watchdog_trigger(data);
 873                if (ret < 0)
 874                        return ret;
 875        }
 876        return count;
 877}
 878
 879static long watchdog_ioctl(struct file *filp, unsigned int cmd,
 880                           unsigned long arg)
 881{
 882        struct watchdog_info ident = {
 883                .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
 884                                WDIOF_CARDRESET,
 885                .identity = "FSC watchdog"
 886        };
 887        int i, ret = 0;
 888        struct fschmd_data *data = filp->private_data;
 889
 890        switch (cmd) {
 891        case WDIOC_GETSUPPORT:
 892                ident.firmware_version = data->revision;
 893                if (!nowayout)
 894                        ident.options |= WDIOF_MAGICCLOSE;
 895                if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
 896                        ret = -EFAULT;
 897                break;
 898
 899        case WDIOC_GETSTATUS:
 900                ret = put_user(0, (int __user *)arg);
 901                break;
 902
 903        case WDIOC_GETBOOTSTATUS:
 904                if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
 905                        ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
 906                else
 907                        ret = put_user(0, (int __user *)arg);
 908                break;
 909
 910        case WDIOC_KEEPALIVE:
 911                ret = watchdog_trigger(data);
 912                break;
 913
 914        case WDIOC_GETTIMEOUT:
 915                i = watchdog_get_timeout(data);
 916                ret = put_user(i, (int __user *)arg);
 917                break;
 918
 919        case WDIOC_SETTIMEOUT:
 920                if (get_user(i, (int __user *)arg)) {
 921                        ret = -EFAULT;
 922                        break;
 923                }
 924                ret = watchdog_set_timeout(data, i);
 925                if (ret > 0)
 926                        ret = put_user(ret, (int __user *)arg);
 927                break;
 928
 929        case WDIOC_SETOPTIONS:
 930                if (get_user(i, (int __user *)arg)) {
 931                        ret = -EFAULT;
 932                        break;
 933                }
 934
 935                if (i & WDIOS_DISABLECARD)
 936                        ret = watchdog_stop(data);
 937                else if (i & WDIOS_ENABLECARD)
 938                        ret = watchdog_trigger(data);
 939                else
 940                        ret = -EINVAL;
 941
 942                break;
 943        default:
 944                ret = -ENOTTY;
 945        }
 946        return ret;
 947}
 948
 949static const struct file_operations watchdog_fops = {
 950        .owner = THIS_MODULE,
 951        .llseek = no_llseek,
 952        .open = watchdog_open,
 953        .release = watchdog_release,
 954        .write = watchdog_write,
 955        .unlocked_ioctl = watchdog_ioctl,
 956        .compat_ioctl = compat_ptr_ioctl,
 957};
 958
 959
 960/*
 961 * Detect, register, unregister and update device functions
 962 */
 963
 964/*
 965 * DMI decode routine to read voltage scaling factors from special DMI tables,
 966 * which are available on FSC machines with an fscher or later chip.
 967 */
 968static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
 969{
 970        int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
 971
 972        /*
 973         * dmi code ugliness, we get passed the address of the contents of
 974         * a complete DMI record, but in the form of a dmi_header pointer, in
 975         * reality this address holds header->length bytes of which the header
 976         * are the first 4 bytes
 977         */
 978        u8 *dmi_data = (u8 *)header;
 979
 980        /* We are looking for OEM-specific type 185 */
 981        if (header->type != 185)
 982                return;
 983
 984        /*
 985         * we are looking for what Siemens calls "subtype" 19, the subtype
 986         * is stored in byte 5 of the dmi block
 987         */
 988        if (header->length < 5 || dmi_data[4] != 19)
 989                return;
 990
 991        /*
 992         * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
 993         * consisting of what Siemens calls an "Entity" number, followed by
 994         * 2 16-bit words in LSB first order
 995         */
 996        for (i = 6; (i + 4) < header->length; i += 5) {
 997                /* entity 1 - 3: voltage multiplier and offset */
 998                if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
 999                        /* Our in sensors order and the DMI order differ */
1000                        const int shuffle[3] = { 1, 0, 2 };
1001                        int in = shuffle[dmi_data[i] - 1];
1002
1003                        /* Check for twice the same entity */
1004                        if (found & (1 << in))
1005                                return;
1006
1007                        mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1008                        offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1009
1010                        found |= 1 << in;
1011                }
1012
1013                /* entity 7: reference voltage */
1014                if (dmi_data[i] == 7) {
1015                        /* Check for twice the same entity */
1016                        if (found & 0x08)
1017                                return;
1018
1019                        vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1020
1021                        found |= 0x08;
1022                }
1023        }
1024
1025        if (found == 0x0F) {
1026                for (i = 0; i < 3; i++) {
1027                        dmi_mult[i] = mult[i] * 10;
1028                        dmi_offset[i] = offset[i] * 10;
1029                }
1030                /*
1031                 * According to the docs there should be separate dmi entries
1032                 * for the mult's and offsets of in3-5 of the syl, but on
1033                 * my test machine these are not present
1034                 */
1035                dmi_mult[3] = dmi_mult[2];
1036                dmi_mult[4] = dmi_mult[1];
1037                dmi_mult[5] = dmi_mult[2];
1038                dmi_offset[3] = dmi_offset[2];
1039                dmi_offset[4] = dmi_offset[1];
1040                dmi_offset[5] = dmi_offset[2];
1041                dmi_vref = vref;
1042        }
1043}
1044
1045static int fschmd_detect(struct i2c_client *client,
1046                         struct i2c_board_info *info)
1047{
1048        enum chips kind;
1049        struct i2c_adapter *adapter = client->adapter;
1050        char id[4];
1051
1052        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1053                return -ENODEV;
1054
1055        /* Detect & Identify the chip */
1056        id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1057        id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1058        id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1059        id[3] = '\0';
1060
1061        if (!strcmp(id, "PEG"))
1062                kind = fscpos;
1063        else if (!strcmp(id, "HER"))
1064                kind = fscher;
1065        else if (!strcmp(id, "SCY"))
1066                kind = fscscy;
1067        else if (!strcmp(id, "HRC"))
1068                kind = fschrc;
1069        else if (!strcmp(id, "HMD"))
1070                kind = fschmd;
1071        else if (!strcmp(id, "HDS"))
1072                kind = fschds;
1073        else if (!strcmp(id, "SYL"))
1074                kind = fscsyl;
1075        else
1076                return -ENODEV;
1077
1078        strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1079
1080        return 0;
1081}
1082
1083static int fschmd_probe(struct i2c_client *client)
1084{
1085        struct fschmd_data *data;
1086        const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1087                                "Heracles", "Heimdall", "Hades", "Syleus" };
1088        const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1089        int i, err;
1090        enum chips kind = i2c_match_id(fschmd_id, client)->driver_data;
1091
1092        data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1093        if (!data)
1094                return -ENOMEM;
1095
1096        i2c_set_clientdata(client, data);
1097        mutex_init(&data->update_lock);
1098        mutex_init(&data->watchdog_lock);
1099        INIT_LIST_HEAD(&data->list);
1100        kref_init(&data->kref);
1101        /*
1102         * Store client pointer in our data struct for watchdog usage
1103         * (where the client is found through a data ptr instead of the
1104         * otherway around)
1105         */
1106        data->client = client;
1107        data->kind = kind;
1108
1109        if (kind == fscpos) {
1110                /*
1111                 * The Poseidon has hardwired temp limits, fill these
1112                 * in for the alarm resetting code
1113                 */
1114                data->temp_max[0] = 70 + 128;
1115                data->temp_max[1] = 50 + 128;
1116                data->temp_max[2] = 50 + 128;
1117        }
1118
1119        /* Read the special DMI table for fscher and newer chips */
1120        if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1121                dmi_walk(fschmd_dmi_decode, NULL);
1122                if (dmi_vref == -1) {
1123                        dev_warn(&client->dev,
1124                                "Couldn't get voltage scaling factors from "
1125                                "BIOS DMI table, using builtin defaults\n");
1126                        dmi_vref = 33;
1127                }
1128        }
1129
1130        /* Read in some never changing registers */
1131        data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1132        data->global_control = i2c_smbus_read_byte_data(client,
1133                                        FSCHMD_REG_CONTROL);
1134        data->watchdog_control = i2c_smbus_read_byte_data(client,
1135                                        FSCHMD_REG_WDOG_CONTROL[data->kind]);
1136        data->watchdog_state = i2c_smbus_read_byte_data(client,
1137                                        FSCHMD_REG_WDOG_STATE[data->kind]);
1138        data->watchdog_preset = i2c_smbus_read_byte_data(client,
1139                                        FSCHMD_REG_WDOG_PRESET[data->kind]);
1140
1141        err = device_create_file(&client->dev, &dev_attr_alert_led);
1142        if (err)
1143                goto exit_detach;
1144
1145        for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1146                err = device_create_file(&client->dev,
1147                                        &fschmd_attr[i].dev_attr);
1148                if (err)
1149                        goto exit_detach;
1150        }
1151
1152        for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1153                /* Poseidon doesn't have TEMP_LIMIT registers */
1154                if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1155                                temp_max_show)
1156                        continue;
1157
1158                if (kind == fscsyl) {
1159                        if (i % 4 == 0)
1160                                data->temp_status[i / 4] =
1161                                        i2c_smbus_read_byte_data(client,
1162                                                FSCHMD_REG_TEMP_STATE
1163                                                [data->kind][i / 4]);
1164                        if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1165                                continue;
1166                }
1167
1168                err = device_create_file(&client->dev,
1169                                        &fschmd_temp_attr[i].dev_attr);
1170                if (err)
1171                        goto exit_detach;
1172        }
1173
1174        for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1175                /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1176                if (kind == fscpos &&
1177                                !strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1178                                        "pwm3_auto_point1_pwm"))
1179                        continue;
1180
1181                if (kind == fscsyl) {
1182                        if (i % 5 == 0)
1183                                data->fan_status[i / 5] =
1184                                        i2c_smbus_read_byte_data(client,
1185                                                FSCHMD_REG_FAN_STATE
1186                                                [data->kind][i / 5]);
1187                        if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1188                                continue;
1189                }
1190
1191                err = device_create_file(&client->dev,
1192                                        &fschmd_fan_attr[i].dev_attr);
1193                if (err)
1194                        goto exit_detach;
1195        }
1196
1197        data->hwmon_dev = hwmon_device_register(&client->dev);
1198        if (IS_ERR(data->hwmon_dev)) {
1199                err = PTR_ERR(data->hwmon_dev);
1200                data->hwmon_dev = NULL;
1201                goto exit_detach;
1202        }
1203
1204        /*
1205         * We take the data_mutex lock early so that watchdog_open() cannot
1206         * run when misc_register() has completed, but we've not yet added
1207         * our data to the watchdog_data_list (and set the default timeout)
1208         */
1209        mutex_lock(&watchdog_data_mutex);
1210        for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1211                /* Register our watchdog part */
1212                snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1213                        "watchdog%c", (i == 0) ? '\0' : ('0' + i));
1214                data->watchdog_miscdev.name = data->watchdog_name;
1215                data->watchdog_miscdev.fops = &watchdog_fops;
1216                data->watchdog_miscdev.minor = watchdog_minors[i];
1217                err = misc_register(&data->watchdog_miscdev);
1218                if (err == -EBUSY)
1219                        continue;
1220                if (err) {
1221                        data->watchdog_miscdev.minor = 0;
1222                        dev_err(&client->dev,
1223                                "Registering watchdog chardev: %d\n", err);
1224                        break;
1225                }
1226
1227                list_add(&data->list, &watchdog_data_list);
1228                watchdog_set_timeout(data, 60);
1229                dev_info(&client->dev,
1230                        "Registered watchdog chardev major 10, minor: %d\n",
1231                        watchdog_minors[i]);
1232                break;
1233        }
1234        if (i == ARRAY_SIZE(watchdog_minors)) {
1235                data->watchdog_miscdev.minor = 0;
1236                dev_warn(&client->dev,
1237                         "Couldn't register watchdog chardev (due to no free minor)\n");
1238        }
1239        mutex_unlock(&watchdog_data_mutex);
1240
1241        dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1242                names[data->kind], (int) data->revision);
1243
1244        return 0;
1245
1246exit_detach:
1247        fschmd_remove(client); /* will also free data for us */
1248        return err;
1249}
1250
1251static int fschmd_remove(struct i2c_client *client)
1252{
1253        struct fschmd_data *data = i2c_get_clientdata(client);
1254        int i;
1255
1256        /* Unregister the watchdog (if registered) */
1257        if (data->watchdog_miscdev.minor) {
1258                misc_deregister(&data->watchdog_miscdev);
1259                if (data->watchdog_is_open) {
1260                        dev_warn(&client->dev,
1261                                "i2c client detached with watchdog open! "
1262                                "Stopping watchdog.\n");
1263                        watchdog_stop(data);
1264                }
1265                mutex_lock(&watchdog_data_mutex);
1266                list_del(&data->list);
1267                mutex_unlock(&watchdog_data_mutex);
1268                /* Tell the watchdog code the client is gone */
1269                mutex_lock(&data->watchdog_lock);
1270                data->client = NULL;
1271                mutex_unlock(&data->watchdog_lock);
1272        }
1273
1274        /*
1275         * Check if registered in case we're called from fschmd_detect
1276         * to cleanup after an error
1277         */
1278        if (data->hwmon_dev)
1279                hwmon_device_unregister(data->hwmon_dev);
1280
1281        device_remove_file(&client->dev, &dev_attr_alert_led);
1282        for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1283                device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1284        for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1285                device_remove_file(&client->dev,
1286                                        &fschmd_temp_attr[i].dev_attr);
1287        for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1288                device_remove_file(&client->dev,
1289                                        &fschmd_fan_attr[i].dev_attr);
1290
1291        mutex_lock(&watchdog_data_mutex);
1292        kref_put(&data->kref, fschmd_release_resources);
1293        mutex_unlock(&watchdog_data_mutex);
1294
1295        return 0;
1296}
1297
1298static struct fschmd_data *fschmd_update_device(struct device *dev)
1299{
1300        struct i2c_client *client = to_i2c_client(dev);
1301        struct fschmd_data *data = i2c_get_clientdata(client);
1302        int i;
1303
1304        mutex_lock(&data->update_lock);
1305
1306        if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1307
1308                for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1309                        data->temp_act[i] = i2c_smbus_read_byte_data(client,
1310                                        FSCHMD_REG_TEMP_ACT[data->kind][i]);
1311                        data->temp_status[i] = i2c_smbus_read_byte_data(client,
1312                                        FSCHMD_REG_TEMP_STATE[data->kind][i]);
1313
1314                        /* The fscpos doesn't have TEMP_LIMIT registers */
1315                        if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1316                                data->temp_max[i] = i2c_smbus_read_byte_data(
1317                                        client,
1318                                        FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1319
1320                        /*
1321                         * reset alarm if the alarm condition is gone,
1322                         * the chip doesn't do this itself
1323                         */
1324                        if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1325                                        FSCHMD_TEMP_ALARM_MASK &&
1326                                        data->temp_act[i] < data->temp_max[i])
1327                                i2c_smbus_write_byte_data(client,
1328                                        FSCHMD_REG_TEMP_STATE[data->kind][i],
1329                                        data->temp_status[i]);
1330                }
1331
1332                for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1333                        data->fan_act[i] = i2c_smbus_read_byte_data(client,
1334                                        FSCHMD_REG_FAN_ACT[data->kind][i]);
1335                        data->fan_status[i] = i2c_smbus_read_byte_data(client,
1336                                        FSCHMD_REG_FAN_STATE[data->kind][i]);
1337                        data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1338                                        FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1339
1340                        /* The fscpos third fan doesn't have a fan_min */
1341                        if (FSCHMD_REG_FAN_MIN[data->kind][i])
1342                                data->fan_min[i] = i2c_smbus_read_byte_data(
1343                                        client,
1344                                        FSCHMD_REG_FAN_MIN[data->kind][i]);
1345
1346                        /* reset fan status if speed is back to > 0 */
1347                        if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1348                                        data->fan_act[i])
1349                                i2c_smbus_write_byte_data(client,
1350                                        FSCHMD_REG_FAN_STATE[data->kind][i],
1351                                        data->fan_status[i]);
1352                }
1353
1354                for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1355                        data->volt[i] = i2c_smbus_read_byte_data(client,
1356                                               FSCHMD_REG_VOLT[data->kind][i]);
1357
1358                data->last_updated = jiffies;
1359                data->valid = 1;
1360        }
1361
1362        mutex_unlock(&data->update_lock);
1363
1364        return data;
1365}
1366
1367module_i2c_driver(fschmd_driver);
1368
1369MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1370MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1371                        "and Syleus driver");
1372MODULE_LICENSE("GPL");
1373