linux/drivers/memory/emif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:                  Whether the DDR devices attached to this EMIF
  34 *                              instance are exactly same as that on EMIF1. In
  35 *                              this case we can save some memory and processing
  36 * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  37 *                              to this EMIF - read from MR4 register. If there
  38 *                              are two devices attached to this EMIF, this
  39 *                              value is the maximum of the two temperature
  40 *                              levels.
  41 * @node:                       node in the device list
  42 * @base:                       base address of memory-mapped IO registers.
  43 * @dev:                        device pointer.
  44 * @addressing                  table with addressing information from the spec
  45 * @regs_cache:                 An array of 'struct emif_regs' that stores
  46 *                              calculated register values for different
  47 *                              frequencies, to avoid re-calculating them on
  48 *                              each DVFS transition.
  49 * @curr_regs:                  The set of register values used in the last
  50 *                              frequency change (i.e. corresponding to the
  51 *                              frequency in effect at the moment)
  52 * @plat_data:                  Pointer to saved platform data.
  53 * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  54 * @np_ddr:                     Pointer to ddr device tree node
  55 */
  56struct emif_data {
  57        u8                              duplicate;
  58        u8                              temperature_level;
  59        u8                              lpmode;
  60        struct list_head                node;
  61        unsigned long                   irq_state;
  62        void __iomem                    *base;
  63        struct device                   *dev;
  64        const struct lpddr2_addressing  *addressing;
  65        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  66        struct emif_regs                *curr_regs;
  67        struct emif_platform_data       *plat_data;
  68        struct dentry                   *debugfs_root;
  69        struct device_node              *np_ddr;
  70};
  71
  72static struct emif_data *emif1;
  73static spinlock_t       emif_lock;
  74static unsigned long    irq_state;
  75static u32              t_ck; /* DDR clock period in ps */
  76static LIST_HEAD(device_list);
  77
  78#ifdef CONFIG_DEBUG_FS
  79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  80        struct emif_regs *regs)
  81{
  82        u32 type = emif->plat_data->device_info->type;
  83        u32 ip_rev = emif->plat_data->ip_rev;
  84
  85        seq_printf(s, "EMIF register cache dump for %dMHz\n",
  86                regs->freq/1000000);
  87
  88        seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  89        seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  90        seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  91        seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  92
  93        if (ip_rev == EMIF_4D) {
  94                seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  95                        regs->read_idle_ctrl_shdw_normal);
  96                seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97                        regs->read_idle_ctrl_shdw_volt_ramp);
  98        } else if (ip_rev == EMIF_4D5) {
  99                seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 100                        regs->dll_calib_ctrl_shdw_normal);
 101                seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 102                        regs->dll_calib_ctrl_shdw_volt_ramp);
 103        }
 104
 105        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 106                seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 107                        regs->ref_ctrl_shdw_derated);
 108                seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 109                        regs->sdram_tim1_shdw_derated);
 110                seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 111                        regs->sdram_tim3_shdw_derated);
 112        }
 113}
 114
 115static int emif_regdump_show(struct seq_file *s, void *unused)
 116{
 117        struct emif_data        *emif   = s->private;
 118        struct emif_regs        **regs_cache;
 119        int                     i;
 120
 121        if (emif->duplicate)
 122                regs_cache = emif1->regs_cache;
 123        else
 124                regs_cache = emif->regs_cache;
 125
 126        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 127                do_emif_regdump_show(s, emif, regs_cache[i]);
 128                seq_putc(s, '\n');
 129        }
 130
 131        return 0;
 132}
 133
 134DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 135
 136static int emif_mr4_show(struct seq_file *s, void *unused)
 137{
 138        struct emif_data *emif = s->private;
 139
 140        seq_printf(s, "MR4=%d\n", emif->temperature_level);
 141        return 0;
 142}
 143
 144DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 145
 146static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 147{
 148        emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 149        debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 150                            &emif_regdump_fops);
 151        debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 152                            &emif_mr4_fops);
 153        return 0;
 154}
 155
 156static void __exit emif_debugfs_exit(struct emif_data *emif)
 157{
 158        debugfs_remove_recursive(emif->debugfs_root);
 159        emif->debugfs_root = NULL;
 160}
 161#else
 162static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 163{
 164        return 0;
 165}
 166
 167static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 168{
 169}
 170#endif
 171
 172/*
 173 * Calculate the period of DDR clock from frequency value
 174 */
 175static void set_ddr_clk_period(u32 freq)
 176{
 177        /* Divide 10^12 by frequency to get period in ps */
 178        t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 179}
 180
 181/*
 182 * Get bus width used by EMIF. Note that this may be different from the
 183 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 184 * may be connected to a given CS of EMIF. In this case bus width as far
 185 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 186 */
 187static u32 get_emif_bus_width(struct emif_data *emif)
 188{
 189        u32             width;
 190        void __iomem    *base = emif->base;
 191
 192        width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 193                        >> NARROW_MODE_SHIFT;
 194        width = width == 0 ? 32 : 16;
 195
 196        return width;
 197}
 198
 199/*
 200 * Get the CL from SDRAM_CONFIG register
 201 */
 202static u32 get_cl(struct emif_data *emif)
 203{
 204        u32             cl;
 205        void __iomem    *base = emif->base;
 206
 207        cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 208
 209        return cl;
 210}
 211
 212static void set_lpmode(struct emif_data *emif, u8 lpmode)
 213{
 214        u32 temp;
 215        void __iomem *base = emif->base;
 216
 217        /*
 218         * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 219         * Efficient
 220         *
 221         * i743 DESCRIPTION:
 222         * The EMIF supports power-down state for low power. The EMIF
 223         * automatically puts the SDRAM into power-down after the memory is
 224         * not accessed for a defined number of cycles and the
 225         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 226         * As the EMIF supports automatic output impedance calibration, a ZQ
 227         * calibration long command is issued every time it exits active
 228         * power-down and precharge power-down modes. The EMIF waits and
 229         * blocks any other command during this calibration.
 230         * The EMIF does not allow selective disabling of ZQ calibration upon
 231         * exit of power-down mode. Due to very short periods of power-down
 232         * cycles, ZQ calibration overhead creates bandwidth issues and
 233         * increases overall system power consumption. On the other hand,
 234         * issuing ZQ calibration long commands when exiting self-refresh is
 235         * still required.
 236         *
 237         * WORKAROUND
 238         * Because there is no power consumption benefit of the power-down due
 239         * to the calibration and there is a performance risk, the guideline
 240         * is to not allow power-down state and, therefore, to not have set
 241         * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 242         */
 243        if ((emif->plat_data->ip_rev == EMIF_4D) &&
 244            (lpmode == EMIF_LP_MODE_PWR_DN)) {
 245                WARN_ONCE(1,
 246                          "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 247                /* rollback LP_MODE to Self-refresh mode */
 248                lpmode = EMIF_LP_MODE_SELF_REFRESH;
 249        }
 250
 251        temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 252        temp &= ~LP_MODE_MASK;
 253        temp |= (lpmode << LP_MODE_SHIFT);
 254        writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 255}
 256
 257static void do_freq_update(void)
 258{
 259        struct emif_data *emif;
 260
 261        /*
 262         * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 263         *
 264         * i728 DESCRIPTION:
 265         * The EMIF automatically puts the SDRAM into self-refresh mode
 266         * after the EMIF has not performed accesses during
 267         * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 268         * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 269         * to 0x2. If during a small window the following three events
 270         * occur:
 271         * - The SR_TIMING counter expires
 272         * - And frequency change is requested
 273         * - And OCP access is requested
 274         * Then it causes instable clock on the DDR interface.
 275         *
 276         * WORKAROUND
 277         * To avoid the occurrence of the three events, the workaround
 278         * is to disable the self-refresh when requesting a frequency
 279         * change. Before requesting a frequency change the software must
 280         * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 281         * frequency change has been done, the software can reprogram
 282         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 283         */
 284        list_for_each_entry(emif, &device_list, node) {
 285                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 286                        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 287        }
 288
 289        /*
 290         * TODO: Do FREQ_UPDATE here when an API
 291         * is available for this as part of the new
 292         * clock framework
 293         */
 294
 295        list_for_each_entry(emif, &device_list, node) {
 296                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 297                        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 298        }
 299}
 300
 301/* Find addressing table entry based on the device's type and density */
 302static const struct lpddr2_addressing *get_addressing_table(
 303        const struct ddr_device_info *device_info)
 304{
 305        u32             index, type, density;
 306
 307        type = device_info->type;
 308        density = device_info->density;
 309
 310        switch (type) {
 311        case DDR_TYPE_LPDDR2_S4:
 312                index = density - 1;
 313                break;
 314        case DDR_TYPE_LPDDR2_S2:
 315                switch (density) {
 316                case DDR_DENSITY_1Gb:
 317                case DDR_DENSITY_2Gb:
 318                        index = density + 3;
 319                        break;
 320                default:
 321                        index = density - 1;
 322                }
 323                break;
 324        default:
 325                return NULL;
 326        }
 327
 328        return &lpddr2_jedec_addressing_table[index];
 329}
 330
 331/*
 332 * Find the the right timing table from the array of timing
 333 * tables of the device using DDR clock frequency
 334 */
 335static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 336                u32 freq)
 337{
 338        u32                             i, min, max, freq_nearest;
 339        const struct lpddr2_timings     *timings = NULL;
 340        const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
 341        struct                          device *dev = emif->dev;
 342
 343        /* Start with a very high frequency - 1GHz */
 344        freq_nearest = 1000000000;
 345
 346        /*
 347         * Find the timings table such that:
 348         *  1. the frequency range covers the required frequency(safe) AND
 349         *  2. the max_freq is closest to the required frequency(optimal)
 350         */
 351        for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 352                max = timings_arr[i].max_freq;
 353                min = timings_arr[i].min_freq;
 354                if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 355                        freq_nearest = max;
 356                        timings = &timings_arr[i];
 357                }
 358        }
 359
 360        if (!timings)
 361                dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 362                        __func__, freq);
 363
 364        dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 365                __func__, freq, freq_nearest);
 366
 367        return timings;
 368}
 369
 370static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 371                const struct lpddr2_addressing *addressing)
 372{
 373        u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 374
 375        /* Scale down frequency and t_refi to avoid overflow */
 376        freq_khz = freq / 1000;
 377        t_refi = addressing->tREFI_ns / 100;
 378
 379        /*
 380         * refresh rate to be set is 'tREFI(in us) * freq in MHz
 381         * division by 10000 to account for change in units
 382         */
 383        val = t_refi * freq_khz / 10000;
 384        ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 385
 386        return ref_ctrl_shdw;
 387}
 388
 389static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 390                const struct lpddr2_min_tck *min_tck,
 391                const struct lpddr2_addressing *addressing)
 392{
 393        u32 tim1 = 0, val = 0;
 394
 395        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 396        tim1 |= val << T_WTR_SHIFT;
 397
 398        if (addressing->num_banks == B8)
 399                val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 400        else
 401                val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 402        tim1 |= (val - 1) << T_RRD_SHIFT;
 403
 404        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 405        tim1 |= val << T_RC_SHIFT;
 406
 407        val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 408        tim1 |= (val - 1) << T_RAS_SHIFT;
 409
 410        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 411        tim1 |= val << T_WR_SHIFT;
 412
 413        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 414        tim1 |= val << T_RCD_SHIFT;
 415
 416        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 417        tim1 |= val << T_RP_SHIFT;
 418
 419        return tim1;
 420}
 421
 422static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 423                const struct lpddr2_min_tck *min_tck,
 424                const struct lpddr2_addressing *addressing)
 425{
 426        u32 tim1 = 0, val = 0;
 427
 428        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 429        tim1 = val << T_WTR_SHIFT;
 430
 431        /*
 432         * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 433         * to tFAW for de-rating
 434         */
 435        if (addressing->num_banks == B8) {
 436                val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 437        } else {
 438                val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 439                val = max(min_tck->tRRD, val) - 1;
 440        }
 441        tim1 |= val << T_RRD_SHIFT;
 442
 443        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 444        tim1 |= (val - 1) << T_RC_SHIFT;
 445
 446        val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 447        val = max(min_tck->tRASmin, val) - 1;
 448        tim1 |= val << T_RAS_SHIFT;
 449
 450        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 451        tim1 |= val << T_WR_SHIFT;
 452
 453        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 454        tim1 |= (val - 1) << T_RCD_SHIFT;
 455
 456        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 457        tim1 |= (val - 1) << T_RP_SHIFT;
 458
 459        return tim1;
 460}
 461
 462static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 463                const struct lpddr2_min_tck *min_tck,
 464                const struct lpddr2_addressing *addressing,
 465                u32 type)
 466{
 467        u32 tim2 = 0, val = 0;
 468
 469        val = min_tck->tCKE - 1;
 470        tim2 |= val << T_CKE_SHIFT;
 471
 472        val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 473        tim2 |= val << T_RTP_SHIFT;
 474
 475        /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 476        val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 477        tim2 |= val << T_XSNR_SHIFT;
 478
 479        /* XSRD same as XSNR for LPDDR2 */
 480        tim2 |= val << T_XSRD_SHIFT;
 481
 482        val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 483        tim2 |= val << T_XP_SHIFT;
 484
 485        return tim2;
 486}
 487
 488static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 489                const struct lpddr2_min_tck *min_tck,
 490                const struct lpddr2_addressing *addressing,
 491                u32 type, u32 ip_rev, u32 derated)
 492{
 493        u32 tim3 = 0, val = 0, t_dqsck;
 494
 495        val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 496        val = val > 0xF ? 0xF : val;
 497        tim3 |= val << T_RAS_MAX_SHIFT;
 498
 499        val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 500        tim3 |= val << T_RFC_SHIFT;
 501
 502        t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 503                timings->tDQSCK_max_derated : timings->tDQSCK_max;
 504        if (ip_rev == EMIF_4D5)
 505                val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 506        else
 507                val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 508
 509        tim3 |= val << T_TDQSCKMAX_SHIFT;
 510
 511        val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 512        tim3 |= val << ZQ_ZQCS_SHIFT;
 513
 514        val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 515        val = max(min_tck->tCKESR, val) - 1;
 516        tim3 |= val << T_CKESR_SHIFT;
 517
 518        if (ip_rev == EMIF_4D5) {
 519                tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 520
 521                val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 522                tim3 |= val << T_PDLL_UL_SHIFT;
 523        }
 524
 525        return tim3;
 526}
 527
 528static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 529                bool cs1_used, bool cal_resistors_per_cs)
 530{
 531        u32 zq = 0, val = 0;
 532
 533        val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 534        zq |= val << ZQ_REFINTERVAL_SHIFT;
 535
 536        val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 537        zq |= val << ZQ_ZQCL_MULT_SHIFT;
 538
 539        val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 540        zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 541
 542        zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 543
 544        if (cal_resistors_per_cs)
 545                zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 546        else
 547                zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 548
 549        zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 550
 551        val = cs1_used ? 1 : 0;
 552        zq |= val << ZQ_CS1EN_SHIFT;
 553
 554        return zq;
 555}
 556
 557static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 558                const struct emif_custom_configs *custom_configs, bool cs1_used,
 559                u32 sdram_io_width, u32 emif_bus_width)
 560{
 561        u32 alert = 0, interval, devcnt;
 562
 563        if (custom_configs && (custom_configs->mask &
 564                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 565                interval = custom_configs->temp_alert_poll_interval_ms;
 566        else
 567                interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 568
 569        interval *= 1000000;                    /* Convert to ns */
 570        interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 571        alert |= (interval << TA_REFINTERVAL_SHIFT);
 572
 573        /*
 574         * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 575         * also to this form and subtract to get TA_DEVCNT, which is
 576         * in log2(x) form.
 577         */
 578        emif_bus_width = __fls(emif_bus_width) - 1;
 579        devcnt = emif_bus_width - sdram_io_width;
 580        alert |= devcnt << TA_DEVCNT_SHIFT;
 581
 582        /* DEVWDT is in 'log2(x) - 3' form */
 583        alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 584
 585        alert |= 1 << TA_SFEXITEN_SHIFT;
 586        alert |= 1 << TA_CS0EN_SHIFT;
 587        alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 588
 589        return alert;
 590}
 591
 592static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 593{
 594        u32 idle = 0, val = 0;
 595
 596        /*
 597         * Maximum value in normal conditions and increased frequency
 598         * when voltage is ramping
 599         */
 600        if (volt_ramp)
 601                val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 602        else
 603                val = 0x1FF;
 604
 605        /*
 606         * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 607         * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 608         */
 609        idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 610        idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 611
 612        return idle;
 613}
 614
 615static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 616{
 617        u32 calib = 0, val = 0;
 618
 619        if (volt_ramp == DDR_VOLTAGE_RAMPING)
 620                val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 621        else
 622                val = 0; /* Disabled when voltage is stable */
 623
 624        calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 625        calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 626
 627        return calib;
 628}
 629
 630static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 631        u32 freq, u8 RL)
 632{
 633        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 634
 635        val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 636        phy |= val << READ_LATENCY_SHIFT_4D;
 637
 638        if (freq <= 100000000)
 639                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 640        else if (freq <= 200000000)
 641                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 642        else
 643                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 644
 645        phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 646
 647        return phy;
 648}
 649
 650static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 651{
 652        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 653
 654        /*
 655         * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 656         * half-delay is not needed else set half-delay
 657         */
 658        if (freq >= 265000000 && freq < 267000000)
 659                half_delay = 0;
 660        else
 661                half_delay = 1;
 662
 663        phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 664        phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 665                        t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 666
 667        return phy;
 668}
 669
 670static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 671{
 672        u32 fifo_we_slave_ratio;
 673
 674        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 675                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 676
 677        return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 678                fifo_we_slave_ratio << 22;
 679}
 680
 681static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 682{
 683        u32 fifo_we_slave_ratio;
 684
 685        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 686                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 687
 688        return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 689                fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 690}
 691
 692static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 693{
 694        u32 fifo_we_slave_ratio;
 695
 696        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 697                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 698
 699        return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 700                fifo_we_slave_ratio << 13;
 701}
 702
 703static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 704{
 705        u32 pwr_mgmt_ctrl       = 0, timeout;
 706        u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 707        u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 708        u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 709        u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 710        u32 mask;
 711        u8 shift;
 712
 713        struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 714
 715        if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 716                lpmode          = cust_cfgs->lpmode;
 717                timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 718                timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 719                freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 720        }
 721
 722        /* Timeout based on DDR frequency */
 723        timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 724
 725        /*
 726         * The value to be set in register is "log2(timeout) - 3"
 727         * if timeout < 16 load 0 in register
 728         * if timeout is not a power of 2, round to next highest power of 2
 729         */
 730        if (timeout < 16) {
 731                timeout = 0;
 732        } else {
 733                if (timeout & (timeout - 1))
 734                        timeout <<= 1;
 735                timeout = __fls(timeout) - 3;
 736        }
 737
 738        switch (lpmode) {
 739        case EMIF_LP_MODE_CLOCK_STOP:
 740                shift = CS_TIM_SHIFT;
 741                mask = CS_TIM_MASK;
 742                break;
 743        case EMIF_LP_MODE_SELF_REFRESH:
 744                /* Workaround for errata i735 */
 745                if (timeout < 6)
 746                        timeout = 6;
 747
 748                shift = SR_TIM_SHIFT;
 749                mask = SR_TIM_MASK;
 750                break;
 751        case EMIF_LP_MODE_PWR_DN:
 752                shift = PD_TIM_SHIFT;
 753                mask = PD_TIM_MASK;
 754                break;
 755        case EMIF_LP_MODE_DISABLE:
 756        default:
 757                mask = 0;
 758                shift = 0;
 759                break;
 760        }
 761        /* Round to maximum in case of overflow, BUT warn! */
 762        if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 763                pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 764                       lpmode,
 765                       timeout_perf,
 766                       timeout_pwr,
 767                       freq_threshold);
 768                WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 769                     timeout, mask >> shift);
 770                timeout = mask >> shift;
 771        }
 772
 773        /* Setup required timing */
 774        pwr_mgmt_ctrl = (timeout << shift) & mask;
 775        /* setup a default mask for rest of the modes */
 776        pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 777                          ~mask;
 778
 779        /* No CS_TIM in EMIF_4D5 */
 780        if (ip_rev == EMIF_4D5)
 781                pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 782
 783        pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 784
 785        return pwr_mgmt_ctrl;
 786}
 787
 788/*
 789 * Get the temperature level of the EMIF instance:
 790 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 791 * level. If there are two parts attached(one on each CS), then the temperature
 792 * level for the EMIF instance is the higher of the two temperatures.
 793 */
 794static void get_temperature_level(struct emif_data *emif)
 795{
 796        u32             temp, temperature_level;
 797        void __iomem    *base;
 798
 799        base = emif->base;
 800
 801        /* Read mode register 4 */
 802        writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 803        temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 804        temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 805                                MR4_SDRAM_REF_RATE_SHIFT;
 806
 807        if (emif->plat_data->device_info->cs1_used) {
 808                writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 809                temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 810                temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 811                                >> MR4_SDRAM_REF_RATE_SHIFT;
 812                temperature_level = max(temp, temperature_level);
 813        }
 814
 815        /* treat everything less than nominal(3) in MR4 as nominal */
 816        if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 817                temperature_level = SDRAM_TEMP_NOMINAL;
 818
 819        /* if we get reserved value in MR4 persist with the existing value */
 820        if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 821                emif->temperature_level = temperature_level;
 822}
 823
 824/*
 825 * Program EMIF shadow registers that are not dependent on temperature
 826 * or voltage
 827 */
 828static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 829{
 830        void __iomem    *base = emif->base;
 831
 832        writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 833        writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 834        writel(regs->pwr_mgmt_ctrl_shdw,
 835               base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 836
 837        /* Settings specific for EMIF4D5 */
 838        if (emif->plat_data->ip_rev != EMIF_4D5)
 839                return;
 840        writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 841        writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 842        writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 843}
 844
 845/*
 846 * When voltage ramps dll calibration and forced read idle should
 847 * happen more often
 848 */
 849static void setup_volt_sensitive_regs(struct emif_data *emif,
 850                struct emif_regs *regs, u32 volt_state)
 851{
 852        u32             calib_ctrl;
 853        void __iomem    *base = emif->base;
 854
 855        /*
 856         * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 857         * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 858         * is an alias of the respective read_idle_ctrl_shdw_* (members of
 859         * a union). So, the below code takes care of both cases
 860         */
 861        if (volt_state == DDR_VOLTAGE_RAMPING)
 862                calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 863        else
 864                calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 865
 866        writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 867}
 868
 869/*
 870 * setup_temperature_sensitive_regs() - set the timings for temperature
 871 * sensitive registers. This happens once at initialisation time based
 872 * on the temperature at boot time and subsequently based on the temperature
 873 * alert interrupt. Temperature alert can happen when the temperature
 874 * increases or drops. So this function can have the effect of either
 875 * derating the timings or going back to nominal values.
 876 */
 877static void setup_temperature_sensitive_regs(struct emif_data *emif,
 878                struct emif_regs *regs)
 879{
 880        u32             tim1, tim3, ref_ctrl, type;
 881        void __iomem    *base = emif->base;
 882        u32             temperature;
 883
 884        type = emif->plat_data->device_info->type;
 885
 886        tim1 = regs->sdram_tim1_shdw;
 887        tim3 = regs->sdram_tim3_shdw;
 888        ref_ctrl = regs->ref_ctrl_shdw;
 889
 890        /* No de-rating for non-lpddr2 devices */
 891        if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 892                goto out;
 893
 894        temperature = emif->temperature_level;
 895        if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 896                ref_ctrl = regs->ref_ctrl_shdw_derated;
 897        } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 898                tim1 = regs->sdram_tim1_shdw_derated;
 899                tim3 = regs->sdram_tim3_shdw_derated;
 900                ref_ctrl = regs->ref_ctrl_shdw_derated;
 901        }
 902
 903out:
 904        writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 905        writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 906        writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 907}
 908
 909static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 910{
 911        u32             old_temp_level;
 912        irqreturn_t     ret = IRQ_HANDLED;
 913        struct emif_custom_configs *custom_configs;
 914
 915        spin_lock_irqsave(&emif_lock, irq_state);
 916        old_temp_level = emif->temperature_level;
 917        get_temperature_level(emif);
 918
 919        if (unlikely(emif->temperature_level == old_temp_level)) {
 920                goto out;
 921        } else if (!emif->curr_regs) {
 922                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 923                goto out;
 924        }
 925
 926        custom_configs = emif->plat_data->custom_configs;
 927
 928        /*
 929         * IF we detect higher than "nominal rating" from DDR sensor
 930         * on an unsupported DDR part, shutdown system
 931         */
 932        if (custom_configs && !(custom_configs->mask &
 933                                EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 934                if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 935                        dev_err(emif->dev,
 936                                "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 937                                __func__, emif->temperature_level);
 938                        /*
 939                         * Temperature far too high - do kernel_power_off()
 940                         * from thread context
 941                         */
 942                        emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 943                        ret = IRQ_WAKE_THREAD;
 944                        goto out;
 945                }
 946        }
 947
 948        if (emif->temperature_level < old_temp_level ||
 949                emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 950                /*
 951                 * Temperature coming down - defer handling to thread OR
 952                 * Temperature far too high - do kernel_power_off() from
 953                 * thread context
 954                 */
 955                ret = IRQ_WAKE_THREAD;
 956        } else {
 957                /* Temperature is going up - handle immediately */
 958                setup_temperature_sensitive_regs(emif, emif->curr_regs);
 959                do_freq_update();
 960        }
 961
 962out:
 963        spin_unlock_irqrestore(&emif_lock, irq_state);
 964        return ret;
 965}
 966
 967static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 968{
 969        u32                     interrupts;
 970        struct emif_data        *emif = dev_id;
 971        void __iomem            *base = emif->base;
 972        struct device           *dev = emif->dev;
 973        irqreturn_t             ret = IRQ_HANDLED;
 974
 975        /* Save the status and clear it */
 976        interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 977        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 978
 979        /*
 980         * Handle temperature alert
 981         * Temperature alert should be same for all ports
 982         * So, it's enough to process it only for one of the ports
 983         */
 984        if (interrupts & TA_SYS_MASK)
 985                ret = handle_temp_alert(base, emif);
 986
 987        if (interrupts & ERR_SYS_MASK)
 988                dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 989
 990        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 991                /* Save the status and clear it */
 992                interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 993                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 994
 995                if (interrupts & ERR_LL_MASK)
 996                        dev_err(dev, "Access error from LL port - %x\n",
 997                                interrupts);
 998        }
 999
1000        return ret;
1001}
1002
1003static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1004{
1005        struct emif_data        *emif = dev_id;
1006
1007        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1008                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1009
1010                /* If we have Power OFF ability, use it, else try restarting */
1011                if (pm_power_off) {
1012                        kernel_power_off();
1013                } else {
1014                        WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1015                        kernel_restart("SDRAM Over-temp Emergency restart");
1016                }
1017                return IRQ_HANDLED;
1018        }
1019
1020        spin_lock_irqsave(&emif_lock, irq_state);
1021
1022        if (emif->curr_regs) {
1023                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1024                do_freq_update();
1025        } else {
1026                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1027        }
1028
1029        spin_unlock_irqrestore(&emif_lock, irq_state);
1030
1031        return IRQ_HANDLED;
1032}
1033
1034static void clear_all_interrupts(struct emif_data *emif)
1035{
1036        void __iomem    *base = emif->base;
1037
1038        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1039                base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1040        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1041                writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1042                        base + EMIF_LL_OCP_INTERRUPT_STATUS);
1043}
1044
1045static void disable_and_clear_all_interrupts(struct emif_data *emif)
1046{
1047        void __iomem            *base = emif->base;
1048
1049        /* Disable all interrupts */
1050        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1051                base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1052        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1053                writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1054                        base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1055
1056        /* Clear all interrupts */
1057        clear_all_interrupts(emif);
1058}
1059
1060static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1061{
1062        u32             interrupts, type;
1063        void __iomem    *base = emif->base;
1064
1065        type = emif->plat_data->device_info->type;
1066
1067        clear_all_interrupts(emif);
1068
1069        /* Enable interrupts for SYS interface */
1070        interrupts = EN_ERR_SYS_MASK;
1071        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1072                interrupts |= EN_TA_SYS_MASK;
1073        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1074
1075        /* Enable interrupts for LL interface */
1076        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1077                /* TA need not be enabled for LL */
1078                interrupts = EN_ERR_LL_MASK;
1079                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1080        }
1081
1082        /* setup IRQ handlers */
1083        return devm_request_threaded_irq(emif->dev, irq,
1084                                    emif_interrupt_handler,
1085                                    emif_threaded_isr,
1086                                    0, dev_name(emif->dev),
1087                                    emif);
1088
1089}
1090
1091static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1092{
1093        u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1094        void __iomem                    *base = emif->base;
1095        const struct lpddr2_addressing  *addressing;
1096        const struct ddr_device_info    *device_info;
1097
1098        device_info = emif->plat_data->device_info;
1099        addressing = get_addressing_table(device_info);
1100
1101        /*
1102         * Init power management settings
1103         * We don't know the frequency yet. Use a high frequency
1104         * value for a conservative timeout setting
1105         */
1106        pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1107                        emif->plat_data->ip_rev);
1108        emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1109        writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1110
1111        /* Init ZQ calibration settings */
1112        zq = get_zq_config_reg(addressing, device_info->cs1_used,
1113                device_info->cal_resistors_per_cs);
1114        writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1115
1116        /* Check temperature level temperature level*/
1117        get_temperature_level(emif);
1118        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1119                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1120
1121        /* Init temperature polling */
1122        temp_alert_cfg = get_temp_alert_config(addressing,
1123                emif->plat_data->custom_configs, device_info->cs1_used,
1124                device_info->io_width, get_emif_bus_width(emif));
1125        writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1126
1127        /*
1128         * Program external PHY control registers that are not frequency
1129         * dependent
1130         */
1131        if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1132                return;
1133        writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1134        writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1135        writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1136        writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1137        writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1138        writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1139        writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1140        writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1141        writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1142        writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1143        writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1144        writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1145        writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1146        writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1147        writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1148        writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1149        writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1150        writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1151        writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1152        writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1153        writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1154}
1155
1156static void get_default_timings(struct emif_data *emif)
1157{
1158        struct emif_platform_data *pd = emif->plat_data;
1159
1160        pd->timings             = lpddr2_jedec_timings;
1161        pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1162
1163        dev_warn(emif->dev, "%s: using default timings\n", __func__);
1164}
1165
1166static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1167                u32 ip_rev, struct device *dev)
1168{
1169        int valid;
1170
1171        valid = (type == DDR_TYPE_LPDDR2_S4 ||
1172                        type == DDR_TYPE_LPDDR2_S2)
1173                && (density >= DDR_DENSITY_64Mb
1174                        && density <= DDR_DENSITY_8Gb)
1175                && (io_width >= DDR_IO_WIDTH_8
1176                        && io_width <= DDR_IO_WIDTH_32);
1177
1178        /* Combinations of EMIF and PHY revisions that we support today */
1179        switch (ip_rev) {
1180        case EMIF_4D:
1181                valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1182                break;
1183        case EMIF_4D5:
1184                valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1185                break;
1186        default:
1187                valid = 0;
1188        }
1189
1190        if (!valid)
1191                dev_err(dev, "%s: invalid DDR details\n", __func__);
1192        return valid;
1193}
1194
1195static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1196                struct device *dev)
1197{
1198        int valid = 1;
1199
1200        if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1201                (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1202                valid = cust_cfgs->lpmode_freq_threshold &&
1203                        cust_cfgs->lpmode_timeout_performance &&
1204                        cust_cfgs->lpmode_timeout_power;
1205
1206        if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1207                valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1208
1209        if (!valid)
1210                dev_warn(dev, "%s: invalid custom configs\n", __func__);
1211
1212        return valid;
1213}
1214
1215#if defined(CONFIG_OF)
1216static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1217                struct emif_data *emif)
1218{
1219        struct emif_custom_configs      *cust_cfgs = NULL;
1220        int                             len;
1221        const __be32                    *lpmode, *poll_intvl;
1222
1223        lpmode = of_get_property(np_emif, "low-power-mode", &len);
1224        poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1225
1226        if (lpmode || poll_intvl)
1227                cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1228                        GFP_KERNEL);
1229
1230        if (!cust_cfgs)
1231                return;
1232
1233        if (lpmode) {
1234                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1235                cust_cfgs->lpmode = be32_to_cpup(lpmode);
1236                of_property_read_u32(np_emif,
1237                                "low-power-mode-timeout-performance",
1238                                &cust_cfgs->lpmode_timeout_performance);
1239                of_property_read_u32(np_emif,
1240                                "low-power-mode-timeout-power",
1241                                &cust_cfgs->lpmode_timeout_power);
1242                of_property_read_u32(np_emif,
1243                                "low-power-mode-freq-threshold",
1244                                &cust_cfgs->lpmode_freq_threshold);
1245        }
1246
1247        if (poll_intvl) {
1248                cust_cfgs->mask |=
1249                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1250                cust_cfgs->temp_alert_poll_interval_ms =
1251                                                be32_to_cpup(poll_intvl);
1252        }
1253
1254        if (of_find_property(np_emif, "extended-temp-part", &len))
1255                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1256
1257        if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1258                devm_kfree(emif->dev, cust_cfgs);
1259                return;
1260        }
1261
1262        emif->plat_data->custom_configs = cust_cfgs;
1263}
1264
1265static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1266                struct device_node *np_ddr,
1267                struct ddr_device_info *dev_info)
1268{
1269        u32 density = 0, io_width = 0;
1270        int len;
1271
1272        if (of_find_property(np_emif, "cs1-used", &len))
1273                dev_info->cs1_used = true;
1274
1275        if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1276                dev_info->cal_resistors_per_cs = true;
1277
1278        if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1279                dev_info->type = DDR_TYPE_LPDDR2_S4;
1280        else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1281                dev_info->type = DDR_TYPE_LPDDR2_S2;
1282
1283        of_property_read_u32(np_ddr, "density", &density);
1284        of_property_read_u32(np_ddr, "io-width", &io_width);
1285
1286        /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1287        if (density & (density - 1))
1288                dev_info->density = 0;
1289        else
1290                dev_info->density = __fls(density) - 5;
1291
1292        /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1293        if (io_width & (io_width - 1))
1294                dev_info->io_width = 0;
1295        else
1296                dev_info->io_width = __fls(io_width) - 1;
1297}
1298
1299static struct emif_data * __init_or_module of_get_memory_device_details(
1300                struct device_node *np_emif, struct device *dev)
1301{
1302        struct emif_data                *emif = NULL;
1303        struct ddr_device_info          *dev_info = NULL;
1304        struct emif_platform_data       *pd = NULL;
1305        struct device_node              *np_ddr;
1306        int                             len;
1307
1308        np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1309        if (!np_ddr)
1310                goto error;
1311        emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1312        pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1313        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1314
1315        if (!emif || !pd || !dev_info) {
1316                dev_err(dev, "%s: Out of memory!!\n",
1317                        __func__);
1318                goto error;
1319        }
1320
1321        emif->plat_data         = pd;
1322        pd->device_info         = dev_info;
1323        emif->dev               = dev;
1324        emif->np_ddr            = np_ddr;
1325        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1326
1327        if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1328                emif->plat_data->ip_rev = EMIF_4D;
1329        else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1330                emif->plat_data->ip_rev = EMIF_4D5;
1331
1332        of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1333
1334        if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1335                pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1336
1337        of_get_ddr_info(np_emif, np_ddr, dev_info);
1338        if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1339                        pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1340                        emif->dev)) {
1341                dev_err(dev, "%s: invalid device data!!\n", __func__);
1342                goto error;
1343        }
1344        /*
1345         * For EMIF instances other than EMIF1 see if the devices connected
1346         * are exactly same as on EMIF1(which is typically the case). If so,
1347         * mark it as a duplicate of EMIF1. This will save some memory and
1348         * computation.
1349         */
1350        if (emif1 && emif1->np_ddr == np_ddr) {
1351                emif->duplicate = true;
1352                goto out;
1353        } else if (emif1) {
1354                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1355                        __func__);
1356        }
1357
1358        of_get_custom_configs(np_emif, emif);
1359        emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1360                                        emif->plat_data->device_info->type,
1361                                        &emif->plat_data->timings_arr_size);
1362
1363        emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1364        goto out;
1365
1366error:
1367        return NULL;
1368out:
1369        return emif;
1370}
1371
1372#else
1373
1374static struct emif_data * __init_or_module of_get_memory_device_details(
1375                struct device_node *np_emif, struct device *dev)
1376{
1377        return NULL;
1378}
1379#endif
1380
1381static struct emif_data *__init_or_module get_device_details(
1382                struct platform_device *pdev)
1383{
1384        u32                             size;
1385        struct emif_data                *emif = NULL;
1386        struct ddr_device_info          *dev_info;
1387        struct emif_custom_configs      *cust_cfgs;
1388        struct emif_platform_data       *pd;
1389        struct device                   *dev;
1390        void                            *temp;
1391
1392        pd = pdev->dev.platform_data;
1393        dev = &pdev->dev;
1394
1395        if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1396                        pd->device_info->density, pd->device_info->io_width,
1397                        pd->phy_type, pd->ip_rev, dev))) {
1398                dev_err(dev, "%s: invalid device data\n", __func__);
1399                goto error;
1400        }
1401
1402        emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1403        temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1404        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1405
1406        if (!emif || !pd || !dev_info) {
1407                dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1408                goto error;
1409        }
1410
1411        memcpy(temp, pd, sizeof(*pd));
1412        pd = temp;
1413        memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1414
1415        pd->device_info         = dev_info;
1416        emif->plat_data         = pd;
1417        emif->dev               = dev;
1418        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1419
1420        /*
1421         * For EMIF instances other than EMIF1 see if the devices connected
1422         * are exactly same as on EMIF1(which is typically the case). If so,
1423         * mark it as a duplicate of EMIF1 and skip copying timings data.
1424         * This will save some memory and some computation later.
1425         */
1426        emif->duplicate = emif1 && (memcmp(dev_info,
1427                emif1->plat_data->device_info,
1428                sizeof(struct ddr_device_info)) == 0);
1429
1430        if (emif->duplicate) {
1431                pd->timings = NULL;
1432                pd->min_tck = NULL;
1433                goto out;
1434        } else if (emif1) {
1435                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1436                        __func__);
1437        }
1438
1439        /*
1440         * Copy custom configs - ignore allocation error, if any, as
1441         * custom_configs is not very critical
1442         */
1443        cust_cfgs = pd->custom_configs;
1444        if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1445                temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1446                if (temp)
1447                        memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1448                else
1449                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1450                                __LINE__);
1451                pd->custom_configs = temp;
1452        }
1453
1454        /*
1455         * Copy timings and min-tck values from platform data. If it is not
1456         * available or if memory allocation fails, use JEDEC defaults
1457         */
1458        size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1459        if (pd->timings) {
1460                temp = devm_kzalloc(dev, size, GFP_KERNEL);
1461                if (temp) {
1462                        memcpy(temp, pd->timings, size);
1463                        pd->timings = temp;
1464                } else {
1465                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1466                                __LINE__);
1467                        get_default_timings(emif);
1468                }
1469        } else {
1470                get_default_timings(emif);
1471        }
1472
1473        if (pd->min_tck) {
1474                temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1475                if (temp) {
1476                        memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1477                        pd->min_tck = temp;
1478                } else {
1479                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1480                                __LINE__);
1481                        pd->min_tck = &lpddr2_jedec_min_tck;
1482                }
1483        } else {
1484                pd->min_tck = &lpddr2_jedec_min_tck;
1485        }
1486
1487out:
1488        return emif;
1489
1490error:
1491        return NULL;
1492}
1493
1494static int __init_or_module emif_probe(struct platform_device *pdev)
1495{
1496        struct emif_data        *emif;
1497        struct resource         *res;
1498        int                     irq;
1499
1500        if (pdev->dev.of_node)
1501                emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1502        else
1503                emif = get_device_details(pdev);
1504
1505        if (!emif) {
1506                pr_err("%s: error getting device data\n", __func__);
1507                goto error;
1508        }
1509
1510        list_add(&emif->node, &device_list);
1511        emif->addressing = get_addressing_table(emif->plat_data->device_info);
1512
1513        /* Save pointers to each other in emif and device structures */
1514        emif->dev = &pdev->dev;
1515        platform_set_drvdata(pdev, emif);
1516
1517        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1518        emif->base = devm_ioremap_resource(emif->dev, res);
1519        if (IS_ERR(emif->base))
1520                goto error;
1521
1522        irq = platform_get_irq(pdev, 0);
1523        if (irq < 0)
1524                goto error;
1525
1526        emif_onetime_settings(emif);
1527        emif_debugfs_init(emif);
1528        disable_and_clear_all_interrupts(emif);
1529        setup_interrupts(emif, irq);
1530
1531        /* One-time actions taken on probing the first device */
1532        if (!emif1) {
1533                emif1 = emif;
1534                spin_lock_init(&emif_lock);
1535
1536                /*
1537                 * TODO: register notifiers for frequency and voltage
1538                 * change here once the respective frameworks are
1539                 * available
1540                 */
1541        }
1542
1543        dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1544                __func__, emif->base, irq);
1545
1546        return 0;
1547error:
1548        return -ENODEV;
1549}
1550
1551static int __exit emif_remove(struct platform_device *pdev)
1552{
1553        struct emif_data *emif = platform_get_drvdata(pdev);
1554
1555        emif_debugfs_exit(emif);
1556
1557        return 0;
1558}
1559
1560static void emif_shutdown(struct platform_device *pdev)
1561{
1562        struct emif_data        *emif = platform_get_drvdata(pdev);
1563
1564        disable_and_clear_all_interrupts(emif);
1565}
1566
1567static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1568                struct emif_regs *regs)
1569{
1570        u32                             ip_rev, phy_type;
1571        u32                             cl, type;
1572        const struct lpddr2_timings     *timings;
1573        const struct lpddr2_min_tck     *min_tck;
1574        const struct ddr_device_info    *device_info;
1575        const struct lpddr2_addressing  *addressing;
1576        struct emif_data                *emif_for_calc;
1577        struct device                   *dev;
1578
1579        dev = emif->dev;
1580        /*
1581         * If the devices on this EMIF instance is duplicate of EMIF1,
1582         * use EMIF1 details for the calculation
1583         */
1584        emif_for_calc   = emif->duplicate ? emif1 : emif;
1585        timings         = get_timings_table(emif_for_calc, freq);
1586        addressing      = emif_for_calc->addressing;
1587        if (!timings || !addressing) {
1588                dev_err(dev, "%s: not enough data available for %dHz",
1589                        __func__, freq);
1590                return -1;
1591        }
1592
1593        device_info     = emif_for_calc->plat_data->device_info;
1594        type            = device_info->type;
1595        ip_rev          = emif_for_calc->plat_data->ip_rev;
1596        phy_type        = emif_for_calc->plat_data->phy_type;
1597
1598        min_tck         = emif_for_calc->plat_data->min_tck;
1599
1600        set_ddr_clk_period(freq);
1601
1602        regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1603        regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1604                        addressing);
1605        regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1606                        addressing, type);
1607        regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1608                addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1609
1610        cl = get_cl(emif);
1611
1612        if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1613                regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1614                        timings, freq, cl);
1615        } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1616                regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1617                regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1618                regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1619                regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1620        } else {
1621                return -1;
1622        }
1623
1624        /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1625        regs->pwr_mgmt_ctrl_shdw =
1626                get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1627                (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1628
1629        if (ip_rev & EMIF_4D) {
1630                regs->read_idle_ctrl_shdw_normal =
1631                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1632
1633                regs->read_idle_ctrl_shdw_volt_ramp =
1634                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1635        } else if (ip_rev & EMIF_4D5) {
1636                regs->dll_calib_ctrl_shdw_normal =
1637                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1638
1639                regs->dll_calib_ctrl_shdw_volt_ramp =
1640                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1641        }
1642
1643        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1644                regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1645                        addressing);
1646
1647                regs->sdram_tim1_shdw_derated =
1648                        get_sdram_tim_1_shdw_derated(timings, min_tck,
1649                                addressing);
1650
1651                regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1652                        min_tck, addressing, type, ip_rev,
1653                        EMIF_DERATED_TIMINGS);
1654        }
1655
1656        regs->freq = freq;
1657
1658        return 0;
1659}
1660
1661/*
1662 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1663 * given frequency(freq):
1664 *
1665 * As an optimisation, every EMIF instance other than EMIF1 shares the
1666 * register cache with EMIF1 if the devices connected on this instance
1667 * are same as that on EMIF1(indicated by the duplicate flag)
1668 *
1669 * If we do not have an entry corresponding to the frequency given, we
1670 * allocate a new entry and calculate the values
1671 *
1672 * Upon finding the right reg dump, save it in curr_regs. It can be
1673 * directly used for thermal de-rating and voltage ramping changes.
1674 */
1675static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1676{
1677        int                     i;
1678        struct emif_regs        **regs_cache;
1679        struct emif_regs        *regs = NULL;
1680        struct device           *dev;
1681
1682        dev = emif->dev;
1683        if (emif->curr_regs && emif->curr_regs->freq == freq) {
1684                dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1685                return emif->curr_regs;
1686        }
1687
1688        if (emif->duplicate)
1689                regs_cache = emif1->regs_cache;
1690        else
1691                regs_cache = emif->regs_cache;
1692
1693        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1694                if (regs_cache[i]->freq == freq) {
1695                        regs = regs_cache[i];
1696                        dev_dbg(dev,
1697                                "%s: reg dump found in reg cache for %u Hz\n",
1698                                __func__, freq);
1699                        break;
1700                }
1701        }
1702
1703        /*
1704         * If we don't have an entry for this frequency in the cache create one
1705         * and calculate the values
1706         */
1707        if (!regs) {
1708                regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1709                if (!regs)
1710                        return NULL;
1711
1712                if (get_emif_reg_values(emif, freq, regs)) {
1713                        devm_kfree(emif->dev, regs);
1714                        return NULL;
1715                }
1716
1717                /*
1718                 * Now look for an un-used entry in the cache and save the
1719                 * newly created struct. If there are no free entries
1720                 * over-write the last entry
1721                 */
1722                for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1723                        ;
1724
1725                if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1726                        dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1727                                __func__);
1728                        i = EMIF_MAX_NUM_FREQUENCIES - 1;
1729                        devm_kfree(emif->dev, regs_cache[i]);
1730                }
1731                regs_cache[i] = regs;
1732        }
1733
1734        return regs;
1735}
1736
1737static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1738{
1739        dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1740                volt_state);
1741
1742        if (!emif->curr_regs) {
1743                dev_err(emif->dev,
1744                        "%s: volt-notify before registers are ready: %d\n",
1745                        __func__, volt_state);
1746                return;
1747        }
1748
1749        setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1750}
1751
1752/*
1753 * TODO: voltage notify handling should be hooked up to
1754 * regulator framework as soon as the necessary support
1755 * is available in mainline kernel. This function is un-used
1756 * right now.
1757 */
1758static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1759{
1760        struct emif_data *emif;
1761
1762        spin_lock_irqsave(&emif_lock, irq_state);
1763
1764        list_for_each_entry(emif, &device_list, node)
1765                do_volt_notify_handling(emif, volt_state);
1766        do_freq_update();
1767
1768        spin_unlock_irqrestore(&emif_lock, irq_state);
1769}
1770
1771static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1772{
1773        struct emif_regs *regs;
1774
1775        regs = get_regs(emif, new_freq);
1776        if (!regs)
1777                return;
1778
1779        emif->curr_regs = regs;
1780
1781        /*
1782         * Update the shadow registers:
1783         * Temperature and voltage-ramp sensitive settings are also configured
1784         * in terms of DDR cycles. So, we need to update them too when there
1785         * is a freq change
1786         */
1787        dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1788                __func__, new_freq);
1789        setup_registers(emif, regs);
1790        setup_temperature_sensitive_regs(emif, regs);
1791        setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1792
1793        /*
1794         * Part of workaround for errata i728. See do_freq_update()
1795         * for more details
1796         */
1797        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1798                set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1799}
1800
1801/*
1802 * TODO: frequency notify handling should be hooked up to
1803 * clock framework as soon as the necessary support is
1804 * available in mainline kernel. This function is un-used
1805 * right now.
1806 */
1807static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1808{
1809        struct emif_data *emif;
1810
1811        /*
1812         * NOTE: we are taking the spin-lock here and releases it
1813         * only in post-notifier. This doesn't look good and
1814         * Sparse complains about it, but this seems to be
1815         * un-avoidable. We need to lock a sequence of events
1816         * that is split between EMIF and clock framework.
1817         *
1818         * 1. EMIF driver updates EMIF timings in shadow registers in the
1819         *    frequency pre-notify callback from clock framework
1820         * 2. clock framework sets up the registers for the new frequency
1821         * 3. clock framework initiates a hw-sequence that updates
1822         *    the frequency EMIF timings synchronously.
1823         *
1824         * All these 3 steps should be performed as an atomic operation
1825         * vis-a-vis similar sequence in the EMIF interrupt handler
1826         * for temperature events. Otherwise, there could be race
1827         * conditions that could result in incorrect EMIF timings for
1828         * a given frequency
1829         */
1830        spin_lock_irqsave(&emif_lock, irq_state);
1831
1832        list_for_each_entry(emif, &device_list, node)
1833                do_freq_pre_notify_handling(emif, new_freq);
1834}
1835
1836static void do_freq_post_notify_handling(struct emif_data *emif)
1837{
1838        /*
1839         * Part of workaround for errata i728. See do_freq_update()
1840         * for more details
1841         */
1842        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1843                set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1844}
1845
1846/*
1847 * TODO: frequency notify handling should be hooked up to
1848 * clock framework as soon as the necessary support is
1849 * available in mainline kernel. This function is un-used
1850 * right now.
1851 */
1852static void __attribute__((unused)) freq_post_notify_handling(void)
1853{
1854        struct emif_data *emif;
1855
1856        list_for_each_entry(emif, &device_list, node)
1857                do_freq_post_notify_handling(emif);
1858
1859        /*
1860         * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1861         * for more details
1862         */
1863        spin_unlock_irqrestore(&emif_lock, irq_state);
1864}
1865
1866#if defined(CONFIG_OF)
1867static const struct of_device_id emif_of_match[] = {
1868                { .compatible = "ti,emif-4d" },
1869                { .compatible = "ti,emif-4d5" },
1870                {},
1871};
1872MODULE_DEVICE_TABLE(of, emif_of_match);
1873#endif
1874
1875static struct platform_driver emif_driver = {
1876        .remove         = __exit_p(emif_remove),
1877        .shutdown       = emif_shutdown,
1878        .driver = {
1879                .name = "emif",
1880                .of_match_table = of_match_ptr(emif_of_match),
1881        },
1882};
1883
1884module_platform_driver_probe(emif_driver, emif_probe);
1885
1886MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1887MODULE_LICENSE("GPL");
1888MODULE_ALIAS("platform:emif");
1889MODULE_AUTHOR("Texas Instruments Inc");
1890