linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware VMCI Driver
   4 *
   5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   6 */
   7
   8#include <linux/vmw_vmci_defs.h>
   9#include <linux/vmw_vmci_api.h>
  10#include <linux/highmem.h>
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/pagemap.h>
  16#include <linux/pci.h>
  17#include <linux/sched.h>
  18#include <linux/slab.h>
  19#include <linux/uio.h>
  20#include <linux/wait.h>
  21#include <linux/vmalloc.h>
  22#include <linux/skbuff.h>
  23
  24#include "vmci_handle_array.h"
  25#include "vmci_queue_pair.h"
  26#include "vmci_datagram.h"
  27#include "vmci_resource.h"
  28#include "vmci_context.h"
  29#include "vmci_driver.h"
  30#include "vmci_event.h"
  31#include "vmci_route.h"
  32
  33/*
  34 * In the following, we will distinguish between two kinds of VMX processes -
  35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  36 * VMCI page files in the VMX and supporting VM to VM communication and the
  37 * newer ones that use the guest memory directly. We will in the following
  38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  39 * new-style VMX'en.
  40 *
  41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  42 * removed for readability) - see below for more details on the transtions:
  43 *
  44 *            --------------  NEW  -------------
  45 *            |                                |
  46 *           \_/                              \_/
  47 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  48 *            |    |                           |
  49 *            |    o-----------------------o   |
  50 *            |                            |   |
  51 *           \_/                          \_/ \_/
  52 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  53 *            |                            |   |
  54 *            |     o----------------------o   |
  55 *            |     |                          |
  56 *           \_/   \_/                        \_/
  57 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  58 *            |                                |
  59 *            |                                |
  60 *            -------------> gone <-------------
  61 *
  62 * In more detail. When a VMCI queue pair is first created, it will be in the
  63 * VMCIQPB_NEW state. It will then move into one of the following states:
  64 *
  65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  66 *
  67 *     - the created was performed by a host endpoint, in which case there is
  68 *       no backing memory yet.
  69 *
  70 *     - the create was initiated by an old-style VMX, that uses
  71 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  72 *       a later point in time. This state can be distinguished from the one
  73 *       above by the context ID of the creator. A host side is not allowed to
  74 *       attach until the page store has been set.
  75 *
  76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  77 *     is created by a VMX using the queue pair device backend that
  78 *     sets the UVAs of the queue pair immediately and stores the
  79 *     information for later attachers. At this point, it is ready for
  80 *     the host side to attach to it.
  81 *
  82 * Once the queue pair is in one of the created states (with the exception of
  83 * the case mentioned for older VMX'en above), it is possible to attach to the
  84 * queue pair. Again we have two new states possible:
  85 *
  86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  87 *   paths:
  88 *
  89 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  90 *       pair, and attaches to a queue pair previously created by the host side.
  91 *
  92 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
  93 *       already created by a guest.
  94 *
  95 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
  96 *       vmci_qp_broker_set_page_store (see below).
  97 *
  98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
  99 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 100 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 101 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 102 *     will be entered.
 103 *
 104 * From the attached queue pair, the queue pair can enter the shutdown states
 105 * when either side of the queue pair detaches. If the guest side detaches
 106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 107 * the content of the queue pair will no longer be available. If the host
 108 * side detaches first, the queue pair will either enter the
 109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 111 * (e.g., the host detaches while a guest is stunned).
 112 *
 113 * New-style VMX'en will also unmap guest memory, if the guest is
 114 * quiesced, e.g., during a snapshot operation. In that case, the guest
 115 * memory will no longer be available, and the queue pair will transition from
 116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 117 * in which case the queue pair will transition from the *_NO_MEM state at that
 118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 119 * since the peer may have either attached or detached in the meantime. The
 120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 121 * *_MEM state, and vice versa.
 122 */
 123
 124/* The Kernel specific component of the struct vmci_queue structure. */
 125struct vmci_queue_kern_if {
 126        struct mutex __mutex;   /* Protects the queue. */
 127        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 128        size_t num_pages;       /* Number of pages incl. header. */
 129        bool host;              /* Host or guest? */
 130        union {
 131                struct {
 132                        dma_addr_t *pas;
 133                        void **vas;
 134                } g;            /* Used by the guest. */
 135                struct {
 136                        struct page **page;
 137                        struct page **header_page;
 138                } h;            /* Used by the host. */
 139        } u;
 140};
 141
 142/*
 143 * This structure is opaque to the clients.
 144 */
 145struct vmci_qp {
 146        struct vmci_handle handle;
 147        struct vmci_queue *produce_q;
 148        struct vmci_queue *consume_q;
 149        u64 produce_q_size;
 150        u64 consume_q_size;
 151        u32 peer;
 152        u32 flags;
 153        u32 priv_flags;
 154        bool guest_endpoint;
 155        unsigned int blocked;
 156        unsigned int generation;
 157        wait_queue_head_t event;
 158};
 159
 160enum qp_broker_state {
 161        VMCIQPB_NEW,
 162        VMCIQPB_CREATED_NO_MEM,
 163        VMCIQPB_CREATED_MEM,
 164        VMCIQPB_ATTACHED_NO_MEM,
 165        VMCIQPB_ATTACHED_MEM,
 166        VMCIQPB_SHUTDOWN_NO_MEM,
 167        VMCIQPB_SHUTDOWN_MEM,
 168        VMCIQPB_GONE
 169};
 170
 171#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 172                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 173                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 174
 175/*
 176 * In the queue pair broker, we always use the guest point of view for
 177 * the produce and consume queue values and references, e.g., the
 178 * produce queue size stored is the guests produce queue size. The
 179 * host endpoint will need to swap these around. The only exception is
 180 * the local queue pairs on the host, in which case the host endpoint
 181 * that creates the queue pair will have the right orientation, and
 182 * the attaching host endpoint will need to swap.
 183 */
 184struct qp_entry {
 185        struct list_head list_item;
 186        struct vmci_handle handle;
 187        u32 peer;
 188        u32 flags;
 189        u64 produce_size;
 190        u64 consume_size;
 191        u32 ref_count;
 192};
 193
 194struct qp_broker_entry {
 195        struct vmci_resource resource;
 196        struct qp_entry qp;
 197        u32 create_id;
 198        u32 attach_id;
 199        enum qp_broker_state state;
 200        bool require_trusted_attach;
 201        bool created_by_trusted;
 202        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 203        struct vmci_queue *produce_q;
 204        struct vmci_queue *consume_q;
 205        struct vmci_queue_header saved_produce_q;
 206        struct vmci_queue_header saved_consume_q;
 207        vmci_event_release_cb wakeup_cb;
 208        void *client_data;
 209        void *local_mem;        /* Kernel memory for local queue pair */
 210};
 211
 212struct qp_guest_endpoint {
 213        struct vmci_resource resource;
 214        struct qp_entry qp;
 215        u64 num_ppns;
 216        void *produce_q;
 217        void *consume_q;
 218        struct ppn_set ppn_set;
 219};
 220
 221struct qp_list {
 222        struct list_head head;
 223        struct mutex mutex;     /* Protect queue list. */
 224};
 225
 226static struct qp_list qp_broker_list = {
 227        .head = LIST_HEAD_INIT(qp_broker_list.head),
 228        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 229};
 230
 231static struct qp_list qp_guest_endpoints = {
 232        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 233        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 234};
 235
 236#define INVALID_VMCI_GUEST_MEM_ID  0
 237#define QPE_NUM_PAGES(_QPE) ((u32) \
 238                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 239                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 240
 241
 242/*
 243 * Frees kernel VA space for a given queue and its queue header, and
 244 * frees physical data pages.
 245 */
 246static void qp_free_queue(void *q, u64 size)
 247{
 248        struct vmci_queue *queue = q;
 249
 250        if (queue) {
 251                u64 i;
 252
 253                /* Given size does not include header, so add in a page here. */
 254                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 255                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 256                                          queue->kernel_if->u.g.vas[i],
 257                                          queue->kernel_if->u.g.pas[i]);
 258                }
 259
 260                vfree(queue);
 261        }
 262}
 263
 264/*
 265 * Allocates kernel queue pages of specified size with IOMMU mappings,
 266 * plus space for the queue structure/kernel interface and the queue
 267 * header.
 268 */
 269static void *qp_alloc_queue(u64 size, u32 flags)
 270{
 271        u64 i;
 272        struct vmci_queue *queue;
 273        size_t pas_size;
 274        size_t vas_size;
 275        size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
 276        u64 num_pages;
 277
 278        if (size > SIZE_MAX - PAGE_SIZE)
 279                return NULL;
 280        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 281        if (num_pages >
 282                 (SIZE_MAX - queue_size) /
 283                 (sizeof(*queue->kernel_if->u.g.pas) +
 284                  sizeof(*queue->kernel_if->u.g.vas)))
 285                return NULL;
 286
 287        pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 288        vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 289        queue_size += pas_size + vas_size;
 290
 291        queue = vmalloc(queue_size);
 292        if (!queue)
 293                return NULL;
 294
 295        queue->q_header = NULL;
 296        queue->saved_header = NULL;
 297        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 298        queue->kernel_if->mutex = NULL;
 299        queue->kernel_if->num_pages = num_pages;
 300        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 301        queue->kernel_if->u.g.vas =
 302                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 303        queue->kernel_if->host = false;
 304
 305        for (i = 0; i < num_pages; i++) {
 306                queue->kernel_if->u.g.vas[i] =
 307                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 308                                           &queue->kernel_if->u.g.pas[i],
 309                                           GFP_KERNEL);
 310                if (!queue->kernel_if->u.g.vas[i]) {
 311                        /* Size excl. the header. */
 312                        qp_free_queue(queue, i * PAGE_SIZE);
 313                        return NULL;
 314                }
 315        }
 316
 317        /* Queue header is the first page. */
 318        queue->q_header = queue->kernel_if->u.g.vas[0];
 319
 320        return queue;
 321}
 322
 323/*
 324 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 325 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 326 * by traversing the offset -> page translation structure for the queue.
 327 * Assumes that offset + size does not wrap around in the queue.
 328 */
 329static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
 330                                  u64 queue_offset,
 331                                  struct iov_iter *from,
 332                                  size_t size)
 333{
 334        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 335        size_t bytes_copied = 0;
 336
 337        while (bytes_copied < size) {
 338                const u64 page_index =
 339                        (queue_offset + bytes_copied) / PAGE_SIZE;
 340                const size_t page_offset =
 341                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 342                void *va;
 343                size_t to_copy;
 344
 345                if (kernel_if->host)
 346                        va = kmap(kernel_if->u.h.page[page_index]);
 347                else
 348                        va = kernel_if->u.g.vas[page_index + 1];
 349                        /* Skip header. */
 350
 351                if (size - bytes_copied > PAGE_SIZE - page_offset)
 352                        /* Enough payload to fill up from this page. */
 353                        to_copy = PAGE_SIZE - page_offset;
 354                else
 355                        to_copy = size - bytes_copied;
 356
 357                if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
 358                                         from)) {
 359                        if (kernel_if->host)
 360                                kunmap(kernel_if->u.h.page[page_index]);
 361                        return VMCI_ERROR_INVALID_ARGS;
 362                }
 363                bytes_copied += to_copy;
 364                if (kernel_if->host)
 365                        kunmap(kernel_if->u.h.page[page_index]);
 366        }
 367
 368        return VMCI_SUCCESS;
 369}
 370
 371/*
 372 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 373 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 374 * by traversing the offset -> page translation structure for the queue.
 375 * Assumes that offset + size does not wrap around in the queue.
 376 */
 377static int qp_memcpy_from_queue_iter(struct iov_iter *to,
 378                                    const struct vmci_queue *queue,
 379                                    u64 queue_offset, size_t size)
 380{
 381        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 382        size_t bytes_copied = 0;
 383
 384        while (bytes_copied < size) {
 385                const u64 page_index =
 386                        (queue_offset + bytes_copied) / PAGE_SIZE;
 387                const size_t page_offset =
 388                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 389                void *va;
 390                size_t to_copy;
 391                int err;
 392
 393                if (kernel_if->host)
 394                        va = kmap(kernel_if->u.h.page[page_index]);
 395                else
 396                        va = kernel_if->u.g.vas[page_index + 1];
 397                        /* Skip header. */
 398
 399                if (size - bytes_copied > PAGE_SIZE - page_offset)
 400                        /* Enough payload to fill up this page. */
 401                        to_copy = PAGE_SIZE - page_offset;
 402                else
 403                        to_copy = size - bytes_copied;
 404
 405                err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
 406                if (err != to_copy) {
 407                        if (kernel_if->host)
 408                                kunmap(kernel_if->u.h.page[page_index]);
 409                        return VMCI_ERROR_INVALID_ARGS;
 410                }
 411                bytes_copied += to_copy;
 412                if (kernel_if->host)
 413                        kunmap(kernel_if->u.h.page[page_index]);
 414        }
 415
 416        return VMCI_SUCCESS;
 417}
 418
 419/*
 420 * Allocates two list of PPNs --- one for the pages in the produce queue,
 421 * and the other for the pages in the consume queue. Intializes the list
 422 * of PPNs with the page frame numbers of the KVA for the two queues (and
 423 * the queue headers).
 424 */
 425static int qp_alloc_ppn_set(void *prod_q,
 426                            u64 num_produce_pages,
 427                            void *cons_q,
 428                            u64 num_consume_pages, struct ppn_set *ppn_set)
 429{
 430        u64 *produce_ppns;
 431        u64 *consume_ppns;
 432        struct vmci_queue *produce_q = prod_q;
 433        struct vmci_queue *consume_q = cons_q;
 434        u64 i;
 435
 436        if (!produce_q || !num_produce_pages || !consume_q ||
 437            !num_consume_pages || !ppn_set)
 438                return VMCI_ERROR_INVALID_ARGS;
 439
 440        if (ppn_set->initialized)
 441                return VMCI_ERROR_ALREADY_EXISTS;
 442
 443        produce_ppns =
 444            kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
 445                          GFP_KERNEL);
 446        if (!produce_ppns)
 447                return VMCI_ERROR_NO_MEM;
 448
 449        consume_ppns =
 450            kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
 451                          GFP_KERNEL);
 452        if (!consume_ppns) {
 453                kfree(produce_ppns);
 454                return VMCI_ERROR_NO_MEM;
 455        }
 456
 457        for (i = 0; i < num_produce_pages; i++)
 458                produce_ppns[i] =
 459                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 460
 461        for (i = 0; i < num_consume_pages; i++)
 462                consume_ppns[i] =
 463                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 464
 465        ppn_set->num_produce_pages = num_produce_pages;
 466        ppn_set->num_consume_pages = num_consume_pages;
 467        ppn_set->produce_ppns = produce_ppns;
 468        ppn_set->consume_ppns = consume_ppns;
 469        ppn_set->initialized = true;
 470        return VMCI_SUCCESS;
 471}
 472
 473/*
 474 * Frees the two list of PPNs for a queue pair.
 475 */
 476static void qp_free_ppn_set(struct ppn_set *ppn_set)
 477{
 478        if (ppn_set->initialized) {
 479                /* Do not call these functions on NULL inputs. */
 480                kfree(ppn_set->produce_ppns);
 481                kfree(ppn_set->consume_ppns);
 482        }
 483        memset(ppn_set, 0, sizeof(*ppn_set));
 484}
 485
 486/*
 487 * Populates the list of PPNs in the hypercall structure with the PPNS
 488 * of the produce queue and the consume queue.
 489 */
 490static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 491{
 492        if (vmci_use_ppn64()) {
 493                memcpy(call_buf, ppn_set->produce_ppns,
 494                       ppn_set->num_produce_pages *
 495                       sizeof(*ppn_set->produce_ppns));
 496                memcpy(call_buf +
 497                       ppn_set->num_produce_pages *
 498                       sizeof(*ppn_set->produce_ppns),
 499                       ppn_set->consume_ppns,
 500                       ppn_set->num_consume_pages *
 501                       sizeof(*ppn_set->consume_ppns));
 502        } else {
 503                int i;
 504                u32 *ppns = (u32 *) call_buf;
 505
 506                for (i = 0; i < ppn_set->num_produce_pages; i++)
 507                        ppns[i] = (u32) ppn_set->produce_ppns[i];
 508
 509                ppns = &ppns[ppn_set->num_produce_pages];
 510
 511                for (i = 0; i < ppn_set->num_consume_pages; i++)
 512                        ppns[i] = (u32) ppn_set->consume_ppns[i];
 513        }
 514
 515        return VMCI_SUCCESS;
 516}
 517
 518/*
 519 * Allocates kernel VA space of specified size plus space for the queue
 520 * and kernel interface.  This is different from the guest queue allocator,
 521 * because we do not allocate our own queue header/data pages here but
 522 * share those of the guest.
 523 */
 524static struct vmci_queue *qp_host_alloc_queue(u64 size)
 525{
 526        struct vmci_queue *queue;
 527        size_t queue_page_size;
 528        u64 num_pages;
 529        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 530
 531        if (size > SIZE_MAX - PAGE_SIZE)
 532                return NULL;
 533        num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 534        if (num_pages > (SIZE_MAX - queue_size) /
 535                 sizeof(*queue->kernel_if->u.h.page))
 536                return NULL;
 537
 538        queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
 539
 540        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 541        if (queue) {
 542                queue->q_header = NULL;
 543                queue->saved_header = NULL;
 544                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 545                queue->kernel_if->host = true;
 546                queue->kernel_if->mutex = NULL;
 547                queue->kernel_if->num_pages = num_pages;
 548                queue->kernel_if->u.h.header_page =
 549                    (struct page **)((u8 *)queue + queue_size);
 550                queue->kernel_if->u.h.page =
 551                        &queue->kernel_if->u.h.header_page[1];
 552        }
 553
 554        return queue;
 555}
 556
 557/*
 558 * Frees kernel memory for a given queue (header plus translation
 559 * structure).
 560 */
 561static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 562{
 563        kfree(queue);
 564}
 565
 566/*
 567 * Initialize the mutex for the pair of queues.  This mutex is used to
 568 * protect the q_header and the buffer from changing out from under any
 569 * users of either queue.  Of course, it's only any good if the mutexes
 570 * are actually acquired.  Queue structure must lie on non-paged memory
 571 * or we cannot guarantee access to the mutex.
 572 */
 573static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 574                                struct vmci_queue *consume_q)
 575{
 576        /*
 577         * Only the host queue has shared state - the guest queues do not
 578         * need to synchronize access using a queue mutex.
 579         */
 580
 581        if (produce_q->kernel_if->host) {
 582                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 583                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 584                mutex_init(produce_q->kernel_if->mutex);
 585        }
 586}
 587
 588/*
 589 * Cleans up the mutex for the pair of queues.
 590 */
 591static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 592                                   struct vmci_queue *consume_q)
 593{
 594        if (produce_q->kernel_if->host) {
 595                produce_q->kernel_if->mutex = NULL;
 596                consume_q->kernel_if->mutex = NULL;
 597        }
 598}
 599
 600/*
 601 * Acquire the mutex for the queue.  Note that the produce_q and
 602 * the consume_q share a mutex.  So, only one of the two need to
 603 * be passed in to this routine.  Either will work just fine.
 604 */
 605static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 606{
 607        if (queue->kernel_if->host)
 608                mutex_lock(queue->kernel_if->mutex);
 609}
 610
 611/*
 612 * Release the mutex for the queue.  Note that the produce_q and
 613 * the consume_q share a mutex.  So, only one of the two need to
 614 * be passed in to this routine.  Either will work just fine.
 615 */
 616static void qp_release_queue_mutex(struct vmci_queue *queue)
 617{
 618        if (queue->kernel_if->host)
 619                mutex_unlock(queue->kernel_if->mutex);
 620}
 621
 622/*
 623 * Helper function to release pages in the PageStoreAttachInfo
 624 * previously obtained using get_user_pages.
 625 */
 626static void qp_release_pages(struct page **pages,
 627                             u64 num_pages, bool dirty)
 628{
 629        int i;
 630
 631        for (i = 0; i < num_pages; i++) {
 632                if (dirty)
 633                        set_page_dirty(pages[i]);
 634
 635                put_page(pages[i]);
 636                pages[i] = NULL;
 637        }
 638}
 639
 640/*
 641 * Lock the user pages referenced by the {produce,consume}Buffer
 642 * struct into memory and populate the {produce,consume}Pages
 643 * arrays in the attach structure with them.
 644 */
 645static int qp_host_get_user_memory(u64 produce_uva,
 646                                   u64 consume_uva,
 647                                   struct vmci_queue *produce_q,
 648                                   struct vmci_queue *consume_q)
 649{
 650        int retval;
 651        int err = VMCI_SUCCESS;
 652
 653        retval = get_user_pages_fast((uintptr_t) produce_uva,
 654                                     produce_q->kernel_if->num_pages,
 655                                     FOLL_WRITE,
 656                                     produce_q->kernel_if->u.h.header_page);
 657        if (retval < (int)produce_q->kernel_if->num_pages) {
 658                pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
 659                        retval);
 660                if (retval > 0)
 661                        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 662                                        retval, false);
 663                err = VMCI_ERROR_NO_MEM;
 664                goto out;
 665        }
 666
 667        retval = get_user_pages_fast((uintptr_t) consume_uva,
 668                                     consume_q->kernel_if->num_pages,
 669                                     FOLL_WRITE,
 670                                     consume_q->kernel_if->u.h.header_page);
 671        if (retval < (int)consume_q->kernel_if->num_pages) {
 672                pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
 673                        retval);
 674                if (retval > 0)
 675                        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 676                                        retval, false);
 677                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 678                                 produce_q->kernel_if->num_pages, false);
 679                err = VMCI_ERROR_NO_MEM;
 680        }
 681
 682 out:
 683        return err;
 684}
 685
 686/*
 687 * Registers the specification of the user pages used for backing a queue
 688 * pair. Enough information to map in pages is stored in the OS specific
 689 * part of the struct vmci_queue structure.
 690 */
 691static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 692                                        struct vmci_queue *produce_q,
 693                                        struct vmci_queue *consume_q)
 694{
 695        u64 produce_uva;
 696        u64 consume_uva;
 697
 698        /*
 699         * The new style and the old style mapping only differs in
 700         * that we either get a single or two UVAs, so we split the
 701         * single UVA range at the appropriate spot.
 702         */
 703        produce_uva = page_store->pages;
 704        consume_uva = page_store->pages +
 705            produce_q->kernel_if->num_pages * PAGE_SIZE;
 706        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 707                                       consume_q);
 708}
 709
 710/*
 711 * Releases and removes the references to user pages stored in the attach
 712 * struct.  Pages are released from the page cache and may become
 713 * swappable again.
 714 */
 715static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 716                                           struct vmci_queue *consume_q)
 717{
 718        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 719                         produce_q->kernel_if->num_pages, true);
 720        memset(produce_q->kernel_if->u.h.header_page, 0,
 721               sizeof(*produce_q->kernel_if->u.h.header_page) *
 722               produce_q->kernel_if->num_pages);
 723        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 724                         consume_q->kernel_if->num_pages, true);
 725        memset(consume_q->kernel_if->u.h.header_page, 0,
 726               sizeof(*consume_q->kernel_if->u.h.header_page) *
 727               consume_q->kernel_if->num_pages);
 728}
 729
 730/*
 731 * Once qp_host_register_user_memory has been performed on a
 732 * queue, the queue pair headers can be mapped into the
 733 * kernel. Once mapped, they must be unmapped with
 734 * qp_host_unmap_queues prior to calling
 735 * qp_host_unregister_user_memory.
 736 * Pages are pinned.
 737 */
 738static int qp_host_map_queues(struct vmci_queue *produce_q,
 739                              struct vmci_queue *consume_q)
 740{
 741        int result;
 742
 743        if (!produce_q->q_header || !consume_q->q_header) {
 744                struct page *headers[2];
 745
 746                if (produce_q->q_header != consume_q->q_header)
 747                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 748
 749                if (produce_q->kernel_if->u.h.header_page == NULL ||
 750                    *produce_q->kernel_if->u.h.header_page == NULL)
 751                        return VMCI_ERROR_UNAVAILABLE;
 752
 753                headers[0] = *produce_q->kernel_if->u.h.header_page;
 754                headers[1] = *consume_q->kernel_if->u.h.header_page;
 755
 756                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 757                if (produce_q->q_header != NULL) {
 758                        consume_q->q_header =
 759                            (struct vmci_queue_header *)((u8 *)
 760                                                         produce_q->q_header +
 761                                                         PAGE_SIZE);
 762                        result = VMCI_SUCCESS;
 763                } else {
 764                        pr_warn("vmap failed\n");
 765                        result = VMCI_ERROR_NO_MEM;
 766                }
 767        } else {
 768                result = VMCI_SUCCESS;
 769        }
 770
 771        return result;
 772}
 773
 774/*
 775 * Unmaps previously mapped queue pair headers from the kernel.
 776 * Pages are unpinned.
 777 */
 778static int qp_host_unmap_queues(u32 gid,
 779                                struct vmci_queue *produce_q,
 780                                struct vmci_queue *consume_q)
 781{
 782        if (produce_q->q_header) {
 783                if (produce_q->q_header < consume_q->q_header)
 784                        vunmap(produce_q->q_header);
 785                else
 786                        vunmap(consume_q->q_header);
 787
 788                produce_q->q_header = NULL;
 789                consume_q->q_header = NULL;
 790        }
 791
 792        return VMCI_SUCCESS;
 793}
 794
 795/*
 796 * Finds the entry in the list corresponding to a given handle. Assumes
 797 * that the list is locked.
 798 */
 799static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 800                                     struct vmci_handle handle)
 801{
 802        struct qp_entry *entry;
 803
 804        if (vmci_handle_is_invalid(handle))
 805                return NULL;
 806
 807        list_for_each_entry(entry, &qp_list->head, list_item) {
 808                if (vmci_handle_is_equal(entry->handle, handle))
 809                        return entry;
 810        }
 811
 812        return NULL;
 813}
 814
 815/*
 816 * Finds the entry in the list corresponding to a given handle.
 817 */
 818static struct qp_guest_endpoint *
 819qp_guest_handle_to_entry(struct vmci_handle handle)
 820{
 821        struct qp_guest_endpoint *entry;
 822        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 823
 824        entry = qp ? container_of(
 825                qp, struct qp_guest_endpoint, qp) : NULL;
 826        return entry;
 827}
 828
 829/*
 830 * Finds the entry in the list corresponding to a given handle.
 831 */
 832static struct qp_broker_entry *
 833qp_broker_handle_to_entry(struct vmci_handle handle)
 834{
 835        struct qp_broker_entry *entry;
 836        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 837
 838        entry = qp ? container_of(
 839                qp, struct qp_broker_entry, qp) : NULL;
 840        return entry;
 841}
 842
 843/*
 844 * Dispatches a queue pair event message directly into the local event
 845 * queue.
 846 */
 847static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 848{
 849        u32 context_id = vmci_get_context_id();
 850        struct vmci_event_qp ev;
 851
 852        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 853        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 854                                          VMCI_CONTEXT_RESOURCE_ID);
 855        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 856        ev.msg.event_data.event =
 857            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 858        ev.payload.peer_id = context_id;
 859        ev.payload.handle = handle;
 860
 861        return vmci_event_dispatch(&ev.msg.hdr);
 862}
 863
 864/*
 865 * Allocates and initializes a qp_guest_endpoint structure.
 866 * Allocates a queue_pair rid (and handle) iff the given entry has
 867 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 868 * are reserved handles.  Assumes that the QP list mutex is held
 869 * by the caller.
 870 */
 871static struct qp_guest_endpoint *
 872qp_guest_endpoint_create(struct vmci_handle handle,
 873                         u32 peer,
 874                         u32 flags,
 875                         u64 produce_size,
 876                         u64 consume_size,
 877                         void *produce_q,
 878                         void *consume_q)
 879{
 880        int result;
 881        struct qp_guest_endpoint *entry;
 882        /* One page each for the queue headers. */
 883        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 884            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 885
 886        if (vmci_handle_is_invalid(handle)) {
 887                u32 context_id = vmci_get_context_id();
 888
 889                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 890        }
 891
 892        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 893        if (entry) {
 894                entry->qp.peer = peer;
 895                entry->qp.flags = flags;
 896                entry->qp.produce_size = produce_size;
 897                entry->qp.consume_size = consume_size;
 898                entry->qp.ref_count = 0;
 899                entry->num_ppns = num_ppns;
 900                entry->produce_q = produce_q;
 901                entry->consume_q = consume_q;
 902                INIT_LIST_HEAD(&entry->qp.list_item);
 903
 904                /* Add resource obj */
 905                result = vmci_resource_add(&entry->resource,
 906                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 907                                           handle);
 908                entry->qp.handle = vmci_resource_handle(&entry->resource);
 909                if ((result != VMCI_SUCCESS) ||
 910                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 911                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 912                                handle.context, handle.resource, result);
 913                        kfree(entry);
 914                        entry = NULL;
 915                }
 916        }
 917        return entry;
 918}
 919
 920/*
 921 * Frees a qp_guest_endpoint structure.
 922 */
 923static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
 924{
 925        qp_free_ppn_set(&entry->ppn_set);
 926        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
 927        qp_free_queue(entry->produce_q, entry->qp.produce_size);
 928        qp_free_queue(entry->consume_q, entry->qp.consume_size);
 929        /* Unlink from resource hash table and free callback */
 930        vmci_resource_remove(&entry->resource);
 931
 932        kfree(entry);
 933}
 934
 935/*
 936 * Helper to make a queue_pairAlloc hypercall when the driver is
 937 * supporting a guest device.
 938 */
 939static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
 940{
 941        struct vmci_qp_alloc_msg *alloc_msg;
 942        size_t msg_size;
 943        size_t ppn_size;
 944        int result;
 945
 946        if (!entry || entry->num_ppns <= 2)
 947                return VMCI_ERROR_INVALID_ARGS;
 948
 949        ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
 950        msg_size = sizeof(*alloc_msg) +
 951            (size_t) entry->num_ppns * ppn_size;
 952        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
 953        if (!alloc_msg)
 954                return VMCI_ERROR_NO_MEM;
 955
 956        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 957                                              VMCI_QUEUEPAIR_ALLOC);
 958        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
 959        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
 960        alloc_msg->handle = entry->qp.handle;
 961        alloc_msg->peer = entry->qp.peer;
 962        alloc_msg->flags = entry->qp.flags;
 963        alloc_msg->produce_size = entry->qp.produce_size;
 964        alloc_msg->consume_size = entry->qp.consume_size;
 965        alloc_msg->num_ppns = entry->num_ppns;
 966
 967        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
 968                                     &entry->ppn_set);
 969        if (result == VMCI_SUCCESS)
 970                result = vmci_send_datagram(&alloc_msg->hdr);
 971
 972        kfree(alloc_msg);
 973
 974        return result;
 975}
 976
 977/*
 978 * Helper to make a queue_pairDetach hypercall when the driver is
 979 * supporting a guest device.
 980 */
 981static int qp_detatch_hypercall(struct vmci_handle handle)
 982{
 983        struct vmci_qp_detach_msg detach_msg;
 984
 985        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 986                                              VMCI_QUEUEPAIR_DETACH);
 987        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
 988        detach_msg.hdr.payload_size = sizeof(handle);
 989        detach_msg.handle = handle;
 990
 991        return vmci_send_datagram(&detach_msg.hdr);
 992}
 993
 994/*
 995 * Adds the given entry to the list. Assumes that the list is locked.
 996 */
 997static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
 998{
 999        if (entry)
1000                list_add(&entry->list_item, &qp_list->head);
1001}
1002
1003/*
1004 * Removes the given entry from the list. Assumes that the list is locked.
1005 */
1006static void qp_list_remove_entry(struct qp_list *qp_list,
1007                                 struct qp_entry *entry)
1008{
1009        if (entry)
1010                list_del(&entry->list_item);
1011}
1012
1013/*
1014 * Helper for VMCI queue_pair detach interface. Frees the physical
1015 * pages for the queue pair.
1016 */
1017static int qp_detatch_guest_work(struct vmci_handle handle)
1018{
1019        int result;
1020        struct qp_guest_endpoint *entry;
1021        u32 ref_count = ~0;     /* To avoid compiler warning below */
1022
1023        mutex_lock(&qp_guest_endpoints.mutex);
1024
1025        entry = qp_guest_handle_to_entry(handle);
1026        if (!entry) {
1027                mutex_unlock(&qp_guest_endpoints.mutex);
1028                return VMCI_ERROR_NOT_FOUND;
1029        }
1030
1031        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1032                result = VMCI_SUCCESS;
1033
1034                if (entry->qp.ref_count > 1) {
1035                        result = qp_notify_peer_local(false, handle);
1036                        /*
1037                         * We can fail to notify a local queuepair
1038                         * because we can't allocate.  We still want
1039                         * to release the entry if that happens, so
1040                         * don't bail out yet.
1041                         */
1042                }
1043        } else {
1044                result = qp_detatch_hypercall(handle);
1045                if (result < VMCI_SUCCESS) {
1046                        /*
1047                         * We failed to notify a non-local queuepair.
1048                         * That other queuepair might still be
1049                         * accessing the shared memory, so don't
1050                         * release the entry yet.  It will get cleaned
1051                         * up by VMCIqueue_pair_Exit() if necessary
1052                         * (assuming we are going away, otherwise why
1053                         * did this fail?).
1054                         */
1055
1056                        mutex_unlock(&qp_guest_endpoints.mutex);
1057                        return result;
1058                }
1059        }
1060
1061        /*
1062         * If we get here then we either failed to notify a local queuepair, or
1063         * we succeeded in all cases.  Release the entry if required.
1064         */
1065
1066        entry->qp.ref_count--;
1067        if (entry->qp.ref_count == 0)
1068                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1069
1070        /* If we didn't remove the entry, this could change once we unlock. */
1071        if (entry)
1072                ref_count = entry->qp.ref_count;
1073
1074        mutex_unlock(&qp_guest_endpoints.mutex);
1075
1076        if (ref_count == 0)
1077                qp_guest_endpoint_destroy(entry);
1078
1079        return result;
1080}
1081
1082/*
1083 * This functions handles the actual allocation of a VMCI queue
1084 * pair guest endpoint. Allocates physical pages for the queue
1085 * pair. It makes OS dependent calls through generic wrappers.
1086 */
1087static int qp_alloc_guest_work(struct vmci_handle *handle,
1088                               struct vmci_queue **produce_q,
1089                               u64 produce_size,
1090                               struct vmci_queue **consume_q,
1091                               u64 consume_size,
1092                               u32 peer,
1093                               u32 flags,
1094                               u32 priv_flags)
1095{
1096        const u64 num_produce_pages =
1097            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1098        const u64 num_consume_pages =
1099            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1100        void *my_produce_q = NULL;
1101        void *my_consume_q = NULL;
1102        int result;
1103        struct qp_guest_endpoint *queue_pair_entry = NULL;
1104
1105        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1106                return VMCI_ERROR_NO_ACCESS;
1107
1108        mutex_lock(&qp_guest_endpoints.mutex);
1109
1110        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1111        if (queue_pair_entry) {
1112                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1113                        /* Local attach case. */
1114                        if (queue_pair_entry->qp.ref_count > 1) {
1115                                pr_devel("Error attempting to attach more than once\n");
1116                                result = VMCI_ERROR_UNAVAILABLE;
1117                                goto error_keep_entry;
1118                        }
1119
1120                        if (queue_pair_entry->qp.produce_size != consume_size ||
1121                            queue_pair_entry->qp.consume_size !=
1122                            produce_size ||
1123                            queue_pair_entry->qp.flags !=
1124                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1125                                pr_devel("Error mismatched queue pair in local attach\n");
1126                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1127                                goto error_keep_entry;
1128                        }
1129
1130                        /*
1131                         * Do a local attach.  We swap the consume and
1132                         * produce queues for the attacher and deliver
1133                         * an attach event.
1134                         */
1135                        result = qp_notify_peer_local(true, *handle);
1136                        if (result < VMCI_SUCCESS)
1137                                goto error_keep_entry;
1138
1139                        my_produce_q = queue_pair_entry->consume_q;
1140                        my_consume_q = queue_pair_entry->produce_q;
1141                        goto out;
1142                }
1143
1144                result = VMCI_ERROR_ALREADY_EXISTS;
1145                goto error_keep_entry;
1146        }
1147
1148        my_produce_q = qp_alloc_queue(produce_size, flags);
1149        if (!my_produce_q) {
1150                pr_warn("Error allocating pages for produce queue\n");
1151                result = VMCI_ERROR_NO_MEM;
1152                goto error;
1153        }
1154
1155        my_consume_q = qp_alloc_queue(consume_size, flags);
1156        if (!my_consume_q) {
1157                pr_warn("Error allocating pages for consume queue\n");
1158                result = VMCI_ERROR_NO_MEM;
1159                goto error;
1160        }
1161
1162        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1163                                                    produce_size, consume_size,
1164                                                    my_produce_q, my_consume_q);
1165        if (!queue_pair_entry) {
1166                pr_warn("Error allocating memory in %s\n", __func__);
1167                result = VMCI_ERROR_NO_MEM;
1168                goto error;
1169        }
1170
1171        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1172                                  num_consume_pages,
1173                                  &queue_pair_entry->ppn_set);
1174        if (result < VMCI_SUCCESS) {
1175                pr_warn("qp_alloc_ppn_set failed\n");
1176                goto error;
1177        }
1178
1179        /*
1180         * It's only necessary to notify the host if this queue pair will be
1181         * attached to from another context.
1182         */
1183        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1184                /* Local create case. */
1185                u32 context_id = vmci_get_context_id();
1186
1187                /*
1188                 * Enforce similar checks on local queue pairs as we
1189                 * do for regular ones.  The handle's context must
1190                 * match the creator or attacher context id (here they
1191                 * are both the current context id) and the
1192                 * attach-only flag cannot exist during create.  We
1193                 * also ensure specified peer is this context or an
1194                 * invalid one.
1195                 */
1196                if (queue_pair_entry->qp.handle.context != context_id ||
1197                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1198                     queue_pair_entry->qp.peer != context_id)) {
1199                        result = VMCI_ERROR_NO_ACCESS;
1200                        goto error;
1201                }
1202
1203                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1204                        result = VMCI_ERROR_NOT_FOUND;
1205                        goto error;
1206                }
1207        } else {
1208                result = qp_alloc_hypercall(queue_pair_entry);
1209                if (result < VMCI_SUCCESS) {
1210                        pr_warn("qp_alloc_hypercall result = %d\n", result);
1211                        goto error;
1212                }
1213        }
1214
1215        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1216                            (struct vmci_queue *)my_consume_q);
1217
1218        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1219
1220 out:
1221        queue_pair_entry->qp.ref_count++;
1222        *handle = queue_pair_entry->qp.handle;
1223        *produce_q = (struct vmci_queue *)my_produce_q;
1224        *consume_q = (struct vmci_queue *)my_consume_q;
1225
1226        /*
1227         * We should initialize the queue pair header pages on a local
1228         * queue pair create.  For non-local queue pairs, the
1229         * hypervisor initializes the header pages in the create step.
1230         */
1231        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1232            queue_pair_entry->qp.ref_count == 1) {
1233                vmci_q_header_init((*produce_q)->q_header, *handle);
1234                vmci_q_header_init((*consume_q)->q_header, *handle);
1235        }
1236
1237        mutex_unlock(&qp_guest_endpoints.mutex);
1238
1239        return VMCI_SUCCESS;
1240
1241 error:
1242        mutex_unlock(&qp_guest_endpoints.mutex);
1243        if (queue_pair_entry) {
1244                /* The queues will be freed inside the destroy routine. */
1245                qp_guest_endpoint_destroy(queue_pair_entry);
1246        } else {
1247                qp_free_queue(my_produce_q, produce_size);
1248                qp_free_queue(my_consume_q, consume_size);
1249        }
1250        return result;
1251
1252 error_keep_entry:
1253        /* This path should only be used when an existing entry was found. */
1254        mutex_unlock(&qp_guest_endpoints.mutex);
1255        return result;
1256}
1257
1258/*
1259 * The first endpoint issuing a queue pair allocation will create the state
1260 * of the queue pair in the queue pair broker.
1261 *
1262 * If the creator is a guest, it will associate a VMX virtual address range
1263 * with the queue pair as specified by the page_store. For compatibility with
1264 * older VMX'en, that would use a separate step to set the VMX virtual
1265 * address range, the virtual address range can be registered later using
1266 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1267 * used.
1268 *
1269 * If the creator is the host, a page_store of NULL should be used as well,
1270 * since the host is not able to supply a page store for the queue pair.
1271 *
1272 * For older VMX and host callers, the queue pair will be created in the
1273 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1274 * created in VMCOQPB_CREATED_MEM state.
1275 */
1276static int qp_broker_create(struct vmci_handle handle,
1277                            u32 peer,
1278                            u32 flags,
1279                            u32 priv_flags,
1280                            u64 produce_size,
1281                            u64 consume_size,
1282                            struct vmci_qp_page_store *page_store,
1283                            struct vmci_ctx *context,
1284                            vmci_event_release_cb wakeup_cb,
1285                            void *client_data, struct qp_broker_entry **ent)
1286{
1287        struct qp_broker_entry *entry = NULL;
1288        const u32 context_id = vmci_ctx_get_id(context);
1289        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1290        int result;
1291        u64 guest_produce_size;
1292        u64 guest_consume_size;
1293
1294        /* Do not create if the caller asked not to. */
1295        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1296                return VMCI_ERROR_NOT_FOUND;
1297
1298        /*
1299         * Creator's context ID should match handle's context ID or the creator
1300         * must allow the context in handle's context ID as the "peer".
1301         */
1302        if (handle.context != context_id && handle.context != peer)
1303                return VMCI_ERROR_NO_ACCESS;
1304
1305        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1306                return VMCI_ERROR_DST_UNREACHABLE;
1307
1308        /*
1309         * Creator's context ID for local queue pairs should match the
1310         * peer, if a peer is specified.
1311         */
1312        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1313                return VMCI_ERROR_NO_ACCESS;
1314
1315        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1316        if (!entry)
1317                return VMCI_ERROR_NO_MEM;
1318
1319        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1320                /*
1321                 * The queue pair broker entry stores values from the guest
1322                 * point of view, so a creating host side endpoint should swap
1323                 * produce and consume values -- unless it is a local queue
1324                 * pair, in which case no swapping is necessary, since the local
1325                 * attacher will swap queues.
1326                 */
1327
1328                guest_produce_size = consume_size;
1329                guest_consume_size = produce_size;
1330        } else {
1331                guest_produce_size = produce_size;
1332                guest_consume_size = consume_size;
1333        }
1334
1335        entry->qp.handle = handle;
1336        entry->qp.peer = peer;
1337        entry->qp.flags = flags;
1338        entry->qp.produce_size = guest_produce_size;
1339        entry->qp.consume_size = guest_consume_size;
1340        entry->qp.ref_count = 1;
1341        entry->create_id = context_id;
1342        entry->attach_id = VMCI_INVALID_ID;
1343        entry->state = VMCIQPB_NEW;
1344        entry->require_trusted_attach =
1345            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1346        entry->created_by_trusted =
1347            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1348        entry->vmci_page_files = false;
1349        entry->wakeup_cb = wakeup_cb;
1350        entry->client_data = client_data;
1351        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1352        if (entry->produce_q == NULL) {
1353                result = VMCI_ERROR_NO_MEM;
1354                goto error;
1355        }
1356        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1357        if (entry->consume_q == NULL) {
1358                result = VMCI_ERROR_NO_MEM;
1359                goto error;
1360        }
1361
1362        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1363
1364        INIT_LIST_HEAD(&entry->qp.list_item);
1365
1366        if (is_local) {
1367                u8 *tmp;
1368
1369                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1370                                           PAGE_SIZE, GFP_KERNEL);
1371                if (entry->local_mem == NULL) {
1372                        result = VMCI_ERROR_NO_MEM;
1373                        goto error;
1374                }
1375                entry->state = VMCIQPB_CREATED_MEM;
1376                entry->produce_q->q_header = entry->local_mem;
1377                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1378                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1379                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1380        } else if (page_store) {
1381                /*
1382                 * The VMX already initialized the queue pair headers, so no
1383                 * need for the kernel side to do that.
1384                 */
1385                result = qp_host_register_user_memory(page_store,
1386                                                      entry->produce_q,
1387                                                      entry->consume_q);
1388                if (result < VMCI_SUCCESS)
1389                        goto error;
1390
1391                entry->state = VMCIQPB_CREATED_MEM;
1392        } else {
1393                /*
1394                 * A create without a page_store may be either a host
1395                 * side create (in which case we are waiting for the
1396                 * guest side to supply the memory) or an old style
1397                 * queue pair create (in which case we will expect a
1398                 * set page store call as the next step).
1399                 */
1400                entry->state = VMCIQPB_CREATED_NO_MEM;
1401        }
1402
1403        qp_list_add_entry(&qp_broker_list, &entry->qp);
1404        if (ent != NULL)
1405                *ent = entry;
1406
1407        /* Add to resource obj */
1408        result = vmci_resource_add(&entry->resource,
1409                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1410                                   handle);
1411        if (result != VMCI_SUCCESS) {
1412                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1413                        handle.context, handle.resource, result);
1414                goto error;
1415        }
1416
1417        entry->qp.handle = vmci_resource_handle(&entry->resource);
1418        if (is_local) {
1419                vmci_q_header_init(entry->produce_q->q_header,
1420                                   entry->qp.handle);
1421                vmci_q_header_init(entry->consume_q->q_header,
1422                                   entry->qp.handle);
1423        }
1424
1425        vmci_ctx_qp_create(context, entry->qp.handle);
1426
1427        return VMCI_SUCCESS;
1428
1429 error:
1430        if (entry != NULL) {
1431                qp_host_free_queue(entry->produce_q, guest_produce_size);
1432                qp_host_free_queue(entry->consume_q, guest_consume_size);
1433                kfree(entry);
1434        }
1435
1436        return result;
1437}
1438
1439/*
1440 * Enqueues an event datagram to notify the peer VM attached to
1441 * the given queue pair handle about attach/detach event by the
1442 * given VM.  Returns Payload size of datagram enqueued on
1443 * success, error code otherwise.
1444 */
1445static int qp_notify_peer(bool attach,
1446                          struct vmci_handle handle,
1447                          u32 my_id,
1448                          u32 peer_id)
1449{
1450        int rv;
1451        struct vmci_event_qp ev;
1452
1453        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1454            peer_id == VMCI_INVALID_ID)
1455                return VMCI_ERROR_INVALID_ARGS;
1456
1457        /*
1458         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1459         * number of pending events from the hypervisor to a given VM
1460         * otherwise a rogue VM could do an arbitrary number of attach
1461         * and detach operations causing memory pressure in the host
1462         * kernel.
1463         */
1464
1465        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1466        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1467                                          VMCI_CONTEXT_RESOURCE_ID);
1468        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1469        ev.msg.event_data.event = attach ?
1470            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1471        ev.payload.handle = handle;
1472        ev.payload.peer_id = my_id;
1473
1474        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1475                                    &ev.msg.hdr, false);
1476        if (rv < VMCI_SUCCESS)
1477                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1478                        attach ? "ATTACH" : "DETACH", peer_id);
1479
1480        return rv;
1481}
1482
1483/*
1484 * The second endpoint issuing a queue pair allocation will attach to
1485 * the queue pair registered with the queue pair broker.
1486 *
1487 * If the attacher is a guest, it will associate a VMX virtual address
1488 * range with the queue pair as specified by the page_store. At this
1489 * point, the already attach host endpoint may start using the queue
1490 * pair, and an attach event is sent to it. For compatibility with
1491 * older VMX'en, that used a separate step to set the VMX virtual
1492 * address range, the virtual address range can be registered later
1493 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1494 * NULL should be used, and the attach event will be generated once
1495 * the actual page store has been set.
1496 *
1497 * If the attacher is the host, a page_store of NULL should be used as
1498 * well, since the page store information is already set by the guest.
1499 *
1500 * For new VMX and host callers, the queue pair will be moved to the
1501 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1502 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1503 */
1504static int qp_broker_attach(struct qp_broker_entry *entry,
1505                            u32 peer,
1506                            u32 flags,
1507                            u32 priv_flags,
1508                            u64 produce_size,
1509                            u64 consume_size,
1510                            struct vmci_qp_page_store *page_store,
1511                            struct vmci_ctx *context,
1512                            vmci_event_release_cb wakeup_cb,
1513                            void *client_data,
1514                            struct qp_broker_entry **ent)
1515{
1516        const u32 context_id = vmci_ctx_get_id(context);
1517        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1518        int result;
1519
1520        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1521            entry->state != VMCIQPB_CREATED_MEM)
1522                return VMCI_ERROR_UNAVAILABLE;
1523
1524        if (is_local) {
1525                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1526                    context_id != entry->create_id) {
1527                        return VMCI_ERROR_INVALID_ARGS;
1528                }
1529        } else if (context_id == entry->create_id ||
1530                   context_id == entry->attach_id) {
1531                return VMCI_ERROR_ALREADY_EXISTS;
1532        }
1533
1534        if (VMCI_CONTEXT_IS_VM(context_id) &&
1535            VMCI_CONTEXT_IS_VM(entry->create_id))
1536                return VMCI_ERROR_DST_UNREACHABLE;
1537
1538        /*
1539         * If we are attaching from a restricted context then the queuepair
1540         * must have been created by a trusted endpoint.
1541         */
1542        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1543            !entry->created_by_trusted)
1544                return VMCI_ERROR_NO_ACCESS;
1545
1546        /*
1547         * If we are attaching to a queuepair that was created by a restricted
1548         * context then we must be trusted.
1549         */
1550        if (entry->require_trusted_attach &&
1551            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1552                return VMCI_ERROR_NO_ACCESS;
1553
1554        /*
1555         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1556         * control check is not performed.
1557         */
1558        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1559                return VMCI_ERROR_NO_ACCESS;
1560
1561        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1562                /*
1563                 * Do not attach if the caller doesn't support Host Queue Pairs
1564                 * and a host created this queue pair.
1565                 */
1566
1567                if (!vmci_ctx_supports_host_qp(context))
1568                        return VMCI_ERROR_INVALID_RESOURCE;
1569
1570        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1571                struct vmci_ctx *create_context;
1572                bool supports_host_qp;
1573
1574                /*
1575                 * Do not attach a host to a user created queue pair if that
1576                 * user doesn't support host queue pair end points.
1577                 */
1578
1579                create_context = vmci_ctx_get(entry->create_id);
1580                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1581                vmci_ctx_put(create_context);
1582
1583                if (!supports_host_qp)
1584                        return VMCI_ERROR_INVALID_RESOURCE;
1585        }
1586
1587        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1588                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1589
1590        if (context_id != VMCI_HOST_CONTEXT_ID) {
1591                /*
1592                 * The queue pair broker entry stores values from the guest
1593                 * point of view, so an attaching guest should match the values
1594                 * stored in the entry.
1595                 */
1596
1597                if (entry->qp.produce_size != produce_size ||
1598                    entry->qp.consume_size != consume_size) {
1599                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1600                }
1601        } else if (entry->qp.produce_size != consume_size ||
1602                   entry->qp.consume_size != produce_size) {
1603                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1604        }
1605
1606        if (context_id != VMCI_HOST_CONTEXT_ID) {
1607                /*
1608                 * If a guest attached to a queue pair, it will supply
1609                 * the backing memory.  If this is a pre NOVMVM vmx,
1610                 * the backing memory will be supplied by calling
1611                 * vmci_qp_broker_set_page_store() following the
1612                 * return of the vmci_qp_broker_alloc() call. If it is
1613                 * a vmx of version NOVMVM or later, the page store
1614                 * must be supplied as part of the
1615                 * vmci_qp_broker_alloc call.  Under all circumstances
1616                 * must the initially created queue pair not have any
1617                 * memory associated with it already.
1618                 */
1619
1620                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1621                        return VMCI_ERROR_INVALID_ARGS;
1622
1623                if (page_store != NULL) {
1624                        /*
1625                         * Patch up host state to point to guest
1626                         * supplied memory. The VMX already
1627                         * initialized the queue pair headers, so no
1628                         * need for the kernel side to do that.
1629                         */
1630
1631                        result = qp_host_register_user_memory(page_store,
1632                                                              entry->produce_q,
1633                                                              entry->consume_q);
1634                        if (result < VMCI_SUCCESS)
1635                                return result;
1636
1637                        entry->state = VMCIQPB_ATTACHED_MEM;
1638                } else {
1639                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1640                }
1641        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1642                /*
1643                 * The host side is attempting to attach to a queue
1644                 * pair that doesn't have any memory associated with
1645                 * it. This must be a pre NOVMVM vmx that hasn't set
1646                 * the page store information yet, or a quiesced VM.
1647                 */
1648
1649                return VMCI_ERROR_UNAVAILABLE;
1650        } else {
1651                /* The host side has successfully attached to a queue pair. */
1652                entry->state = VMCIQPB_ATTACHED_MEM;
1653        }
1654
1655        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1656                result =
1657                    qp_notify_peer(true, entry->qp.handle, context_id,
1658                                   entry->create_id);
1659                if (result < VMCI_SUCCESS)
1660                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1661                                entry->create_id, entry->qp.handle.context,
1662                                entry->qp.handle.resource);
1663        }
1664
1665        entry->attach_id = context_id;
1666        entry->qp.ref_count++;
1667        if (wakeup_cb) {
1668                entry->wakeup_cb = wakeup_cb;
1669                entry->client_data = client_data;
1670        }
1671
1672        /*
1673         * When attaching to local queue pairs, the context already has
1674         * an entry tracking the queue pair, so don't add another one.
1675         */
1676        if (!is_local)
1677                vmci_ctx_qp_create(context, entry->qp.handle);
1678
1679        if (ent != NULL)
1680                *ent = entry;
1681
1682        return VMCI_SUCCESS;
1683}
1684
1685/*
1686 * queue_pair_Alloc for use when setting up queue pair endpoints
1687 * on the host.
1688 */
1689static int qp_broker_alloc(struct vmci_handle handle,
1690                           u32 peer,
1691                           u32 flags,
1692                           u32 priv_flags,
1693                           u64 produce_size,
1694                           u64 consume_size,
1695                           struct vmci_qp_page_store *page_store,
1696                           struct vmci_ctx *context,
1697                           vmci_event_release_cb wakeup_cb,
1698                           void *client_data,
1699                           struct qp_broker_entry **ent,
1700                           bool *swap)
1701{
1702        const u32 context_id = vmci_ctx_get_id(context);
1703        bool create;
1704        struct qp_broker_entry *entry = NULL;
1705        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1706        int result;
1707
1708        if (vmci_handle_is_invalid(handle) ||
1709            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1710            !(produce_size || consume_size) ||
1711            !context || context_id == VMCI_INVALID_ID ||
1712            handle.context == VMCI_INVALID_ID) {
1713                return VMCI_ERROR_INVALID_ARGS;
1714        }
1715
1716        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1717                return VMCI_ERROR_INVALID_ARGS;
1718
1719        /*
1720         * In the initial argument check, we ensure that non-vmkernel hosts
1721         * are not allowed to create local queue pairs.
1722         */
1723
1724        mutex_lock(&qp_broker_list.mutex);
1725
1726        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1727                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1728                         context_id, handle.context, handle.resource);
1729                mutex_unlock(&qp_broker_list.mutex);
1730                return VMCI_ERROR_ALREADY_EXISTS;
1731        }
1732
1733        if (handle.resource != VMCI_INVALID_ID)
1734                entry = qp_broker_handle_to_entry(handle);
1735
1736        if (!entry) {
1737                create = true;
1738                result =
1739                    qp_broker_create(handle, peer, flags, priv_flags,
1740                                     produce_size, consume_size, page_store,
1741                                     context, wakeup_cb, client_data, ent);
1742        } else {
1743                create = false;
1744                result =
1745                    qp_broker_attach(entry, peer, flags, priv_flags,
1746                                     produce_size, consume_size, page_store,
1747                                     context, wakeup_cb, client_data, ent);
1748        }
1749
1750        mutex_unlock(&qp_broker_list.mutex);
1751
1752        if (swap)
1753                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1754                    !(create && is_local);
1755
1756        return result;
1757}
1758
1759/*
1760 * This function implements the kernel API for allocating a queue
1761 * pair.
1762 */
1763static int qp_alloc_host_work(struct vmci_handle *handle,
1764                              struct vmci_queue **produce_q,
1765                              u64 produce_size,
1766                              struct vmci_queue **consume_q,
1767                              u64 consume_size,
1768                              u32 peer,
1769                              u32 flags,
1770                              u32 priv_flags,
1771                              vmci_event_release_cb wakeup_cb,
1772                              void *client_data)
1773{
1774        struct vmci_handle new_handle;
1775        struct vmci_ctx *context;
1776        struct qp_broker_entry *entry;
1777        int result;
1778        bool swap;
1779
1780        if (vmci_handle_is_invalid(*handle)) {
1781                new_handle = vmci_make_handle(
1782                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1783        } else
1784                new_handle = *handle;
1785
1786        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1787        entry = NULL;
1788        result =
1789            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1790                            produce_size, consume_size, NULL, context,
1791                            wakeup_cb, client_data, &entry, &swap);
1792        if (result == VMCI_SUCCESS) {
1793                if (swap) {
1794                        /*
1795                         * If this is a local queue pair, the attacher
1796                         * will swap around produce and consume
1797                         * queues.
1798                         */
1799
1800                        *produce_q = entry->consume_q;
1801                        *consume_q = entry->produce_q;
1802                } else {
1803                        *produce_q = entry->produce_q;
1804                        *consume_q = entry->consume_q;
1805                }
1806
1807                *handle = vmci_resource_handle(&entry->resource);
1808        } else {
1809                *handle = VMCI_INVALID_HANDLE;
1810                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1811                         result);
1812        }
1813        vmci_ctx_put(context);
1814        return result;
1815}
1816
1817/*
1818 * Allocates a VMCI queue_pair. Only checks validity of input
1819 * arguments. The real work is done in the host or guest
1820 * specific function.
1821 */
1822int vmci_qp_alloc(struct vmci_handle *handle,
1823                  struct vmci_queue **produce_q,
1824                  u64 produce_size,
1825                  struct vmci_queue **consume_q,
1826                  u64 consume_size,
1827                  u32 peer,
1828                  u32 flags,
1829                  u32 priv_flags,
1830                  bool guest_endpoint,
1831                  vmci_event_release_cb wakeup_cb,
1832                  void *client_data)
1833{
1834        if (!handle || !produce_q || !consume_q ||
1835            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1836                return VMCI_ERROR_INVALID_ARGS;
1837
1838        if (guest_endpoint) {
1839                return qp_alloc_guest_work(handle, produce_q,
1840                                           produce_size, consume_q,
1841                                           consume_size, peer,
1842                                           flags, priv_flags);
1843        } else {
1844                return qp_alloc_host_work(handle, produce_q,
1845                                          produce_size, consume_q,
1846                                          consume_size, peer, flags,
1847                                          priv_flags, wakeup_cb, client_data);
1848        }
1849}
1850
1851/*
1852 * This function implements the host kernel API for detaching from
1853 * a queue pair.
1854 */
1855static int qp_detatch_host_work(struct vmci_handle handle)
1856{
1857        int result;
1858        struct vmci_ctx *context;
1859
1860        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1861
1862        result = vmci_qp_broker_detach(handle, context);
1863
1864        vmci_ctx_put(context);
1865        return result;
1866}
1867
1868/*
1869 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1870 * Real work is done in the host or guest specific function.
1871 */
1872static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1873{
1874        if (vmci_handle_is_invalid(handle))
1875                return VMCI_ERROR_INVALID_ARGS;
1876
1877        if (guest_endpoint)
1878                return qp_detatch_guest_work(handle);
1879        else
1880                return qp_detatch_host_work(handle);
1881}
1882
1883/*
1884 * Returns the entry from the head of the list. Assumes that the list is
1885 * locked.
1886 */
1887static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1888{
1889        if (!list_empty(&qp_list->head)) {
1890                struct qp_entry *entry =
1891                    list_first_entry(&qp_list->head, struct qp_entry,
1892                                     list_item);
1893                return entry;
1894        }
1895
1896        return NULL;
1897}
1898
1899void vmci_qp_broker_exit(void)
1900{
1901        struct qp_entry *entry;
1902        struct qp_broker_entry *be;
1903
1904        mutex_lock(&qp_broker_list.mutex);
1905
1906        while ((entry = qp_list_get_head(&qp_broker_list))) {
1907                be = (struct qp_broker_entry *)entry;
1908
1909                qp_list_remove_entry(&qp_broker_list, entry);
1910                kfree(be);
1911        }
1912
1913        mutex_unlock(&qp_broker_list.mutex);
1914}
1915
1916/*
1917 * Requests that a queue pair be allocated with the VMCI queue
1918 * pair broker. Allocates a queue pair entry if one does not
1919 * exist. Attaches to one if it exists, and retrieves the page
1920 * files backing that queue_pair.  Assumes that the queue pair
1921 * broker lock is held.
1922 */
1923int vmci_qp_broker_alloc(struct vmci_handle handle,
1924                         u32 peer,
1925                         u32 flags,
1926                         u32 priv_flags,
1927                         u64 produce_size,
1928                         u64 consume_size,
1929                         struct vmci_qp_page_store *page_store,
1930                         struct vmci_ctx *context)
1931{
1932        return qp_broker_alloc(handle, peer, flags, priv_flags,
1933                               produce_size, consume_size,
1934                               page_store, context, NULL, NULL, NULL, NULL);
1935}
1936
1937/*
1938 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1939 * step to add the UVAs of the VMX mapping of the queue pair. This function
1940 * provides backwards compatibility with such VMX'en, and takes care of
1941 * registering the page store for a queue pair previously allocated by the
1942 * VMX during create or attach. This function will move the queue pair state
1943 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1944 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1945 * attached state with memory, the queue pair is ready to be used by the
1946 * host peer, and an attached event will be generated.
1947 *
1948 * Assumes that the queue pair broker lock is held.
1949 *
1950 * This function is only used by the hosted platform, since there is no
1951 * issue with backwards compatibility for vmkernel.
1952 */
1953int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1954                                  u64 produce_uva,
1955                                  u64 consume_uva,
1956                                  struct vmci_ctx *context)
1957{
1958        struct qp_broker_entry *entry;
1959        int result;
1960        const u32 context_id = vmci_ctx_get_id(context);
1961
1962        if (vmci_handle_is_invalid(handle) || !context ||
1963            context_id == VMCI_INVALID_ID)
1964                return VMCI_ERROR_INVALID_ARGS;
1965
1966        /*
1967         * We only support guest to host queue pairs, so the VMX must
1968         * supply UVAs for the mapped page files.
1969         */
1970
1971        if (produce_uva == 0 || consume_uva == 0)
1972                return VMCI_ERROR_INVALID_ARGS;
1973
1974        mutex_lock(&qp_broker_list.mutex);
1975
1976        if (!vmci_ctx_qp_exists(context, handle)) {
1977                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1978                        context_id, handle.context, handle.resource);
1979                result = VMCI_ERROR_NOT_FOUND;
1980                goto out;
1981        }
1982
1983        entry = qp_broker_handle_to_entry(handle);
1984        if (!entry) {
1985                result = VMCI_ERROR_NOT_FOUND;
1986                goto out;
1987        }
1988
1989        /*
1990         * If I'm the owner then I can set the page store.
1991         *
1992         * Or, if a host created the queue_pair and I'm the attached peer
1993         * then I can set the page store.
1994         */
1995        if (entry->create_id != context_id &&
1996            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
1997             entry->attach_id != context_id)) {
1998                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
1999                goto out;
2000        }
2001
2002        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2003            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2004                result = VMCI_ERROR_UNAVAILABLE;
2005                goto out;
2006        }
2007
2008        result = qp_host_get_user_memory(produce_uva, consume_uva,
2009                                         entry->produce_q, entry->consume_q);
2010        if (result < VMCI_SUCCESS)
2011                goto out;
2012
2013        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2014        if (result < VMCI_SUCCESS) {
2015                qp_host_unregister_user_memory(entry->produce_q,
2016                                               entry->consume_q);
2017                goto out;
2018        }
2019
2020        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2021                entry->state = VMCIQPB_CREATED_MEM;
2022        else
2023                entry->state = VMCIQPB_ATTACHED_MEM;
2024
2025        entry->vmci_page_files = true;
2026
2027        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2028                result =
2029                    qp_notify_peer(true, handle, context_id, entry->create_id);
2030                if (result < VMCI_SUCCESS) {
2031                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2032                                entry->create_id, entry->qp.handle.context,
2033                                entry->qp.handle.resource);
2034                }
2035        }
2036
2037        result = VMCI_SUCCESS;
2038 out:
2039        mutex_unlock(&qp_broker_list.mutex);
2040        return result;
2041}
2042
2043/*
2044 * Resets saved queue headers for the given QP broker
2045 * entry. Should be used when guest memory becomes available
2046 * again, or the guest detaches.
2047 */
2048static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2049{
2050        entry->produce_q->saved_header = NULL;
2051        entry->consume_q->saved_header = NULL;
2052}
2053
2054/*
2055 * The main entry point for detaching from a queue pair registered with the
2056 * queue pair broker. If more than one endpoint is attached to the queue
2057 * pair, the first endpoint will mainly decrement a reference count and
2058 * generate a notification to its peer. The last endpoint will clean up
2059 * the queue pair state registered with the broker.
2060 *
2061 * When a guest endpoint detaches, it will unmap and unregister the guest
2062 * memory backing the queue pair. If the host is still attached, it will
2063 * no longer be able to access the queue pair content.
2064 *
2065 * If the queue pair is already in a state where there is no memory
2066 * registered for the queue pair (any *_NO_MEM state), it will transition to
2067 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2068 * endpoint is the first of two endpoints to detach. If the host endpoint is
2069 * the first out of two to detach, the queue pair will move to the
2070 * VMCIQPB_SHUTDOWN_MEM state.
2071 */
2072int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2073{
2074        struct qp_broker_entry *entry;
2075        const u32 context_id = vmci_ctx_get_id(context);
2076        u32 peer_id;
2077        bool is_local = false;
2078        int result;
2079
2080        if (vmci_handle_is_invalid(handle) || !context ||
2081            context_id == VMCI_INVALID_ID) {
2082                return VMCI_ERROR_INVALID_ARGS;
2083        }
2084
2085        mutex_lock(&qp_broker_list.mutex);
2086
2087        if (!vmci_ctx_qp_exists(context, handle)) {
2088                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2089                         context_id, handle.context, handle.resource);
2090                result = VMCI_ERROR_NOT_FOUND;
2091                goto out;
2092        }
2093
2094        entry = qp_broker_handle_to_entry(handle);
2095        if (!entry) {
2096                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2097                         context_id, handle.context, handle.resource);
2098                result = VMCI_ERROR_NOT_FOUND;
2099                goto out;
2100        }
2101
2102        if (context_id != entry->create_id && context_id != entry->attach_id) {
2103                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2104                goto out;
2105        }
2106
2107        if (context_id == entry->create_id) {
2108                peer_id = entry->attach_id;
2109                entry->create_id = VMCI_INVALID_ID;
2110        } else {
2111                peer_id = entry->create_id;
2112                entry->attach_id = VMCI_INVALID_ID;
2113        }
2114        entry->qp.ref_count--;
2115
2116        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2117
2118        if (context_id != VMCI_HOST_CONTEXT_ID) {
2119                bool headers_mapped;
2120
2121                /*
2122                 * Pre NOVMVM vmx'en may detach from a queue pair
2123                 * before setting the page store, and in that case
2124                 * there is no user memory to detach from. Also, more
2125                 * recent VMX'en may detach from a queue pair in the
2126                 * quiesced state.
2127                 */
2128
2129                qp_acquire_queue_mutex(entry->produce_q);
2130                headers_mapped = entry->produce_q->q_header ||
2131                    entry->consume_q->q_header;
2132                if (QPBROKERSTATE_HAS_MEM(entry)) {
2133                        result =
2134                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2135                                                 entry->produce_q,
2136                                                 entry->consume_q);
2137                        if (result < VMCI_SUCCESS)
2138                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2139                                        handle.context, handle.resource,
2140                                        result);
2141
2142                        qp_host_unregister_user_memory(entry->produce_q,
2143                                                       entry->consume_q);
2144
2145                }
2146
2147                if (!headers_mapped)
2148                        qp_reset_saved_headers(entry);
2149
2150                qp_release_queue_mutex(entry->produce_q);
2151
2152                if (!headers_mapped && entry->wakeup_cb)
2153                        entry->wakeup_cb(entry->client_data);
2154
2155        } else {
2156                if (entry->wakeup_cb) {
2157                        entry->wakeup_cb = NULL;
2158                        entry->client_data = NULL;
2159                }
2160        }
2161
2162        if (entry->qp.ref_count == 0) {
2163                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2164
2165                if (is_local)
2166                        kfree(entry->local_mem);
2167
2168                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2169                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2170                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2171                /* Unlink from resource hash table and free callback */
2172                vmci_resource_remove(&entry->resource);
2173
2174                kfree(entry);
2175
2176                vmci_ctx_qp_destroy(context, handle);
2177        } else {
2178                qp_notify_peer(false, handle, context_id, peer_id);
2179                if (context_id == VMCI_HOST_CONTEXT_ID &&
2180                    QPBROKERSTATE_HAS_MEM(entry)) {
2181                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2182                } else {
2183                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2184                }
2185
2186                if (!is_local)
2187                        vmci_ctx_qp_destroy(context, handle);
2188
2189        }
2190        result = VMCI_SUCCESS;
2191 out:
2192        mutex_unlock(&qp_broker_list.mutex);
2193        return result;
2194}
2195
2196/*
2197 * Establishes the necessary mappings for a queue pair given a
2198 * reference to the queue pair guest memory. This is usually
2199 * called when a guest is unquiesced and the VMX is allowed to
2200 * map guest memory once again.
2201 */
2202int vmci_qp_broker_map(struct vmci_handle handle,
2203                       struct vmci_ctx *context,
2204                       u64 guest_mem)
2205{
2206        struct qp_broker_entry *entry;
2207        const u32 context_id = vmci_ctx_get_id(context);
2208        int result;
2209
2210        if (vmci_handle_is_invalid(handle) || !context ||
2211            context_id == VMCI_INVALID_ID)
2212                return VMCI_ERROR_INVALID_ARGS;
2213
2214        mutex_lock(&qp_broker_list.mutex);
2215
2216        if (!vmci_ctx_qp_exists(context, handle)) {
2217                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2218                         context_id, handle.context, handle.resource);
2219                result = VMCI_ERROR_NOT_FOUND;
2220                goto out;
2221        }
2222
2223        entry = qp_broker_handle_to_entry(handle);
2224        if (!entry) {
2225                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2226                         context_id, handle.context, handle.resource);
2227                result = VMCI_ERROR_NOT_FOUND;
2228                goto out;
2229        }
2230
2231        if (context_id != entry->create_id && context_id != entry->attach_id) {
2232                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2233                goto out;
2234        }
2235
2236        result = VMCI_SUCCESS;
2237
2238        if (context_id != VMCI_HOST_CONTEXT_ID) {
2239                struct vmci_qp_page_store page_store;
2240
2241                page_store.pages = guest_mem;
2242                page_store.len = QPE_NUM_PAGES(entry->qp);
2243
2244                qp_acquire_queue_mutex(entry->produce_q);
2245                qp_reset_saved_headers(entry);
2246                result =
2247                    qp_host_register_user_memory(&page_store,
2248                                                 entry->produce_q,
2249                                                 entry->consume_q);
2250                qp_release_queue_mutex(entry->produce_q);
2251                if (result == VMCI_SUCCESS) {
2252                        /* Move state from *_NO_MEM to *_MEM */
2253
2254                        entry->state++;
2255
2256                        if (entry->wakeup_cb)
2257                                entry->wakeup_cb(entry->client_data);
2258                }
2259        }
2260
2261 out:
2262        mutex_unlock(&qp_broker_list.mutex);
2263        return result;
2264}
2265
2266/*
2267 * Saves a snapshot of the queue headers for the given QP broker
2268 * entry. Should be used when guest memory is unmapped.
2269 * Results:
2270 * VMCI_SUCCESS on success, appropriate error code if guest memory
2271 * can't be accessed..
2272 */
2273static int qp_save_headers(struct qp_broker_entry *entry)
2274{
2275        int result;
2276
2277        if (entry->produce_q->saved_header != NULL &&
2278            entry->consume_q->saved_header != NULL) {
2279                /*
2280                 *  If the headers have already been saved, we don't need to do
2281                 *  it again, and we don't want to map in the headers
2282                 *  unnecessarily.
2283                 */
2284
2285                return VMCI_SUCCESS;
2286        }
2287
2288        if (NULL == entry->produce_q->q_header ||
2289            NULL == entry->consume_q->q_header) {
2290                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2291                if (result < VMCI_SUCCESS)
2292                        return result;
2293        }
2294
2295        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2296               sizeof(entry->saved_produce_q));
2297        entry->produce_q->saved_header = &entry->saved_produce_q;
2298        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2299               sizeof(entry->saved_consume_q));
2300        entry->consume_q->saved_header = &entry->saved_consume_q;
2301
2302        return VMCI_SUCCESS;
2303}
2304
2305/*
2306 * Removes all references to the guest memory of a given queue pair, and
2307 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2308 * called when a VM is being quiesced where access to guest memory should
2309 * avoided.
2310 */
2311int vmci_qp_broker_unmap(struct vmci_handle handle,
2312                         struct vmci_ctx *context,
2313                         u32 gid)
2314{
2315        struct qp_broker_entry *entry;
2316        const u32 context_id = vmci_ctx_get_id(context);
2317        int result;
2318
2319        if (vmci_handle_is_invalid(handle) || !context ||
2320            context_id == VMCI_INVALID_ID)
2321                return VMCI_ERROR_INVALID_ARGS;
2322
2323        mutex_lock(&qp_broker_list.mutex);
2324
2325        if (!vmci_ctx_qp_exists(context, handle)) {
2326                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2327                         context_id, handle.context, handle.resource);
2328                result = VMCI_ERROR_NOT_FOUND;
2329                goto out;
2330        }
2331
2332        entry = qp_broker_handle_to_entry(handle);
2333        if (!entry) {
2334                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2335                         context_id, handle.context, handle.resource);
2336                result = VMCI_ERROR_NOT_FOUND;
2337                goto out;
2338        }
2339
2340        if (context_id != entry->create_id && context_id != entry->attach_id) {
2341                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2342                goto out;
2343        }
2344
2345        if (context_id != VMCI_HOST_CONTEXT_ID) {
2346                qp_acquire_queue_mutex(entry->produce_q);
2347                result = qp_save_headers(entry);
2348                if (result < VMCI_SUCCESS)
2349                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2350                                handle.context, handle.resource, result);
2351
2352                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2353
2354                /*
2355                 * On hosted, when we unmap queue pairs, the VMX will also
2356                 * unmap the guest memory, so we invalidate the previously
2357                 * registered memory. If the queue pair is mapped again at a
2358                 * later point in time, we will need to reregister the user
2359                 * memory with a possibly new user VA.
2360                 */
2361                qp_host_unregister_user_memory(entry->produce_q,
2362                                               entry->consume_q);
2363
2364                /*
2365                 * Move state from *_MEM to *_NO_MEM.
2366                 */
2367                entry->state--;
2368
2369                qp_release_queue_mutex(entry->produce_q);
2370        }
2371
2372        result = VMCI_SUCCESS;
2373
2374 out:
2375        mutex_unlock(&qp_broker_list.mutex);
2376        return result;
2377}
2378
2379/*
2380 * Destroys all guest queue pair endpoints. If active guest queue
2381 * pairs still exist, hypercalls to attempt detach from these
2382 * queue pairs will be made. Any failure to detach is silently
2383 * ignored.
2384 */
2385void vmci_qp_guest_endpoints_exit(void)
2386{
2387        struct qp_entry *entry;
2388        struct qp_guest_endpoint *ep;
2389
2390        mutex_lock(&qp_guest_endpoints.mutex);
2391
2392        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2393                ep = (struct qp_guest_endpoint *)entry;
2394
2395                /* Don't make a hypercall for local queue_pairs. */
2396                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2397                        qp_detatch_hypercall(entry->handle);
2398
2399                /* We cannot fail the exit, so let's reset ref_count. */
2400                entry->ref_count = 0;
2401                qp_list_remove_entry(&qp_guest_endpoints, entry);
2402
2403                qp_guest_endpoint_destroy(ep);
2404        }
2405
2406        mutex_unlock(&qp_guest_endpoints.mutex);
2407}
2408
2409/*
2410 * Helper routine that will lock the queue pair before subsequent
2411 * operations.
2412 * Note: Non-blocking on the host side is currently only implemented in ESX.
2413 * Since non-blocking isn't yet implemented on the host personality we
2414 * have no reason to acquire a spin lock.  So to avoid the use of an
2415 * unnecessary lock only acquire the mutex if we can block.
2416 */
2417static void qp_lock(const struct vmci_qp *qpair)
2418{
2419        qp_acquire_queue_mutex(qpair->produce_q);
2420}
2421
2422/*
2423 * Helper routine that unlocks the queue pair after calling
2424 * qp_lock.
2425 */
2426static void qp_unlock(const struct vmci_qp *qpair)
2427{
2428        qp_release_queue_mutex(qpair->produce_q);
2429}
2430
2431/*
2432 * The queue headers may not be mapped at all times. If a queue is
2433 * currently not mapped, it will be attempted to do so.
2434 */
2435static int qp_map_queue_headers(struct vmci_queue *produce_q,
2436                                struct vmci_queue *consume_q)
2437{
2438        int result;
2439
2440        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2441                result = qp_host_map_queues(produce_q, consume_q);
2442                if (result < VMCI_SUCCESS)
2443                        return (produce_q->saved_header &&
2444                                consume_q->saved_header) ?
2445                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2446                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2447        }
2448
2449        return VMCI_SUCCESS;
2450}
2451
2452/*
2453 * Helper routine that will retrieve the produce and consume
2454 * headers of a given queue pair. If the guest memory of the
2455 * queue pair is currently not available, the saved queue headers
2456 * will be returned, if these are available.
2457 */
2458static int qp_get_queue_headers(const struct vmci_qp *qpair,
2459                                struct vmci_queue_header **produce_q_header,
2460                                struct vmci_queue_header **consume_q_header)
2461{
2462        int result;
2463
2464        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2465        if (result == VMCI_SUCCESS) {
2466                *produce_q_header = qpair->produce_q->q_header;
2467                *consume_q_header = qpair->consume_q->q_header;
2468        } else if (qpair->produce_q->saved_header &&
2469                   qpair->consume_q->saved_header) {
2470                *produce_q_header = qpair->produce_q->saved_header;
2471                *consume_q_header = qpair->consume_q->saved_header;
2472                result = VMCI_SUCCESS;
2473        }
2474
2475        return result;
2476}
2477
2478/*
2479 * Callback from VMCI queue pair broker indicating that a queue
2480 * pair that was previously not ready, now either is ready or
2481 * gone forever.
2482 */
2483static int qp_wakeup_cb(void *client_data)
2484{
2485        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2486
2487        qp_lock(qpair);
2488        while (qpair->blocked > 0) {
2489                qpair->blocked--;
2490                qpair->generation++;
2491                wake_up(&qpair->event);
2492        }
2493        qp_unlock(qpair);
2494
2495        return VMCI_SUCCESS;
2496}
2497
2498/*
2499 * Makes the calling thread wait for the queue pair to become
2500 * ready for host side access.  Returns true when thread is
2501 * woken up after queue pair state change, false otherwise.
2502 */
2503static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2504{
2505        unsigned int generation;
2506
2507        qpair->blocked++;
2508        generation = qpair->generation;
2509        qp_unlock(qpair);
2510        wait_event(qpair->event, generation != qpair->generation);
2511        qp_lock(qpair);
2512
2513        return true;
2514}
2515
2516/*
2517 * Enqueues a given buffer to the produce queue using the provided
2518 * function. As many bytes as possible (space available in the queue)
2519 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2520 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2521 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2522 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2523 * an error occured when accessing the buffer,
2524 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2525 * available.  Otherwise, the number of bytes written to the queue is
2526 * returned.  Updates the tail pointer of the produce queue.
2527 */
2528static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2529                                 struct vmci_queue *consume_q,
2530                                 const u64 produce_q_size,
2531                                 struct iov_iter *from)
2532{
2533        s64 free_space;
2534        u64 tail;
2535        size_t buf_size = iov_iter_count(from);
2536        size_t written;
2537        ssize_t result;
2538
2539        result = qp_map_queue_headers(produce_q, consume_q);
2540        if (unlikely(result != VMCI_SUCCESS))
2541                return result;
2542
2543        free_space = vmci_q_header_free_space(produce_q->q_header,
2544                                              consume_q->q_header,
2545                                              produce_q_size);
2546        if (free_space == 0)
2547                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2548
2549        if (free_space < VMCI_SUCCESS)
2550                return (ssize_t) free_space;
2551
2552        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2553        tail = vmci_q_header_producer_tail(produce_q->q_header);
2554        if (likely(tail + written < produce_q_size)) {
2555                result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2556        } else {
2557                /* Tail pointer wraps around. */
2558
2559                const size_t tmp = (size_t) (produce_q_size - tail);
2560
2561                result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2562                if (result >= VMCI_SUCCESS)
2563                        result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2564                                                 written - tmp);
2565        }
2566
2567        if (result < VMCI_SUCCESS)
2568                return result;
2569
2570        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2571                                        produce_q_size);
2572        return written;
2573}
2574
2575/*
2576 * Dequeues data (if available) from the given consume queue. Writes data
2577 * to the user provided buffer using the provided function.
2578 * Assumes the queue->mutex has been acquired.
2579 * Results:
2580 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2581 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2582 * (as defined by the queue size).
2583 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2584 * Otherwise the number of bytes dequeued is returned.
2585 * Side effects:
2586 * Updates the head pointer of the consume queue.
2587 */
2588static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2589                                 struct vmci_queue *consume_q,
2590                                 const u64 consume_q_size,
2591                                 struct iov_iter *to,
2592                                 bool update_consumer)
2593{
2594        size_t buf_size = iov_iter_count(to);
2595        s64 buf_ready;
2596        u64 head;
2597        size_t read;
2598        ssize_t result;
2599
2600        result = qp_map_queue_headers(produce_q, consume_q);
2601        if (unlikely(result != VMCI_SUCCESS))
2602                return result;
2603
2604        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2605                                            produce_q->q_header,
2606                                            consume_q_size);
2607        if (buf_ready == 0)
2608                return VMCI_ERROR_QUEUEPAIR_NODATA;
2609
2610        if (buf_ready < VMCI_SUCCESS)
2611                return (ssize_t) buf_ready;
2612
2613        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2614        head = vmci_q_header_consumer_head(produce_q->q_header);
2615        if (likely(head + read < consume_q_size)) {
2616                result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2617        } else {
2618                /* Head pointer wraps around. */
2619
2620                const size_t tmp = (size_t) (consume_q_size - head);
2621
2622                result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2623                if (result >= VMCI_SUCCESS)
2624                        result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2625                                                   read - tmp);
2626
2627        }
2628
2629        if (result < VMCI_SUCCESS)
2630                return result;
2631
2632        if (update_consumer)
2633                vmci_q_header_add_consumer_head(produce_q->q_header,
2634                                                read, consume_q_size);
2635
2636        return read;
2637}
2638
2639/*
2640 * vmci_qpair_alloc() - Allocates a queue pair.
2641 * @qpair:      Pointer for the new vmci_qp struct.
2642 * @handle:     Handle to track the resource.
2643 * @produce_qsize:      Desired size of the producer queue.
2644 * @consume_qsize:      Desired size of the consumer queue.
2645 * @peer:       ContextID of the peer.
2646 * @flags:      VMCI flags.
2647 * @priv_flags: VMCI priviledge flags.
2648 *
2649 * This is the client interface for allocating the memory for a
2650 * vmci_qp structure and then attaching to the underlying
2651 * queue.  If an error occurs allocating the memory for the
2652 * vmci_qp structure no attempt is made to attach.  If an
2653 * error occurs attaching, then the structure is freed.
2654 */
2655int vmci_qpair_alloc(struct vmci_qp **qpair,
2656                     struct vmci_handle *handle,
2657                     u64 produce_qsize,
2658                     u64 consume_qsize,
2659                     u32 peer,
2660                     u32 flags,
2661                     u32 priv_flags)
2662{
2663        struct vmci_qp *my_qpair;
2664        int retval;
2665        struct vmci_handle src = VMCI_INVALID_HANDLE;
2666        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2667        enum vmci_route route;
2668        vmci_event_release_cb wakeup_cb;
2669        void *client_data;
2670
2671        /*
2672         * Restrict the size of a queuepair.  The device already
2673         * enforces a limit on the total amount of memory that can be
2674         * allocated to queuepairs for a guest.  However, we try to
2675         * allocate this memory before we make the queuepair
2676         * allocation hypercall.  On Linux, we allocate each page
2677         * separately, which means rather than fail, the guest will
2678         * thrash while it tries to allocate, and will become
2679         * increasingly unresponsive to the point where it appears to
2680         * be hung.  So we place a limit on the size of an individual
2681         * queuepair here, and leave the device to enforce the
2682         * restriction on total queuepair memory.  (Note that this
2683         * doesn't prevent all cases; a user with only this much
2684         * physical memory could still get into trouble.)  The error
2685         * used by the device is NO_RESOURCES, so use that here too.
2686         */
2687
2688        if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2689            produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2690                return VMCI_ERROR_NO_RESOURCES;
2691
2692        retval = vmci_route(&src, &dst, false, &route);
2693        if (retval < VMCI_SUCCESS)
2694                route = vmci_guest_code_active() ?
2695                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2696
2697        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2698                pr_devel("NONBLOCK OR PINNED set");
2699                return VMCI_ERROR_INVALID_ARGS;
2700        }
2701
2702        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2703        if (!my_qpair)
2704                return VMCI_ERROR_NO_MEM;
2705
2706        my_qpair->produce_q_size = produce_qsize;
2707        my_qpair->consume_q_size = consume_qsize;
2708        my_qpair->peer = peer;
2709        my_qpair->flags = flags;
2710        my_qpair->priv_flags = priv_flags;
2711
2712        wakeup_cb = NULL;
2713        client_data = NULL;
2714
2715        if (VMCI_ROUTE_AS_HOST == route) {
2716                my_qpair->guest_endpoint = false;
2717                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2718                        my_qpair->blocked = 0;
2719                        my_qpair->generation = 0;
2720                        init_waitqueue_head(&my_qpair->event);
2721                        wakeup_cb = qp_wakeup_cb;
2722                        client_data = (void *)my_qpair;
2723                }
2724        } else {
2725                my_qpair->guest_endpoint = true;
2726        }
2727
2728        retval = vmci_qp_alloc(handle,
2729                               &my_qpair->produce_q,
2730                               my_qpair->produce_q_size,
2731                               &my_qpair->consume_q,
2732                               my_qpair->consume_q_size,
2733                               my_qpair->peer,
2734                               my_qpair->flags,
2735                               my_qpair->priv_flags,
2736                               my_qpair->guest_endpoint,
2737                               wakeup_cb, client_data);
2738
2739        if (retval < VMCI_SUCCESS) {
2740                kfree(my_qpair);
2741                return retval;
2742        }
2743
2744        *qpair = my_qpair;
2745        my_qpair->handle = *handle;
2746
2747        return retval;
2748}
2749EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2750
2751/*
2752 * vmci_qpair_detach() - Detatches the client from a queue pair.
2753 * @qpair:      Reference of a pointer to the qpair struct.
2754 *
2755 * This is the client interface for detaching from a VMCIQPair.
2756 * Note that this routine will free the memory allocated for the
2757 * vmci_qp structure too.
2758 */
2759int vmci_qpair_detach(struct vmci_qp **qpair)
2760{
2761        int result;
2762        struct vmci_qp *old_qpair;
2763
2764        if (!qpair || !(*qpair))
2765                return VMCI_ERROR_INVALID_ARGS;
2766
2767        old_qpair = *qpair;
2768        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2769
2770        /*
2771         * The guest can fail to detach for a number of reasons, and
2772         * if it does so, it will cleanup the entry (if there is one).
2773         * The host can fail too, but it won't cleanup the entry
2774         * immediately, it will do that later when the context is
2775         * freed.  Either way, we need to release the qpair struct
2776         * here; there isn't much the caller can do, and we don't want
2777         * to leak.
2778         */
2779
2780        memset(old_qpair, 0, sizeof(*old_qpair));
2781        old_qpair->handle = VMCI_INVALID_HANDLE;
2782        old_qpair->peer = VMCI_INVALID_ID;
2783        kfree(old_qpair);
2784        *qpair = NULL;
2785
2786        return result;
2787}
2788EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2789
2790/*
2791 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2792 * @qpair:      Pointer to the queue pair struct.
2793 * @producer_tail:      Reference used for storing producer tail index.
2794 * @consumer_head:      Reference used for storing the consumer head index.
2795 *
2796 * This is the client interface for getting the current indexes of the
2797 * QPair from the point of the view of the caller as the producer.
2798 */
2799int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2800                                   u64 *producer_tail,
2801                                   u64 *consumer_head)
2802{
2803        struct vmci_queue_header *produce_q_header;
2804        struct vmci_queue_header *consume_q_header;
2805        int result;
2806
2807        if (!qpair)
2808                return VMCI_ERROR_INVALID_ARGS;
2809
2810        qp_lock(qpair);
2811        result =
2812            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2813        if (result == VMCI_SUCCESS)
2814                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2815                                           producer_tail, consumer_head);
2816        qp_unlock(qpair);
2817
2818        if (result == VMCI_SUCCESS &&
2819            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2820             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2821                return VMCI_ERROR_INVALID_SIZE;
2822
2823        return result;
2824}
2825EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2826
2827/*
2828 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2829 * @qpair:      Pointer to the queue pair struct.
2830 * @consumer_tail:      Reference used for storing consumer tail index.
2831 * @producer_head:      Reference used for storing the producer head index.
2832 *
2833 * This is the client interface for getting the current indexes of the
2834 * QPair from the point of the view of the caller as the consumer.
2835 */
2836int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2837                                   u64 *consumer_tail,
2838                                   u64 *producer_head)
2839{
2840        struct vmci_queue_header *produce_q_header;
2841        struct vmci_queue_header *consume_q_header;
2842        int result;
2843
2844        if (!qpair)
2845                return VMCI_ERROR_INVALID_ARGS;
2846
2847        qp_lock(qpair);
2848        result =
2849            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2850        if (result == VMCI_SUCCESS)
2851                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2852                                           consumer_tail, producer_head);
2853        qp_unlock(qpair);
2854
2855        if (result == VMCI_SUCCESS &&
2856            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2857             (producer_head && *producer_head >= qpair->consume_q_size)))
2858                return VMCI_ERROR_INVALID_SIZE;
2859
2860        return result;
2861}
2862EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2863
2864/*
2865 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2866 * @qpair:      Pointer to the queue pair struct.
2867 *
2868 * This is the client interface for getting the amount of free
2869 * space in the QPair from the point of the view of the caller as
2870 * the producer which is the common case.  Returns < 0 if err, else
2871 * available bytes into which data can be enqueued if > 0.
2872 */
2873s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2874{
2875        struct vmci_queue_header *produce_q_header;
2876        struct vmci_queue_header *consume_q_header;
2877        s64 result;
2878
2879        if (!qpair)
2880                return VMCI_ERROR_INVALID_ARGS;
2881
2882        qp_lock(qpair);
2883        result =
2884            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2885        if (result == VMCI_SUCCESS)
2886                result = vmci_q_header_free_space(produce_q_header,
2887                                                  consume_q_header,
2888                                                  qpair->produce_q_size);
2889        else
2890                result = 0;
2891
2892        qp_unlock(qpair);
2893
2894        return result;
2895}
2896EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2897
2898/*
2899 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2900 * @qpair:      Pointer to the queue pair struct.
2901 *
2902 * This is the client interface for getting the amount of free
2903 * space in the QPair from the point of the view of the caller as
2904 * the consumer which is not the common case.  Returns < 0 if err, else
2905 * available bytes into which data can be enqueued if > 0.
2906 */
2907s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2908{
2909        struct vmci_queue_header *produce_q_header;
2910        struct vmci_queue_header *consume_q_header;
2911        s64 result;
2912
2913        if (!qpair)
2914                return VMCI_ERROR_INVALID_ARGS;
2915
2916        qp_lock(qpair);
2917        result =
2918            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2919        if (result == VMCI_SUCCESS)
2920                result = vmci_q_header_free_space(consume_q_header,
2921                                                  produce_q_header,
2922                                                  qpair->consume_q_size);
2923        else
2924                result = 0;
2925
2926        qp_unlock(qpair);
2927
2928        return result;
2929}
2930EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2931
2932/*
2933 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2934 * producer queue.
2935 * @qpair:      Pointer to the queue pair struct.
2936 *
2937 * This is the client interface for getting the amount of
2938 * enqueued data in the QPair from the point of the view of the
2939 * caller as the producer which is not the common case.  Returns < 0 if err,
2940 * else available bytes that may be read.
2941 */
2942s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2943{
2944        struct vmci_queue_header *produce_q_header;
2945        struct vmci_queue_header *consume_q_header;
2946        s64 result;
2947
2948        if (!qpair)
2949                return VMCI_ERROR_INVALID_ARGS;
2950
2951        qp_lock(qpair);
2952        result =
2953            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2954        if (result == VMCI_SUCCESS)
2955                result = vmci_q_header_buf_ready(produce_q_header,
2956                                                 consume_q_header,
2957                                                 qpair->produce_q_size);
2958        else
2959                result = 0;
2960
2961        qp_unlock(qpair);
2962
2963        return result;
2964}
2965EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2966
2967/*
2968 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2969 * consumer queue.
2970 * @qpair:      Pointer to the queue pair struct.
2971 *
2972 * This is the client interface for getting the amount of
2973 * enqueued data in the QPair from the point of the view of the
2974 * caller as the consumer which is the normal case.  Returns < 0 if err,
2975 * else available bytes that may be read.
2976 */
2977s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2978{
2979        struct vmci_queue_header *produce_q_header;
2980        struct vmci_queue_header *consume_q_header;
2981        s64 result;
2982
2983        if (!qpair)
2984                return VMCI_ERROR_INVALID_ARGS;
2985
2986        qp_lock(qpair);
2987        result =
2988            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2989        if (result == VMCI_SUCCESS)
2990                result = vmci_q_header_buf_ready(consume_q_header,
2991                                                 produce_q_header,
2992                                                 qpair->consume_q_size);
2993        else
2994                result = 0;
2995
2996        qp_unlock(qpair);
2997
2998        return result;
2999}
3000EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3001
3002/*
3003 * vmci_qpair_enqueue() - Throw data on the queue.
3004 * @qpair:      Pointer to the queue pair struct.
3005 * @buf:        Pointer to buffer containing data
3006 * @buf_size:   Length of buffer.
3007 * @buf_type:   Buffer type (Unused).
3008 *
3009 * This is the client interface for enqueueing data into the queue.
3010 * Returns number of bytes enqueued or < 0 on error.
3011 */
3012ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3013                           const void *buf,
3014                           size_t buf_size,
3015                           int buf_type)
3016{
3017        ssize_t result;
3018        struct iov_iter from;
3019        struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3020
3021        if (!qpair || !buf)
3022                return VMCI_ERROR_INVALID_ARGS;
3023
3024        iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3025
3026        qp_lock(qpair);
3027
3028        do {
3029                result = qp_enqueue_locked(qpair->produce_q,
3030                                           qpair->consume_q,
3031                                           qpair->produce_q_size,
3032                                           &from);
3033
3034                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3035                    !qp_wait_for_ready_queue(qpair))
3036                        result = VMCI_ERROR_WOULD_BLOCK;
3037
3038        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3039
3040        qp_unlock(qpair);
3041
3042        return result;
3043}
3044EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3045
3046/*
3047 * vmci_qpair_dequeue() - Get data from the queue.
3048 * @qpair:      Pointer to the queue pair struct.
3049 * @buf:        Pointer to buffer for the data
3050 * @buf_size:   Length of buffer.
3051 * @buf_type:   Buffer type (Unused).
3052 *
3053 * This is the client interface for dequeueing data from the queue.
3054 * Returns number of bytes dequeued or < 0 on error.
3055 */
3056ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3057                           void *buf,
3058                           size_t buf_size,
3059                           int buf_type)
3060{
3061        ssize_t result;
3062        struct iov_iter to;
3063        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3064
3065        if (!qpair || !buf)
3066                return VMCI_ERROR_INVALID_ARGS;
3067
3068        iov_iter_kvec(&to, READ, &v, 1, buf_size);
3069
3070        qp_lock(qpair);
3071
3072        do {
3073                result = qp_dequeue_locked(qpair->produce_q,
3074                                           qpair->consume_q,
3075                                           qpair->consume_q_size,
3076                                           &to, true);
3077
3078                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3079                    !qp_wait_for_ready_queue(qpair))
3080                        result = VMCI_ERROR_WOULD_BLOCK;
3081
3082        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3083
3084        qp_unlock(qpair);
3085
3086        return result;
3087}
3088EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3089
3090/*
3091 * vmci_qpair_peek() - Peek at the data in the queue.
3092 * @qpair:      Pointer to the queue pair struct.
3093 * @buf:        Pointer to buffer for the data
3094 * @buf_size:   Length of buffer.
3095 * @buf_type:   Buffer type (Unused on Linux).
3096 *
3097 * This is the client interface for peeking into a queue.  (I.e.,
3098 * copy data from the queue without updating the head pointer.)
3099 * Returns number of bytes dequeued or < 0 on error.
3100 */
3101ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3102                        void *buf,
3103                        size_t buf_size,
3104                        int buf_type)
3105{
3106        struct iov_iter to;
3107        struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3108        ssize_t result;
3109
3110        if (!qpair || !buf)
3111                return VMCI_ERROR_INVALID_ARGS;
3112
3113        iov_iter_kvec(&to, READ, &v, 1, buf_size);
3114
3115        qp_lock(qpair);
3116
3117        do {
3118                result = qp_dequeue_locked(qpair->produce_q,
3119                                           qpair->consume_q,
3120                                           qpair->consume_q_size,
3121                                           &to, false);
3122
3123                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3124                    !qp_wait_for_ready_queue(qpair))
3125                        result = VMCI_ERROR_WOULD_BLOCK;
3126
3127        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3128
3129        qp_unlock(qpair);
3130
3131        return result;
3132}
3133EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3134
3135/*
3136 * vmci_qpair_enquev() - Throw data on the queue using iov.
3137 * @qpair:      Pointer to the queue pair struct.
3138 * @iov:        Pointer to buffer containing data
3139 * @iov_size:   Length of buffer.
3140 * @buf_type:   Buffer type (Unused).
3141 *
3142 * This is the client interface for enqueueing data into the queue.
3143 * This function uses IO vectors to handle the work. Returns number
3144 * of bytes enqueued or < 0 on error.
3145 */
3146ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3147                          struct msghdr *msg,
3148                          size_t iov_size,
3149                          int buf_type)
3150{
3151        ssize_t result;
3152
3153        if (!qpair)
3154                return VMCI_ERROR_INVALID_ARGS;
3155
3156        qp_lock(qpair);
3157
3158        do {
3159                result = qp_enqueue_locked(qpair->produce_q,
3160                                           qpair->consume_q,
3161                                           qpair->produce_q_size,
3162                                           &msg->msg_iter);
3163
3164                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3165                    !qp_wait_for_ready_queue(qpair))
3166                        result = VMCI_ERROR_WOULD_BLOCK;
3167
3168        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3169
3170        qp_unlock(qpair);
3171
3172        return result;
3173}
3174EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3175
3176/*
3177 * vmci_qpair_dequev() - Get data from the queue using iov.
3178 * @qpair:      Pointer to the queue pair struct.
3179 * @iov:        Pointer to buffer for the data
3180 * @iov_size:   Length of buffer.
3181 * @buf_type:   Buffer type (Unused).
3182 *
3183 * This is the client interface for dequeueing data from the queue.
3184 * This function uses IO vectors to handle the work. Returns number
3185 * of bytes dequeued or < 0 on error.
3186 */
3187ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3188                          struct msghdr *msg,
3189                          size_t iov_size,
3190                          int buf_type)
3191{
3192        ssize_t result;
3193
3194        if (!qpair)
3195                return VMCI_ERROR_INVALID_ARGS;
3196
3197        qp_lock(qpair);
3198
3199        do {
3200                result = qp_dequeue_locked(qpair->produce_q,
3201                                           qpair->consume_q,
3202                                           qpair->consume_q_size,
3203                                           &msg->msg_iter, true);
3204
3205                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3206                    !qp_wait_for_ready_queue(qpair))
3207                        result = VMCI_ERROR_WOULD_BLOCK;
3208
3209        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3210
3211        qp_unlock(qpair);
3212
3213        return result;
3214}
3215EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3216
3217/*
3218 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3219 * @qpair:      Pointer to the queue pair struct.
3220 * @iov:        Pointer to buffer for the data
3221 * @iov_size:   Length of buffer.
3222 * @buf_type:   Buffer type (Unused on Linux).
3223 *
3224 * This is the client interface for peeking into a queue.  (I.e.,
3225 * copy data from the queue without updating the head pointer.)
3226 * This function uses IO vectors to handle the work. Returns number
3227 * of bytes peeked or < 0 on error.
3228 */
3229ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3230                         struct msghdr *msg,
3231                         size_t iov_size,
3232                         int buf_type)
3233{
3234        ssize_t result;
3235
3236        if (!qpair)
3237                return VMCI_ERROR_INVALID_ARGS;
3238
3239        qp_lock(qpair);
3240
3241        do {
3242                result = qp_dequeue_locked(qpair->produce_q,
3243                                           qpair->consume_q,
3244                                           qpair->consume_q_size,
3245                                           &msg->msg_iter, false);
3246
3247                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3248                    !qp_wait_for_ready_queue(qpair))
3249                        result = VMCI_ERROR_WOULD_BLOCK;
3250
3251        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3252
3253        qp_unlock(qpair);
3254        return result;
3255}
3256EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3257