linux/drivers/net/ethernet/intel/ixgb/ixgb_hw.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2008 Intel Corporation. */
   3
   4/* ixgb_hw.c
   5 * Shared functions for accessing and configuring the adapter
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/pci_ids.h>
  11#include "ixgb_hw.h"
  12#include "ixgb_ids.h"
  13
  14#include <linux/etherdevice.h>
  15
  16/*  Local function prototypes */
  17
  18static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
  19
  20static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
  21
  22static void ixgb_get_bus_info(struct ixgb_hw *hw);
  23
  24static bool ixgb_link_reset(struct ixgb_hw *hw);
  25
  26static void ixgb_optics_reset(struct ixgb_hw *hw);
  27
  28static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
  29
  30static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
  31
  32static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
  33
  34static void ixgb_clear_vfta(struct ixgb_hw *hw);
  35
  36static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
  37
  38static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
  39                                  u32 reg_address,
  40                                  u32 phy_address,
  41                                  u32 device_type);
  42
  43static bool ixgb_setup_fc(struct ixgb_hw *hw);
  44
  45static bool mac_addr_valid(u8 *mac_addr);
  46
  47static u32 ixgb_mac_reset(struct ixgb_hw *hw)
  48{
  49        u32 ctrl_reg;
  50
  51        ctrl_reg =  IXGB_CTRL0_RST |
  52                                IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
  53                                IXGB_CTRL0_SDP2_DIR |
  54                                IXGB_CTRL0_SDP1_DIR |
  55                                IXGB_CTRL0_SDP0_DIR |
  56                                IXGB_CTRL0_SDP3  |   /* Initial value 1101   */
  57                                IXGB_CTRL0_SDP2  |
  58                                IXGB_CTRL0_SDP0;
  59
  60#ifdef HP_ZX1
  61        /* Workaround for 82597EX reset errata */
  62        IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
  63#else
  64        IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
  65#endif
  66
  67        /* Delay a few ms just to allow the reset to complete */
  68        msleep(IXGB_DELAY_AFTER_RESET);
  69        ctrl_reg = IXGB_READ_REG(hw, CTRL0);
  70#ifdef DBG
  71        /* Make sure the self-clearing global reset bit did self clear */
  72        ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
  73#endif
  74
  75        if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
  76                ctrl_reg =  /* Enable interrupt from XFP and SerDes */
  77                           IXGB_CTRL1_GPI0_EN |
  78                           IXGB_CTRL1_SDP6_DIR |
  79                           IXGB_CTRL1_SDP7_DIR |
  80                           IXGB_CTRL1_SDP6 |
  81                           IXGB_CTRL1_SDP7;
  82                IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
  83                ixgb_optics_reset_bcm(hw);
  84        }
  85
  86        if (hw->phy_type == ixgb_phy_type_txn17401)
  87                ixgb_optics_reset(hw);
  88
  89        return ctrl_reg;
  90}
  91
  92/******************************************************************************
  93 * Reset the transmit and receive units; mask and clear all interrupts.
  94 *
  95 * hw - Struct containing variables accessed by shared code
  96 *****************************************************************************/
  97bool
  98ixgb_adapter_stop(struct ixgb_hw *hw)
  99{
 100        u32 ctrl_reg;
 101
 102        ENTER();
 103
 104        /* If we are stopped or resetting exit gracefully and wait to be
 105         * started again before accessing the hardware.
 106         */
 107        if (hw->adapter_stopped) {
 108                pr_debug("Exiting because the adapter is already stopped!!!\n");
 109                return false;
 110        }
 111
 112        /* Set the Adapter Stopped flag so other driver functions stop
 113         * touching the Hardware.
 114         */
 115        hw->adapter_stopped = true;
 116
 117        /* Clear interrupt mask to stop board from generating interrupts */
 118        pr_debug("Masking off all interrupts\n");
 119        IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
 120
 121        /* Disable the Transmit and Receive units.  Then delay to allow
 122         * any pending transactions to complete before we hit the MAC with
 123         * the global reset.
 124         */
 125        IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
 126        IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
 127        IXGB_WRITE_FLUSH(hw);
 128        msleep(IXGB_DELAY_BEFORE_RESET);
 129
 130        /* Issue a global reset to the MAC.  This will reset the chip's
 131         * transmit, receive, DMA, and link units.  It will not effect
 132         * the current PCI configuration.  The global reset bit is self-
 133         * clearing, and should clear within a microsecond.
 134         */
 135        pr_debug("Issuing a global reset to MAC\n");
 136
 137        ctrl_reg = ixgb_mac_reset(hw);
 138
 139        /* Clear interrupt mask to stop board from generating interrupts */
 140        pr_debug("Masking off all interrupts\n");
 141        IXGB_WRITE_REG(hw, IMC, 0xffffffff);
 142
 143        /* Clear any pending interrupt events. */
 144        IXGB_READ_REG(hw, ICR);
 145
 146        return ctrl_reg & IXGB_CTRL0_RST;
 147}
 148
 149
 150/******************************************************************************
 151 * Identifies the vendor of the optics module on the adapter.  The SR adapters
 152 * support two different types of XPAK optics, so it is necessary to determine
 153 * which optics are present before applying any optics-specific workarounds.
 154 *
 155 * hw - Struct containing variables accessed by shared code.
 156 *
 157 * Returns: the vendor of the XPAK optics module.
 158 *****************************************************************************/
 159static ixgb_xpak_vendor
 160ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
 161{
 162        u32 i;
 163        u16 vendor_name[5];
 164        ixgb_xpak_vendor xpak_vendor;
 165
 166        ENTER();
 167
 168        /* Read the first few bytes of the vendor string from the XPAK NVR
 169         * registers.  These are standard XENPAK/XPAK registers, so all XPAK
 170         * devices should implement them. */
 171        for (i = 0; i < 5; i++) {
 172                vendor_name[i] = ixgb_read_phy_reg(hw,
 173                                                   MDIO_PMA_PMD_XPAK_VENDOR_NAME
 174                                                   + i, IXGB_PHY_ADDRESS,
 175                                                   MDIO_MMD_PMAPMD);
 176        }
 177
 178        /* Determine the actual vendor */
 179        if (vendor_name[0] == 'I' &&
 180            vendor_name[1] == 'N' &&
 181            vendor_name[2] == 'T' &&
 182            vendor_name[3] == 'E' && vendor_name[4] == 'L') {
 183                xpak_vendor = ixgb_xpak_vendor_intel;
 184        } else {
 185                xpak_vendor = ixgb_xpak_vendor_infineon;
 186        }
 187
 188        return xpak_vendor;
 189}
 190
 191/******************************************************************************
 192 * Determine the physical layer module on the adapter.
 193 *
 194 * hw - Struct containing variables accessed by shared code.  The device_id
 195 *      field must be (correctly) populated before calling this routine.
 196 *
 197 * Returns: the phy type of the adapter.
 198 *****************************************************************************/
 199static ixgb_phy_type
 200ixgb_identify_phy(struct ixgb_hw *hw)
 201{
 202        ixgb_phy_type phy_type;
 203        ixgb_xpak_vendor xpak_vendor;
 204
 205        ENTER();
 206
 207        /* Infer the transceiver/phy type from the device id */
 208        switch (hw->device_id) {
 209        case IXGB_DEVICE_ID_82597EX:
 210                pr_debug("Identified TXN17401 optics\n");
 211                phy_type = ixgb_phy_type_txn17401;
 212                break;
 213
 214        case IXGB_DEVICE_ID_82597EX_SR:
 215                /* The SR adapters carry two different types of XPAK optics
 216                 * modules; read the vendor identifier to determine the exact
 217                 * type of optics. */
 218                xpak_vendor = ixgb_identify_xpak_vendor(hw);
 219                if (xpak_vendor == ixgb_xpak_vendor_intel) {
 220                        pr_debug("Identified TXN17201 optics\n");
 221                        phy_type = ixgb_phy_type_txn17201;
 222                } else {
 223                        pr_debug("Identified G6005 optics\n");
 224                        phy_type = ixgb_phy_type_g6005;
 225                }
 226                break;
 227        case IXGB_DEVICE_ID_82597EX_LR:
 228                pr_debug("Identified G6104 optics\n");
 229                phy_type = ixgb_phy_type_g6104;
 230                break;
 231        case IXGB_DEVICE_ID_82597EX_CX4:
 232                pr_debug("Identified CX4\n");
 233                xpak_vendor = ixgb_identify_xpak_vendor(hw);
 234                if (xpak_vendor == ixgb_xpak_vendor_intel) {
 235                        pr_debug("Identified TXN17201 optics\n");
 236                        phy_type = ixgb_phy_type_txn17201;
 237                } else {
 238                        pr_debug("Identified G6005 optics\n");
 239                        phy_type = ixgb_phy_type_g6005;
 240                }
 241                break;
 242        default:
 243                pr_debug("Unknown physical layer module\n");
 244                phy_type = ixgb_phy_type_unknown;
 245                break;
 246        }
 247
 248        /* update phy type for sun specific board */
 249        if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
 250                phy_type = ixgb_phy_type_bcm;
 251
 252        return phy_type;
 253}
 254
 255/******************************************************************************
 256 * Performs basic configuration of the adapter.
 257 *
 258 * hw - Struct containing variables accessed by shared code
 259 *
 260 * Resets the controller.
 261 * Reads and validates the EEPROM.
 262 * Initializes the receive address registers.
 263 * Initializes the multicast table.
 264 * Clears all on-chip counters.
 265 * Calls routine to setup flow control settings.
 266 * Leaves the transmit and receive units disabled and uninitialized.
 267 *
 268 * Returns:
 269 *      true if successful,
 270 *      false if unrecoverable problems were encountered.
 271 *****************************************************************************/
 272bool
 273ixgb_init_hw(struct ixgb_hw *hw)
 274{
 275        u32 i;
 276        bool status;
 277
 278        ENTER();
 279
 280        /* Issue a global reset to the MAC.  This will reset the chip's
 281         * transmit, receive, DMA, and link units.  It will not effect
 282         * the current PCI configuration.  The global reset bit is self-
 283         * clearing, and should clear within a microsecond.
 284         */
 285        pr_debug("Issuing a global reset to MAC\n");
 286
 287        ixgb_mac_reset(hw);
 288
 289        pr_debug("Issuing an EE reset to MAC\n");
 290#ifdef HP_ZX1
 291        /* Workaround for 82597EX reset errata */
 292        IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
 293#else
 294        IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
 295#endif
 296
 297        /* Delay a few ms just to allow the reset to complete */
 298        msleep(IXGB_DELAY_AFTER_EE_RESET);
 299
 300        if (!ixgb_get_eeprom_data(hw))
 301                return false;
 302
 303        /* Use the device id to determine the type of phy/transceiver. */
 304        hw->device_id = ixgb_get_ee_device_id(hw);
 305        hw->phy_type = ixgb_identify_phy(hw);
 306
 307        /* Setup the receive addresses.
 308         * Receive Address Registers (RARs 0 - 15).
 309         */
 310        ixgb_init_rx_addrs(hw);
 311
 312        /*
 313         * Check that a valid MAC address has been set.
 314         * If it is not valid, we fail hardware init.
 315         */
 316        if (!mac_addr_valid(hw->curr_mac_addr)) {
 317                pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
 318                return(false);
 319        }
 320
 321        /* tell the routines in this file they can access hardware again */
 322        hw->adapter_stopped = false;
 323
 324        /* Fill in the bus_info structure */
 325        ixgb_get_bus_info(hw);
 326
 327        /* Zero out the Multicast HASH table */
 328        pr_debug("Zeroing the MTA\n");
 329        for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
 330                IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
 331
 332        /* Zero out the VLAN Filter Table Array */
 333        ixgb_clear_vfta(hw);
 334
 335        /* Zero all of the hardware counters */
 336        ixgb_clear_hw_cntrs(hw);
 337
 338        /* Call a subroutine to setup flow control. */
 339        status = ixgb_setup_fc(hw);
 340
 341        /* 82597EX errata: Call check-for-link in case lane deskew is locked */
 342        ixgb_check_for_link(hw);
 343
 344        return status;
 345}
 346
 347/******************************************************************************
 348 * Initializes receive address filters.
 349 *
 350 * hw - Struct containing variables accessed by shared code
 351 *
 352 * Places the MAC address in receive address register 0 and clears the rest
 353 * of the receive address registers. Clears the multicast table. Assumes
 354 * the receiver is in reset when the routine is called.
 355 *****************************************************************************/
 356static void
 357ixgb_init_rx_addrs(struct ixgb_hw *hw)
 358{
 359        u32 i;
 360
 361        ENTER();
 362
 363        /*
 364         * If the current mac address is valid, assume it is a software override
 365         * to the permanent address.
 366         * Otherwise, use the permanent address from the eeprom.
 367         */
 368        if (!mac_addr_valid(hw->curr_mac_addr)) {
 369
 370                /* Get the MAC address from the eeprom for later reference */
 371                ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
 372
 373                pr_debug("Keeping Permanent MAC Addr = %pM\n",
 374                         hw->curr_mac_addr);
 375        } else {
 376
 377                /* Setup the receive address. */
 378                pr_debug("Overriding MAC Address in RAR[0]\n");
 379                pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
 380
 381                ixgb_rar_set(hw, hw->curr_mac_addr, 0);
 382        }
 383
 384        /* Zero out the other 15 receive addresses. */
 385        pr_debug("Clearing RAR[1-15]\n");
 386        for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
 387                /* Write high reg first to disable the AV bit first */
 388                IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 389                IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 390        }
 391}
 392
 393/******************************************************************************
 394 * Updates the MAC's list of multicast addresses.
 395 *
 396 * hw - Struct containing variables accessed by shared code
 397 * mc_addr_list - the list of new multicast addresses
 398 * mc_addr_count - number of addresses
 399 * pad - number of bytes between addresses in the list
 400 *
 401 * The given list replaces any existing list. Clears the last 15 receive
 402 * address registers and the multicast table. Uses receive address registers
 403 * for the first 15 multicast addresses, and hashes the rest into the
 404 * multicast table.
 405 *****************************************************************************/
 406void
 407ixgb_mc_addr_list_update(struct ixgb_hw *hw,
 408                          u8 *mc_addr_list,
 409                          u32 mc_addr_count,
 410                          u32 pad)
 411{
 412        u32 hash_value;
 413        u32 i;
 414        u32 rar_used_count = 1;         /* RAR[0] is used for our MAC address */
 415        u8 *mca;
 416
 417        ENTER();
 418
 419        /* Set the new number of MC addresses that we are being requested to use. */
 420        hw->num_mc_addrs = mc_addr_count;
 421
 422        /* Clear RAR[1-15] */
 423        pr_debug("Clearing RAR[1-15]\n");
 424        for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
 425                IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 426                IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 427        }
 428
 429        /* Clear the MTA */
 430        pr_debug("Clearing MTA\n");
 431        for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
 432                IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
 433
 434        /* Add the new addresses */
 435        mca = mc_addr_list;
 436        for (i = 0; i < mc_addr_count; i++) {
 437                pr_debug("Adding the multicast addresses:\n");
 438                pr_debug("MC Addr #%d = %pM\n", i, mca);
 439
 440                /* Place this multicast address in the RAR if there is room, *
 441                 * else put it in the MTA
 442                 */
 443                if (rar_used_count < IXGB_RAR_ENTRIES) {
 444                        ixgb_rar_set(hw, mca, rar_used_count);
 445                        pr_debug("Added a multicast address to RAR[%d]\n", i);
 446                        rar_used_count++;
 447                } else {
 448                        hash_value = ixgb_hash_mc_addr(hw, mca);
 449
 450                        pr_debug("Hash value = 0x%03X\n", hash_value);
 451
 452                        ixgb_mta_set(hw, hash_value);
 453                }
 454
 455                mca += ETH_ALEN + pad;
 456        }
 457
 458        pr_debug("MC Update Complete\n");
 459}
 460
 461/******************************************************************************
 462 * Hashes an address to determine its location in the multicast table
 463 *
 464 * hw - Struct containing variables accessed by shared code
 465 * mc_addr - the multicast address to hash
 466 *
 467 * Returns:
 468 *      The hash value
 469 *****************************************************************************/
 470static u32
 471ixgb_hash_mc_addr(struct ixgb_hw *hw,
 472                   u8 *mc_addr)
 473{
 474        u32 hash_value = 0;
 475
 476        ENTER();
 477
 478        /* The portion of the address that is used for the hash table is
 479         * determined by the mc_filter_type setting.
 480         */
 481        switch (hw->mc_filter_type) {
 482                /* [0] [1] [2] [3] [4] [5]
 483                 * 01  AA  00  12  34  56
 484                 * LSB                 MSB - According to H/W docs */
 485        case 0:
 486                /* [47:36] i.e. 0x563 for above example address */
 487                hash_value =
 488                    ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
 489                break;
 490        case 1:         /* [46:35] i.e. 0xAC6 for above example address */
 491                hash_value =
 492                    ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
 493                break;
 494        case 2:         /* [45:34] i.e. 0x5D8 for above example address */
 495                hash_value =
 496                    ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
 497                break;
 498        case 3:         /* [43:32] i.e. 0x634 for above example address */
 499                hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
 500                break;
 501        default:
 502                /* Invalid mc_filter_type, what should we do? */
 503                pr_debug("MC filter type param set incorrectly\n");
 504                ASSERT(0);
 505                break;
 506        }
 507
 508        hash_value &= 0xFFF;
 509        return hash_value;
 510}
 511
 512/******************************************************************************
 513 * Sets the bit in the multicast table corresponding to the hash value.
 514 *
 515 * hw - Struct containing variables accessed by shared code
 516 * hash_value - Multicast address hash value
 517 *****************************************************************************/
 518static void
 519ixgb_mta_set(struct ixgb_hw *hw,
 520                  u32 hash_value)
 521{
 522        u32 hash_bit, hash_reg;
 523        u32 mta_reg;
 524
 525        /* The MTA is a register array of 128 32-bit registers.
 526         * It is treated like an array of 4096 bits.  We want to set
 527         * bit BitArray[hash_value]. So we figure out what register
 528         * the bit is in, read it, OR in the new bit, then write
 529         * back the new value.  The register is determined by the
 530         * upper 7 bits of the hash value and the bit within that
 531         * register are determined by the lower 5 bits of the value.
 532         */
 533        hash_reg = (hash_value >> 5) & 0x7F;
 534        hash_bit = hash_value & 0x1F;
 535
 536        mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
 537
 538        mta_reg |= (1 << hash_bit);
 539
 540        IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
 541}
 542
 543/******************************************************************************
 544 * Puts an ethernet address into a receive address register.
 545 *
 546 * hw - Struct containing variables accessed by shared code
 547 * addr - Address to put into receive address register
 548 * index - Receive address register to write
 549 *****************************************************************************/
 550void
 551ixgb_rar_set(struct ixgb_hw *hw,
 552                  u8 *addr,
 553                  u32 index)
 554{
 555        u32 rar_low, rar_high;
 556
 557        ENTER();
 558
 559        /* HW expects these in little endian so we reverse the byte order
 560         * from network order (big endian) to little endian
 561         */
 562        rar_low = ((u32) addr[0] |
 563                   ((u32)addr[1] << 8) |
 564                   ((u32)addr[2] << 16) |
 565                   ((u32)addr[3] << 24));
 566
 567        rar_high = ((u32) addr[4] |
 568                        ((u32)addr[5] << 8) |
 569                        IXGB_RAH_AV);
 570
 571        IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
 572        IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
 573}
 574
 575/******************************************************************************
 576 * Writes a value to the specified offset in the VLAN filter table.
 577 *
 578 * hw - Struct containing variables accessed by shared code
 579 * offset - Offset in VLAN filer table to write
 580 * value - Value to write into VLAN filter table
 581 *****************************************************************************/
 582void
 583ixgb_write_vfta(struct ixgb_hw *hw,
 584                 u32 offset,
 585                 u32 value)
 586{
 587        IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
 588}
 589
 590/******************************************************************************
 591 * Clears the VLAN filer table
 592 *
 593 * hw - Struct containing variables accessed by shared code
 594 *****************************************************************************/
 595static void
 596ixgb_clear_vfta(struct ixgb_hw *hw)
 597{
 598        u32 offset;
 599
 600        for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
 601                IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 602}
 603
 604/******************************************************************************
 605 * Configures the flow control settings based on SW configuration.
 606 *
 607 * hw - Struct containing variables accessed by shared code
 608 *****************************************************************************/
 609
 610static bool
 611ixgb_setup_fc(struct ixgb_hw *hw)
 612{
 613        u32 ctrl_reg;
 614        u32 pap_reg = 0;   /* by default, assume no pause time */
 615        bool status = true;
 616
 617        ENTER();
 618
 619        /* Get the current control reg 0 settings */
 620        ctrl_reg = IXGB_READ_REG(hw, CTRL0);
 621
 622        /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
 623        ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
 624
 625        /* The possible values of the "flow_control" parameter are:
 626         *      0:  Flow control is completely disabled
 627         *      1:  Rx flow control is enabled (we can receive pause frames
 628         *          but not send pause frames).
 629         *      2:  Tx flow control is enabled (we can send pause frames
 630         *          but we do not support receiving pause frames).
 631         *      3:  Both Rx and TX flow control (symmetric) are enabled.
 632         *  other:  Invalid.
 633         */
 634        switch (hw->fc.type) {
 635        case ixgb_fc_none:      /* 0 */
 636                /* Set CMDC bit to disable Rx Flow control */
 637                ctrl_reg |= (IXGB_CTRL0_CMDC);
 638                break;
 639        case ixgb_fc_rx_pause:  /* 1 */
 640                /* RX Flow control is enabled, and TX Flow control is
 641                 * disabled.
 642                 */
 643                ctrl_reg |= (IXGB_CTRL0_RPE);
 644                break;
 645        case ixgb_fc_tx_pause:  /* 2 */
 646                /* TX Flow control is enabled, and RX Flow control is
 647                 * disabled, by a software over-ride.
 648                 */
 649                ctrl_reg |= (IXGB_CTRL0_TPE);
 650                pap_reg = hw->fc.pause_time;
 651                break;
 652        case ixgb_fc_full:      /* 3 */
 653                /* Flow control (both RX and TX) is enabled by a software
 654                 * over-ride.
 655                 */
 656                ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
 657                pap_reg = hw->fc.pause_time;
 658                break;
 659        default:
 660                /* We should never get here.  The value should be 0-3. */
 661                pr_debug("Flow control param set incorrectly\n");
 662                ASSERT(0);
 663                break;
 664        }
 665
 666        /* Write the new settings */
 667        IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
 668
 669        if (pap_reg != 0)
 670                IXGB_WRITE_REG(hw, PAP, pap_reg);
 671
 672        /* Set the flow control receive threshold registers.  Normally,
 673         * these registers will be set to a default threshold that may be
 674         * adjusted later by the driver's runtime code.  However, if the
 675         * ability to transmit pause frames in not enabled, then these
 676         * registers will be set to 0.
 677         */
 678        if (!(hw->fc.type & ixgb_fc_tx_pause)) {
 679                IXGB_WRITE_REG(hw, FCRTL, 0);
 680                IXGB_WRITE_REG(hw, FCRTH, 0);
 681        } else {
 682           /* We need to set up the Receive Threshold high and low water
 683            * marks as well as (optionally) enabling the transmission of XON
 684            * frames. */
 685                if (hw->fc.send_xon) {
 686                        IXGB_WRITE_REG(hw, FCRTL,
 687                                (hw->fc.low_water | IXGB_FCRTL_XONE));
 688                } else {
 689                        IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
 690                }
 691                IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
 692        }
 693        return status;
 694}
 695
 696/******************************************************************************
 697 * Reads a word from a device over the Management Data Interface (MDI) bus.
 698 * This interface is used to manage Physical layer devices.
 699 *
 700 * hw          - Struct containing variables accessed by hw code
 701 * reg_address - Offset of device register being read.
 702 * phy_address - Address of device on MDI.
 703 *
 704 * Returns:  Data word (16 bits) from MDI device.
 705 *
 706 * The 82597EX has support for several MDI access methods.  This routine
 707 * uses the new protocol MDI Single Command and Address Operation.
 708 * This requires that first an address cycle command is sent, followed by a
 709 * read command.
 710 *****************************************************************************/
 711static u16
 712ixgb_read_phy_reg(struct ixgb_hw *hw,
 713                u32 reg_address,
 714                u32 phy_address,
 715                u32 device_type)
 716{
 717        u32 i;
 718        u32 data;
 719        u32 command = 0;
 720
 721        ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
 722        ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
 723        ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
 724
 725        /* Setup and write the address cycle command */
 726        command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
 727                   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 728                   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 729                   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
 730
 731        IXGB_WRITE_REG(hw, MSCA, command);
 732
 733    /**************************************************************
 734    ** Check every 10 usec to see if the address cycle completed
 735    ** The COMMAND bit will clear when the operation is complete.
 736    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
 737    ** from the CPU Write to the Ready bit assertion.
 738    **************************************************************/
 739
 740        for (i = 0; i < 10; i++)
 741        {
 742                udelay(10);
 743
 744                command = IXGB_READ_REG(hw, MSCA);
 745
 746                if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 747                        break;
 748        }
 749
 750        ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 751
 752        /* Address cycle complete, setup and write the read command */
 753        command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
 754                   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 755                   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 756                   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
 757
 758        IXGB_WRITE_REG(hw, MSCA, command);
 759
 760    /**************************************************************
 761    ** Check every 10 usec to see if the read command completed
 762    ** The COMMAND bit will clear when the operation is complete.
 763    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
 764    ** from the CPU Write to the Ready bit assertion.
 765    **************************************************************/
 766
 767        for (i = 0; i < 10; i++)
 768        {
 769                udelay(10);
 770
 771                command = IXGB_READ_REG(hw, MSCA);
 772
 773                if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 774                        break;
 775        }
 776
 777        ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 778
 779        /* Operation is complete, get the data from the MDIO Read/Write Data
 780         * register and return.
 781         */
 782        data = IXGB_READ_REG(hw, MSRWD);
 783        data >>= IXGB_MSRWD_READ_DATA_SHIFT;
 784        return((u16) data);
 785}
 786
 787/******************************************************************************
 788 * Writes a word to a device over the Management Data Interface (MDI) bus.
 789 * This interface is used to manage Physical layer devices.
 790 *
 791 * hw          - Struct containing variables accessed by hw code
 792 * reg_address - Offset of device register being read.
 793 * phy_address - Address of device on MDI.
 794 * device_type - Also known as the Device ID or DID.
 795 * data        - 16-bit value to be written
 796 *
 797 * Returns:  void.
 798 *
 799 * The 82597EX has support for several MDI access methods.  This routine
 800 * uses the new protocol MDI Single Command and Address Operation.
 801 * This requires that first an address cycle command is sent, followed by a
 802 * write command.
 803 *****************************************************************************/
 804static void
 805ixgb_write_phy_reg(struct ixgb_hw *hw,
 806                        u32 reg_address,
 807                        u32 phy_address,
 808                        u32 device_type,
 809                        u16 data)
 810{
 811        u32 i;
 812        u32 command = 0;
 813
 814        ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
 815        ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
 816        ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
 817
 818        /* Put the data in the MDIO Read/Write Data register */
 819        IXGB_WRITE_REG(hw, MSRWD, (u32)data);
 820
 821        /* Setup and write the address cycle command */
 822        command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
 823                           (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 824                           (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 825                           (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
 826
 827        IXGB_WRITE_REG(hw, MSCA, command);
 828
 829        /**************************************************************
 830        ** Check every 10 usec to see if the address cycle completed
 831        ** The COMMAND bit will clear when the operation is complete.
 832        ** This may take as long as 64 usecs (we'll wait 100 usecs max)
 833        ** from the CPU Write to the Ready bit assertion.
 834        **************************************************************/
 835
 836        for (i = 0; i < 10; i++)
 837        {
 838                udelay(10);
 839
 840                command = IXGB_READ_REG(hw, MSCA);
 841
 842                if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 843                        break;
 844        }
 845
 846        ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 847
 848        /* Address cycle complete, setup and write the write command */
 849        command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
 850                           (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 851                           (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 852                           (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
 853
 854        IXGB_WRITE_REG(hw, MSCA, command);
 855
 856        /**************************************************************
 857        ** Check every 10 usec to see if the read command completed
 858        ** The COMMAND bit will clear when the operation is complete.
 859        ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
 860        ** from the CPU Write to the Ready bit assertion.
 861        **************************************************************/
 862
 863        for (i = 0; i < 10; i++)
 864        {
 865                udelay(10);
 866
 867                command = IXGB_READ_REG(hw, MSCA);
 868
 869                if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 870                        break;
 871        }
 872
 873        ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 874
 875        /* Operation is complete, return. */
 876}
 877
 878/******************************************************************************
 879 * Checks to see if the link status of the hardware has changed.
 880 *
 881 * hw - Struct containing variables accessed by hw code
 882 *
 883 * Called by any function that needs to check the link status of the adapter.
 884 *****************************************************************************/
 885void
 886ixgb_check_for_link(struct ixgb_hw *hw)
 887{
 888        u32 status_reg;
 889        u32 xpcss_reg;
 890
 891        ENTER();
 892
 893        xpcss_reg = IXGB_READ_REG(hw, XPCSS);
 894        status_reg = IXGB_READ_REG(hw, STATUS);
 895
 896        if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
 897            (status_reg & IXGB_STATUS_LU)) {
 898                hw->link_up = true;
 899        } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
 900                   (status_reg & IXGB_STATUS_LU)) {
 901                pr_debug("XPCSS Not Aligned while Status:LU is set\n");
 902                hw->link_up = ixgb_link_reset(hw);
 903        } else {
 904                /*
 905                 * 82597EX errata.  Since the lane deskew problem may prevent
 906                 * link, reset the link before reporting link down.
 907                 */
 908                hw->link_up = ixgb_link_reset(hw);
 909        }
 910        /*  Anything else for 10 Gig?? */
 911}
 912
 913/******************************************************************************
 914 * Check for a bad link condition that may have occurred.
 915 * The indication is that the RFC / LFC registers may be incrementing
 916 * continually.  A full adapter reset is required to recover.
 917 *
 918 * hw - Struct containing variables accessed by hw code
 919 *
 920 * Called by any function that needs to check the link status of the adapter.
 921 *****************************************************************************/
 922bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
 923{
 924        u32 newLFC, newRFC;
 925        bool bad_link_returncode = false;
 926
 927        if (hw->phy_type == ixgb_phy_type_txn17401) {
 928                newLFC = IXGB_READ_REG(hw, LFC);
 929                newRFC = IXGB_READ_REG(hw, RFC);
 930                if ((hw->lastLFC + 250 < newLFC)
 931                    || (hw->lastRFC + 250 < newRFC)) {
 932                        pr_debug("BAD LINK! too many LFC/RFC since last check\n");
 933                        bad_link_returncode = true;
 934                }
 935                hw->lastLFC = newLFC;
 936                hw->lastRFC = newRFC;
 937        }
 938
 939        return bad_link_returncode;
 940}
 941
 942/******************************************************************************
 943 * Clears all hardware statistics counters.
 944 *
 945 * hw - Struct containing variables accessed by shared code
 946 *****************************************************************************/
 947static void
 948ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
 949{
 950        ENTER();
 951
 952        /* if we are stopped or resetting exit gracefully */
 953        if (hw->adapter_stopped) {
 954                pr_debug("Exiting because the adapter is stopped!!!\n");
 955                return;
 956        }
 957
 958        IXGB_READ_REG(hw, TPRL);
 959        IXGB_READ_REG(hw, TPRH);
 960        IXGB_READ_REG(hw, GPRCL);
 961        IXGB_READ_REG(hw, GPRCH);
 962        IXGB_READ_REG(hw, BPRCL);
 963        IXGB_READ_REG(hw, BPRCH);
 964        IXGB_READ_REG(hw, MPRCL);
 965        IXGB_READ_REG(hw, MPRCH);
 966        IXGB_READ_REG(hw, UPRCL);
 967        IXGB_READ_REG(hw, UPRCH);
 968        IXGB_READ_REG(hw, VPRCL);
 969        IXGB_READ_REG(hw, VPRCH);
 970        IXGB_READ_REG(hw, JPRCL);
 971        IXGB_READ_REG(hw, JPRCH);
 972        IXGB_READ_REG(hw, GORCL);
 973        IXGB_READ_REG(hw, GORCH);
 974        IXGB_READ_REG(hw, TORL);
 975        IXGB_READ_REG(hw, TORH);
 976        IXGB_READ_REG(hw, RNBC);
 977        IXGB_READ_REG(hw, RUC);
 978        IXGB_READ_REG(hw, ROC);
 979        IXGB_READ_REG(hw, RLEC);
 980        IXGB_READ_REG(hw, CRCERRS);
 981        IXGB_READ_REG(hw, ICBC);
 982        IXGB_READ_REG(hw, ECBC);
 983        IXGB_READ_REG(hw, MPC);
 984        IXGB_READ_REG(hw, TPTL);
 985        IXGB_READ_REG(hw, TPTH);
 986        IXGB_READ_REG(hw, GPTCL);
 987        IXGB_READ_REG(hw, GPTCH);
 988        IXGB_READ_REG(hw, BPTCL);
 989        IXGB_READ_REG(hw, BPTCH);
 990        IXGB_READ_REG(hw, MPTCL);
 991        IXGB_READ_REG(hw, MPTCH);
 992        IXGB_READ_REG(hw, UPTCL);
 993        IXGB_READ_REG(hw, UPTCH);
 994        IXGB_READ_REG(hw, VPTCL);
 995        IXGB_READ_REG(hw, VPTCH);
 996        IXGB_READ_REG(hw, JPTCL);
 997        IXGB_READ_REG(hw, JPTCH);
 998        IXGB_READ_REG(hw, GOTCL);
 999        IXGB_READ_REG(hw, GOTCH);
1000        IXGB_READ_REG(hw, TOTL);
1001        IXGB_READ_REG(hw, TOTH);
1002        IXGB_READ_REG(hw, DC);
1003        IXGB_READ_REG(hw, PLT64C);
1004        IXGB_READ_REG(hw, TSCTC);
1005        IXGB_READ_REG(hw, TSCTFC);
1006        IXGB_READ_REG(hw, IBIC);
1007        IXGB_READ_REG(hw, RFC);
1008        IXGB_READ_REG(hw, LFC);
1009        IXGB_READ_REG(hw, PFRC);
1010        IXGB_READ_REG(hw, PFTC);
1011        IXGB_READ_REG(hw, MCFRC);
1012        IXGB_READ_REG(hw, MCFTC);
1013        IXGB_READ_REG(hw, XONRXC);
1014        IXGB_READ_REG(hw, XONTXC);
1015        IXGB_READ_REG(hw, XOFFRXC);
1016        IXGB_READ_REG(hw, XOFFTXC);
1017        IXGB_READ_REG(hw, RJC);
1018}
1019
1020/******************************************************************************
1021 * Turns on the software controllable LED
1022 *
1023 * hw - Struct containing variables accessed by shared code
1024 *****************************************************************************/
1025void
1026ixgb_led_on(struct ixgb_hw *hw)
1027{
1028        u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1029
1030        /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1031        ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1032        IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1033}
1034
1035/******************************************************************************
1036 * Turns off the software controllable LED
1037 *
1038 * hw - Struct containing variables accessed by shared code
1039 *****************************************************************************/
1040void
1041ixgb_led_off(struct ixgb_hw *hw)
1042{
1043        u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1044
1045        /* To turn off the LED, set software-definable pin 0 (SDP0). */
1046        ctrl0_reg |= IXGB_CTRL0_SDP0;
1047        IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1048}
1049
1050/******************************************************************************
1051 * Gets the current PCI bus type, speed, and width of the hardware
1052 *
1053 * hw - Struct containing variables accessed by shared code
1054 *****************************************************************************/
1055static void
1056ixgb_get_bus_info(struct ixgb_hw *hw)
1057{
1058        u32 status_reg;
1059
1060        status_reg = IXGB_READ_REG(hw, STATUS);
1061
1062        hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1063                ixgb_bus_type_pcix : ixgb_bus_type_pci;
1064
1065        if (hw->bus.type == ixgb_bus_type_pci) {
1066                hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1067                        ixgb_bus_speed_66 : ixgb_bus_speed_33;
1068        } else {
1069                switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1070                case IXGB_STATUS_PCIX_SPD_66:
1071                        hw->bus.speed = ixgb_bus_speed_66;
1072                        break;
1073                case IXGB_STATUS_PCIX_SPD_100:
1074                        hw->bus.speed = ixgb_bus_speed_100;
1075                        break;
1076                case IXGB_STATUS_PCIX_SPD_133:
1077                        hw->bus.speed = ixgb_bus_speed_133;
1078                        break;
1079                default:
1080                        hw->bus.speed = ixgb_bus_speed_reserved;
1081                        break;
1082                }
1083        }
1084
1085        hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1086                ixgb_bus_width_64 : ixgb_bus_width_32;
1087}
1088
1089/******************************************************************************
1090 * Tests a MAC address to ensure it is a valid Individual Address
1091 *
1092 * mac_addr - pointer to MAC address.
1093 *
1094 *****************************************************************************/
1095static bool
1096mac_addr_valid(u8 *mac_addr)
1097{
1098        bool is_valid = true;
1099        ENTER();
1100
1101        /* Make sure it is not a multicast address */
1102        if (is_multicast_ether_addr(mac_addr)) {
1103                pr_debug("MAC address is multicast\n");
1104                is_valid = false;
1105        }
1106        /* Not a broadcast address */
1107        else if (is_broadcast_ether_addr(mac_addr)) {
1108                pr_debug("MAC address is broadcast\n");
1109                is_valid = false;
1110        }
1111        /* Reject the zero address */
1112        else if (is_zero_ether_addr(mac_addr)) {
1113                pr_debug("MAC address is all zeros\n");
1114                is_valid = false;
1115        }
1116        return is_valid;
1117}
1118
1119/******************************************************************************
1120 * Resets the 10GbE link.  Waits the settle time and returns the state of
1121 * the link.
1122 *
1123 * hw - Struct containing variables accessed by shared code
1124 *****************************************************************************/
1125static bool
1126ixgb_link_reset(struct ixgb_hw *hw)
1127{
1128        bool link_status = false;
1129        u8 wait_retries = MAX_RESET_ITERATIONS;
1130        u8 lrst_retries = MAX_RESET_ITERATIONS;
1131
1132        do {
1133                /* Reset the link */
1134                IXGB_WRITE_REG(hw, CTRL0,
1135                               IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1136
1137                /* Wait for link-up and lane re-alignment */
1138                do {
1139                        udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1140                        link_status =
1141                            ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1142                             && (IXGB_READ_REG(hw, XPCSS) &
1143                                 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1144                } while (!link_status && --wait_retries);
1145
1146        } while (!link_status && --lrst_retries);
1147
1148        return link_status;
1149}
1150
1151/******************************************************************************
1152 * Resets the 10GbE optics module.
1153 *
1154 * hw - Struct containing variables accessed by shared code
1155 *****************************************************************************/
1156static void
1157ixgb_optics_reset(struct ixgb_hw *hw)
1158{
1159        if (hw->phy_type == ixgb_phy_type_txn17401) {
1160                ixgb_write_phy_reg(hw,
1161                                   MDIO_CTRL1,
1162                                   IXGB_PHY_ADDRESS,
1163                                   MDIO_MMD_PMAPMD,
1164                                   MDIO_CTRL1_RESET);
1165
1166                ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD);
1167        }
1168}
1169
1170/******************************************************************************
1171 * Resets the 10GbE optics module for Sun variant NIC.
1172 *
1173 * hw - Struct containing variables accessed by shared code
1174 *****************************************************************************/
1175
1176#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
1177#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
1178#define   IXGB_BCM8704_USER_CTRL_REG                0xC800
1179#define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
1180#define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
1181#define   IXGB_SUN_PHY_ADDRESS                      0x0000
1182#define   IXGB_SUN_PHY_RESET_DELAY                     305
1183
1184static void
1185ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1186{
1187        u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1188        ctrl &= ~IXGB_CTRL0_SDP2;
1189        ctrl |= IXGB_CTRL0_SDP3;
1190        IXGB_WRITE_REG(hw, CTRL0, ctrl);
1191        IXGB_WRITE_FLUSH(hw);
1192
1193        /* SerDes needs extra delay */
1194        msleep(IXGB_SUN_PHY_RESET_DELAY);
1195
1196        /* Broadcom 7408L configuration */
1197        /* Reference clock config */
1198        ixgb_write_phy_reg(hw,
1199                           IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1200                           IXGB_SUN_PHY_ADDRESS,
1201                           IXGB_BCM8704_USER_DEV3_ADDR,
1202                           IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1203        /*  we must read the registers twice */
1204        ixgb_read_phy_reg(hw,
1205                          IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1206                          IXGB_SUN_PHY_ADDRESS,
1207                          IXGB_BCM8704_USER_DEV3_ADDR);
1208        ixgb_read_phy_reg(hw,
1209                          IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1210                          IXGB_SUN_PHY_ADDRESS,
1211                          IXGB_BCM8704_USER_DEV3_ADDR);
1212
1213        ixgb_write_phy_reg(hw,
1214                           IXGB_BCM8704_USER_CTRL_REG,
1215                           IXGB_SUN_PHY_ADDRESS,
1216                           IXGB_BCM8704_USER_DEV3_ADDR,
1217                           IXGB_BCM8704_USER_CTRL_REG_VAL);
1218        ixgb_read_phy_reg(hw,
1219                          IXGB_BCM8704_USER_CTRL_REG,
1220                          IXGB_SUN_PHY_ADDRESS,
1221                          IXGB_BCM8704_USER_DEV3_ADDR);
1222        ixgb_read_phy_reg(hw,
1223                          IXGB_BCM8704_USER_CTRL_REG,
1224                          IXGB_SUN_PHY_ADDRESS,
1225                          IXGB_BCM8704_USER_DEV3_ADDR);
1226
1227        /* SerDes needs extra delay */
1228        msleep(IXGB_SUN_PHY_RESET_DELAY);
1229}
1230