linux/drivers/net/hippi/rrunner.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   4 *
   5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   6 *
   7 * Thanks to Essential Communication for providing us with hardware
   8 * and very comprehensive documentation without which I would not have
   9 * been able to write this driver. A special thank you to John Gibbon
  10 * for sorting out the legal issues, with the NDA, allowing the code to
  11 * be released under the GPL.
  12 *
  13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  14 * stupid bugs in my code.
  15 *
  16 * Softnet support and various other patches from Val Henson of
  17 * ODS/Essential.
  18 *
  19 * PCI DMA mapping code partly based on work by Francois Romieu.
  20 */
  21
  22
  23#define DEBUG 1
  24#define RX_DMA_SKBUFF 1
  25#define PKT_COPY_THRESHOLD 512
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/pci.h>
  32#include <linux/kernel.h>
  33#include <linux/netdevice.h>
  34#include <linux/hippidevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/delay.h>
  37#include <linux/mm.h>
  38#include <linux/slab.h>
  39#include <net/sock.h>
  40
  41#include <asm/cache.h>
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/irq.h>
  45#include <linux/uaccess.h>
  46
  47#define rr_if_busy(dev)     netif_queue_stopped(dev)
  48#define rr_if_running(dev)  netif_running(dev)
  49
  50#include "rrunner.h"
  51
  52#define RUN_AT(x) (jiffies + (x))
  53
  54
  55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  57MODULE_LICENSE("GPL");
  58
  59static const char version[] =
  60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  61
  62
  63static const struct net_device_ops rr_netdev_ops = {
  64        .ndo_open               = rr_open,
  65        .ndo_stop               = rr_close,
  66        .ndo_do_ioctl           = rr_ioctl,
  67        .ndo_start_xmit         = rr_start_xmit,
  68        .ndo_set_mac_address    = hippi_mac_addr,
  69};
  70
  71/*
  72 * Implementation notes:
  73 *
  74 * The DMA engine only allows for DMA within physical 64KB chunks of
  75 * memory. The current approach of the driver (and stack) is to use
  76 * linear blocks of memory for the skbuffs. However, as the data block
  77 * is always the first part of the skb and skbs are 2^n aligned so we
  78 * are guarantted to get the whole block within one 64KB align 64KB
  79 * chunk.
  80 *
  81 * On the long term, relying on being able to allocate 64KB linear
  82 * chunks of memory is not feasible and the skb handling code and the
  83 * stack will need to know about I/O vectors or something similar.
  84 */
  85
  86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  87{
  88        struct net_device *dev;
  89        static int version_disp;
  90        u8 pci_latency;
  91        struct rr_private *rrpriv;
  92        void *tmpptr;
  93        dma_addr_t ring_dma;
  94        int ret = -ENOMEM;
  95
  96        dev = alloc_hippi_dev(sizeof(struct rr_private));
  97        if (!dev)
  98                goto out3;
  99
 100        ret = pci_enable_device(pdev);
 101        if (ret) {
 102                ret = -ENODEV;
 103                goto out2;
 104        }
 105
 106        rrpriv = netdev_priv(dev);
 107
 108        SET_NETDEV_DEV(dev, &pdev->dev);
 109
 110        ret = pci_request_regions(pdev, "rrunner");
 111        if (ret < 0)
 112                goto out;
 113
 114        pci_set_drvdata(pdev, dev);
 115
 116        rrpriv->pci_dev = pdev;
 117
 118        spin_lock_init(&rrpriv->lock);
 119
 120        dev->netdev_ops = &rr_netdev_ops;
 121
 122        /* display version info if adapter is found */
 123        if (!version_disp) {
 124                /* set display flag to TRUE so that */
 125                /* we only display this string ONCE */
 126                version_disp = 1;
 127                printk(version);
 128        }
 129
 130        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 131        if (pci_latency <= 0x58){
 132                pci_latency = 0x58;
 133                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 134        }
 135
 136        pci_set_master(pdev);
 137
 138        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 139               "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 140               (unsigned long long)pci_resource_start(pdev, 0),
 141               pdev->irq, pci_latency);
 142
 143        /*
 144         * Remap the MMIO regs into kernel space.
 145         */
 146        rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 147        if (!rrpriv->regs) {
 148                printk(KERN_ERR "%s:  Unable to map I/O register, "
 149                        "RoadRunner will be disabled.\n", dev->name);
 150                ret = -EIO;
 151                goto out;
 152        }
 153
 154        tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 155                                    GFP_KERNEL);
 156        rrpriv->tx_ring = tmpptr;
 157        rrpriv->tx_ring_dma = ring_dma;
 158
 159        if (!tmpptr) {
 160                ret = -ENOMEM;
 161                goto out;
 162        }
 163
 164        tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 165                                    GFP_KERNEL);
 166        rrpriv->rx_ring = tmpptr;
 167        rrpriv->rx_ring_dma = ring_dma;
 168
 169        if (!tmpptr) {
 170                ret = -ENOMEM;
 171                goto out;
 172        }
 173
 174        tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
 175                                    GFP_KERNEL);
 176        rrpriv->evt_ring = tmpptr;
 177        rrpriv->evt_ring_dma = ring_dma;
 178
 179        if (!tmpptr) {
 180                ret = -ENOMEM;
 181                goto out;
 182        }
 183
 184        /*
 185         * Don't access any register before this point!
 186         */
 187#ifdef __BIG_ENDIAN
 188        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 189                &rrpriv->regs->HostCtrl);
 190#endif
 191        /*
 192         * Need to add a case for little-endian 64-bit hosts here.
 193         */
 194
 195        rr_init(dev);
 196
 197        ret = register_netdev(dev);
 198        if (ret)
 199                goto out;
 200        return 0;
 201
 202 out:
 203        if (rrpriv->evt_ring)
 204                dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
 205                                  rrpriv->evt_ring_dma);
 206        if (rrpriv->rx_ring)
 207                dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 208                                  rrpriv->rx_ring_dma);
 209        if (rrpriv->tx_ring)
 210                dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 211                                  rrpriv->tx_ring_dma);
 212        if (rrpriv->regs)
 213                pci_iounmap(pdev, rrpriv->regs);
 214        if (pdev)
 215                pci_release_regions(pdev);
 216 out2:
 217        free_netdev(dev);
 218 out3:
 219        return ret;
 220}
 221
 222static void rr_remove_one(struct pci_dev *pdev)
 223{
 224        struct net_device *dev = pci_get_drvdata(pdev);
 225        struct rr_private *rr = netdev_priv(dev);
 226
 227        if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 228                printk(KERN_ERR "%s: trying to unload running NIC\n",
 229                       dev->name);
 230                writel(HALT_NIC, &rr->regs->HostCtrl);
 231        }
 232
 233        unregister_netdev(dev);
 234        dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
 235                          rr->evt_ring_dma);
 236        dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
 237                          rr->rx_ring_dma);
 238        dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
 239                          rr->tx_ring_dma);
 240        pci_iounmap(pdev, rr->regs);
 241        pci_release_regions(pdev);
 242        pci_disable_device(pdev);
 243        free_netdev(dev);
 244}
 245
 246
 247/*
 248 * Commands are considered to be slow, thus there is no reason to
 249 * inline this.
 250 */
 251static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 252{
 253        struct rr_regs __iomem *regs;
 254        u32 idx;
 255
 256        regs = rrpriv->regs;
 257        /*
 258         * This is temporary - it will go away in the final version.
 259         * We probably also want to make this function inline.
 260         */
 261        if (readl(&regs->HostCtrl) & NIC_HALTED){
 262                printk("issuing command for halted NIC, code 0x%x, "
 263                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 264                if (readl(&regs->Mode) & FATAL_ERR)
 265                        printk("error codes Fail1 %02x, Fail2 %02x\n",
 266                               readl(&regs->Fail1), readl(&regs->Fail2));
 267        }
 268
 269        idx = rrpriv->info->cmd_ctrl.pi;
 270
 271        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 272        wmb();
 273
 274        idx = (idx - 1) % CMD_RING_ENTRIES;
 275        rrpriv->info->cmd_ctrl.pi = idx;
 276        wmb();
 277
 278        if (readl(&regs->Mode) & FATAL_ERR)
 279                printk("error code %02x\n", readl(&regs->Fail1));
 280}
 281
 282
 283/*
 284 * Reset the board in a sensible manner. The NIC is already halted
 285 * when we get here and a spin-lock is held.
 286 */
 287static int rr_reset(struct net_device *dev)
 288{
 289        struct rr_private *rrpriv;
 290        struct rr_regs __iomem *regs;
 291        u32 start_pc;
 292        int i;
 293
 294        rrpriv = netdev_priv(dev);
 295        regs = rrpriv->regs;
 296
 297        rr_load_firmware(dev);
 298
 299        writel(0x01000000, &regs->TX_state);
 300        writel(0xff800000, &regs->RX_state);
 301        writel(0, &regs->AssistState);
 302        writel(CLEAR_INTA, &regs->LocalCtrl);
 303        writel(0x01, &regs->BrkPt);
 304        writel(0, &regs->Timer);
 305        writel(0, &regs->TimerRef);
 306        writel(RESET_DMA, &regs->DmaReadState);
 307        writel(RESET_DMA, &regs->DmaWriteState);
 308        writel(0, &regs->DmaWriteHostHi);
 309        writel(0, &regs->DmaWriteHostLo);
 310        writel(0, &regs->DmaReadHostHi);
 311        writel(0, &regs->DmaReadHostLo);
 312        writel(0, &regs->DmaReadLen);
 313        writel(0, &regs->DmaWriteLen);
 314        writel(0, &regs->DmaWriteLcl);
 315        writel(0, &regs->DmaWriteIPchecksum);
 316        writel(0, &regs->DmaReadLcl);
 317        writel(0, &regs->DmaReadIPchecksum);
 318        writel(0, &regs->PciState);
 319#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 320        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 321#elif (BITS_PER_LONG == 64)
 322        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 323#else
 324        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 325#endif
 326
 327#if 0
 328        /*
 329         * Don't worry, this is just black magic.
 330         */
 331        writel(0xdf000, &regs->RxBase);
 332        writel(0xdf000, &regs->RxPrd);
 333        writel(0xdf000, &regs->RxCon);
 334        writel(0xce000, &regs->TxBase);
 335        writel(0xce000, &regs->TxPrd);
 336        writel(0xce000, &regs->TxCon);
 337        writel(0, &regs->RxIndPro);
 338        writel(0, &regs->RxIndCon);
 339        writel(0, &regs->RxIndRef);
 340        writel(0, &regs->TxIndPro);
 341        writel(0, &regs->TxIndCon);
 342        writel(0, &regs->TxIndRef);
 343        writel(0xcc000, &regs->pad10[0]);
 344        writel(0, &regs->DrCmndPro);
 345        writel(0, &regs->DrCmndCon);
 346        writel(0, &regs->DwCmndPro);
 347        writel(0, &regs->DwCmndCon);
 348        writel(0, &regs->DwCmndRef);
 349        writel(0, &regs->DrDataPro);
 350        writel(0, &regs->DrDataCon);
 351        writel(0, &regs->DrDataRef);
 352        writel(0, &regs->DwDataPro);
 353        writel(0, &regs->DwDataCon);
 354        writel(0, &regs->DwDataRef);
 355#endif
 356
 357        writel(0xffffffff, &regs->MbEvent);
 358        writel(0, &regs->Event);
 359
 360        writel(0, &regs->TxPi);
 361        writel(0, &regs->IpRxPi);
 362
 363        writel(0, &regs->EvtCon);
 364        writel(0, &regs->EvtPrd);
 365
 366        rrpriv->info->evt_ctrl.pi = 0;
 367
 368        for (i = 0; i < CMD_RING_ENTRIES; i++)
 369                writel(0, &regs->CmdRing[i]);
 370
 371/*
 372 * Why 32 ? is this not cache line size dependent?
 373 */
 374        writel(RBURST_64|WBURST_64, &regs->PciState);
 375        wmb();
 376
 377        start_pc = rr_read_eeprom_word(rrpriv,
 378                        offsetof(struct eeprom, rncd_info.FwStart));
 379
 380#if (DEBUG > 1)
 381        printk("%s: Executing firmware at address 0x%06x\n",
 382               dev->name, start_pc);
 383#endif
 384
 385        writel(start_pc + 0x800, &regs->Pc);
 386        wmb();
 387        udelay(5);
 388
 389        writel(start_pc, &regs->Pc);
 390        wmb();
 391
 392        return 0;
 393}
 394
 395
 396/*
 397 * Read a string from the EEPROM.
 398 */
 399static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 400                                unsigned long offset,
 401                                unsigned char *buf,
 402                                unsigned long length)
 403{
 404        struct rr_regs __iomem *regs = rrpriv->regs;
 405        u32 misc, io, host, i;
 406
 407        io = readl(&regs->ExtIo);
 408        writel(0, &regs->ExtIo);
 409        misc = readl(&regs->LocalCtrl);
 410        writel(0, &regs->LocalCtrl);
 411        host = readl(&regs->HostCtrl);
 412        writel(host | HALT_NIC, &regs->HostCtrl);
 413        mb();
 414
 415        for (i = 0; i < length; i++){
 416                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 417                mb();
 418                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 419                mb();
 420        }
 421
 422        writel(host, &regs->HostCtrl);
 423        writel(misc, &regs->LocalCtrl);
 424        writel(io, &regs->ExtIo);
 425        mb();
 426        return i;
 427}
 428
 429
 430/*
 431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 432 * it to our CPU byte-order.
 433 */
 434static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 435                            size_t offset)
 436{
 437        __be32 word;
 438
 439        if ((rr_read_eeprom(rrpriv, offset,
 440                            (unsigned char *)&word, 4) == 4))
 441                return be32_to_cpu(word);
 442        return 0;
 443}
 444
 445
 446/*
 447 * Write a string to the EEPROM.
 448 *
 449 * This is only called when the firmware is not running.
 450 */
 451static unsigned int write_eeprom(struct rr_private *rrpriv,
 452                                 unsigned long offset,
 453                                 unsigned char *buf,
 454                                 unsigned long length)
 455{
 456        struct rr_regs __iomem *regs = rrpriv->regs;
 457        u32 misc, io, data, i, j, ready, error = 0;
 458
 459        io = readl(&regs->ExtIo);
 460        writel(0, &regs->ExtIo);
 461        misc = readl(&regs->LocalCtrl);
 462        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 463        mb();
 464
 465        for (i = 0; i < length; i++){
 466                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 467                mb();
 468                data = buf[i] << 24;
 469                /*
 470                 * Only try to write the data if it is not the same
 471                 * value already.
 472                 */
 473                if ((readl(&regs->WinData) & 0xff000000) != data){
 474                        writel(data, &regs->WinData);
 475                        ready = 0;
 476                        j = 0;
 477                        mb();
 478                        while(!ready){
 479                                udelay(20);
 480                                if ((readl(&regs->WinData) & 0xff000000) ==
 481                                    data)
 482                                        ready = 1;
 483                                mb();
 484                                if (j++ > 5000){
 485                                        printk("data mismatch: %08x, "
 486                                               "WinData %08x\n", data,
 487                                               readl(&regs->WinData));
 488                                        ready = 1;
 489                                        error = 1;
 490                                }
 491                        }
 492                }
 493        }
 494
 495        writel(misc, &regs->LocalCtrl);
 496        writel(io, &regs->ExtIo);
 497        mb();
 498
 499        return error;
 500}
 501
 502
 503static int rr_init(struct net_device *dev)
 504{
 505        struct rr_private *rrpriv;
 506        struct rr_regs __iomem *regs;
 507        u32 sram_size, rev;
 508
 509        rrpriv = netdev_priv(dev);
 510        regs = rrpriv->regs;
 511
 512        rev = readl(&regs->FwRev);
 513        rrpriv->fw_rev = rev;
 514        if (rev > 0x00020024)
 515                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 516                       ((rev >> 8) & 0xff), (rev & 0xff));
 517        else if (rev >= 0x00020000) {
 518                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 519                       "later is recommended)\n", (rev >> 16),
 520                       ((rev >> 8) & 0xff), (rev & 0xff));
 521        }else{
 522                printk("  Firmware revision too old: %i.%i.%i, please "
 523                       "upgrade to 2.0.37 or later.\n",
 524                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 525        }
 526
 527#if (DEBUG > 2)
 528        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 529#endif
 530
 531        /*
 532         * Read the hardware address from the eeprom.  The HW address
 533         * is not really necessary for HIPPI but awfully convenient.
 534         * The pointer arithmetic to put it in dev_addr is ugly, but
 535         * Donald Becker does it this way for the GigE version of this
 536         * card and it's shorter and more portable than any
 537         * other method I've seen.  -VAL
 538         */
 539
 540        *(__be16 *)(dev->dev_addr) =
 541          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 542        *(__be32 *)(dev->dev_addr+2) =
 543          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 544
 545        printk("  MAC: %pM\n", dev->dev_addr);
 546
 547        sram_size = rr_read_eeprom_word(rrpriv, 8);
 548        printk("  SRAM size 0x%06x\n", sram_size);
 549
 550        return 0;
 551}
 552
 553
 554static int rr_init1(struct net_device *dev)
 555{
 556        struct rr_private *rrpriv;
 557        struct rr_regs __iomem *regs;
 558        unsigned long myjif, flags;
 559        struct cmd cmd;
 560        u32 hostctrl;
 561        int ecode = 0;
 562        short i;
 563
 564        rrpriv = netdev_priv(dev);
 565        regs = rrpriv->regs;
 566
 567        spin_lock_irqsave(&rrpriv->lock, flags);
 568
 569        hostctrl = readl(&regs->HostCtrl);
 570        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 571        wmb();
 572
 573        if (hostctrl & PARITY_ERR){
 574                printk("%s: Parity error halting NIC - this is serious!\n",
 575                       dev->name);
 576                spin_unlock_irqrestore(&rrpriv->lock, flags);
 577                ecode = -EFAULT;
 578                goto error;
 579        }
 580
 581        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 582        set_infoaddr(regs, rrpriv->info_dma);
 583
 584        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 585        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 586        rrpriv->info->evt_ctrl.mode = 0;
 587        rrpriv->info->evt_ctrl.pi = 0;
 588        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 589
 590        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 591        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 592        rrpriv->info->cmd_ctrl.mode = 0;
 593        rrpriv->info->cmd_ctrl.pi = 15;
 594
 595        for (i = 0; i < CMD_RING_ENTRIES; i++) {
 596                writel(0, &regs->CmdRing[i]);
 597        }
 598
 599        for (i = 0; i < TX_RING_ENTRIES; i++) {
 600                rrpriv->tx_ring[i].size = 0;
 601                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 602                rrpriv->tx_skbuff[i] = NULL;
 603        }
 604        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 605        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 606        rrpriv->info->tx_ctrl.mode = 0;
 607        rrpriv->info->tx_ctrl.pi = 0;
 608        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 609
 610        /*
 611         * Set dirty_tx before we start receiving interrupts, otherwise
 612         * the interrupt handler might think it is supposed to process
 613         * tx ints before we are up and running, which may cause a null
 614         * pointer access in the int handler.
 615         */
 616        rrpriv->tx_full = 0;
 617        rrpriv->cur_rx = 0;
 618        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 619
 620        rr_reset(dev);
 621
 622        /* Tuning values */
 623        writel(0x5000, &regs->ConRetry);
 624        writel(0x100, &regs->ConRetryTmr);
 625        writel(0x500000, &regs->ConTmout);
 626        writel(0x60, &regs->IntrTmr);
 627        writel(0x500000, &regs->TxDataMvTimeout);
 628        writel(0x200000, &regs->RxDataMvTimeout);
 629        writel(0x80, &regs->WriteDmaThresh);
 630        writel(0x80, &regs->ReadDmaThresh);
 631
 632        rrpriv->fw_running = 0;
 633        wmb();
 634
 635        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 636        writel(hostctrl, &regs->HostCtrl);
 637        wmb();
 638
 639        spin_unlock_irqrestore(&rrpriv->lock, flags);
 640
 641        for (i = 0; i < RX_RING_ENTRIES; i++) {
 642                struct sk_buff *skb;
 643                dma_addr_t addr;
 644
 645                rrpriv->rx_ring[i].mode = 0;
 646                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 647                if (!skb) {
 648                        printk(KERN_WARNING "%s: Unable to allocate memory "
 649                               "for receive ring - halting NIC\n", dev->name);
 650                        ecode = -ENOMEM;
 651                        goto error;
 652                }
 653                rrpriv->rx_skbuff[i] = skb;
 654                addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
 655                                      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
 656                /*
 657                 * Sanity test to see if we conflict with the DMA
 658                 * limitations of the Roadrunner.
 659                 */
 660                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 661                        printk("skb alloc error\n");
 662
 663                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 664                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 665        }
 666
 667        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 668        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 669        rrpriv->rx_ctrl[4].mode = 8;
 670        rrpriv->rx_ctrl[4].pi = 0;
 671        wmb();
 672        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 673
 674        udelay(1000);
 675
 676        /*
 677         * Now start the FirmWare.
 678         */
 679        cmd.code = C_START_FW;
 680        cmd.ring = 0;
 681        cmd.index = 0;
 682
 683        rr_issue_cmd(rrpriv, &cmd);
 684
 685        /*
 686         * Give the FirmWare time to chew on the `get running' command.
 687         */
 688        myjif = jiffies + 5 * HZ;
 689        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 690                cpu_relax();
 691
 692        netif_start_queue(dev);
 693
 694        return ecode;
 695
 696 error:
 697        /*
 698         * We might have gotten here because we are out of memory,
 699         * make sure we release everything we allocated before failing
 700         */
 701        for (i = 0; i < RX_RING_ENTRIES; i++) {
 702                struct sk_buff *skb = rrpriv->rx_skbuff[i];
 703
 704                if (skb) {
 705                        dma_unmap_single(&rrpriv->pci_dev->dev,
 706                                         rrpriv->rx_ring[i].addr.addrlo,
 707                                         dev->mtu + HIPPI_HLEN,
 708                                         DMA_FROM_DEVICE);
 709                        rrpriv->rx_ring[i].size = 0;
 710                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 711                        dev_kfree_skb(skb);
 712                        rrpriv->rx_skbuff[i] = NULL;
 713                }
 714        }
 715        return ecode;
 716}
 717
 718
 719/*
 720 * All events are considered to be slow (RX/TX ints do not generate
 721 * events) and are handled here, outside the main interrupt handler,
 722 * to reduce the size of the handler.
 723 */
 724static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 725{
 726        struct rr_private *rrpriv;
 727        struct rr_regs __iomem *regs;
 728        u32 tmp;
 729
 730        rrpriv = netdev_priv(dev);
 731        regs = rrpriv->regs;
 732
 733        while (prodidx != eidx){
 734                switch (rrpriv->evt_ring[eidx].code){
 735                case E_NIC_UP:
 736                        tmp = readl(&regs->FwRev);
 737                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 738                               "up and running\n", dev->name,
 739                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 740                        rrpriv->fw_running = 1;
 741                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 742                        wmb();
 743                        break;
 744                case E_LINK_ON:
 745                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 746                        break;
 747                case E_LINK_OFF:
 748                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 749                        break;
 750                case E_RX_IDLE:
 751                        printk(KERN_WARNING "%s: RX data not moving\n",
 752                               dev->name);
 753                        goto drop;
 754                case E_WATCHDOG:
 755                        printk(KERN_INFO "%s: The watchdog is here to see "
 756                               "us\n", dev->name);
 757                        break;
 758                case E_INTERN_ERR:
 759                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 760                               dev->name);
 761                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 762                               &regs->HostCtrl);
 763                        wmb();
 764                        break;
 765                case E_HOST_ERR:
 766                        printk(KERN_ERR "%s: Host software error\n",
 767                               dev->name);
 768                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 769                               &regs->HostCtrl);
 770                        wmb();
 771                        break;
 772                /*
 773                 * TX events.
 774                 */
 775                case E_CON_REJ:
 776                        printk(KERN_WARNING "%s: Connection rejected\n",
 777                               dev->name);
 778                        dev->stats.tx_aborted_errors++;
 779                        break;
 780                case E_CON_TMOUT:
 781                        printk(KERN_WARNING "%s: Connection timeout\n",
 782                               dev->name);
 783                        break;
 784                case E_DISC_ERR:
 785                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 786                               dev->name);
 787                        dev->stats.tx_aborted_errors++;
 788                        break;
 789                case E_INT_PRTY:
 790                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 791                               dev->name);
 792                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 793                               &regs->HostCtrl);
 794                        wmb();
 795                        break;
 796                case E_TX_IDLE:
 797                        printk(KERN_WARNING "%s: Transmitter idle\n",
 798                               dev->name);
 799                        break;
 800                case E_TX_LINK_DROP:
 801                        printk(KERN_WARNING "%s: Link lost during transmit\n",
 802                               dev->name);
 803                        dev->stats.tx_aborted_errors++;
 804                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 805                               &regs->HostCtrl);
 806                        wmb();
 807                        break;
 808                case E_TX_INV_RNG:
 809                        printk(KERN_ERR "%s: Invalid send ring block\n",
 810                               dev->name);
 811                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 812                               &regs->HostCtrl);
 813                        wmb();
 814                        break;
 815                case E_TX_INV_BUF:
 816                        printk(KERN_ERR "%s: Invalid send buffer address\n",
 817                               dev->name);
 818                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 819                               &regs->HostCtrl);
 820                        wmb();
 821                        break;
 822                case E_TX_INV_DSC:
 823                        printk(KERN_ERR "%s: Invalid descriptor address\n",
 824                               dev->name);
 825                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 826                               &regs->HostCtrl);
 827                        wmb();
 828                        break;
 829                /*
 830                 * RX events.
 831                 */
 832                case E_RX_RNG_OUT:
 833                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 834                        break;
 835
 836                case E_RX_PAR_ERR:
 837                        printk(KERN_WARNING "%s: Receive parity error\n",
 838                               dev->name);
 839                        goto drop;
 840                case E_RX_LLRC_ERR:
 841                        printk(KERN_WARNING "%s: Receive LLRC error\n",
 842                               dev->name);
 843                        goto drop;
 844                case E_PKT_LN_ERR:
 845                        printk(KERN_WARNING "%s: Receive packet length "
 846                               "error\n", dev->name);
 847                        goto drop;
 848                case E_DTA_CKSM_ERR:
 849                        printk(KERN_WARNING "%s: Data checksum error\n",
 850                               dev->name);
 851                        goto drop;
 852                case E_SHT_BST:
 853                        printk(KERN_WARNING "%s: Unexpected short burst "
 854                               "error\n", dev->name);
 855                        goto drop;
 856                case E_STATE_ERR:
 857                        printk(KERN_WARNING "%s: Recv. state transition"
 858                               " error\n", dev->name);
 859                        goto drop;
 860                case E_UNEXP_DATA:
 861                        printk(KERN_WARNING "%s: Unexpected data error\n",
 862                               dev->name);
 863                        goto drop;
 864                case E_LST_LNK_ERR:
 865                        printk(KERN_WARNING "%s: Link lost error\n",
 866                               dev->name);
 867                        goto drop;
 868                case E_FRM_ERR:
 869                        printk(KERN_WARNING "%s: Framing Error\n",
 870                               dev->name);
 871                        goto drop;
 872                case E_FLG_SYN_ERR:
 873                        printk(KERN_WARNING "%s: Flag sync. lost during "
 874                               "packet\n", dev->name);
 875                        goto drop;
 876                case E_RX_INV_BUF:
 877                        printk(KERN_ERR "%s: Invalid receive buffer "
 878                               "address\n", dev->name);
 879                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 880                               &regs->HostCtrl);
 881                        wmb();
 882                        break;
 883                case E_RX_INV_DSC:
 884                        printk(KERN_ERR "%s: Invalid receive descriptor "
 885                               "address\n", dev->name);
 886                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 887                               &regs->HostCtrl);
 888                        wmb();
 889                        break;
 890                case E_RNG_BLK:
 891                        printk(KERN_ERR "%s: Invalid ring block\n",
 892                               dev->name);
 893                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 894                               &regs->HostCtrl);
 895                        wmb();
 896                        break;
 897                drop:
 898                        /* Label packet to be dropped.
 899                         * Actual dropping occurs in rx
 900                         * handling.
 901                         *
 902                         * The index of packet we get to drop is
 903                         * the index of the packet following
 904                         * the bad packet. -kbf
 905                         */
 906                        {
 907                                u16 index = rrpriv->evt_ring[eidx].index;
 908                                index = (index + (RX_RING_ENTRIES - 1)) %
 909                                        RX_RING_ENTRIES;
 910                                rrpriv->rx_ring[index].mode |=
 911                                        (PACKET_BAD | PACKET_END);
 912                        }
 913                        break;
 914                default:
 915                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 916                               dev->name, rrpriv->evt_ring[eidx].code);
 917                }
 918                eidx = (eidx + 1) % EVT_RING_ENTRIES;
 919        }
 920
 921        rrpriv->info->evt_ctrl.pi = eidx;
 922        wmb();
 923        return eidx;
 924}
 925
 926
 927static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 928{
 929        struct rr_private *rrpriv = netdev_priv(dev);
 930        struct rr_regs __iomem *regs = rrpriv->regs;
 931
 932        do {
 933                struct rx_desc *desc;
 934                u32 pkt_len;
 935
 936                desc = &(rrpriv->rx_ring[index]);
 937                pkt_len = desc->size;
 938#if (DEBUG > 2)
 939                printk("index %i, rxlimit %i\n", index, rxlimit);
 940                printk("len %x, mode %x\n", pkt_len, desc->mode);
 941#endif
 942                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 943                        dev->stats.rx_dropped++;
 944                        goto defer;
 945                }
 946
 947                if (pkt_len > 0){
 948                        struct sk_buff *skb, *rx_skb;
 949
 950                        rx_skb = rrpriv->rx_skbuff[index];
 951
 952                        if (pkt_len < PKT_COPY_THRESHOLD) {
 953                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
 954                                if (skb == NULL){
 955                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 956                                        dev->stats.rx_dropped++;
 957                                        goto defer;
 958                                } else {
 959                                        dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
 960                                                                desc->addr.addrlo,
 961                                                                pkt_len,
 962                                                                DMA_FROM_DEVICE);
 963
 964                                        skb_put_data(skb, rx_skb->data,
 965                                                     pkt_len);
 966
 967                                        dma_sync_single_for_device(&rrpriv->pci_dev->dev,
 968                                                                   desc->addr.addrlo,
 969                                                                   pkt_len,
 970                                                                   DMA_FROM_DEVICE);
 971                                }
 972                        }else{
 973                                struct sk_buff *newskb;
 974
 975                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 976                                        GFP_ATOMIC);
 977                                if (newskb){
 978                                        dma_addr_t addr;
 979
 980                                        dma_unmap_single(&rrpriv->pci_dev->dev,
 981                                                         desc->addr.addrlo,
 982                                                         dev->mtu + HIPPI_HLEN,
 983                                                         DMA_FROM_DEVICE);
 984                                        skb = rx_skb;
 985                                        skb_put(skb, pkt_len);
 986                                        rrpriv->rx_skbuff[index] = newskb;
 987                                        addr = dma_map_single(&rrpriv->pci_dev->dev,
 988                                                              newskb->data,
 989                                                              dev->mtu + HIPPI_HLEN,
 990                                                              DMA_FROM_DEVICE);
 991                                        set_rraddr(&desc->addr, addr);
 992                                } else {
 993                                        printk("%s: Out of memory, deferring "
 994                                               "packet\n", dev->name);
 995                                        dev->stats.rx_dropped++;
 996                                        goto defer;
 997                                }
 998                        }
 999                        skb->protocol = hippi_type_trans(skb, dev);
1000
1001                        netif_rx(skb);          /* send it up */
1002
1003                        dev->stats.rx_packets++;
1004                        dev->stats.rx_bytes += pkt_len;
1005                }
1006        defer:
1007                desc->mode = 0;
1008                desc->size = dev->mtu + HIPPI_HLEN;
1009
1010                if ((index & 7) == 7)
1011                        writel(index, &regs->IpRxPi);
1012
1013                index = (index + 1) % RX_RING_ENTRIES;
1014        } while(index != rxlimit);
1015
1016        rrpriv->cur_rx = index;
1017        wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023        struct rr_private *rrpriv;
1024        struct rr_regs __iomem *regs;
1025        struct net_device *dev = (struct net_device *)dev_id;
1026        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028        rrpriv = netdev_priv(dev);
1029        regs = rrpriv->regs;
1030
1031        if (!(readl(&regs->HostCtrl) & RR_INT))
1032                return IRQ_NONE;
1033
1034        spin_lock(&rrpriv->lock);
1035
1036        prodidx = readl(&regs->EvtPrd);
1037        txcsmr = (prodidx >> 8) & 0xff;
1038        rxlimit = (prodidx >> 16) & 0xff;
1039        prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043               prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045        /*
1046         * Order here is important.  We must handle events
1047         * before doing anything else in order to catch
1048         * such things as LLRC errors, etc -kbf
1049         */
1050
1051        eidx = rrpriv->info->evt_ctrl.pi;
1052        if (prodidx != eidx)
1053                eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055        rxindex = rrpriv->cur_rx;
1056        if (rxindex != rxlimit)
1057                rx_int(dev, rxlimit, rxindex);
1058
1059        txcon = rrpriv->dirty_tx;
1060        if (txcsmr != txcon) {
1061                do {
1062                        /* Due to occational firmware TX producer/consumer out
1063                         * of sync. error need to check entry in ring -kbf
1064                         */
1065                        if(rrpriv->tx_skbuff[txcon]){
1066                                struct tx_desc *desc;
1067                                struct sk_buff *skb;
1068
1069                                desc = &(rrpriv->tx_ring[txcon]);
1070                                skb = rrpriv->tx_skbuff[txcon];
1071
1072                                dev->stats.tx_packets++;
1073                                dev->stats.tx_bytes += skb->len;
1074
1075                                dma_unmap_single(&rrpriv->pci_dev->dev,
1076                                                 desc->addr.addrlo, skb->len,
1077                                                 DMA_TO_DEVICE);
1078                                dev_kfree_skb_irq(skb);
1079
1080                                rrpriv->tx_skbuff[txcon] = NULL;
1081                                desc->size = 0;
1082                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083                                desc->mode = 0;
1084                        }
1085                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1086                } while (txcsmr != txcon);
1087                wmb();
1088
1089                rrpriv->dirty_tx = txcon;
1090                if (rrpriv->tx_full && rr_if_busy(dev) &&
1091                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092                     != rrpriv->dirty_tx)){
1093                        rrpriv->tx_full = 0;
1094                        netif_wake_queue(dev);
1095                }
1096        }
1097
1098        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099        writel(eidx, &regs->EvtCon);
1100        wmb();
1101
1102        spin_unlock(&rrpriv->lock);
1103        return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107                             struct net_device *dev)
1108{
1109        int i;
1110
1111        for (i = 0; i < TX_RING_ENTRIES; i++) {
1112                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114                if (skb) {
1115                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117                        dma_unmap_single(&rrpriv->pci_dev->dev,
1118                                         desc->addr.addrlo, skb->len,
1119                                         DMA_TO_DEVICE);
1120                        desc->size = 0;
1121                        set_rraddr(&desc->addr, 0);
1122                        dev_kfree_skb(skb);
1123                        rrpriv->tx_skbuff[i] = NULL;
1124                }
1125        }
1126}
1127
1128
1129static inline void rr_raz_rx(struct rr_private *rrpriv,
1130                             struct net_device *dev)
1131{
1132        int i;
1133
1134        for (i = 0; i < RX_RING_ENTRIES; i++) {
1135                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136
1137                if (skb) {
1138                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139
1140                        dma_unmap_single(&rrpriv->pci_dev->dev,
1141                                         desc->addr.addrlo,
1142                                         dev->mtu + HIPPI_HLEN,
1143                                         DMA_FROM_DEVICE);
1144                        desc->size = 0;
1145                        set_rraddr(&desc->addr, 0);
1146                        dev_kfree_skb(skb);
1147                        rrpriv->rx_skbuff[i] = NULL;
1148                }
1149        }
1150}
1151
1152static void rr_timer(struct timer_list *t)
1153{
1154        struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155        struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156        struct rr_regs __iomem *regs = rrpriv->regs;
1157        unsigned long flags;
1158
1159        if (readl(&regs->HostCtrl) & NIC_HALTED){
1160                printk("%s: Restarting nic\n", dev->name);
1161                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162                memset(rrpriv->info, 0, sizeof(struct rr_info));
1163                wmb();
1164
1165                rr_raz_tx(rrpriv, dev);
1166                rr_raz_rx(rrpriv, dev);
1167
1168                if (rr_init1(dev)) {
1169                        spin_lock_irqsave(&rrpriv->lock, flags);
1170                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171                               &regs->HostCtrl);
1172                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1173                }
1174        }
1175        rrpriv->timer.expires = RUN_AT(5*HZ);
1176        add_timer(&rrpriv->timer);
1177}
1178
1179
1180static int rr_open(struct net_device *dev)
1181{
1182        struct rr_private *rrpriv = netdev_priv(dev);
1183        struct pci_dev *pdev = rrpriv->pci_dev;
1184        struct rr_regs __iomem *regs;
1185        int ecode = 0;
1186        unsigned long flags;
1187        dma_addr_t dma_addr;
1188
1189        regs = rrpriv->regs;
1190
1191        if (rrpriv->fw_rev < 0x00020000) {
1192                printk(KERN_WARNING "%s: trying to configure device with "
1193                       "obsolete firmware\n", dev->name);
1194                ecode = -EBUSY;
1195                goto error;
1196        }
1197
1198        rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199                                             256 * sizeof(struct ring_ctrl),
1200                                             &dma_addr, GFP_KERNEL);
1201        if (!rrpriv->rx_ctrl) {
1202                ecode = -ENOMEM;
1203                goto error;
1204        }
1205        rrpriv->rx_ctrl_dma = dma_addr;
1206
1207        rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208                                          &dma_addr, GFP_KERNEL);
1209        if (!rrpriv->info) {
1210                ecode = -ENOMEM;
1211                goto error;
1212        }
1213        rrpriv->info_dma = dma_addr;
1214        wmb();
1215
1216        spin_lock_irqsave(&rrpriv->lock, flags);
1217        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218        readl(&regs->HostCtrl);
1219        spin_unlock_irqrestore(&rrpriv->lock, flags);
1220
1221        if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223                       dev->name, pdev->irq);
1224                ecode = -EAGAIN;
1225                goto error;
1226        }
1227
1228        if ((ecode = rr_init1(dev)))
1229                goto error;
1230
1231        /* Set the timer to switch to check for link beat and perhaps switch
1232           to an alternate media type. */
1233        timer_setup(&rrpriv->timer, rr_timer, 0);
1234        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235        add_timer(&rrpriv->timer);
1236
1237        netif_start_queue(dev);
1238
1239        return ecode;
1240
1241 error:
1242        spin_lock_irqsave(&rrpriv->lock, flags);
1243        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244        spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246        if (rrpriv->info) {
1247                dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248                                  rrpriv->info, rrpriv->info_dma);
1249                rrpriv->info = NULL;
1250        }
1251        if (rrpriv->rx_ctrl) {
1252                dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253                                  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254                rrpriv->rx_ctrl = NULL;
1255        }
1256
1257        netif_stop_queue(dev);
1258
1259        return ecode;
1260}
1261
1262
1263static void rr_dump(struct net_device *dev)
1264{
1265        struct rr_private *rrpriv;
1266        struct rr_regs __iomem *regs;
1267        u32 index, cons;
1268        short i;
1269        int len;
1270
1271        rrpriv = netdev_priv(dev);
1272        regs = rrpriv->regs;
1273
1274        printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277               readl(&regs->RxPrd), readl(&regs->TxPrd),
1278               readl(&regs->EvtPrd), readl(&regs->TxPi),
1279               rrpriv->info->tx_ctrl.pi);
1280
1281        printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
1283        index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284        cons = rrpriv->dirty_tx;
1285        printk("TX ring index %i, TX consumer %i\n",
1286               index, cons);
1287
1288        if (rrpriv->tx_skbuff[index]){
1289                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291                for (i = 0; i < len; i++){
1292                        if (!(i & 7))
1293                                printk("\n");
1294                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295                }
1296                printk("\n");
1297        }
1298
1299        if (rrpriv->tx_skbuff[cons]){
1300                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303                       rrpriv->tx_ring[cons].mode,
1304                       rrpriv->tx_ring[cons].size,
1305                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306                       rrpriv->tx_skbuff[cons]->data,
1307                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308                for (i = 0; i < len; i++){
1309                        if (!(i & 7))
1310                                printk("\n");
1311                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312                }
1313                printk("\n");
1314        }
1315
1316        printk("dumping TX ring info:\n");
1317        for (i = 0; i < TX_RING_ENTRIES; i++)
1318                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319                       rrpriv->tx_ring[i].mode,
1320                       rrpriv->tx_ring[i].size,
1321                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323}
1324
1325
1326static int rr_close(struct net_device *dev)
1327{
1328        struct rr_private *rrpriv = netdev_priv(dev);
1329        struct rr_regs __iomem *regs = rrpriv->regs;
1330        struct pci_dev *pdev = rrpriv->pci_dev;
1331        unsigned long flags;
1332        u32 tmp;
1333        short i;
1334
1335        netif_stop_queue(dev);
1336
1337
1338        /*
1339         * Lock to make sure we are not cleaning up while another CPU
1340         * is handling interrupts.
1341         */
1342        spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344        tmp = readl(&regs->HostCtrl);
1345        if (tmp & NIC_HALTED){
1346                printk("%s: NIC already halted\n", dev->name);
1347                rr_dump(dev);
1348        }else{
1349                tmp |= HALT_NIC | RR_CLEAR_INT;
1350                writel(tmp, &regs->HostCtrl);
1351                readl(&regs->HostCtrl);
1352        }
1353
1354        rrpriv->fw_running = 0;
1355
1356        del_timer_sync(&rrpriv->timer);
1357
1358        writel(0, &regs->TxPi);
1359        writel(0, &regs->IpRxPi);
1360
1361        writel(0, &regs->EvtCon);
1362        writel(0, &regs->EvtPrd);
1363
1364        for (i = 0; i < CMD_RING_ENTRIES; i++)
1365                writel(0, &regs->CmdRing[i]);
1366
1367        rrpriv->info->tx_ctrl.entries = 0;
1368        rrpriv->info->cmd_ctrl.pi = 0;
1369        rrpriv->info->evt_ctrl.pi = 0;
1370        rrpriv->rx_ctrl[4].entries = 0;
1371
1372        rr_raz_tx(rrpriv, dev);
1373        rr_raz_rx(rrpriv, dev);
1374
1375        dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1376                          rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377        rrpriv->rx_ctrl = NULL;
1378
1379        dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1380                          rrpriv->info_dma);
1381        rrpriv->info = NULL;
1382
1383        spin_unlock_irqrestore(&rrpriv->lock, flags);
1384        free_irq(pdev->irq, dev);
1385
1386        return 0;
1387}
1388
1389
1390static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391                                 struct net_device *dev)
1392{
1393        struct rr_private *rrpriv = netdev_priv(dev);
1394        struct rr_regs __iomem *regs = rrpriv->regs;
1395        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1396        struct ring_ctrl *txctrl;
1397        unsigned long flags;
1398        u32 index, len = skb->len;
1399        u32 *ifield;
1400        struct sk_buff *new_skb;
1401
1402        if (readl(&regs->Mode) & FATAL_ERR)
1403                printk("error codes Fail1 %02x, Fail2 %02x\n",
1404                       readl(&regs->Fail1), readl(&regs->Fail2));
1405
1406        /*
1407         * We probably need to deal with tbusy here to prevent overruns.
1408         */
1409
1410        if (skb_headroom(skb) < 8){
1411                printk("incoming skb too small - reallocating\n");
1412                if (!(new_skb = dev_alloc_skb(len + 8))) {
1413                        dev_kfree_skb(skb);
1414                        netif_wake_queue(dev);
1415                        return NETDEV_TX_OK;
1416                }
1417                skb_reserve(new_skb, 8);
1418                skb_put(new_skb, len);
1419                skb_copy_from_linear_data(skb, new_skb->data, len);
1420                dev_kfree_skb(skb);
1421                skb = new_skb;
1422        }
1423
1424        ifield = skb_push(skb, 8);
1425
1426        ifield[0] = 0;
1427        ifield[1] = hcb->ifield;
1428
1429        /*
1430         * We don't need the lock before we are actually going to start
1431         * fiddling with the control blocks.
1432         */
1433        spin_lock_irqsave(&rrpriv->lock, flags);
1434
1435        txctrl = &rrpriv->info->tx_ctrl;
1436
1437        index = txctrl->pi;
1438
1439        rrpriv->tx_skbuff[index] = skb;
1440        set_rraddr(&rrpriv->tx_ring[index].addr,
1441                   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1442        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445        wmb();
1446        writel(txctrl->pi, &regs->TxPi);
1447
1448        if (txctrl->pi == rrpriv->dirty_tx){
1449                rrpriv->tx_full = 1;
1450                netif_stop_queue(dev);
1451        }
1452
1453        spin_unlock_irqrestore(&rrpriv->lock, flags);
1454
1455        return NETDEV_TX_OK;
1456}
1457
1458
1459/*
1460 * Read the firmware out of the EEPROM and put it into the SRAM
1461 * (or from user space - later)
1462 *
1463 * This operation requires the NIC to be halted and is performed with
1464 * interrupts disabled and with the spinlock hold.
1465 */
1466static int rr_load_firmware(struct net_device *dev)
1467{
1468        struct rr_private *rrpriv;
1469        struct rr_regs __iomem *regs;
1470        size_t eptr, segptr;
1471        int i, j;
1472        u32 localctrl, sptr, len, tmp;
1473        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1474
1475        rrpriv = netdev_priv(dev);
1476        regs = rrpriv->regs;
1477
1478        if (dev->flags & IFF_UP)
1479                return -EBUSY;
1480
1481        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1482                printk("%s: Trying to load firmware to a running NIC.\n",
1483                       dev->name);
1484                return -EBUSY;
1485        }
1486
1487        localctrl = readl(&regs->LocalCtrl);
1488        writel(0, &regs->LocalCtrl);
1489
1490        writel(0, &regs->EvtPrd);
1491        writel(0, &regs->RxPrd);
1492        writel(0, &regs->TxPrd);
1493
1494        /*
1495         * First wipe the entire SRAM, otherwise we might run into all
1496         * kinds of trouble ... sigh, this took almost all afternoon
1497         * to track down ;-(
1498         */
1499        io = readl(&regs->ExtIo);
1500        writel(0, &regs->ExtIo);
1501        sram_size = rr_read_eeprom_word(rrpriv, 8);
1502
1503        for (i = 200; i < sram_size / 4; i++){
1504                writel(i * 4, &regs->WinBase);
1505                mb();
1506                writel(0, &regs->WinData);
1507                mb();
1508        }
1509        writel(io, &regs->ExtIo);
1510        mb();
1511
1512        eptr = rr_read_eeprom_word(rrpriv,
1513                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1514        eptr = ((eptr & 0x1fffff) >> 3);
1515
1516        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1517        p2len = (p2len << 2);
1518        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1519        p2size = ((p2size & 0x1fffff) >> 3);
1520
1521        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522                printk("%s: eptr is invalid\n", dev->name);
1523                goto out;
1524        }
1525
1526        revision = rr_read_eeprom_word(rrpriv,
1527                        offsetof(struct eeprom, manf.HeaderFmt));
1528
1529        if (revision != 1){
1530                printk("%s: invalid firmware format (%i)\n",
1531                       dev->name, revision);
1532                goto out;
1533        }
1534
1535        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1536        eptr +=4;
1537#if (DEBUG > 1)
1538        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539#endif
1540
1541        for (i = 0; i < nr_seg; i++){
1542                sptr = rr_read_eeprom_word(rrpriv, eptr);
1543                eptr += 4;
1544                len = rr_read_eeprom_word(rrpriv, eptr);
1545                eptr += 4;
1546                segptr = rr_read_eeprom_word(rrpriv, eptr);
1547                segptr = ((segptr & 0x1fffff) >> 3);
1548                eptr += 4;
1549#if (DEBUG > 1)
1550                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551                       dev->name, i, sptr, len, segptr);
1552#endif
1553                for (j = 0; j < len; j++){
1554                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1555                        writel(sptr, &regs->WinBase);
1556                        mb();
1557                        writel(tmp, &regs->WinData);
1558                        mb();
1559                        segptr += 4;
1560                        sptr += 4;
1561                }
1562        }
1563
1564out:
1565        writel(localctrl, &regs->LocalCtrl);
1566        mb();
1567        return 0;
1568}
1569
1570
1571static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572{
1573        struct rr_private *rrpriv;
1574        unsigned char *image, *oldimage;
1575        unsigned long flags;
1576        unsigned int i;
1577        int error = -EOPNOTSUPP;
1578
1579        rrpriv = netdev_priv(dev);
1580
1581        switch(cmd){
1582        case SIOCRRGFW:
1583                if (!capable(CAP_SYS_RAWIO)){
1584                        return -EPERM;
1585                }
1586
1587                image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1588                if (!image)
1589                        return -ENOMEM;
1590
1591                if (rrpriv->fw_running){
1592                        printk("%s: Firmware already running\n", dev->name);
1593                        error = -EPERM;
1594                        goto gf_out;
1595                }
1596
1597                spin_lock_irqsave(&rrpriv->lock, flags);
1598                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599                spin_unlock_irqrestore(&rrpriv->lock, flags);
1600                if (i != EEPROM_BYTES){
1601                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1602                               dev->name);
1603                        error = -EFAULT;
1604                        goto gf_out;
1605                }
1606                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607                if (error)
1608                        error = -EFAULT;
1609        gf_out:
1610                kfree(image);
1611                return error;
1612
1613        case SIOCRRPFW:
1614                if (!capable(CAP_SYS_RAWIO)){
1615                        return -EPERM;
1616                }
1617
1618                image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1619                if (IS_ERR(image))
1620                        return PTR_ERR(image);
1621
1622                oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1623                if (!oldimage) {
1624                        kfree(image);
1625                        return -ENOMEM;
1626                }
1627
1628                if (rrpriv->fw_running){
1629                        printk("%s: Firmware already running\n", dev->name);
1630                        error = -EPERM;
1631                        goto wf_out;
1632                }
1633
1634                printk("%s: Updating EEPROM firmware\n", dev->name);
1635
1636                spin_lock_irqsave(&rrpriv->lock, flags);
1637                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1638                if (error)
1639                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1640                               dev->name);
1641
1642                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1643                spin_unlock_irqrestore(&rrpriv->lock, flags);
1644
1645                if (i != EEPROM_BYTES)
1646                        printk(KERN_ERR "%s: Error reading back EEPROM "
1647                               "image\n", dev->name);
1648
1649                error = memcmp(image, oldimage, EEPROM_BYTES);
1650                if (error){
1651                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1652                               dev->name);
1653                        error = -EFAULT;
1654                }
1655        wf_out:
1656                kfree(oldimage);
1657                kfree(image);
1658                return error;
1659
1660        case SIOCRRID:
1661                return put_user(0x52523032, (int __user *)rq->ifr_data);
1662        default:
1663                return error;
1664        }
1665}
1666
1667static const struct pci_device_id rr_pci_tbl[] = {
1668        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1669                PCI_ANY_ID, PCI_ANY_ID, },
1670        { 0,}
1671};
1672MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1673
1674static struct pci_driver rr_driver = {
1675        .name           = "rrunner",
1676        .id_table       = rr_pci_tbl,
1677        .probe          = rr_init_one,
1678        .remove         = rr_remove_one,
1679};
1680
1681module_pci_driver(rr_driver);
1682