linux/drivers/net/hyperv/netvsc_drv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/delay.h>
  18#include <linux/netdevice.h>
  19#include <linux/inetdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/pci.h>
  22#include <linux/skbuff.h>
  23#include <linux/if_vlan.h>
  24#include <linux/in.h>
  25#include <linux/slab.h>
  26#include <linux/rtnetlink.h>
  27#include <linux/netpoll.h>
  28#include <linux/bpf.h>
  29
  30#include <net/arp.h>
  31#include <net/route.h>
  32#include <net/sock.h>
  33#include <net/pkt_sched.h>
  34#include <net/checksum.h>
  35#include <net/ip6_checksum.h>
  36
  37#include "hyperv_net.h"
  38
  39#define RING_SIZE_MIN   64
  40#define RETRY_US_LO     5000
  41#define RETRY_US_HI     10000
  42#define RETRY_MAX       2000    /* >10 sec */
  43
  44#define LINKCHANGE_INT (2 * HZ)
  45#define VF_TAKEOVER_INT (HZ / 10)
  46
  47static unsigned int ring_size __ro_after_init = 128;
  48module_param(ring_size, uint, 0444);
  49MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  50unsigned int netvsc_ring_bytes __ro_after_init;
  51
  52static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  53                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  54                                NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  55                                NETIF_MSG_TX_ERR;
  56
  57static int debug = -1;
  58module_param(debug, int, 0444);
  59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  60
  61static LIST_HEAD(netvsc_dev_list);
  62
  63static void netvsc_change_rx_flags(struct net_device *net, int change)
  64{
  65        struct net_device_context *ndev_ctx = netdev_priv(net);
  66        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  67        int inc;
  68
  69        if (!vf_netdev)
  70                return;
  71
  72        if (change & IFF_PROMISC) {
  73                inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  74                dev_set_promiscuity(vf_netdev, inc);
  75        }
  76
  77        if (change & IFF_ALLMULTI) {
  78                inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  79                dev_set_allmulti(vf_netdev, inc);
  80        }
  81}
  82
  83static void netvsc_set_rx_mode(struct net_device *net)
  84{
  85        struct net_device_context *ndev_ctx = netdev_priv(net);
  86        struct net_device *vf_netdev;
  87        struct netvsc_device *nvdev;
  88
  89        rcu_read_lock();
  90        vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  91        if (vf_netdev) {
  92                dev_uc_sync(vf_netdev, net);
  93                dev_mc_sync(vf_netdev, net);
  94        }
  95
  96        nvdev = rcu_dereference(ndev_ctx->nvdev);
  97        if (nvdev)
  98                rndis_filter_update(nvdev);
  99        rcu_read_unlock();
 100}
 101
 102static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 103                             struct net_device *ndev)
 104{
 105        nvscdev->tx_disable = false;
 106        virt_wmb(); /* ensure queue wake up mechanism is on */
 107
 108        netif_tx_wake_all_queues(ndev);
 109}
 110
 111static int netvsc_open(struct net_device *net)
 112{
 113        struct net_device_context *ndev_ctx = netdev_priv(net);
 114        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 115        struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 116        struct rndis_device *rdev;
 117        int ret = 0;
 118
 119        netif_carrier_off(net);
 120
 121        /* Open up the device */
 122        ret = rndis_filter_open(nvdev);
 123        if (ret != 0) {
 124                netdev_err(net, "unable to open device (ret %d).\n", ret);
 125                return ret;
 126        }
 127
 128        rdev = nvdev->extension;
 129        if (!rdev->link_state) {
 130                netif_carrier_on(net);
 131                netvsc_tx_enable(nvdev, net);
 132        }
 133
 134        if (vf_netdev) {
 135                /* Setting synthetic device up transparently sets
 136                 * slave as up. If open fails, then slave will be
 137                 * still be offline (and not used).
 138                 */
 139                ret = dev_open(vf_netdev, NULL);
 140                if (ret)
 141                        netdev_warn(net,
 142                                    "unable to open slave: %s: %d\n",
 143                                    vf_netdev->name, ret);
 144        }
 145        return 0;
 146}
 147
 148static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 149{
 150        unsigned int retry = 0;
 151        int i;
 152
 153        /* Ensure pending bytes in ring are read */
 154        for (;;) {
 155                u32 aread = 0;
 156
 157                for (i = 0; i < nvdev->num_chn; i++) {
 158                        struct vmbus_channel *chn
 159                                = nvdev->chan_table[i].channel;
 160
 161                        if (!chn)
 162                                continue;
 163
 164                        /* make sure receive not running now */
 165                        napi_synchronize(&nvdev->chan_table[i].napi);
 166
 167                        aread = hv_get_bytes_to_read(&chn->inbound);
 168                        if (aread)
 169                                break;
 170
 171                        aread = hv_get_bytes_to_read(&chn->outbound);
 172                        if (aread)
 173                                break;
 174                }
 175
 176                if (aread == 0)
 177                        return 0;
 178
 179                if (++retry > RETRY_MAX)
 180                        return -ETIMEDOUT;
 181
 182                usleep_range(RETRY_US_LO, RETRY_US_HI);
 183        }
 184}
 185
 186static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 187                              struct net_device *ndev)
 188{
 189        if (nvscdev) {
 190                nvscdev->tx_disable = true;
 191                virt_wmb(); /* ensure txq will not wake up after stop */
 192        }
 193
 194        netif_tx_disable(ndev);
 195}
 196
 197static int netvsc_close(struct net_device *net)
 198{
 199        struct net_device_context *net_device_ctx = netdev_priv(net);
 200        struct net_device *vf_netdev
 201                = rtnl_dereference(net_device_ctx->vf_netdev);
 202        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 203        int ret;
 204
 205        netvsc_tx_disable(nvdev, net);
 206
 207        /* No need to close rndis filter if it is removed already */
 208        if (!nvdev)
 209                return 0;
 210
 211        ret = rndis_filter_close(nvdev);
 212        if (ret != 0) {
 213                netdev_err(net, "unable to close device (ret %d).\n", ret);
 214                return ret;
 215        }
 216
 217        ret = netvsc_wait_until_empty(nvdev);
 218        if (ret)
 219                netdev_err(net, "Ring buffer not empty after closing rndis\n");
 220
 221        if (vf_netdev)
 222                dev_close(vf_netdev);
 223
 224        return ret;
 225}
 226
 227static inline void *init_ppi_data(struct rndis_message *msg,
 228                                  u32 ppi_size, u32 pkt_type)
 229{
 230        struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 231        struct rndis_per_packet_info *ppi;
 232
 233        rndis_pkt->data_offset += ppi_size;
 234        ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 235                + rndis_pkt->per_pkt_info_len;
 236
 237        ppi->size = ppi_size;
 238        ppi->type = pkt_type;
 239        ppi->internal = 0;
 240        ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 241
 242        rndis_pkt->per_pkt_info_len += ppi_size;
 243
 244        return ppi + 1;
 245}
 246
 247/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 248 * packets. We can use ethtool to change UDP hash level when necessary.
 249 */
 250static inline u32 netvsc_get_hash(
 251        struct sk_buff *skb,
 252        const struct net_device_context *ndc)
 253{
 254        struct flow_keys flow;
 255        u32 hash, pkt_proto = 0;
 256        static u32 hashrnd __read_mostly;
 257
 258        net_get_random_once(&hashrnd, sizeof(hashrnd));
 259
 260        if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 261                return 0;
 262
 263        switch (flow.basic.ip_proto) {
 264        case IPPROTO_TCP:
 265                if (flow.basic.n_proto == htons(ETH_P_IP))
 266                        pkt_proto = HV_TCP4_L4HASH;
 267                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 268                        pkt_proto = HV_TCP6_L4HASH;
 269
 270                break;
 271
 272        case IPPROTO_UDP:
 273                if (flow.basic.n_proto == htons(ETH_P_IP))
 274                        pkt_proto = HV_UDP4_L4HASH;
 275                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 276                        pkt_proto = HV_UDP6_L4HASH;
 277
 278                break;
 279        }
 280
 281        if (pkt_proto & ndc->l4_hash) {
 282                return skb_get_hash(skb);
 283        } else {
 284                if (flow.basic.n_proto == htons(ETH_P_IP))
 285                        hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 286                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 287                        hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 288                else
 289                        return 0;
 290
 291                __skb_set_sw_hash(skb, hash, false);
 292        }
 293
 294        return hash;
 295}
 296
 297static inline int netvsc_get_tx_queue(struct net_device *ndev,
 298                                      struct sk_buff *skb, int old_idx)
 299{
 300        const struct net_device_context *ndc = netdev_priv(ndev);
 301        struct sock *sk = skb->sk;
 302        int q_idx;
 303
 304        q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 305                              (VRSS_SEND_TAB_SIZE - 1)];
 306
 307        /* If queue index changed record the new value */
 308        if (q_idx != old_idx &&
 309            sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 310                sk_tx_queue_set(sk, q_idx);
 311
 312        return q_idx;
 313}
 314
 315/*
 316 * Select queue for transmit.
 317 *
 318 * If a valid queue has already been assigned, then use that.
 319 * Otherwise compute tx queue based on hash and the send table.
 320 *
 321 * This is basically similar to default (netdev_pick_tx) with the added step
 322 * of using the host send_table when no other queue has been assigned.
 323 *
 324 * TODO support XPS - but get_xps_queue not exported
 325 */
 326static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 327{
 328        int q_idx = sk_tx_queue_get(skb->sk);
 329
 330        if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 331                /* If forwarding a packet, we use the recorded queue when
 332                 * available for better cache locality.
 333                 */
 334                if (skb_rx_queue_recorded(skb))
 335                        q_idx = skb_get_rx_queue(skb);
 336                else
 337                        q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 338        }
 339
 340        return q_idx;
 341}
 342
 343static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 344                               struct net_device *sb_dev)
 345{
 346        struct net_device_context *ndc = netdev_priv(ndev);
 347        struct net_device *vf_netdev;
 348        u16 txq;
 349
 350        rcu_read_lock();
 351        vf_netdev = rcu_dereference(ndc->vf_netdev);
 352        if (vf_netdev) {
 353                const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 354
 355                if (vf_ops->ndo_select_queue)
 356                        txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 357                else
 358                        txq = netdev_pick_tx(vf_netdev, skb, NULL);
 359
 360                /* Record the queue selected by VF so that it can be
 361                 * used for common case where VF has more queues than
 362                 * the synthetic device.
 363                 */
 364                qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 365        } else {
 366                txq = netvsc_pick_tx(ndev, skb);
 367        }
 368        rcu_read_unlock();
 369
 370        while (txq >= ndev->real_num_tx_queues)
 371                txq -= ndev->real_num_tx_queues;
 372
 373        return txq;
 374}
 375
 376static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 377                       struct hv_page_buffer *pb)
 378{
 379        int j = 0;
 380
 381        hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 382        offset = offset & ~HV_HYP_PAGE_MASK;
 383
 384        while (len > 0) {
 385                unsigned long bytes;
 386
 387                bytes = HV_HYP_PAGE_SIZE - offset;
 388                if (bytes > len)
 389                        bytes = len;
 390                pb[j].pfn = hvpfn;
 391                pb[j].offset = offset;
 392                pb[j].len = bytes;
 393
 394                offset += bytes;
 395                len -= bytes;
 396
 397                if (offset == HV_HYP_PAGE_SIZE && len) {
 398                        hvpfn++;
 399                        offset = 0;
 400                        j++;
 401                }
 402        }
 403
 404        return j + 1;
 405}
 406
 407static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 408                           struct hv_netvsc_packet *packet,
 409                           struct hv_page_buffer *pb)
 410{
 411        u32 slots_used = 0;
 412        char *data = skb->data;
 413        int frags = skb_shinfo(skb)->nr_frags;
 414        int i;
 415
 416        /* The packet is laid out thus:
 417         * 1. hdr: RNDIS header and PPI
 418         * 2. skb linear data
 419         * 3. skb fragment data
 420         */
 421        slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 422                                  offset_in_hvpage(hdr),
 423                                  len,
 424                                  &pb[slots_used]);
 425
 426        packet->rmsg_size = len;
 427        packet->rmsg_pgcnt = slots_used;
 428
 429        slots_used += fill_pg_buf(virt_to_hvpfn(data),
 430                                  offset_in_hvpage(data),
 431                                  skb_headlen(skb),
 432                                  &pb[slots_used]);
 433
 434        for (i = 0; i < frags; i++) {
 435                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 436
 437                slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 438                                          skb_frag_off(frag),
 439                                          skb_frag_size(frag),
 440                                          &pb[slots_used]);
 441        }
 442        return slots_used;
 443}
 444
 445static int count_skb_frag_slots(struct sk_buff *skb)
 446{
 447        int i, frags = skb_shinfo(skb)->nr_frags;
 448        int pages = 0;
 449
 450        for (i = 0; i < frags; i++) {
 451                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 452                unsigned long size = skb_frag_size(frag);
 453                unsigned long offset = skb_frag_off(frag);
 454
 455                /* Skip unused frames from start of page */
 456                offset &= ~HV_HYP_PAGE_MASK;
 457                pages += HVPFN_UP(offset + size);
 458        }
 459        return pages;
 460}
 461
 462static int netvsc_get_slots(struct sk_buff *skb)
 463{
 464        char *data = skb->data;
 465        unsigned int offset = offset_in_hvpage(data);
 466        unsigned int len = skb_headlen(skb);
 467        int slots;
 468        int frag_slots;
 469
 470        slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 471        frag_slots = count_skb_frag_slots(skb);
 472        return slots + frag_slots;
 473}
 474
 475static u32 net_checksum_info(struct sk_buff *skb)
 476{
 477        if (skb->protocol == htons(ETH_P_IP)) {
 478                struct iphdr *ip = ip_hdr(skb);
 479
 480                if (ip->protocol == IPPROTO_TCP)
 481                        return TRANSPORT_INFO_IPV4_TCP;
 482                else if (ip->protocol == IPPROTO_UDP)
 483                        return TRANSPORT_INFO_IPV4_UDP;
 484        } else {
 485                struct ipv6hdr *ip6 = ipv6_hdr(skb);
 486
 487                if (ip6->nexthdr == IPPROTO_TCP)
 488                        return TRANSPORT_INFO_IPV6_TCP;
 489                else if (ip6->nexthdr == IPPROTO_UDP)
 490                        return TRANSPORT_INFO_IPV6_UDP;
 491        }
 492
 493        return TRANSPORT_INFO_NOT_IP;
 494}
 495
 496/* Send skb on the slave VF device. */
 497static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 498                          struct sk_buff *skb)
 499{
 500        struct net_device_context *ndev_ctx = netdev_priv(net);
 501        unsigned int len = skb->len;
 502        int rc;
 503
 504        skb->dev = vf_netdev;
 505        skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 506
 507        rc = dev_queue_xmit(skb);
 508        if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 509                struct netvsc_vf_pcpu_stats *pcpu_stats
 510                        = this_cpu_ptr(ndev_ctx->vf_stats);
 511
 512                u64_stats_update_begin(&pcpu_stats->syncp);
 513                pcpu_stats->tx_packets++;
 514                pcpu_stats->tx_bytes += len;
 515                u64_stats_update_end(&pcpu_stats->syncp);
 516        } else {
 517                this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 518        }
 519
 520        return rc;
 521}
 522
 523static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 524{
 525        struct net_device_context *net_device_ctx = netdev_priv(net);
 526        struct hv_netvsc_packet *packet = NULL;
 527        int ret;
 528        unsigned int num_data_pgs;
 529        struct rndis_message *rndis_msg;
 530        struct net_device *vf_netdev;
 531        u32 rndis_msg_size;
 532        u32 hash;
 533        struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 534
 535        /* If VF is present and up then redirect packets to it.
 536         * Skip the VF if it is marked down or has no carrier.
 537         * If netpoll is in uses, then VF can not be used either.
 538         */
 539        vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 540        if (vf_netdev && netif_running(vf_netdev) &&
 541            netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
 542                return netvsc_vf_xmit(net, vf_netdev, skb);
 543
 544        /* We will atmost need two pages to describe the rndis
 545         * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 546         * of pages in a single packet. If skb is scattered around
 547         * more pages we try linearizing it.
 548         */
 549
 550        num_data_pgs = netvsc_get_slots(skb) + 2;
 551
 552        if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 553                ++net_device_ctx->eth_stats.tx_scattered;
 554
 555                if (skb_linearize(skb))
 556                        goto no_memory;
 557
 558                num_data_pgs = netvsc_get_slots(skb) + 2;
 559                if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 560                        ++net_device_ctx->eth_stats.tx_too_big;
 561                        goto drop;
 562                }
 563        }
 564
 565        /*
 566         * Place the rndis header in the skb head room and
 567         * the skb->cb will be used for hv_netvsc_packet
 568         * structure.
 569         */
 570        ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 571        if (ret)
 572                goto no_memory;
 573
 574        /* Use the skb control buffer for building up the packet */
 575        BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 576                        sizeof_field(struct sk_buff, cb));
 577        packet = (struct hv_netvsc_packet *)skb->cb;
 578
 579        packet->q_idx = skb_get_queue_mapping(skb);
 580
 581        packet->total_data_buflen = skb->len;
 582        packet->total_bytes = skb->len;
 583        packet->total_packets = 1;
 584
 585        rndis_msg = (struct rndis_message *)skb->head;
 586
 587        /* Add the rndis header */
 588        rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 589        rndis_msg->msg_len = packet->total_data_buflen;
 590
 591        rndis_msg->msg.pkt = (struct rndis_packet) {
 592                .data_offset = sizeof(struct rndis_packet),
 593                .data_len = packet->total_data_buflen,
 594                .per_pkt_info_offset = sizeof(struct rndis_packet),
 595        };
 596
 597        rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 598
 599        hash = skb_get_hash_raw(skb);
 600        if (hash != 0 && net->real_num_tx_queues > 1) {
 601                u32 *hash_info;
 602
 603                rndis_msg_size += NDIS_HASH_PPI_SIZE;
 604                hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 605                                          NBL_HASH_VALUE);
 606                *hash_info = hash;
 607        }
 608
 609        /* When using AF_PACKET we need to drop VLAN header from
 610         * the frame and update the SKB to allow the HOST OS
 611         * to transmit the 802.1Q packet
 612         */
 613        if (skb->protocol == htons(ETH_P_8021Q)) {
 614                u16 vlan_tci;
 615
 616                skb_reset_mac_header(skb);
 617                if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 618                        if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 619                                ++net_device_ctx->eth_stats.vlan_error;
 620                                goto drop;
 621                        }
 622
 623                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 624                        /* Update the NDIS header pkt lengths */
 625                        packet->total_data_buflen -= VLAN_HLEN;
 626                        packet->total_bytes -= VLAN_HLEN;
 627                        rndis_msg->msg_len = packet->total_data_buflen;
 628                        rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 629                }
 630        }
 631
 632        if (skb_vlan_tag_present(skb)) {
 633                struct ndis_pkt_8021q_info *vlan;
 634
 635                rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 636                vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 637                                     IEEE_8021Q_INFO);
 638
 639                vlan->value = 0;
 640                vlan->vlanid = skb_vlan_tag_get_id(skb);
 641                vlan->cfi = skb_vlan_tag_get_cfi(skb);
 642                vlan->pri = skb_vlan_tag_get_prio(skb);
 643        }
 644
 645        if (skb_is_gso(skb)) {
 646                struct ndis_tcp_lso_info *lso_info;
 647
 648                rndis_msg_size += NDIS_LSO_PPI_SIZE;
 649                lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 650                                         TCP_LARGESEND_PKTINFO);
 651
 652                lso_info->value = 0;
 653                lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 654                if (skb->protocol == htons(ETH_P_IP)) {
 655                        lso_info->lso_v2_transmit.ip_version =
 656                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 657                        ip_hdr(skb)->tot_len = 0;
 658                        ip_hdr(skb)->check = 0;
 659                        tcp_hdr(skb)->check =
 660                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 661                                                   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 662                } else {
 663                        lso_info->lso_v2_transmit.ip_version =
 664                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 665                        tcp_v6_gso_csum_prep(skb);
 666                }
 667                lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 668                lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 669        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 670                if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 671                        struct ndis_tcp_ip_checksum_info *csum_info;
 672
 673                        rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 674                        csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 675                                                  TCPIP_CHKSUM_PKTINFO);
 676
 677                        csum_info->value = 0;
 678                        csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 679
 680                        if (skb->protocol == htons(ETH_P_IP)) {
 681                                csum_info->transmit.is_ipv4 = 1;
 682
 683                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 684                                        csum_info->transmit.tcp_checksum = 1;
 685                                else
 686                                        csum_info->transmit.udp_checksum = 1;
 687                        } else {
 688                                csum_info->transmit.is_ipv6 = 1;
 689
 690                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 691                                        csum_info->transmit.tcp_checksum = 1;
 692                                else
 693                                        csum_info->transmit.udp_checksum = 1;
 694                        }
 695                } else {
 696                        /* Can't do offload of this type of checksum */
 697                        if (skb_checksum_help(skb))
 698                                goto drop;
 699                }
 700        }
 701
 702        /* Start filling in the page buffers with the rndis hdr */
 703        rndis_msg->msg_len += rndis_msg_size;
 704        packet->total_data_buflen = rndis_msg->msg_len;
 705        packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 706                                               skb, packet, pb);
 707
 708        /* timestamp packet in software */
 709        skb_tx_timestamp(skb);
 710
 711        ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 712        if (likely(ret == 0))
 713                return NETDEV_TX_OK;
 714
 715        if (ret == -EAGAIN) {
 716                ++net_device_ctx->eth_stats.tx_busy;
 717                return NETDEV_TX_BUSY;
 718        }
 719
 720        if (ret == -ENOSPC)
 721                ++net_device_ctx->eth_stats.tx_no_space;
 722
 723drop:
 724        dev_kfree_skb_any(skb);
 725        net->stats.tx_dropped++;
 726
 727        return NETDEV_TX_OK;
 728
 729no_memory:
 730        ++net_device_ctx->eth_stats.tx_no_memory;
 731        goto drop;
 732}
 733
 734static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 735                                     struct net_device *ndev)
 736{
 737        return netvsc_xmit(skb, ndev, false);
 738}
 739
 740/*
 741 * netvsc_linkstatus_callback - Link up/down notification
 742 */
 743void netvsc_linkstatus_callback(struct net_device *net,
 744                                struct rndis_message *resp)
 745{
 746        struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 747        struct net_device_context *ndev_ctx = netdev_priv(net);
 748        struct netvsc_reconfig *event;
 749        unsigned long flags;
 750
 751        /* Ensure the packet is big enough to access its fields */
 752        if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 753                netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 754                           resp->msg_len);
 755                return;
 756        }
 757
 758        /* Update the physical link speed when changing to another vSwitch */
 759        if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 760                u32 speed;
 761
 762                speed = *(u32 *)((void *)indicate
 763                                 + indicate->status_buf_offset) / 10000;
 764                ndev_ctx->speed = speed;
 765                return;
 766        }
 767
 768        /* Handle these link change statuses below */
 769        if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 770            indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 771            indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 772                return;
 773
 774        if (net->reg_state != NETREG_REGISTERED)
 775                return;
 776
 777        event = kzalloc(sizeof(*event), GFP_ATOMIC);
 778        if (!event)
 779                return;
 780        event->event = indicate->status;
 781
 782        spin_lock_irqsave(&ndev_ctx->lock, flags);
 783        list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 784        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 785
 786        schedule_delayed_work(&ndev_ctx->dwork, 0);
 787}
 788
 789static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 790{
 791        int rc;
 792
 793        skb->queue_mapping = skb_get_rx_queue(skb);
 794        __skb_push(skb, ETH_HLEN);
 795
 796        rc = netvsc_xmit(skb, ndev, true);
 797
 798        if (dev_xmit_complete(rc))
 799                return;
 800
 801        dev_kfree_skb_any(skb);
 802        ndev->stats.tx_dropped++;
 803}
 804
 805static void netvsc_comp_ipcsum(struct sk_buff *skb)
 806{
 807        struct iphdr *iph = (struct iphdr *)skb->data;
 808
 809        iph->check = 0;
 810        iph->check = ip_fast_csum(iph, iph->ihl);
 811}
 812
 813static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 814                                             struct netvsc_channel *nvchan,
 815                                             struct xdp_buff *xdp)
 816{
 817        struct napi_struct *napi = &nvchan->napi;
 818        const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
 819        const struct ndis_tcp_ip_checksum_info *csum_info =
 820                                                nvchan->rsc.csum_info;
 821        const u32 *hash_info = nvchan->rsc.hash_info;
 822        struct sk_buff *skb;
 823        void *xbuf = xdp->data_hard_start;
 824        int i;
 825
 826        if (xbuf) {
 827                unsigned int hdroom = xdp->data - xdp->data_hard_start;
 828                unsigned int xlen = xdp->data_end - xdp->data;
 829                unsigned int frag_size = xdp->frame_sz;
 830
 831                skb = build_skb(xbuf, frag_size);
 832
 833                if (!skb) {
 834                        __free_page(virt_to_page(xbuf));
 835                        return NULL;
 836                }
 837
 838                skb_reserve(skb, hdroom);
 839                skb_put(skb, xlen);
 840                skb->dev = napi->dev;
 841        } else {
 842                skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 843
 844                if (!skb)
 845                        return NULL;
 846
 847                /* Copy to skb. This copy is needed here since the memory
 848                 * pointed by hv_netvsc_packet cannot be deallocated.
 849                 */
 850                for (i = 0; i < nvchan->rsc.cnt; i++)
 851                        skb_put_data(skb, nvchan->rsc.data[i],
 852                                     nvchan->rsc.len[i]);
 853        }
 854
 855        skb->protocol = eth_type_trans(skb, net);
 856
 857        /* skb is already created with CHECKSUM_NONE */
 858        skb_checksum_none_assert(skb);
 859
 860        /* Incoming packets may have IP header checksum verified by the host.
 861         * They may not have IP header checksum computed after coalescing.
 862         * We compute it here if the flags are set, because on Linux, the IP
 863         * checksum is always checked.
 864         */
 865        if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
 866            csum_info->receive.ip_checksum_succeeded &&
 867            skb->protocol == htons(ETH_P_IP))
 868                netvsc_comp_ipcsum(skb);
 869
 870        /* Do L4 checksum offload if enabled and present. */
 871        if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 872                if (csum_info->receive.tcp_checksum_succeeded ||
 873                    csum_info->receive.udp_checksum_succeeded)
 874                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 875        }
 876
 877        if (hash_info && (net->features & NETIF_F_RXHASH))
 878                skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 879
 880        if (vlan) {
 881                u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 882                        (vlan->cfi ? VLAN_CFI_MASK : 0);
 883
 884                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 885                                       vlan_tci);
 886        }
 887
 888        return skb;
 889}
 890
 891/*
 892 * netvsc_recv_callback -  Callback when we receive a packet from the
 893 * "wire" on the specified device.
 894 */
 895int netvsc_recv_callback(struct net_device *net,
 896                         struct netvsc_device *net_device,
 897                         struct netvsc_channel *nvchan)
 898{
 899        struct net_device_context *net_device_ctx = netdev_priv(net);
 900        struct vmbus_channel *channel = nvchan->channel;
 901        u16 q_idx = channel->offermsg.offer.sub_channel_index;
 902        struct sk_buff *skb;
 903        struct netvsc_stats *rx_stats = &nvchan->rx_stats;
 904        struct xdp_buff xdp;
 905        u32 act;
 906
 907        if (net->reg_state != NETREG_REGISTERED)
 908                return NVSP_STAT_FAIL;
 909
 910        act = netvsc_run_xdp(net, nvchan, &xdp);
 911
 912        if (act != XDP_PASS && act != XDP_TX) {
 913                u64_stats_update_begin(&rx_stats->syncp);
 914                rx_stats->xdp_drop++;
 915                u64_stats_update_end(&rx_stats->syncp);
 916
 917                return NVSP_STAT_SUCCESS; /* consumed by XDP */
 918        }
 919
 920        /* Allocate a skb - TODO direct I/O to pages? */
 921        skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 922
 923        if (unlikely(!skb)) {
 924                ++net_device_ctx->eth_stats.rx_no_memory;
 925                return NVSP_STAT_FAIL;
 926        }
 927
 928        skb_record_rx_queue(skb, q_idx);
 929
 930        /*
 931         * Even if injecting the packet, record the statistics
 932         * on the synthetic device because modifying the VF device
 933         * statistics will not work correctly.
 934         */
 935        u64_stats_update_begin(&rx_stats->syncp);
 936        rx_stats->packets++;
 937        rx_stats->bytes += nvchan->rsc.pktlen;
 938
 939        if (skb->pkt_type == PACKET_BROADCAST)
 940                ++rx_stats->broadcast;
 941        else if (skb->pkt_type == PACKET_MULTICAST)
 942                ++rx_stats->multicast;
 943        u64_stats_update_end(&rx_stats->syncp);
 944
 945        if (act == XDP_TX) {
 946                netvsc_xdp_xmit(skb, net);
 947                return NVSP_STAT_SUCCESS;
 948        }
 949
 950        napi_gro_receive(&nvchan->napi, skb);
 951        return NVSP_STAT_SUCCESS;
 952}
 953
 954static void netvsc_get_drvinfo(struct net_device *net,
 955                               struct ethtool_drvinfo *info)
 956{
 957        strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 958        strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 959}
 960
 961static void netvsc_get_channels(struct net_device *net,
 962                                struct ethtool_channels *channel)
 963{
 964        struct net_device_context *net_device_ctx = netdev_priv(net);
 965        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 966
 967        if (nvdev) {
 968                channel->max_combined   = nvdev->max_chn;
 969                channel->combined_count = nvdev->num_chn;
 970        }
 971}
 972
 973/* Alloc struct netvsc_device_info, and initialize it from either existing
 974 * struct netvsc_device, or from default values.
 975 */
 976static
 977struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 978{
 979        struct netvsc_device_info *dev_info;
 980        struct bpf_prog *prog;
 981
 982        dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 983
 984        if (!dev_info)
 985                return NULL;
 986
 987        if (nvdev) {
 988                ASSERT_RTNL();
 989
 990                dev_info->num_chn = nvdev->num_chn;
 991                dev_info->send_sections = nvdev->send_section_cnt;
 992                dev_info->send_section_size = nvdev->send_section_size;
 993                dev_info->recv_sections = nvdev->recv_section_cnt;
 994                dev_info->recv_section_size = nvdev->recv_section_size;
 995
 996                memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 997                       NETVSC_HASH_KEYLEN);
 998
 999                prog = netvsc_xdp_get(nvdev);
1000                if (prog) {
1001                        bpf_prog_inc(prog);
1002                        dev_info->bprog = prog;
1003                }
1004        } else {
1005                dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1006                dev_info->send_sections = NETVSC_DEFAULT_TX;
1007                dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1008                dev_info->recv_sections = NETVSC_DEFAULT_RX;
1009                dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1010        }
1011
1012        return dev_info;
1013}
1014
1015/* Free struct netvsc_device_info */
1016static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1017{
1018        if (dev_info->bprog) {
1019                ASSERT_RTNL();
1020                bpf_prog_put(dev_info->bprog);
1021        }
1022
1023        kfree(dev_info);
1024}
1025
1026static int netvsc_detach(struct net_device *ndev,
1027                         struct netvsc_device *nvdev)
1028{
1029        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1030        struct hv_device *hdev = ndev_ctx->device_ctx;
1031        int ret;
1032
1033        /* Don't try continuing to try and setup sub channels */
1034        if (cancel_work_sync(&nvdev->subchan_work))
1035                nvdev->num_chn = 1;
1036
1037        netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1038
1039        /* If device was up (receiving) then shutdown */
1040        if (netif_running(ndev)) {
1041                netvsc_tx_disable(nvdev, ndev);
1042
1043                ret = rndis_filter_close(nvdev);
1044                if (ret) {
1045                        netdev_err(ndev,
1046                                   "unable to close device (ret %d).\n", ret);
1047                        return ret;
1048                }
1049
1050                ret = netvsc_wait_until_empty(nvdev);
1051                if (ret) {
1052                        netdev_err(ndev,
1053                                   "Ring buffer not empty after closing rndis\n");
1054                        return ret;
1055                }
1056        }
1057
1058        netif_device_detach(ndev);
1059
1060        rndis_filter_device_remove(hdev, nvdev);
1061
1062        return 0;
1063}
1064
1065static int netvsc_attach(struct net_device *ndev,
1066                         struct netvsc_device_info *dev_info)
1067{
1068        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1069        struct hv_device *hdev = ndev_ctx->device_ctx;
1070        struct netvsc_device *nvdev;
1071        struct rndis_device *rdev;
1072        struct bpf_prog *prog;
1073        int ret = 0;
1074
1075        nvdev = rndis_filter_device_add(hdev, dev_info);
1076        if (IS_ERR(nvdev))
1077                return PTR_ERR(nvdev);
1078
1079        if (nvdev->num_chn > 1) {
1080                ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1081
1082                /* if unavailable, just proceed with one queue */
1083                if (ret) {
1084                        nvdev->max_chn = 1;
1085                        nvdev->num_chn = 1;
1086                }
1087        }
1088
1089        prog = dev_info->bprog;
1090        if (prog) {
1091                bpf_prog_inc(prog);
1092                ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1093                if (ret) {
1094                        bpf_prog_put(prog);
1095                        goto err1;
1096                }
1097        }
1098
1099        /* In any case device is now ready */
1100        nvdev->tx_disable = false;
1101        netif_device_attach(ndev);
1102
1103        /* Note: enable and attach happen when sub-channels setup */
1104        netif_carrier_off(ndev);
1105
1106        if (netif_running(ndev)) {
1107                ret = rndis_filter_open(nvdev);
1108                if (ret)
1109                        goto err2;
1110
1111                rdev = nvdev->extension;
1112                if (!rdev->link_state)
1113                        netif_carrier_on(ndev);
1114        }
1115
1116        return 0;
1117
1118err2:
1119        netif_device_detach(ndev);
1120
1121err1:
1122        rndis_filter_device_remove(hdev, nvdev);
1123
1124        return ret;
1125}
1126
1127static int netvsc_set_channels(struct net_device *net,
1128                               struct ethtool_channels *channels)
1129{
1130        struct net_device_context *net_device_ctx = netdev_priv(net);
1131        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1132        unsigned int orig, count = channels->combined_count;
1133        struct netvsc_device_info *device_info;
1134        int ret;
1135
1136        /* We do not support separate count for rx, tx, or other */
1137        if (count == 0 ||
1138            channels->rx_count || channels->tx_count || channels->other_count)
1139                return -EINVAL;
1140
1141        if (!nvdev || nvdev->destroy)
1142                return -ENODEV;
1143
1144        if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1145                return -EINVAL;
1146
1147        if (count > nvdev->max_chn)
1148                return -EINVAL;
1149
1150        orig = nvdev->num_chn;
1151
1152        device_info = netvsc_devinfo_get(nvdev);
1153
1154        if (!device_info)
1155                return -ENOMEM;
1156
1157        device_info->num_chn = count;
1158
1159        ret = netvsc_detach(net, nvdev);
1160        if (ret)
1161                goto out;
1162
1163        ret = netvsc_attach(net, device_info);
1164        if (ret) {
1165                device_info->num_chn = orig;
1166                if (netvsc_attach(net, device_info))
1167                        netdev_err(net, "restoring channel setting failed\n");
1168        }
1169
1170out:
1171        netvsc_devinfo_put(device_info);
1172        return ret;
1173}
1174
1175static void netvsc_init_settings(struct net_device *dev)
1176{
1177        struct net_device_context *ndc = netdev_priv(dev);
1178
1179        ndc->l4_hash = HV_DEFAULT_L4HASH;
1180
1181        ndc->speed = SPEED_UNKNOWN;
1182        ndc->duplex = DUPLEX_FULL;
1183
1184        dev->features = NETIF_F_LRO;
1185}
1186
1187static int netvsc_get_link_ksettings(struct net_device *dev,
1188                                     struct ethtool_link_ksettings *cmd)
1189{
1190        struct net_device_context *ndc = netdev_priv(dev);
1191        struct net_device *vf_netdev;
1192
1193        vf_netdev = rtnl_dereference(ndc->vf_netdev);
1194
1195        if (vf_netdev)
1196                return __ethtool_get_link_ksettings(vf_netdev, cmd);
1197
1198        cmd->base.speed = ndc->speed;
1199        cmd->base.duplex = ndc->duplex;
1200        cmd->base.port = PORT_OTHER;
1201
1202        return 0;
1203}
1204
1205static int netvsc_set_link_ksettings(struct net_device *dev,
1206                                     const struct ethtool_link_ksettings *cmd)
1207{
1208        struct net_device_context *ndc = netdev_priv(dev);
1209        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1210
1211        if (vf_netdev) {
1212                if (!vf_netdev->ethtool_ops->set_link_ksettings)
1213                        return -EOPNOTSUPP;
1214
1215                return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1216                                                                  cmd);
1217        }
1218
1219        return ethtool_virtdev_set_link_ksettings(dev, cmd,
1220                                                  &ndc->speed, &ndc->duplex);
1221}
1222
1223static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1224{
1225        struct net_device_context *ndevctx = netdev_priv(ndev);
1226        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1227        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1228        int orig_mtu = ndev->mtu;
1229        struct netvsc_device_info *device_info;
1230        int ret = 0;
1231
1232        if (!nvdev || nvdev->destroy)
1233                return -ENODEV;
1234
1235        device_info = netvsc_devinfo_get(nvdev);
1236
1237        if (!device_info)
1238                return -ENOMEM;
1239
1240        /* Change MTU of underlying VF netdev first. */
1241        if (vf_netdev) {
1242                ret = dev_set_mtu(vf_netdev, mtu);
1243                if (ret)
1244                        goto out;
1245        }
1246
1247        ret = netvsc_detach(ndev, nvdev);
1248        if (ret)
1249                goto rollback_vf;
1250
1251        ndev->mtu = mtu;
1252
1253        ret = netvsc_attach(ndev, device_info);
1254        if (!ret)
1255                goto out;
1256
1257        /* Attempt rollback to original MTU */
1258        ndev->mtu = orig_mtu;
1259
1260        if (netvsc_attach(ndev, device_info))
1261                netdev_err(ndev, "restoring mtu failed\n");
1262rollback_vf:
1263        if (vf_netdev)
1264                dev_set_mtu(vf_netdev, orig_mtu);
1265
1266out:
1267        netvsc_devinfo_put(device_info);
1268        return ret;
1269}
1270
1271static void netvsc_get_vf_stats(struct net_device *net,
1272                                struct netvsc_vf_pcpu_stats *tot)
1273{
1274        struct net_device_context *ndev_ctx = netdev_priv(net);
1275        int i;
1276
1277        memset(tot, 0, sizeof(*tot));
1278
1279        for_each_possible_cpu(i) {
1280                const struct netvsc_vf_pcpu_stats *stats
1281                        = per_cpu_ptr(ndev_ctx->vf_stats, i);
1282                u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1283                unsigned int start;
1284
1285                do {
1286                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1287                        rx_packets = stats->rx_packets;
1288                        tx_packets = stats->tx_packets;
1289                        rx_bytes = stats->rx_bytes;
1290                        tx_bytes = stats->tx_bytes;
1291                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1292
1293                tot->rx_packets += rx_packets;
1294                tot->tx_packets += tx_packets;
1295                tot->rx_bytes   += rx_bytes;
1296                tot->tx_bytes   += tx_bytes;
1297                tot->tx_dropped += stats->tx_dropped;
1298        }
1299}
1300
1301static void netvsc_get_pcpu_stats(struct net_device *net,
1302                                  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1303{
1304        struct net_device_context *ndev_ctx = netdev_priv(net);
1305        struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1306        int i;
1307
1308        /* fetch percpu stats of vf */
1309        for_each_possible_cpu(i) {
1310                const struct netvsc_vf_pcpu_stats *stats =
1311                        per_cpu_ptr(ndev_ctx->vf_stats, i);
1312                struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1313                unsigned int start;
1314
1315                do {
1316                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1317                        this_tot->vf_rx_packets = stats->rx_packets;
1318                        this_tot->vf_tx_packets = stats->tx_packets;
1319                        this_tot->vf_rx_bytes = stats->rx_bytes;
1320                        this_tot->vf_tx_bytes = stats->tx_bytes;
1321                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322                this_tot->rx_packets = this_tot->vf_rx_packets;
1323                this_tot->tx_packets = this_tot->vf_tx_packets;
1324                this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1325                this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1326        }
1327
1328        /* fetch percpu stats of netvsc */
1329        for (i = 0; i < nvdev->num_chn; i++) {
1330                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1331                const struct netvsc_stats *stats;
1332                struct netvsc_ethtool_pcpu_stats *this_tot =
1333                        &pcpu_tot[nvchan->channel->target_cpu];
1334                u64 packets, bytes;
1335                unsigned int start;
1336
1337                stats = &nvchan->tx_stats;
1338                do {
1339                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1340                        packets = stats->packets;
1341                        bytes = stats->bytes;
1342                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1343
1344                this_tot->tx_bytes      += bytes;
1345                this_tot->tx_packets    += packets;
1346
1347                stats = &nvchan->rx_stats;
1348                do {
1349                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1350                        packets = stats->packets;
1351                        bytes = stats->bytes;
1352                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1353
1354                this_tot->rx_bytes      += bytes;
1355                this_tot->rx_packets    += packets;
1356        }
1357}
1358
1359static void netvsc_get_stats64(struct net_device *net,
1360                               struct rtnl_link_stats64 *t)
1361{
1362        struct net_device_context *ndev_ctx = netdev_priv(net);
1363        struct netvsc_device *nvdev;
1364        struct netvsc_vf_pcpu_stats vf_tot;
1365        int i;
1366
1367        rcu_read_lock();
1368
1369        nvdev = rcu_dereference(ndev_ctx->nvdev);
1370        if (!nvdev)
1371                goto out;
1372
1373        netdev_stats_to_stats64(t, &net->stats);
1374
1375        netvsc_get_vf_stats(net, &vf_tot);
1376        t->rx_packets += vf_tot.rx_packets;
1377        t->tx_packets += vf_tot.tx_packets;
1378        t->rx_bytes   += vf_tot.rx_bytes;
1379        t->tx_bytes   += vf_tot.tx_bytes;
1380        t->tx_dropped += vf_tot.tx_dropped;
1381
1382        for (i = 0; i < nvdev->num_chn; i++) {
1383                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1384                const struct netvsc_stats *stats;
1385                u64 packets, bytes, multicast;
1386                unsigned int start;
1387
1388                stats = &nvchan->tx_stats;
1389                do {
1390                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1391                        packets = stats->packets;
1392                        bytes = stats->bytes;
1393                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1394
1395                t->tx_bytes     += bytes;
1396                t->tx_packets   += packets;
1397
1398                stats = &nvchan->rx_stats;
1399                do {
1400                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1401                        packets = stats->packets;
1402                        bytes = stats->bytes;
1403                        multicast = stats->multicast + stats->broadcast;
1404                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1405
1406                t->rx_bytes     += bytes;
1407                t->rx_packets   += packets;
1408                t->multicast    += multicast;
1409        }
1410out:
1411        rcu_read_unlock();
1412}
1413
1414static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1415{
1416        struct net_device_context *ndc = netdev_priv(ndev);
1417        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1418        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1419        struct sockaddr *addr = p;
1420        int err;
1421
1422        err = eth_prepare_mac_addr_change(ndev, p);
1423        if (err)
1424                return err;
1425
1426        if (!nvdev)
1427                return -ENODEV;
1428
1429        if (vf_netdev) {
1430                err = dev_set_mac_address(vf_netdev, addr, NULL);
1431                if (err)
1432                        return err;
1433        }
1434
1435        err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1436        if (!err) {
1437                eth_commit_mac_addr_change(ndev, p);
1438        } else if (vf_netdev) {
1439                /* rollback change on VF */
1440                memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1441                dev_set_mac_address(vf_netdev, addr, NULL);
1442        }
1443
1444        return err;
1445}
1446
1447static const struct {
1448        char name[ETH_GSTRING_LEN];
1449        u16 offset;
1450} netvsc_stats[] = {
1451        { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1452        { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1453        { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1454        { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1455        { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1456        { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1457        { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1458        { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1459        { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1460        { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1461        { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1462}, pcpu_stats[] = {
1463        { "cpu%u_rx_packets",
1464                offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1465        { "cpu%u_rx_bytes",
1466                offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1467        { "cpu%u_tx_packets",
1468                offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1469        { "cpu%u_tx_bytes",
1470                offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1471        { "cpu%u_vf_rx_packets",
1472                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1473        { "cpu%u_vf_rx_bytes",
1474                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1475        { "cpu%u_vf_tx_packets",
1476                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1477        { "cpu%u_vf_tx_bytes",
1478                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1479}, vf_stats[] = {
1480        { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1481        { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1482        { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1483        { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1484        { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1485};
1486
1487#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1488#define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1489
1490/* statistics per queue (rx/tx packets/bytes) */
1491#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1492
1493/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1494#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1495
1496static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1497{
1498        struct net_device_context *ndc = netdev_priv(dev);
1499        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1500
1501        if (!nvdev)
1502                return -ENODEV;
1503
1504        switch (string_set) {
1505        case ETH_SS_STATS:
1506                return NETVSC_GLOBAL_STATS_LEN
1507                        + NETVSC_VF_STATS_LEN
1508                        + NETVSC_QUEUE_STATS_LEN(nvdev)
1509                        + NETVSC_PCPU_STATS_LEN;
1510        default:
1511                return -EINVAL;
1512        }
1513}
1514
1515static void netvsc_get_ethtool_stats(struct net_device *dev,
1516                                     struct ethtool_stats *stats, u64 *data)
1517{
1518        struct net_device_context *ndc = netdev_priv(dev);
1519        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1520        const void *nds = &ndc->eth_stats;
1521        const struct netvsc_stats *qstats;
1522        struct netvsc_vf_pcpu_stats sum;
1523        struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524        unsigned int start;
1525        u64 packets, bytes;
1526        u64 xdp_drop;
1527        int i, j, cpu;
1528
1529        if (!nvdev)
1530                return;
1531
1532        for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1533                data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1534
1535        netvsc_get_vf_stats(dev, &sum);
1536        for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1537                data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1538
1539        for (j = 0; j < nvdev->num_chn; j++) {
1540                qstats = &nvdev->chan_table[j].tx_stats;
1541
1542                do {
1543                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1544                        packets = qstats->packets;
1545                        bytes = qstats->bytes;
1546                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1547                data[i++] = packets;
1548                data[i++] = bytes;
1549
1550                qstats = &nvdev->chan_table[j].rx_stats;
1551                do {
1552                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1553                        packets = qstats->packets;
1554                        bytes = qstats->bytes;
1555                        xdp_drop = qstats->xdp_drop;
1556                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1557                data[i++] = packets;
1558                data[i++] = bytes;
1559                data[i++] = xdp_drop;
1560        }
1561
1562        pcpu_sum = kvmalloc_array(num_possible_cpus(),
1563                                  sizeof(struct netvsc_ethtool_pcpu_stats),
1564                                  GFP_KERNEL);
1565        netvsc_get_pcpu_stats(dev, pcpu_sum);
1566        for_each_present_cpu(cpu) {
1567                struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569                for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570                        data[i++] = *(u64 *)((void *)this_sum
1571                                             + pcpu_stats[j].offset);
1572        }
1573        kvfree(pcpu_sum);
1574}
1575
1576static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577{
1578        struct net_device_context *ndc = netdev_priv(dev);
1579        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580        u8 *p = data;
1581        int i, cpu;
1582
1583        if (!nvdev)
1584                return;
1585
1586        switch (stringset) {
1587        case ETH_SS_STATS:
1588                for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1589                        memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1590                        p += ETH_GSTRING_LEN;
1591                }
1592
1593                for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1594                        memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1595                        p += ETH_GSTRING_LEN;
1596                }
1597
1598                for (i = 0; i < nvdev->num_chn; i++) {
1599                        sprintf(p, "tx_queue_%u_packets", i);
1600                        p += ETH_GSTRING_LEN;
1601                        sprintf(p, "tx_queue_%u_bytes", i);
1602                        p += ETH_GSTRING_LEN;
1603                        sprintf(p, "rx_queue_%u_packets", i);
1604                        p += ETH_GSTRING_LEN;
1605                        sprintf(p, "rx_queue_%u_bytes", i);
1606                        p += ETH_GSTRING_LEN;
1607                        sprintf(p, "rx_queue_%u_xdp_drop", i);
1608                        p += ETH_GSTRING_LEN;
1609                }
1610
1611                for_each_present_cpu(cpu) {
1612                        for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1613                                sprintf(p, pcpu_stats[i].name, cpu);
1614                                p += ETH_GSTRING_LEN;
1615                        }
1616                }
1617
1618                break;
1619        }
1620}
1621
1622static int
1623netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1624                         struct ethtool_rxnfc *info)
1625{
1626        const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1627
1628        info->data = RXH_IP_SRC | RXH_IP_DST;
1629
1630        switch (info->flow_type) {
1631        case TCP_V4_FLOW:
1632                if (ndc->l4_hash & HV_TCP4_L4HASH)
1633                        info->data |= l4_flag;
1634
1635                break;
1636
1637        case TCP_V6_FLOW:
1638                if (ndc->l4_hash & HV_TCP6_L4HASH)
1639                        info->data |= l4_flag;
1640
1641                break;
1642
1643        case UDP_V4_FLOW:
1644                if (ndc->l4_hash & HV_UDP4_L4HASH)
1645                        info->data |= l4_flag;
1646
1647                break;
1648
1649        case UDP_V6_FLOW:
1650                if (ndc->l4_hash & HV_UDP6_L4HASH)
1651                        info->data |= l4_flag;
1652
1653                break;
1654
1655        case IPV4_FLOW:
1656        case IPV6_FLOW:
1657                break;
1658        default:
1659                info->data = 0;
1660                break;
1661        }
1662
1663        return 0;
1664}
1665
1666static int
1667netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1668                 u32 *rules)
1669{
1670        struct net_device_context *ndc = netdev_priv(dev);
1671        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1672
1673        if (!nvdev)
1674                return -ENODEV;
1675
1676        switch (info->cmd) {
1677        case ETHTOOL_GRXRINGS:
1678                info->data = nvdev->num_chn;
1679                return 0;
1680
1681        case ETHTOOL_GRXFH:
1682                return netvsc_get_rss_hash_opts(ndc, info);
1683        }
1684        return -EOPNOTSUPP;
1685}
1686
1687static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1688                                    struct ethtool_rxnfc *info)
1689{
1690        if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1691                           RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1692                switch (info->flow_type) {
1693                case TCP_V4_FLOW:
1694                        ndc->l4_hash |= HV_TCP4_L4HASH;
1695                        break;
1696
1697                case TCP_V6_FLOW:
1698                        ndc->l4_hash |= HV_TCP6_L4HASH;
1699                        break;
1700
1701                case UDP_V4_FLOW:
1702                        ndc->l4_hash |= HV_UDP4_L4HASH;
1703                        break;
1704
1705                case UDP_V6_FLOW:
1706                        ndc->l4_hash |= HV_UDP6_L4HASH;
1707                        break;
1708
1709                default:
1710                        return -EOPNOTSUPP;
1711                }
1712
1713                return 0;
1714        }
1715
1716        if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1717                switch (info->flow_type) {
1718                case TCP_V4_FLOW:
1719                        ndc->l4_hash &= ~HV_TCP4_L4HASH;
1720                        break;
1721
1722                case TCP_V6_FLOW:
1723                        ndc->l4_hash &= ~HV_TCP6_L4HASH;
1724                        break;
1725
1726                case UDP_V4_FLOW:
1727                        ndc->l4_hash &= ~HV_UDP4_L4HASH;
1728                        break;
1729
1730                case UDP_V6_FLOW:
1731                        ndc->l4_hash &= ~HV_UDP6_L4HASH;
1732                        break;
1733
1734                default:
1735                        return -EOPNOTSUPP;
1736                }
1737
1738                return 0;
1739        }
1740
1741        return -EOPNOTSUPP;
1742}
1743
1744static int
1745netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1746{
1747        struct net_device_context *ndc = netdev_priv(ndev);
1748
1749        if (info->cmd == ETHTOOL_SRXFH)
1750                return netvsc_set_rss_hash_opts(ndc, info);
1751
1752        return -EOPNOTSUPP;
1753}
1754
1755static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1756{
1757        return NETVSC_HASH_KEYLEN;
1758}
1759
1760static u32 netvsc_rss_indir_size(struct net_device *dev)
1761{
1762        return ITAB_NUM;
1763}
1764
1765static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1766                           u8 *hfunc)
1767{
1768        struct net_device_context *ndc = netdev_priv(dev);
1769        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1770        struct rndis_device *rndis_dev;
1771        int i;
1772
1773        if (!ndev)
1774                return -ENODEV;
1775
1776        if (hfunc)
1777                *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1778
1779        rndis_dev = ndev->extension;
1780        if (indir) {
1781                for (i = 0; i < ITAB_NUM; i++)
1782                        indir[i] = ndc->rx_table[i];
1783        }
1784
1785        if (key)
1786                memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1787
1788        return 0;
1789}
1790
1791static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1792                           const u8 *key, const u8 hfunc)
1793{
1794        struct net_device_context *ndc = netdev_priv(dev);
1795        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1796        struct rndis_device *rndis_dev;
1797        int i;
1798
1799        if (!ndev)
1800                return -ENODEV;
1801
1802        if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1803                return -EOPNOTSUPP;
1804
1805        rndis_dev = ndev->extension;
1806        if (indir) {
1807                for (i = 0; i < ITAB_NUM; i++)
1808                        if (indir[i] >= ndev->num_chn)
1809                                return -EINVAL;
1810
1811                for (i = 0; i < ITAB_NUM; i++)
1812                        ndc->rx_table[i] = indir[i];
1813        }
1814
1815        if (!key) {
1816                if (!indir)
1817                        return 0;
1818
1819                key = rndis_dev->rss_key;
1820        }
1821
1822        return rndis_filter_set_rss_param(rndis_dev, key);
1823}
1824
1825/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1826 * It does have pre-allocated receive area which is divided into sections.
1827 */
1828static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1829                                   struct ethtool_ringparam *ring)
1830{
1831        u32 max_buf_size;
1832
1833        ring->rx_pending = nvdev->recv_section_cnt;
1834        ring->tx_pending = nvdev->send_section_cnt;
1835
1836        if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1837                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1838        else
1839                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1840
1841        ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1842        ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1843                / nvdev->send_section_size;
1844}
1845
1846static void netvsc_get_ringparam(struct net_device *ndev,
1847                                 struct ethtool_ringparam *ring)
1848{
1849        struct net_device_context *ndevctx = netdev_priv(ndev);
1850        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1851
1852        if (!nvdev)
1853                return;
1854
1855        __netvsc_get_ringparam(nvdev, ring);
1856}
1857
1858static int netvsc_set_ringparam(struct net_device *ndev,
1859                                struct ethtool_ringparam *ring)
1860{
1861        struct net_device_context *ndevctx = netdev_priv(ndev);
1862        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863        struct netvsc_device_info *device_info;
1864        struct ethtool_ringparam orig;
1865        u32 new_tx, new_rx;
1866        int ret = 0;
1867
1868        if (!nvdev || nvdev->destroy)
1869                return -ENODEV;
1870
1871        memset(&orig, 0, sizeof(orig));
1872        __netvsc_get_ringparam(nvdev, &orig);
1873
1874        new_tx = clamp_t(u32, ring->tx_pending,
1875                         NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876        new_rx = clamp_t(u32, ring->rx_pending,
1877                         NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879        if (new_tx == orig.tx_pending &&
1880            new_rx == orig.rx_pending)
1881                return 0;        /* no change */
1882
1883        device_info = netvsc_devinfo_get(nvdev);
1884
1885        if (!device_info)
1886                return -ENOMEM;
1887
1888        device_info->send_sections = new_tx;
1889        device_info->recv_sections = new_rx;
1890
1891        ret = netvsc_detach(ndev, nvdev);
1892        if (ret)
1893                goto out;
1894
1895        ret = netvsc_attach(ndev, device_info);
1896        if (ret) {
1897                device_info->send_sections = orig.tx_pending;
1898                device_info->recv_sections = orig.rx_pending;
1899
1900                if (netvsc_attach(ndev, device_info))
1901                        netdev_err(ndev, "restoring ringparam failed");
1902        }
1903
1904out:
1905        netvsc_devinfo_put(device_info);
1906        return ret;
1907}
1908
1909static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910                                             netdev_features_t features)
1911{
1912        struct net_device_context *ndevctx = netdev_priv(ndev);
1913        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915        if (!nvdev || nvdev->destroy)
1916                return features;
1917
1918        if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919                features ^= NETIF_F_LRO;
1920                netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921        }
1922
1923        return features;
1924}
1925
1926static int netvsc_set_features(struct net_device *ndev,
1927                               netdev_features_t features)
1928{
1929        netdev_features_t change = features ^ ndev->features;
1930        struct net_device_context *ndevctx = netdev_priv(ndev);
1931        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933        struct ndis_offload_params offloads;
1934        int ret = 0;
1935
1936        if (!nvdev || nvdev->destroy)
1937                return -ENODEV;
1938
1939        if (!(change & NETIF_F_LRO))
1940                goto syncvf;
1941
1942        memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944        if (features & NETIF_F_LRO) {
1945                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947        } else {
1948                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950        }
1951
1952        ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954        if (ret) {
1955                features ^= NETIF_F_LRO;
1956                ndev->features = features;
1957        }
1958
1959syncvf:
1960        if (!vf_netdev)
1961                return ret;
1962
1963        vf_netdev->wanted_features = features;
1964        netdev_update_features(vf_netdev);
1965
1966        return ret;
1967}
1968
1969static int netvsc_get_regs_len(struct net_device *netdev)
1970{
1971        return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972}
1973
1974static void netvsc_get_regs(struct net_device *netdev,
1975                            struct ethtool_regs *regs, void *p)
1976{
1977        struct net_device_context *ndc = netdev_priv(netdev);
1978        u32 *regs_buff = p;
1979
1980        /* increase the version, if buffer format is changed. */
1981        regs->version = 1;
1982
1983        memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984}
1985
1986static u32 netvsc_get_msglevel(struct net_device *ndev)
1987{
1988        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990        return ndev_ctx->msg_enable;
1991}
1992
1993static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994{
1995        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997        ndev_ctx->msg_enable = val;
1998}
1999
2000static const struct ethtool_ops ethtool_ops = {
2001        .get_drvinfo    = netvsc_get_drvinfo,
2002        .get_regs_len   = netvsc_get_regs_len,
2003        .get_regs       = netvsc_get_regs,
2004        .get_msglevel   = netvsc_get_msglevel,
2005        .set_msglevel   = netvsc_set_msglevel,
2006        .get_link       = ethtool_op_get_link,
2007        .get_ethtool_stats = netvsc_get_ethtool_stats,
2008        .get_sset_count = netvsc_get_sset_count,
2009        .get_strings    = netvsc_get_strings,
2010        .get_channels   = netvsc_get_channels,
2011        .set_channels   = netvsc_set_channels,
2012        .get_ts_info    = ethtool_op_get_ts_info,
2013        .get_rxnfc      = netvsc_get_rxnfc,
2014        .set_rxnfc      = netvsc_set_rxnfc,
2015        .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016        .get_rxfh_indir_size = netvsc_rss_indir_size,
2017        .get_rxfh       = netvsc_get_rxfh,
2018        .set_rxfh       = netvsc_set_rxfh,
2019        .get_link_ksettings = netvsc_get_link_ksettings,
2020        .set_link_ksettings = netvsc_set_link_ksettings,
2021        .get_ringparam  = netvsc_get_ringparam,
2022        .set_ringparam  = netvsc_set_ringparam,
2023};
2024
2025static const struct net_device_ops device_ops = {
2026        .ndo_open =                     netvsc_open,
2027        .ndo_stop =                     netvsc_close,
2028        .ndo_start_xmit =               netvsc_start_xmit,
2029        .ndo_change_rx_flags =          netvsc_change_rx_flags,
2030        .ndo_set_rx_mode =              netvsc_set_rx_mode,
2031        .ndo_fix_features =             netvsc_fix_features,
2032        .ndo_set_features =             netvsc_set_features,
2033        .ndo_change_mtu =               netvsc_change_mtu,
2034        .ndo_validate_addr =            eth_validate_addr,
2035        .ndo_set_mac_address =          netvsc_set_mac_addr,
2036        .ndo_select_queue =             netvsc_select_queue,
2037        .ndo_get_stats64 =              netvsc_get_stats64,
2038        .ndo_bpf =                      netvsc_bpf,
2039};
2040
2041/*
2042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2044 * present send GARP packet to network peers with netif_notify_peers().
2045 */
2046static void netvsc_link_change(struct work_struct *w)
2047{
2048        struct net_device_context *ndev_ctx =
2049                container_of(w, struct net_device_context, dwork.work);
2050        struct hv_device *device_obj = ndev_ctx->device_ctx;
2051        struct net_device *net = hv_get_drvdata(device_obj);
2052        struct netvsc_device *net_device;
2053        struct rndis_device *rdev;
2054        struct netvsc_reconfig *event = NULL;
2055        bool notify = false, reschedule = false;
2056        unsigned long flags, next_reconfig, delay;
2057
2058        /* if changes are happening, comeback later */
2059        if (!rtnl_trylock()) {
2060                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2061                return;
2062        }
2063
2064        net_device = rtnl_dereference(ndev_ctx->nvdev);
2065        if (!net_device)
2066                goto out_unlock;
2067
2068        rdev = net_device->extension;
2069
2070        next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2071        if (time_is_after_jiffies(next_reconfig)) {
2072                /* link_watch only sends one notification with current state
2073                 * per second, avoid doing reconfig more frequently. Handle
2074                 * wrap around.
2075                 */
2076                delay = next_reconfig - jiffies;
2077                delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2078                schedule_delayed_work(&ndev_ctx->dwork, delay);
2079                goto out_unlock;
2080        }
2081        ndev_ctx->last_reconfig = jiffies;
2082
2083        spin_lock_irqsave(&ndev_ctx->lock, flags);
2084        if (!list_empty(&ndev_ctx->reconfig_events)) {
2085                event = list_first_entry(&ndev_ctx->reconfig_events,
2086                                         struct netvsc_reconfig, list);
2087                list_del(&event->list);
2088                reschedule = !list_empty(&ndev_ctx->reconfig_events);
2089        }
2090        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2091
2092        if (!event)
2093                goto out_unlock;
2094
2095        switch (event->event) {
2096                /* Only the following events are possible due to the check in
2097                 * netvsc_linkstatus_callback()
2098                 */
2099        case RNDIS_STATUS_MEDIA_CONNECT:
2100                if (rdev->link_state) {
2101                        rdev->link_state = false;
2102                        netif_carrier_on(net);
2103                        netvsc_tx_enable(net_device, net);
2104                } else {
2105                        notify = true;
2106                }
2107                kfree(event);
2108                break;
2109        case RNDIS_STATUS_MEDIA_DISCONNECT:
2110                if (!rdev->link_state) {
2111                        rdev->link_state = true;
2112                        netif_carrier_off(net);
2113                        netvsc_tx_disable(net_device, net);
2114                }
2115                kfree(event);
2116                break;
2117        case RNDIS_STATUS_NETWORK_CHANGE:
2118                /* Only makes sense if carrier is present */
2119                if (!rdev->link_state) {
2120                        rdev->link_state = true;
2121                        netif_carrier_off(net);
2122                        netvsc_tx_disable(net_device, net);
2123                        event->event = RNDIS_STATUS_MEDIA_CONNECT;
2124                        spin_lock_irqsave(&ndev_ctx->lock, flags);
2125                        list_add(&event->list, &ndev_ctx->reconfig_events);
2126                        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2127                        reschedule = true;
2128                }
2129                break;
2130        }
2131
2132        rtnl_unlock();
2133
2134        if (notify)
2135                netdev_notify_peers(net);
2136
2137        /* link_watch only sends one notification with current state per
2138         * second, handle next reconfig event in 2 seconds.
2139         */
2140        if (reschedule)
2141                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2142
2143        return;
2144
2145out_unlock:
2146        rtnl_unlock();
2147}
2148
2149static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2150{
2151        struct net_device_context *net_device_ctx;
2152        struct net_device *dev;
2153
2154        dev = netdev_master_upper_dev_get(vf_netdev);
2155        if (!dev || dev->netdev_ops != &device_ops)
2156                return NULL;    /* not a netvsc device */
2157
2158        net_device_ctx = netdev_priv(dev);
2159        if (!rtnl_dereference(net_device_ctx->nvdev))
2160                return NULL;    /* device is removed */
2161
2162        return dev;
2163}
2164
2165/* Called when VF is injecting data into network stack.
2166 * Change the associated network device from VF to netvsc.
2167 * note: already called with rcu_read_lock
2168 */
2169static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2170{
2171        struct sk_buff *skb = *pskb;
2172        struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2173        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2174        struct netvsc_vf_pcpu_stats *pcpu_stats
2175                 = this_cpu_ptr(ndev_ctx->vf_stats);
2176
2177        skb = skb_share_check(skb, GFP_ATOMIC);
2178        if (unlikely(!skb))
2179                return RX_HANDLER_CONSUMED;
2180
2181        *pskb = skb;
2182
2183        skb->dev = ndev;
2184
2185        u64_stats_update_begin(&pcpu_stats->syncp);
2186        pcpu_stats->rx_packets++;
2187        pcpu_stats->rx_bytes += skb->len;
2188        u64_stats_update_end(&pcpu_stats->syncp);
2189
2190        return RX_HANDLER_ANOTHER;
2191}
2192
2193static int netvsc_vf_join(struct net_device *vf_netdev,
2194                          struct net_device *ndev)
2195{
2196        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2197        int ret;
2198
2199        ret = netdev_rx_handler_register(vf_netdev,
2200                                         netvsc_vf_handle_frame, ndev);
2201        if (ret != 0) {
2202                netdev_err(vf_netdev,
2203                           "can not register netvsc VF receive handler (err = %d)\n",
2204                           ret);
2205                goto rx_handler_failed;
2206        }
2207
2208        ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2209                                           NULL, NULL, NULL);
2210        if (ret != 0) {
2211                netdev_err(vf_netdev,
2212                           "can not set master device %s (err = %d)\n",
2213                           ndev->name, ret);
2214                goto upper_link_failed;
2215        }
2216
2217        /* set slave flag before open to prevent IPv6 addrconf */
2218        vf_netdev->flags |= IFF_SLAVE;
2219
2220        schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222        call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224        netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225        return 0;
2226
2227upper_link_failed:
2228        netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230        return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234                              struct net_device *vf_netdev)
2235{
2236        int ret;
2237
2238        /* Align MTU of VF with master */
2239        ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240        if (ret)
2241                netdev_warn(vf_netdev,
2242                            "unable to change mtu to %u\n", ndev->mtu);
2243
2244        /* set multicast etc flags on VF */
2245        dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247        /* sync address list from ndev to VF */
2248        netif_addr_lock_bh(ndev);
2249        dev_uc_sync(vf_netdev, ndev);
2250        dev_mc_sync(vf_netdev, ndev);
2251        netif_addr_unlock_bh(ndev);
2252
2253        if (netif_running(ndev)) {
2254                ret = dev_open(vf_netdev, NULL);
2255                if (ret)
2256                        netdev_warn(vf_netdev,
2257                                    "unable to open: %d\n", ret);
2258        }
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266        struct net_device_context *ndev_ctx
2267                = container_of(w, struct net_device_context, vf_takeover.work);
2268        struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269        struct net_device *vf_netdev;
2270
2271        if (!rtnl_trylock()) {
2272                schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273                return;
2274        }
2275
2276        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277        if (vf_netdev)
2278                __netvsc_vf_setup(ndev, vf_netdev);
2279
2280        rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288        struct device *parent = vf_netdev->dev.parent;
2289        struct net_device_context *ndev_ctx;
2290        struct pci_dev *pdev;
2291        u32 serial;
2292
2293        if (!parent || !dev_is_pci(parent))
2294                return NULL; /* not a PCI device */
2295
2296        pdev = to_pci_dev(parent);
2297        if (!pdev->slot) {
2298                netdev_notice(vf_netdev, "no PCI slot information\n");
2299                return NULL;
2300        }
2301
2302        if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303                netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304                              pci_slot_name(pdev->slot));
2305                return NULL;
2306        }
2307
2308        list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309                if (!ndev_ctx->vf_alloc)
2310                        continue;
2311
2312                if (ndev_ctx->vf_serial == serial)
2313                        return hv_get_drvdata(ndev_ctx->device_ctx);
2314        }
2315
2316        netdev_notice(vf_netdev,
2317                      "no netdev found for vf serial:%u\n", serial);
2318        return NULL;
2319}
2320
2321static int netvsc_register_vf(struct net_device *vf_netdev)
2322{
2323        struct net_device_context *net_device_ctx;
2324        struct netvsc_device *netvsc_dev;
2325        struct bpf_prog *prog;
2326        struct net_device *ndev;
2327        int ret;
2328
2329        if (vf_netdev->addr_len != ETH_ALEN)
2330                return NOTIFY_DONE;
2331
2332        ndev = get_netvsc_byslot(vf_netdev);
2333        if (!ndev)
2334                return NOTIFY_DONE;
2335
2336        net_device_ctx = netdev_priv(ndev);
2337        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338        if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339                return NOTIFY_DONE;
2340
2341        /* if synthetic interface is a different namespace,
2342         * then move the VF to that namespace; join will be
2343         * done again in that context.
2344         */
2345        if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346                ret = dev_change_net_namespace(vf_netdev,
2347                                               dev_net(ndev), "eth%d");
2348                if (ret)
2349                        netdev_err(vf_netdev,
2350                                   "could not move to same namespace as %s: %d\n",
2351                                   ndev->name, ret);
2352                else
2353                        netdev_info(vf_netdev,
2354                                    "VF moved to namespace with: %s\n",
2355                                    ndev->name);
2356                return NOTIFY_DONE;
2357        }
2358
2359        netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360
2361        if (netvsc_vf_join(vf_netdev, ndev) != 0)
2362                return NOTIFY_DONE;
2363
2364        dev_hold(vf_netdev);
2365        rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366
2367        vf_netdev->wanted_features = ndev->features;
2368        netdev_update_features(vf_netdev);
2369
2370        prog = netvsc_xdp_get(netvsc_dev);
2371        netvsc_vf_setxdp(vf_netdev, prog);
2372
2373        return NOTIFY_OK;
2374}
2375
2376/* Change the data path when VF UP/DOWN/CHANGE are detected.
2377 *
2378 * Typically a UP or DOWN event is followed by a CHANGE event, so
2379 * net_device_ctx->data_path_is_vf is used to cache the current data path
2380 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2381 * message.
2382 *
2383 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2384 * interface, there is only the CHANGE event and no UP or DOWN event.
2385 */
2386static int netvsc_vf_changed(struct net_device *vf_netdev)
2387{
2388        struct net_device_context *net_device_ctx;
2389        struct netvsc_device *netvsc_dev;
2390        struct net_device *ndev;
2391        bool vf_is_up = netif_running(vf_netdev);
2392
2393        ndev = get_netvsc_byref(vf_netdev);
2394        if (!ndev)
2395                return NOTIFY_DONE;
2396
2397        net_device_ctx = netdev_priv(ndev);
2398        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2399        if (!netvsc_dev)
2400                return NOTIFY_DONE;
2401
2402        if (net_device_ctx->data_path_is_vf == vf_is_up)
2403                return NOTIFY_OK;
2404        net_device_ctx->data_path_is_vf = vf_is_up;
2405
2406        netvsc_switch_datapath(ndev, vf_is_up);
2407        netdev_info(ndev, "Data path switched %s VF: %s\n",
2408                    vf_is_up ? "to" : "from", vf_netdev->name);
2409
2410        return NOTIFY_OK;
2411}
2412
2413static int netvsc_unregister_vf(struct net_device *vf_netdev)
2414{
2415        struct net_device *ndev;
2416        struct net_device_context *net_device_ctx;
2417
2418        ndev = get_netvsc_byref(vf_netdev);
2419        if (!ndev)
2420                return NOTIFY_DONE;
2421
2422        net_device_ctx = netdev_priv(ndev);
2423        cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2424
2425        netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2426
2427        netvsc_vf_setxdp(vf_netdev, NULL);
2428
2429        netdev_rx_handler_unregister(vf_netdev);
2430        netdev_upper_dev_unlink(vf_netdev, ndev);
2431        RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2432        dev_put(vf_netdev);
2433
2434        return NOTIFY_OK;
2435}
2436
2437static int netvsc_probe(struct hv_device *dev,
2438                        const struct hv_vmbus_device_id *dev_id)
2439{
2440        struct net_device *net = NULL;
2441        struct net_device_context *net_device_ctx;
2442        struct netvsc_device_info *device_info = NULL;
2443        struct netvsc_device *nvdev;
2444        int ret = -ENOMEM;
2445
2446        net = alloc_etherdev_mq(sizeof(struct net_device_context),
2447                                VRSS_CHANNEL_MAX);
2448        if (!net)
2449                goto no_net;
2450
2451        netif_carrier_off(net);
2452
2453        netvsc_init_settings(net);
2454
2455        net_device_ctx = netdev_priv(net);
2456        net_device_ctx->device_ctx = dev;
2457        net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2458        if (netif_msg_probe(net_device_ctx))
2459                netdev_dbg(net, "netvsc msg_enable: %d\n",
2460                           net_device_ctx->msg_enable);
2461
2462        hv_set_drvdata(dev, net);
2463
2464        INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2465
2466        spin_lock_init(&net_device_ctx->lock);
2467        INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2468        INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2469
2470        net_device_ctx->vf_stats
2471                = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2472        if (!net_device_ctx->vf_stats)
2473                goto no_stats;
2474
2475        net->netdev_ops = &device_ops;
2476        net->ethtool_ops = &ethtool_ops;
2477        SET_NETDEV_DEV(net, &dev->device);
2478
2479        /* We always need headroom for rndis header */
2480        net->needed_headroom = RNDIS_AND_PPI_SIZE;
2481
2482        /* Initialize the number of queues to be 1, we may change it if more
2483         * channels are offered later.
2484         */
2485        netif_set_real_num_tx_queues(net, 1);
2486        netif_set_real_num_rx_queues(net, 1);
2487
2488        /* Notify the netvsc driver of the new device */
2489        device_info = netvsc_devinfo_get(NULL);
2490
2491        if (!device_info) {
2492                ret = -ENOMEM;
2493                goto devinfo_failed;
2494        }
2495
2496        nvdev = rndis_filter_device_add(dev, device_info);
2497        if (IS_ERR(nvdev)) {
2498                ret = PTR_ERR(nvdev);
2499                netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2500                goto rndis_failed;
2501        }
2502
2503        memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2504
2505        /* We must get rtnl lock before scheduling nvdev->subchan_work,
2506         * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2507         * all subchannels to show up, but that may not happen because
2508         * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2509         * -> ... -> device_add() -> ... -> __device_attach() can't get
2510         * the device lock, so all the subchannels can't be processed --
2511         * finally netvsc_subchan_work() hangs forever.
2512         */
2513        rtnl_lock();
2514
2515        if (nvdev->num_chn > 1)
2516                schedule_work(&nvdev->subchan_work);
2517
2518        /* hw_features computed in rndis_netdev_set_hwcaps() */
2519        net->features = net->hw_features |
2520                NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2521                NETIF_F_HW_VLAN_CTAG_RX;
2522        net->vlan_features = net->features;
2523
2524        netdev_lockdep_set_classes(net);
2525
2526        /* MTU range: 68 - 1500 or 65521 */
2527        net->min_mtu = NETVSC_MTU_MIN;
2528        if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2529                net->max_mtu = NETVSC_MTU - ETH_HLEN;
2530        else
2531                net->max_mtu = ETH_DATA_LEN;
2532
2533        nvdev->tx_disable = false;
2534
2535        ret = register_netdevice(net);
2536        if (ret != 0) {
2537                pr_err("Unable to register netdev.\n");
2538                goto register_failed;
2539        }
2540
2541        list_add(&net_device_ctx->list, &netvsc_dev_list);
2542        rtnl_unlock();
2543
2544        netvsc_devinfo_put(device_info);
2545        return 0;
2546
2547register_failed:
2548        rtnl_unlock();
2549        rndis_filter_device_remove(dev, nvdev);
2550rndis_failed:
2551        netvsc_devinfo_put(device_info);
2552devinfo_failed:
2553        free_percpu(net_device_ctx->vf_stats);
2554no_stats:
2555        hv_set_drvdata(dev, NULL);
2556        free_netdev(net);
2557no_net:
2558        return ret;
2559}
2560
2561static int netvsc_remove(struct hv_device *dev)
2562{
2563        struct net_device_context *ndev_ctx;
2564        struct net_device *vf_netdev, *net;
2565        struct netvsc_device *nvdev;
2566
2567        net = hv_get_drvdata(dev);
2568        if (net == NULL) {
2569                dev_err(&dev->device, "No net device to remove\n");
2570                return 0;
2571        }
2572
2573        ndev_ctx = netdev_priv(net);
2574
2575        cancel_delayed_work_sync(&ndev_ctx->dwork);
2576
2577        rtnl_lock();
2578        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2579        if (nvdev) {
2580                cancel_work_sync(&nvdev->subchan_work);
2581                netvsc_xdp_set(net, NULL, NULL, nvdev);
2582        }
2583
2584        /*
2585         * Call to the vsc driver to let it know that the device is being
2586         * removed. Also blocks mtu and channel changes.
2587         */
2588        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2589        if (vf_netdev)
2590                netvsc_unregister_vf(vf_netdev);
2591
2592        if (nvdev)
2593                rndis_filter_device_remove(dev, nvdev);
2594
2595        unregister_netdevice(net);
2596        list_del(&ndev_ctx->list);
2597
2598        rtnl_unlock();
2599
2600        hv_set_drvdata(dev, NULL);
2601
2602        free_percpu(ndev_ctx->vf_stats);
2603        free_netdev(net);
2604        return 0;
2605}
2606
2607static int netvsc_suspend(struct hv_device *dev)
2608{
2609        struct net_device_context *ndev_ctx;
2610        struct netvsc_device *nvdev;
2611        struct net_device *net;
2612        int ret;
2613
2614        net = hv_get_drvdata(dev);
2615
2616        ndev_ctx = netdev_priv(net);
2617        cancel_delayed_work_sync(&ndev_ctx->dwork);
2618
2619        rtnl_lock();
2620
2621        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2622        if (nvdev == NULL) {
2623                ret = -ENODEV;
2624                goto out;
2625        }
2626
2627        /* Save the current config info */
2628        ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2629
2630        ret = netvsc_detach(net, nvdev);
2631out:
2632        rtnl_unlock();
2633
2634        return ret;
2635}
2636
2637static int netvsc_resume(struct hv_device *dev)
2638{
2639        struct net_device *net = hv_get_drvdata(dev);
2640        struct net_device_context *net_device_ctx;
2641        struct netvsc_device_info *device_info;
2642        int ret;
2643
2644        rtnl_lock();
2645
2646        net_device_ctx = netdev_priv(net);
2647
2648        /* Reset the data path to the netvsc NIC before re-opening the vmbus
2649         * channel. Later netvsc_netdev_event() will switch the data path to
2650         * the VF upon the UP or CHANGE event.
2651         */
2652        net_device_ctx->data_path_is_vf = false;
2653        device_info = net_device_ctx->saved_netvsc_dev_info;
2654
2655        ret = netvsc_attach(net, device_info);
2656
2657        netvsc_devinfo_put(device_info);
2658        net_device_ctx->saved_netvsc_dev_info = NULL;
2659
2660        rtnl_unlock();
2661
2662        return ret;
2663}
2664static const struct hv_vmbus_device_id id_table[] = {
2665        /* Network guid */
2666        { HV_NIC_GUID, },
2667        { },
2668};
2669
2670MODULE_DEVICE_TABLE(vmbus, id_table);
2671
2672/* The one and only one */
2673static struct  hv_driver netvsc_drv = {
2674        .name = KBUILD_MODNAME,
2675        .id_table = id_table,
2676        .probe = netvsc_probe,
2677        .remove = netvsc_remove,
2678        .suspend = netvsc_suspend,
2679        .resume = netvsc_resume,
2680        .driver = {
2681                .probe_type = PROBE_FORCE_SYNCHRONOUS,
2682        },
2683};
2684
2685/*
2686 * On Hyper-V, every VF interface is matched with a corresponding
2687 * synthetic interface. The synthetic interface is presented first
2688 * to the guest. When the corresponding VF instance is registered,
2689 * we will take care of switching the data path.
2690 */
2691static int netvsc_netdev_event(struct notifier_block *this,
2692                               unsigned long event, void *ptr)
2693{
2694        struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2695
2696        /* Skip our own events */
2697        if (event_dev->netdev_ops == &device_ops)
2698                return NOTIFY_DONE;
2699
2700        /* Avoid non-Ethernet type devices */
2701        if (event_dev->type != ARPHRD_ETHER)
2702                return NOTIFY_DONE;
2703
2704        /* Avoid Vlan dev with same MAC registering as VF */
2705        if (is_vlan_dev(event_dev))
2706                return NOTIFY_DONE;
2707
2708        /* Avoid Bonding master dev with same MAC registering as VF */
2709        if ((event_dev->priv_flags & IFF_BONDING) &&
2710            (event_dev->flags & IFF_MASTER))
2711                return NOTIFY_DONE;
2712
2713        switch (event) {
2714        case NETDEV_REGISTER:
2715                return netvsc_register_vf(event_dev);
2716        case NETDEV_UNREGISTER:
2717                return netvsc_unregister_vf(event_dev);
2718        case NETDEV_UP:
2719        case NETDEV_DOWN:
2720        case NETDEV_CHANGE:
2721                return netvsc_vf_changed(event_dev);
2722        default:
2723                return NOTIFY_DONE;
2724        }
2725}
2726
2727static struct notifier_block netvsc_netdev_notifier = {
2728        .notifier_call = netvsc_netdev_event,
2729};
2730
2731static void __exit netvsc_drv_exit(void)
2732{
2733        unregister_netdevice_notifier(&netvsc_netdev_notifier);
2734        vmbus_driver_unregister(&netvsc_drv);
2735}
2736
2737static int __init netvsc_drv_init(void)
2738{
2739        int ret;
2740
2741        if (ring_size < RING_SIZE_MIN) {
2742                ring_size = RING_SIZE_MIN;
2743                pr_info("Increased ring_size to %u (min allowed)\n",
2744                        ring_size);
2745        }
2746        netvsc_ring_bytes = ring_size * PAGE_SIZE;
2747
2748        ret = vmbus_driver_register(&netvsc_drv);
2749        if (ret)
2750                return ret;
2751
2752        register_netdevice_notifier(&netvsc_netdev_notifier);
2753        return 0;
2754}
2755
2756MODULE_LICENSE("GPL");
2757MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2758
2759module_init(netvsc_drv_init);
2760module_exit(netvsc_drv_exit);
2761