linux/drivers/net/vrf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ip.h>
  17#include <linux/init.h>
  18#include <linux/moduleparam.h>
  19#include <linux/netfilter.h>
  20#include <linux/rtnetlink.h>
  21#include <net/rtnetlink.h>
  22#include <linux/u64_stats_sync.h>
  23#include <linux/hashtable.h>
  24#include <linux/spinlock_types.h>
  25
  26#include <linux/inetdevice.h>
  27#include <net/arp.h>
  28#include <net/ip.h>
  29#include <net/ip_fib.h>
  30#include <net/ip6_fib.h>
  31#include <net/ip6_route.h>
  32#include <net/route.h>
  33#include <net/addrconf.h>
  34#include <net/l3mdev.h>
  35#include <net/fib_rules.h>
  36#include <net/netns/generic.h>
  37
  38#define DRV_NAME        "vrf"
  39#define DRV_VERSION     "1.1"
  40
  41#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  42
  43#define HT_MAP_BITS     4
  44#define HASH_INITVAL    ((u32)0xcafef00d)
  45
  46struct  vrf_map {
  47        DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  48        spinlock_t vmap_lock;
  49
  50        /* shared_tables:
  51         * count how many distinct tables do not comply with the strict mode
  52         * requirement.
  53         * shared_tables value must be 0 in order to enable the strict mode.
  54         *
  55         * example of the evolution of shared_tables:
  56         *                                                        | time
  57         * add  vrf0 --> table 100        shared_tables = 0       | t0
  58         * add  vrf1 --> table 101        shared_tables = 0       | t1
  59         * add  vrf2 --> table 100        shared_tables = 1       | t2
  60         * add  vrf3 --> table 100        shared_tables = 1       | t3
  61         * add  vrf4 --> table 101        shared_tables = 2       v t4
  62         *
  63         * shared_tables is a "step function" (or "staircase function")
  64         * and it is increased by one when the second vrf is associated to a
  65         * table.
  66         *
  67         * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  68         *
  69         * at t3, another dev (vrf3) is bound to the same table 100 but the
  70         * value of shared_tables is still 1.
  71         * This means that no matter how many new vrfs will register on the
  72         * table 100, the shared_tables will not increase (considering only
  73         * table 100).
  74         *
  75         * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  76         *
  77         * Looking at the value of shared_tables we can immediately know if
  78         * the strict_mode can or cannot be enforced. Indeed, strict_mode
  79         * can be enforced iff shared_tables = 0.
  80         *
  81         * Conversely, shared_tables is decreased when a vrf is de-associated
  82         * from a table with exactly two associated vrfs.
  83         */
  84        u32 shared_tables;
  85
  86        bool strict_mode;
  87};
  88
  89struct vrf_map_elem {
  90        struct hlist_node hnode;
  91        struct list_head vrf_list;  /* VRFs registered to this table */
  92
  93        u32 table_id;
  94        int users;
  95        int ifindex;
  96};
  97
  98static unsigned int vrf_net_id;
  99
 100/* per netns vrf data */
 101struct netns_vrf {
 102        /* protected by rtnl lock */
 103        bool add_fib_rules;
 104
 105        struct vrf_map vmap;
 106        struct ctl_table_header *ctl_hdr;
 107};
 108
 109struct net_vrf {
 110        struct rtable __rcu     *rth;
 111        struct rt6_info __rcu   *rt6;
 112#if IS_ENABLED(CONFIG_IPV6)
 113        struct fib6_table       *fib6_table;
 114#endif
 115        u32                     tb_id;
 116
 117        struct list_head        me_list;   /* entry in vrf_map_elem */
 118        int                     ifindex;
 119};
 120
 121struct pcpu_dstats {
 122        u64                     tx_pkts;
 123        u64                     tx_bytes;
 124        u64                     tx_drps;
 125        u64                     rx_pkts;
 126        u64                     rx_bytes;
 127        u64                     rx_drps;
 128        struct u64_stats_sync   syncp;
 129};
 130
 131static void vrf_rx_stats(struct net_device *dev, int len)
 132{
 133        struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 134
 135        u64_stats_update_begin(&dstats->syncp);
 136        dstats->rx_pkts++;
 137        dstats->rx_bytes += len;
 138        u64_stats_update_end(&dstats->syncp);
 139}
 140
 141static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 142{
 143        vrf_dev->stats.tx_errors++;
 144        kfree_skb(skb);
 145}
 146
 147static void vrf_get_stats64(struct net_device *dev,
 148                            struct rtnl_link_stats64 *stats)
 149{
 150        int i;
 151
 152        for_each_possible_cpu(i) {
 153                const struct pcpu_dstats *dstats;
 154                u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 155                unsigned int start;
 156
 157                dstats = per_cpu_ptr(dev->dstats, i);
 158                do {
 159                        start = u64_stats_fetch_begin_irq(&dstats->syncp);
 160                        tbytes = dstats->tx_bytes;
 161                        tpkts = dstats->tx_pkts;
 162                        tdrops = dstats->tx_drps;
 163                        rbytes = dstats->rx_bytes;
 164                        rpkts = dstats->rx_pkts;
 165                } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 166                stats->tx_bytes += tbytes;
 167                stats->tx_packets += tpkts;
 168                stats->tx_dropped += tdrops;
 169                stats->rx_bytes += rbytes;
 170                stats->rx_packets += rpkts;
 171        }
 172}
 173
 174static struct vrf_map *netns_vrf_map(struct net *net)
 175{
 176        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 177
 178        return &nn_vrf->vmap;
 179}
 180
 181static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 182{
 183        return netns_vrf_map(dev_net(dev));
 184}
 185
 186static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 187{
 188        struct list_head *me_head = &me->vrf_list;
 189        struct net_vrf *vrf;
 190
 191        if (list_empty(me_head))
 192                return -ENODEV;
 193
 194        vrf = list_first_entry(me_head, struct net_vrf, me_list);
 195
 196        return vrf->ifindex;
 197}
 198
 199static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 200{
 201        struct vrf_map_elem *me;
 202
 203        me = kmalloc(sizeof(*me), flags);
 204        if (!me)
 205                return NULL;
 206
 207        return me;
 208}
 209
 210static void vrf_map_elem_free(struct vrf_map_elem *me)
 211{
 212        kfree(me);
 213}
 214
 215static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 216                              int ifindex, int users)
 217{
 218        me->table_id = table_id;
 219        me->ifindex = ifindex;
 220        me->users = users;
 221        INIT_LIST_HEAD(&me->vrf_list);
 222}
 223
 224static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 225                                                u32 table_id)
 226{
 227        struct vrf_map_elem *me;
 228        u32 key;
 229
 230        key = jhash_1word(table_id, HASH_INITVAL);
 231        hash_for_each_possible(vmap->ht, me, hnode, key) {
 232                if (me->table_id == table_id)
 233                        return me;
 234        }
 235
 236        return NULL;
 237}
 238
 239static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 240{
 241        u32 table_id = me->table_id;
 242        u32 key;
 243
 244        key = jhash_1word(table_id, HASH_INITVAL);
 245        hash_add(vmap->ht, &me->hnode, key);
 246}
 247
 248static void vrf_map_del_elem(struct vrf_map_elem *me)
 249{
 250        hash_del(&me->hnode);
 251}
 252
 253static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 254{
 255        spin_lock(&vmap->vmap_lock);
 256}
 257
 258static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 259{
 260        spin_unlock(&vmap->vmap_lock);
 261}
 262
 263/* called with rtnl lock held */
 264static int
 265vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 266{
 267        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 268        struct net_vrf *vrf = netdev_priv(dev);
 269        struct vrf_map_elem *new_me, *me;
 270        u32 table_id = vrf->tb_id;
 271        bool free_new_me = false;
 272        int users;
 273        int res;
 274
 275        /* we pre-allocate elements used in the spin-locked section (so that we
 276         * keep the spinlock as short as possibile).
 277         */
 278        new_me = vrf_map_elem_alloc(GFP_KERNEL);
 279        if (!new_me)
 280                return -ENOMEM;
 281
 282        vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 283
 284        vrf_map_lock(vmap);
 285
 286        me = vrf_map_lookup_elem(vmap, table_id);
 287        if (!me) {
 288                me = new_me;
 289                vrf_map_add_elem(vmap, me);
 290                goto link_vrf;
 291        }
 292
 293        /* we already have an entry in the vrf_map, so it means there is (at
 294         * least) a vrf registered on the specific table.
 295         */
 296        free_new_me = true;
 297        if (vmap->strict_mode) {
 298                /* vrfs cannot share the same table */
 299                NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 300                res = -EBUSY;
 301                goto unlock;
 302        }
 303
 304link_vrf:
 305        users = ++me->users;
 306        if (users == 2)
 307                ++vmap->shared_tables;
 308
 309        list_add(&vrf->me_list, &me->vrf_list);
 310
 311        res = 0;
 312
 313unlock:
 314        vrf_map_unlock(vmap);
 315
 316        /* clean-up, if needed */
 317        if (free_new_me)
 318                vrf_map_elem_free(new_me);
 319
 320        return res;
 321}
 322
 323/* called with rtnl lock held */
 324static void vrf_map_unregister_dev(struct net_device *dev)
 325{
 326        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 327        struct net_vrf *vrf = netdev_priv(dev);
 328        u32 table_id = vrf->tb_id;
 329        struct vrf_map_elem *me;
 330        int users;
 331
 332        vrf_map_lock(vmap);
 333
 334        me = vrf_map_lookup_elem(vmap, table_id);
 335        if (!me)
 336                goto unlock;
 337
 338        list_del(&vrf->me_list);
 339
 340        users = --me->users;
 341        if (users == 1) {
 342                --vmap->shared_tables;
 343        } else if (users == 0) {
 344                vrf_map_del_elem(me);
 345
 346                /* no one will refer to this element anymore */
 347                vrf_map_elem_free(me);
 348        }
 349
 350unlock:
 351        vrf_map_unlock(vmap);
 352}
 353
 354/* return the vrf device index associated with the table_id */
 355static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 356{
 357        struct vrf_map *vmap = netns_vrf_map(net);
 358        struct vrf_map_elem *me;
 359        int ifindex;
 360
 361        vrf_map_lock(vmap);
 362
 363        if (!vmap->strict_mode) {
 364                ifindex = -EPERM;
 365                goto unlock;
 366        }
 367
 368        me = vrf_map_lookup_elem(vmap, table_id);
 369        if (!me) {
 370                ifindex = -ENODEV;
 371                goto unlock;
 372        }
 373
 374        ifindex = vrf_map_elem_get_vrf_ifindex(me);
 375
 376unlock:
 377        vrf_map_unlock(vmap);
 378
 379        return ifindex;
 380}
 381
 382/* by default VRF devices do not have a qdisc and are expected
 383 * to be created with only a single queue.
 384 */
 385static bool qdisc_tx_is_default(const struct net_device *dev)
 386{
 387        struct netdev_queue *txq;
 388        struct Qdisc *qdisc;
 389
 390        if (dev->num_tx_queues > 1)
 391                return false;
 392
 393        txq = netdev_get_tx_queue(dev, 0);
 394        qdisc = rcu_access_pointer(txq->qdisc);
 395
 396        return !qdisc->enqueue;
 397}
 398
 399/* Local traffic destined to local address. Reinsert the packet to rx
 400 * path, similar to loopback handling.
 401 */
 402static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 403                          struct dst_entry *dst)
 404{
 405        int len = skb->len;
 406
 407        skb_orphan(skb);
 408
 409        skb_dst_set(skb, dst);
 410
 411        /* set pkt_type to avoid skb hitting packet taps twice -
 412         * once on Tx and again in Rx processing
 413         */
 414        skb->pkt_type = PACKET_LOOPBACK;
 415
 416        skb->protocol = eth_type_trans(skb, dev);
 417
 418        if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 419                vrf_rx_stats(dev, len);
 420        else
 421                this_cpu_inc(dev->dstats->rx_drps);
 422
 423        return NETDEV_TX_OK;
 424}
 425
 426#if IS_ENABLED(CONFIG_IPV6)
 427static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 428                             struct sk_buff *skb)
 429{
 430        int err;
 431
 432        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 433                      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 434
 435        if (likely(err == 1))
 436                err = dst_output(net, sk, skb);
 437
 438        return err;
 439}
 440
 441static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 442                                           struct net_device *dev)
 443{
 444        const struct ipv6hdr *iph;
 445        struct net *net = dev_net(skb->dev);
 446        struct flowi6 fl6;
 447        int ret = NET_XMIT_DROP;
 448        struct dst_entry *dst;
 449        struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 450
 451        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 452                goto err;
 453
 454        iph = ipv6_hdr(skb);
 455
 456        memset(&fl6, 0, sizeof(fl6));
 457        /* needed to match OIF rule */
 458        fl6.flowi6_oif = dev->ifindex;
 459        fl6.flowi6_iif = LOOPBACK_IFINDEX;
 460        fl6.daddr = iph->daddr;
 461        fl6.saddr = iph->saddr;
 462        fl6.flowlabel = ip6_flowinfo(iph);
 463        fl6.flowi6_mark = skb->mark;
 464        fl6.flowi6_proto = iph->nexthdr;
 465        fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 466
 467        dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 468        if (IS_ERR(dst) || dst == dst_null)
 469                goto err;
 470
 471        skb_dst_drop(skb);
 472
 473        /* if dst.dev is loopback or the VRF device again this is locally
 474         * originated traffic destined to a local address. Short circuit
 475         * to Rx path
 476         */
 477        if (dst->dev == dev)
 478                return vrf_local_xmit(skb, dev, dst);
 479
 480        skb_dst_set(skb, dst);
 481
 482        /* strip the ethernet header added for pass through VRF device */
 483        __skb_pull(skb, skb_network_offset(skb));
 484
 485        ret = vrf_ip6_local_out(net, skb->sk, skb);
 486        if (unlikely(net_xmit_eval(ret)))
 487                dev->stats.tx_errors++;
 488        else
 489                ret = NET_XMIT_SUCCESS;
 490
 491        return ret;
 492err:
 493        vrf_tx_error(dev, skb);
 494        return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498                                           struct net_device *dev)
 499{
 500        vrf_tx_error(dev, skb);
 501        return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507                            struct sk_buff *skb)
 508{
 509        int err;
 510
 511        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512                      skb, NULL, skb_dst(skb)->dev, dst_output);
 513        if (likely(err == 1))
 514                err = dst_output(net, sk, skb);
 515
 516        return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520                                           struct net_device *vrf_dev)
 521{
 522        struct iphdr *ip4h;
 523        int ret = NET_XMIT_DROP;
 524        struct flowi4 fl4;
 525        struct net *net = dev_net(vrf_dev);
 526        struct rtable *rt;
 527
 528        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529                goto err;
 530
 531        ip4h = ip_hdr(skb);
 532
 533        memset(&fl4, 0, sizeof(fl4));
 534        /* needed to match OIF rule */
 535        fl4.flowi4_oif = vrf_dev->ifindex;
 536        fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537        fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538        fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539        fl4.flowi4_proto = ip4h->protocol;
 540        fl4.daddr = ip4h->daddr;
 541        fl4.saddr = ip4h->saddr;
 542
 543        rt = ip_route_output_flow(net, &fl4, NULL);
 544        if (IS_ERR(rt))
 545                goto err;
 546
 547        skb_dst_drop(skb);
 548
 549        /* if dst.dev is loopback or the VRF device again this is locally
 550         * originated traffic destined to a local address. Short circuit
 551         * to Rx path
 552         */
 553        if (rt->dst.dev == vrf_dev)
 554                return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 555
 556        skb_dst_set(skb, &rt->dst);
 557
 558        /* strip the ethernet header added for pass through VRF device */
 559        __skb_pull(skb, skb_network_offset(skb));
 560
 561        if (!ip4h->saddr) {
 562                ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 563                                               RT_SCOPE_LINK);
 564        }
 565
 566        ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 567        if (unlikely(net_xmit_eval(ret)))
 568                vrf_dev->stats.tx_errors++;
 569        else
 570                ret = NET_XMIT_SUCCESS;
 571
 572out:
 573        return ret;
 574err:
 575        vrf_tx_error(vrf_dev, skb);
 576        goto out;
 577}
 578
 579static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 580{
 581        switch (skb->protocol) {
 582        case htons(ETH_P_IP):
 583                return vrf_process_v4_outbound(skb, dev);
 584        case htons(ETH_P_IPV6):
 585                return vrf_process_v6_outbound(skb, dev);
 586        default:
 587                vrf_tx_error(dev, skb);
 588                return NET_XMIT_DROP;
 589        }
 590}
 591
 592static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 593{
 594        int len = skb->len;
 595        netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 596
 597        if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 598                struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 599
 600                u64_stats_update_begin(&dstats->syncp);
 601                dstats->tx_pkts++;
 602                dstats->tx_bytes += len;
 603                u64_stats_update_end(&dstats->syncp);
 604        } else {
 605                this_cpu_inc(dev->dstats->tx_drps);
 606        }
 607
 608        return ret;
 609}
 610
 611static void vrf_finish_direct(struct sk_buff *skb)
 612{
 613        struct net_device *vrf_dev = skb->dev;
 614
 615        if (!list_empty(&vrf_dev->ptype_all) &&
 616            likely(skb_headroom(skb) >= ETH_HLEN)) {
 617                struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 618
 619                ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 620                eth_zero_addr(eth->h_dest);
 621                eth->h_proto = skb->protocol;
 622
 623                rcu_read_lock_bh();
 624                dev_queue_xmit_nit(skb, vrf_dev);
 625                rcu_read_unlock_bh();
 626
 627                skb_pull(skb, ETH_HLEN);
 628        }
 629
 630        /* reset skb device */
 631        nf_reset_ct(skb);
 632}
 633
 634#if IS_ENABLED(CONFIG_IPV6)
 635/* modelled after ip6_finish_output2 */
 636static int vrf_finish_output6(struct net *net, struct sock *sk,
 637                              struct sk_buff *skb)
 638{
 639        struct dst_entry *dst = skb_dst(skb);
 640        struct net_device *dev = dst->dev;
 641        const struct in6_addr *nexthop;
 642        struct neighbour *neigh;
 643        int ret;
 644
 645        nf_reset_ct(skb);
 646
 647        skb->protocol = htons(ETH_P_IPV6);
 648        skb->dev = dev;
 649
 650        rcu_read_lock_bh();
 651        nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 652        neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 653        if (unlikely(!neigh))
 654                neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 655        if (!IS_ERR(neigh)) {
 656                sock_confirm_neigh(skb, neigh);
 657                ret = neigh_output(neigh, skb, false);
 658                rcu_read_unlock_bh();
 659                return ret;
 660        }
 661        rcu_read_unlock_bh();
 662
 663        IP6_INC_STATS(dev_net(dst->dev),
 664                      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 665        kfree_skb(skb);
 666        return -EINVAL;
 667}
 668
 669/* modelled after ip6_output */
 670static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 671{
 672        return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 673                            net, sk, skb, NULL, skb_dst(skb)->dev,
 674                            vrf_finish_output6,
 675                            !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 676}
 677
 678/* set dst on skb to send packet to us via dev_xmit path. Allows
 679 * packet to go through device based features such as qdisc, netfilter
 680 * hooks and packet sockets with skb->dev set to vrf device.
 681 */
 682static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 683                                            struct sk_buff *skb)
 684{
 685        struct net_vrf *vrf = netdev_priv(vrf_dev);
 686        struct dst_entry *dst = NULL;
 687        struct rt6_info *rt6;
 688
 689        rcu_read_lock();
 690
 691        rt6 = rcu_dereference(vrf->rt6);
 692        if (likely(rt6)) {
 693                dst = &rt6->dst;
 694                dst_hold(dst);
 695        }
 696
 697        rcu_read_unlock();
 698
 699        if (unlikely(!dst)) {
 700                vrf_tx_error(vrf_dev, skb);
 701                return NULL;
 702        }
 703
 704        skb_dst_drop(skb);
 705        skb_dst_set(skb, dst);
 706
 707        return skb;
 708}
 709
 710static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 711                                     struct sk_buff *skb)
 712{
 713        vrf_finish_direct(skb);
 714
 715        return vrf_ip6_local_out(net, sk, skb);
 716}
 717
 718static int vrf_output6_direct(struct net *net, struct sock *sk,
 719                              struct sk_buff *skb)
 720{
 721        int err = 1;
 722
 723        skb->protocol = htons(ETH_P_IPV6);
 724
 725        if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 726                err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 727                              NULL, skb->dev, vrf_output6_direct_finish);
 728
 729        if (likely(err == 1))
 730                vrf_finish_direct(skb);
 731
 732        return err;
 733}
 734
 735static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 736                                     struct sk_buff *skb)
 737{
 738        int err;
 739
 740        err = vrf_output6_direct(net, sk, skb);
 741        if (likely(err == 1))
 742                err = vrf_ip6_local_out(net, sk, skb);
 743
 744        return err;
 745}
 746
 747static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 748                                          struct sock *sk,
 749                                          struct sk_buff *skb)
 750{
 751        struct net *net = dev_net(vrf_dev);
 752        int err;
 753
 754        skb->dev = vrf_dev;
 755
 756        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 757                      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 758
 759        if (likely(err == 1))
 760                err = vrf_output6_direct(net, sk, skb);
 761
 762        if (likely(err == 1))
 763                return skb;
 764
 765        return NULL;
 766}
 767
 768static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 769                                   struct sock *sk,
 770                                   struct sk_buff *skb)
 771{
 772        /* don't divert link scope packets */
 773        if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 774                return skb;
 775
 776        if (qdisc_tx_is_default(vrf_dev) ||
 777            IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 778                return vrf_ip6_out_direct(vrf_dev, sk, skb);
 779
 780        return vrf_ip6_out_redirect(vrf_dev, skb);
 781}
 782
 783/* holding rtnl */
 784static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 785{
 786        struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 787        struct net *net = dev_net(dev);
 788        struct dst_entry *dst;
 789
 790        RCU_INIT_POINTER(vrf->rt6, NULL);
 791        synchronize_rcu();
 792
 793        /* move dev in dst's to loopback so this VRF device can be deleted
 794         * - based on dst_ifdown
 795         */
 796        if (rt6) {
 797                dst = &rt6->dst;
 798                dev_put(dst->dev);
 799                dst->dev = net->loopback_dev;
 800                dev_hold(dst->dev);
 801                dst_release(dst);
 802        }
 803}
 804
 805static int vrf_rt6_create(struct net_device *dev)
 806{
 807        int flags = DST_NOPOLICY | DST_NOXFRM;
 808        struct net_vrf *vrf = netdev_priv(dev);
 809        struct net *net = dev_net(dev);
 810        struct rt6_info *rt6;
 811        int rc = -ENOMEM;
 812
 813        /* IPv6 can be CONFIG enabled and then disabled runtime */
 814        if (!ipv6_mod_enabled())
 815                return 0;
 816
 817        vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 818        if (!vrf->fib6_table)
 819                goto out;
 820
 821        /* create a dst for routing packets out a VRF device */
 822        rt6 = ip6_dst_alloc(net, dev, flags);
 823        if (!rt6)
 824                goto out;
 825
 826        rt6->dst.output = vrf_output6;
 827
 828        rcu_assign_pointer(vrf->rt6, rt6);
 829
 830        rc = 0;
 831out:
 832        return rc;
 833}
 834#else
 835static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 836                                   struct sock *sk,
 837                                   struct sk_buff *skb)
 838{
 839        return skb;
 840}
 841
 842static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 843{
 844}
 845
 846static int vrf_rt6_create(struct net_device *dev)
 847{
 848        return 0;
 849}
 850#endif
 851
 852/* modelled after ip_finish_output2 */
 853static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 854{
 855        struct dst_entry *dst = skb_dst(skb);
 856        struct rtable *rt = (struct rtable *)dst;
 857        struct net_device *dev = dst->dev;
 858        unsigned int hh_len = LL_RESERVED_SPACE(dev);
 859        struct neighbour *neigh;
 860        bool is_v6gw = false;
 861        int ret = -EINVAL;
 862
 863        nf_reset_ct(skb);
 864
 865        /* Be paranoid, rather than too clever. */
 866        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 867                struct sk_buff *skb2;
 868
 869                skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 870                if (!skb2) {
 871                        ret = -ENOMEM;
 872                        goto err;
 873                }
 874                if (skb->sk)
 875                        skb_set_owner_w(skb2, skb->sk);
 876
 877                consume_skb(skb);
 878                skb = skb2;
 879        }
 880
 881        rcu_read_lock_bh();
 882
 883        neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 884        if (!IS_ERR(neigh)) {
 885                sock_confirm_neigh(skb, neigh);
 886                /* if crossing protocols, can not use the cached header */
 887                ret = neigh_output(neigh, skb, is_v6gw);
 888                rcu_read_unlock_bh();
 889                return ret;
 890        }
 891
 892        rcu_read_unlock_bh();
 893err:
 894        vrf_tx_error(skb->dev, skb);
 895        return ret;
 896}
 897
 898static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 899{
 900        struct net_device *dev = skb_dst(skb)->dev;
 901
 902        IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 903
 904        skb->dev = dev;
 905        skb->protocol = htons(ETH_P_IP);
 906
 907        return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 908                            net, sk, skb, NULL, dev,
 909                            vrf_finish_output,
 910                            !(IPCB(skb)->flags & IPSKB_REROUTED));
 911}
 912
 913/* set dst on skb to send packet to us via dev_xmit path. Allows
 914 * packet to go through device based features such as qdisc, netfilter
 915 * hooks and packet sockets with skb->dev set to vrf device.
 916 */
 917static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 918                                           struct sk_buff *skb)
 919{
 920        struct net_vrf *vrf = netdev_priv(vrf_dev);
 921        struct dst_entry *dst = NULL;
 922        struct rtable *rth;
 923
 924        rcu_read_lock();
 925
 926        rth = rcu_dereference(vrf->rth);
 927        if (likely(rth)) {
 928                dst = &rth->dst;
 929                dst_hold(dst);
 930        }
 931
 932        rcu_read_unlock();
 933
 934        if (unlikely(!dst)) {
 935                vrf_tx_error(vrf_dev, skb);
 936                return NULL;
 937        }
 938
 939        skb_dst_drop(skb);
 940        skb_dst_set(skb, dst);
 941
 942        return skb;
 943}
 944
 945static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 946                                    struct sk_buff *skb)
 947{
 948        vrf_finish_direct(skb);
 949
 950        return vrf_ip_local_out(net, sk, skb);
 951}
 952
 953static int vrf_output_direct(struct net *net, struct sock *sk,
 954                             struct sk_buff *skb)
 955{
 956        int err = 1;
 957
 958        skb->protocol = htons(ETH_P_IP);
 959
 960        if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 961                err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 962                              NULL, skb->dev, vrf_output_direct_finish);
 963
 964        if (likely(err == 1))
 965                vrf_finish_direct(skb);
 966
 967        return err;
 968}
 969
 970static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 971                                    struct sk_buff *skb)
 972{
 973        int err;
 974
 975        err = vrf_output_direct(net, sk, skb);
 976        if (likely(err == 1))
 977                err = vrf_ip_local_out(net, sk, skb);
 978
 979        return err;
 980}
 981
 982static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 983                                         struct sock *sk,
 984                                         struct sk_buff *skb)
 985{
 986        struct net *net = dev_net(vrf_dev);
 987        int err;
 988
 989        skb->dev = vrf_dev;
 990
 991        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 992                      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 993
 994        if (likely(err == 1))
 995                err = vrf_output_direct(net, sk, skb);
 996
 997        if (likely(err == 1))
 998                return skb;
 999
1000        return NULL;
1001}
1002
1003static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004                                  struct sock *sk,
1005                                  struct sk_buff *skb)
1006{
1007        /* don't divert multicast or local broadcast */
1008        if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009            ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010                return skb;
1011
1012        if (qdisc_tx_is_default(vrf_dev) ||
1013            IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1014                return vrf_ip_out_direct(vrf_dev, sk, skb);
1015
1016        return vrf_ip_out_redirect(vrf_dev, skb);
1017}
1018
1019/* called with rcu lock held */
1020static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1021                                  struct sock *sk,
1022                                  struct sk_buff *skb,
1023                                  u16 proto)
1024{
1025        switch (proto) {
1026        case AF_INET:
1027                return vrf_ip_out(vrf_dev, sk, skb);
1028        case AF_INET6:
1029                return vrf_ip6_out(vrf_dev, sk, skb);
1030        }
1031
1032        return skb;
1033}
1034
1035/* holding rtnl */
1036static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1037{
1038        struct rtable *rth = rtnl_dereference(vrf->rth);
1039        struct net *net = dev_net(dev);
1040        struct dst_entry *dst;
1041
1042        RCU_INIT_POINTER(vrf->rth, NULL);
1043        synchronize_rcu();
1044
1045        /* move dev in dst's to loopback so this VRF device can be deleted
1046         * - based on dst_ifdown
1047         */
1048        if (rth) {
1049                dst = &rth->dst;
1050                dev_put(dst->dev);
1051                dst->dev = net->loopback_dev;
1052                dev_hold(dst->dev);
1053                dst_release(dst);
1054        }
1055}
1056
1057static int vrf_rtable_create(struct net_device *dev)
1058{
1059        struct net_vrf *vrf = netdev_priv(dev);
1060        struct rtable *rth;
1061
1062        if (!fib_new_table(dev_net(dev), vrf->tb_id))
1063                return -ENOMEM;
1064
1065        /* create a dst for routing packets out through a VRF device */
1066        rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1067        if (!rth)
1068                return -ENOMEM;
1069
1070        rth->dst.output = vrf_output;
1071
1072        rcu_assign_pointer(vrf->rth, rth);
1073
1074        return 0;
1075}
1076
1077/**************************** device handling ********************/
1078
1079/* cycle interface to flush neighbor cache and move routes across tables */
1080static void cycle_netdev(struct net_device *dev,
1081                         struct netlink_ext_ack *extack)
1082{
1083        unsigned int flags = dev->flags;
1084        int ret;
1085
1086        if (!netif_running(dev))
1087                return;
1088
1089        ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1090        if (ret >= 0)
1091                ret = dev_change_flags(dev, flags, extack);
1092
1093        if (ret < 0) {
1094                netdev_err(dev,
1095                           "Failed to cycle device %s; route tables might be wrong!\n",
1096                           dev->name);
1097        }
1098}
1099
1100static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1101                            struct netlink_ext_ack *extack)
1102{
1103        int ret;
1104
1105        /* do not allow loopback device to be enslaved to a VRF.
1106         * The vrf device acts as the loopback for the vrf.
1107         */
1108        if (port_dev == dev_net(dev)->loopback_dev) {
1109                NL_SET_ERR_MSG(extack,
1110                               "Can not enslave loopback device to a VRF");
1111                return -EOPNOTSUPP;
1112        }
1113
1114        port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1115        ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1116        if (ret < 0)
1117                goto err;
1118
1119        cycle_netdev(port_dev, extack);
1120
1121        return 0;
1122
1123err:
1124        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1125        return ret;
1126}
1127
1128static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1129                         struct netlink_ext_ack *extack)
1130{
1131        if (netif_is_l3_master(port_dev)) {
1132                NL_SET_ERR_MSG(extack,
1133                               "Can not enslave an L3 master device to a VRF");
1134                return -EINVAL;
1135        }
1136
1137        if (netif_is_l3_slave(port_dev))
1138                return -EINVAL;
1139
1140        return do_vrf_add_slave(dev, port_dev, extack);
1141}
1142
1143/* inverse of do_vrf_add_slave */
1144static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1145{
1146        netdev_upper_dev_unlink(port_dev, dev);
1147        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1148
1149        cycle_netdev(port_dev, NULL);
1150
1151        return 0;
1152}
1153
1154static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1155{
1156        return do_vrf_del_slave(dev, port_dev);
1157}
1158
1159static void vrf_dev_uninit(struct net_device *dev)
1160{
1161        struct net_vrf *vrf = netdev_priv(dev);
1162
1163        vrf_rtable_release(dev, vrf);
1164        vrf_rt6_release(dev, vrf);
1165
1166        free_percpu(dev->dstats);
1167        dev->dstats = NULL;
1168}
1169
1170static int vrf_dev_init(struct net_device *dev)
1171{
1172        struct net_vrf *vrf = netdev_priv(dev);
1173
1174        dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1175        if (!dev->dstats)
1176                goto out_nomem;
1177
1178        /* create the default dst which points back to us */
1179        if (vrf_rtable_create(dev) != 0)
1180                goto out_stats;
1181
1182        if (vrf_rt6_create(dev) != 0)
1183                goto out_rth;
1184
1185        dev->flags = IFF_MASTER | IFF_NOARP;
1186
1187        /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1188        dev->mtu = 64 * 1024;
1189
1190        /* similarly, oper state is irrelevant; set to up to avoid confusion */
1191        dev->operstate = IF_OPER_UP;
1192        netdev_lockdep_set_classes(dev);
1193        return 0;
1194
1195out_rth:
1196        vrf_rtable_release(dev, vrf);
1197out_stats:
1198        free_percpu(dev->dstats);
1199        dev->dstats = NULL;
1200out_nomem:
1201        return -ENOMEM;
1202}
1203
1204static const struct net_device_ops vrf_netdev_ops = {
1205        .ndo_init               = vrf_dev_init,
1206        .ndo_uninit             = vrf_dev_uninit,
1207        .ndo_start_xmit         = vrf_xmit,
1208        .ndo_set_mac_address    = eth_mac_addr,
1209        .ndo_get_stats64        = vrf_get_stats64,
1210        .ndo_add_slave          = vrf_add_slave,
1211        .ndo_del_slave          = vrf_del_slave,
1212};
1213
1214static u32 vrf_fib_table(const struct net_device *dev)
1215{
1216        struct net_vrf *vrf = netdev_priv(dev);
1217
1218        return vrf->tb_id;
1219}
1220
1221static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1222{
1223        kfree_skb(skb);
1224        return 0;
1225}
1226
1227static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1228                                      struct sk_buff *skb,
1229                                      struct net_device *dev)
1230{
1231        struct net *net = dev_net(dev);
1232
1233        if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1234                skb = NULL;    /* kfree_skb(skb) handled by nf code */
1235
1236        return skb;
1237}
1238
1239#if IS_ENABLED(CONFIG_IPV6)
1240/* neighbor handling is done with actual device; do not want
1241 * to flip skb->dev for those ndisc packets. This really fails
1242 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1243 * a start.
1244 */
1245static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1246{
1247        const struct ipv6hdr *iph = ipv6_hdr(skb);
1248        bool rc = false;
1249
1250        if (iph->nexthdr == NEXTHDR_ICMP) {
1251                const struct icmp6hdr *icmph;
1252                struct icmp6hdr _icmph;
1253
1254                icmph = skb_header_pointer(skb, sizeof(*iph),
1255                                           sizeof(_icmph), &_icmph);
1256                if (!icmph)
1257                        goto out;
1258
1259                switch (icmph->icmp6_type) {
1260                case NDISC_ROUTER_SOLICITATION:
1261                case NDISC_ROUTER_ADVERTISEMENT:
1262                case NDISC_NEIGHBOUR_SOLICITATION:
1263                case NDISC_NEIGHBOUR_ADVERTISEMENT:
1264                case NDISC_REDIRECT:
1265                        rc = true;
1266                        break;
1267                }
1268        }
1269
1270out:
1271        return rc;
1272}
1273
1274static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1275                                             const struct net_device *dev,
1276                                             struct flowi6 *fl6,
1277                                             int ifindex,
1278                                             const struct sk_buff *skb,
1279                                             int flags)
1280{
1281        struct net_vrf *vrf = netdev_priv(dev);
1282
1283        return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1284}
1285
1286static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1287                              int ifindex)
1288{
1289        const struct ipv6hdr *iph = ipv6_hdr(skb);
1290        struct flowi6 fl6 = {
1291                .flowi6_iif     = ifindex,
1292                .flowi6_mark    = skb->mark,
1293                .flowi6_proto   = iph->nexthdr,
1294                .daddr          = iph->daddr,
1295                .saddr          = iph->saddr,
1296                .flowlabel      = ip6_flowinfo(iph),
1297        };
1298        struct net *net = dev_net(vrf_dev);
1299        struct rt6_info *rt6;
1300
1301        rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1302                                   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1303        if (unlikely(!rt6))
1304                return;
1305
1306        if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1307                return;
1308
1309        skb_dst_set(skb, &rt6->dst);
1310}
1311
1312static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1313                                   struct sk_buff *skb)
1314{
1315        int orig_iif = skb->skb_iif;
1316        bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1317        bool is_ndisc = ipv6_ndisc_frame(skb);
1318        bool is_ll_src;
1319
1320        /* loopback, multicast & non-ND link-local traffic; do not push through
1321         * packet taps again. Reset pkt_type for upper layers to process skb.
1322         * for packets with lladdr src, however, skip so that the dst can be
1323         * determine at input using original ifindex in the case that daddr
1324         * needs strict
1325         */
1326        is_ll_src = ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL;
1327        if (skb->pkt_type == PACKET_LOOPBACK ||
1328            (need_strict && !is_ndisc && !is_ll_src)) {
1329                skb->dev = vrf_dev;
1330                skb->skb_iif = vrf_dev->ifindex;
1331                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1332                if (skb->pkt_type == PACKET_LOOPBACK)
1333                        skb->pkt_type = PACKET_HOST;
1334                goto out;
1335        }
1336
1337        /* if packet is NDISC then keep the ingress interface */
1338        if (!is_ndisc) {
1339                vrf_rx_stats(vrf_dev, skb->len);
1340                skb->dev = vrf_dev;
1341                skb->skb_iif = vrf_dev->ifindex;
1342
1343                if (!list_empty(&vrf_dev->ptype_all)) {
1344                        skb_push(skb, skb->mac_len);
1345                        dev_queue_xmit_nit(skb, vrf_dev);
1346                        skb_pull(skb, skb->mac_len);
1347                }
1348
1349                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1350        }
1351
1352        if (need_strict)
1353                vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1354
1355        skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1356out:
1357        return skb;
1358}
1359
1360#else
1361static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1362                                   struct sk_buff *skb)
1363{
1364        return skb;
1365}
1366#endif
1367
1368static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1369                                  struct sk_buff *skb)
1370{
1371        skb->dev = vrf_dev;
1372        skb->skb_iif = vrf_dev->ifindex;
1373        IPCB(skb)->flags |= IPSKB_L3SLAVE;
1374
1375        if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1376                goto out;
1377
1378        /* loopback traffic; do not push through packet taps again.
1379         * Reset pkt_type for upper layers to process skb
1380         */
1381        if (skb->pkt_type == PACKET_LOOPBACK) {
1382                skb->pkt_type = PACKET_HOST;
1383                goto out;
1384        }
1385
1386        vrf_rx_stats(vrf_dev, skb->len);
1387
1388        if (!list_empty(&vrf_dev->ptype_all)) {
1389                skb_push(skb, skb->mac_len);
1390                dev_queue_xmit_nit(skb, vrf_dev);
1391                skb_pull(skb, skb->mac_len);
1392        }
1393
1394        skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1395out:
1396        return skb;
1397}
1398
1399/* called with rcu lock held */
1400static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1401                                  struct sk_buff *skb,
1402                                  u16 proto)
1403{
1404        switch (proto) {
1405        case AF_INET:
1406                return vrf_ip_rcv(vrf_dev, skb);
1407        case AF_INET6:
1408                return vrf_ip6_rcv(vrf_dev, skb);
1409        }
1410
1411        return skb;
1412}
1413
1414#if IS_ENABLED(CONFIG_IPV6)
1415/* send to link-local or multicast address via interface enslaved to
1416 * VRF device. Force lookup to VRF table without changing flow struct
1417 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1418 * is taken on the dst by this function.
1419 */
1420static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1421                                              struct flowi6 *fl6)
1422{
1423        struct net *net = dev_net(dev);
1424        int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1425        struct dst_entry *dst = NULL;
1426        struct rt6_info *rt;
1427
1428        /* VRF device does not have a link-local address and
1429         * sending packets to link-local or mcast addresses over
1430         * a VRF device does not make sense
1431         */
1432        if (fl6->flowi6_oif == dev->ifindex) {
1433                dst = &net->ipv6.ip6_null_entry->dst;
1434                return dst;
1435        }
1436
1437        if (!ipv6_addr_any(&fl6->saddr))
1438                flags |= RT6_LOOKUP_F_HAS_SADDR;
1439
1440        rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1441        if (rt)
1442                dst = &rt->dst;
1443
1444        return dst;
1445}
1446#endif
1447
1448static const struct l3mdev_ops vrf_l3mdev_ops = {
1449        .l3mdev_fib_table       = vrf_fib_table,
1450        .l3mdev_l3_rcv          = vrf_l3_rcv,
1451        .l3mdev_l3_out          = vrf_l3_out,
1452#if IS_ENABLED(CONFIG_IPV6)
1453        .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1454#endif
1455};
1456
1457static void vrf_get_drvinfo(struct net_device *dev,
1458                            struct ethtool_drvinfo *info)
1459{
1460        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1461        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1462}
1463
1464static const struct ethtool_ops vrf_ethtool_ops = {
1465        .get_drvinfo    = vrf_get_drvinfo,
1466};
1467
1468static inline size_t vrf_fib_rule_nl_size(void)
1469{
1470        size_t sz;
1471
1472        sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1473        sz += nla_total_size(sizeof(u8));       /* FRA_L3MDEV */
1474        sz += nla_total_size(sizeof(u32));      /* FRA_PRIORITY */
1475        sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1476
1477        return sz;
1478}
1479
1480static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1481{
1482        struct fib_rule_hdr *frh;
1483        struct nlmsghdr *nlh;
1484        struct sk_buff *skb;
1485        int err;
1486
1487        if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1488            !ipv6_mod_enabled())
1489                return 0;
1490
1491        skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1492        if (!skb)
1493                return -ENOMEM;
1494
1495        nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1496        if (!nlh)
1497                goto nla_put_failure;
1498
1499        /* rule only needs to appear once */
1500        nlh->nlmsg_flags |= NLM_F_EXCL;
1501
1502        frh = nlmsg_data(nlh);
1503        memset(frh, 0, sizeof(*frh));
1504        frh->family = family;
1505        frh->action = FR_ACT_TO_TBL;
1506
1507        if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1508                goto nla_put_failure;
1509
1510        if (nla_put_u8(skb, FRA_L3MDEV, 1))
1511                goto nla_put_failure;
1512
1513        if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1514                goto nla_put_failure;
1515
1516        nlmsg_end(skb, nlh);
1517
1518        /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1519        skb->sk = dev_net(dev)->rtnl;
1520        if (add_it) {
1521                err = fib_nl_newrule(skb, nlh, NULL);
1522                if (err == -EEXIST)
1523                        err = 0;
1524        } else {
1525                err = fib_nl_delrule(skb, nlh, NULL);
1526                if (err == -ENOENT)
1527                        err = 0;
1528        }
1529        nlmsg_free(skb);
1530
1531        return err;
1532
1533nla_put_failure:
1534        nlmsg_free(skb);
1535
1536        return -EMSGSIZE;
1537}
1538
1539static int vrf_add_fib_rules(const struct net_device *dev)
1540{
1541        int err;
1542
1543        err = vrf_fib_rule(dev, AF_INET,  true);
1544        if (err < 0)
1545                goto out_err;
1546
1547        err = vrf_fib_rule(dev, AF_INET6, true);
1548        if (err < 0)
1549                goto ipv6_err;
1550
1551#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1552        err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1553        if (err < 0)
1554                goto ipmr_err;
1555#endif
1556
1557#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1558        err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1559        if (err < 0)
1560                goto ip6mr_err;
1561#endif
1562
1563        return 0;
1564
1565#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1566ip6mr_err:
1567        vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1568#endif
1569
1570#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1571ipmr_err:
1572        vrf_fib_rule(dev, AF_INET6,  false);
1573#endif
1574
1575ipv6_err:
1576        vrf_fib_rule(dev, AF_INET,  false);
1577
1578out_err:
1579        netdev_err(dev, "Failed to add FIB rules.\n");
1580        return err;
1581}
1582
1583static void vrf_setup(struct net_device *dev)
1584{
1585        ether_setup(dev);
1586
1587        /* Initialize the device structure. */
1588        dev->netdev_ops = &vrf_netdev_ops;
1589        dev->l3mdev_ops = &vrf_l3mdev_ops;
1590        dev->ethtool_ops = &vrf_ethtool_ops;
1591        dev->needs_free_netdev = true;
1592
1593        /* Fill in device structure with ethernet-generic values. */
1594        eth_hw_addr_random(dev);
1595
1596        /* don't acquire vrf device's netif_tx_lock when transmitting */
1597        dev->features |= NETIF_F_LLTX;
1598
1599        /* don't allow vrf devices to change network namespaces. */
1600        dev->features |= NETIF_F_NETNS_LOCAL;
1601
1602        /* does not make sense for a VLAN to be added to a vrf device */
1603        dev->features   |= NETIF_F_VLAN_CHALLENGED;
1604
1605        /* enable offload features */
1606        dev->features   |= NETIF_F_GSO_SOFTWARE;
1607        dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1608        dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1609
1610        dev->hw_features = dev->features;
1611        dev->hw_enc_features = dev->features;
1612
1613        /* default to no qdisc; user can add if desired */
1614        dev->priv_flags |= IFF_NO_QUEUE;
1615        dev->priv_flags |= IFF_NO_RX_HANDLER;
1616        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1617
1618        /* VRF devices do not care about MTU, but if the MTU is set
1619         * too low then the ipv4 and ipv6 protocols are disabled
1620         * which breaks networking.
1621         */
1622        dev->min_mtu = IPV6_MIN_MTU;
1623        dev->max_mtu = ETH_MAX_MTU;
1624}
1625
1626static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1627                        struct netlink_ext_ack *extack)
1628{
1629        if (tb[IFLA_ADDRESS]) {
1630                if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1631                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1632                        return -EINVAL;
1633                }
1634                if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1635                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1636                        return -EADDRNOTAVAIL;
1637                }
1638        }
1639        return 0;
1640}
1641
1642static void vrf_dellink(struct net_device *dev, struct list_head *head)
1643{
1644        struct net_device *port_dev;
1645        struct list_head *iter;
1646
1647        netdev_for_each_lower_dev(dev, port_dev, iter)
1648                vrf_del_slave(dev, port_dev);
1649
1650        vrf_map_unregister_dev(dev);
1651
1652        unregister_netdevice_queue(dev, head);
1653}
1654
1655static int vrf_newlink(struct net *src_net, struct net_device *dev,
1656                       struct nlattr *tb[], struct nlattr *data[],
1657                       struct netlink_ext_ack *extack)
1658{
1659        struct net_vrf *vrf = netdev_priv(dev);
1660        struct netns_vrf *nn_vrf;
1661        bool *add_fib_rules;
1662        struct net *net;
1663        int err;
1664
1665        if (!data || !data[IFLA_VRF_TABLE]) {
1666                NL_SET_ERR_MSG(extack, "VRF table id is missing");
1667                return -EINVAL;
1668        }
1669
1670        vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1671        if (vrf->tb_id == RT_TABLE_UNSPEC) {
1672                NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1673                                    "Invalid VRF table id");
1674                return -EINVAL;
1675        }
1676
1677        dev->priv_flags |= IFF_L3MDEV_MASTER;
1678
1679        err = register_netdevice(dev);
1680        if (err)
1681                goto out;
1682
1683        /* mapping between table_id and vrf;
1684         * note: such binding could not be done in the dev init function
1685         * because dev->ifindex id is not available yet.
1686         */
1687        vrf->ifindex = dev->ifindex;
1688
1689        err = vrf_map_register_dev(dev, extack);
1690        if (err) {
1691                unregister_netdevice(dev);
1692                goto out;
1693        }
1694
1695        net = dev_net(dev);
1696        nn_vrf = net_generic(net, vrf_net_id);
1697
1698        add_fib_rules = &nn_vrf->add_fib_rules;
1699        if (*add_fib_rules) {
1700                err = vrf_add_fib_rules(dev);
1701                if (err) {
1702                        vrf_map_unregister_dev(dev);
1703                        unregister_netdevice(dev);
1704                        goto out;
1705                }
1706                *add_fib_rules = false;
1707        }
1708
1709out:
1710        return err;
1711}
1712
1713static size_t vrf_nl_getsize(const struct net_device *dev)
1714{
1715        return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1716}
1717
1718static int vrf_fillinfo(struct sk_buff *skb,
1719                        const struct net_device *dev)
1720{
1721        struct net_vrf *vrf = netdev_priv(dev);
1722
1723        return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1724}
1725
1726static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1727                                 const struct net_device *slave_dev)
1728{
1729        return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1730}
1731
1732static int vrf_fill_slave_info(struct sk_buff *skb,
1733                               const struct net_device *vrf_dev,
1734                               const struct net_device *slave_dev)
1735{
1736        struct net_vrf *vrf = netdev_priv(vrf_dev);
1737
1738        if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1739                return -EMSGSIZE;
1740
1741        return 0;
1742}
1743
1744static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1745        [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1746};
1747
1748static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1749        .kind           = DRV_NAME,
1750        .priv_size      = sizeof(struct net_vrf),
1751
1752        .get_size       = vrf_nl_getsize,
1753        .policy         = vrf_nl_policy,
1754        .validate       = vrf_validate,
1755        .fill_info      = vrf_fillinfo,
1756
1757        .get_slave_size  = vrf_get_slave_size,
1758        .fill_slave_info = vrf_fill_slave_info,
1759
1760        .newlink        = vrf_newlink,
1761        .dellink        = vrf_dellink,
1762        .setup          = vrf_setup,
1763        .maxtype        = IFLA_VRF_MAX,
1764};
1765
1766static int vrf_device_event(struct notifier_block *unused,
1767                            unsigned long event, void *ptr)
1768{
1769        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1770
1771        /* only care about unregister events to drop slave references */
1772        if (event == NETDEV_UNREGISTER) {
1773                struct net_device *vrf_dev;
1774
1775                if (!netif_is_l3_slave(dev))
1776                        goto out;
1777
1778                vrf_dev = netdev_master_upper_dev_get(dev);
1779                vrf_del_slave(vrf_dev, dev);
1780        }
1781out:
1782        return NOTIFY_DONE;
1783}
1784
1785static struct notifier_block vrf_notifier_block __read_mostly = {
1786        .notifier_call = vrf_device_event,
1787};
1788
1789static int vrf_map_init(struct vrf_map *vmap)
1790{
1791        spin_lock_init(&vmap->vmap_lock);
1792        hash_init(vmap->ht);
1793
1794        vmap->strict_mode = false;
1795
1796        return 0;
1797}
1798
1799#ifdef CONFIG_SYSCTL
1800static bool vrf_strict_mode(struct vrf_map *vmap)
1801{
1802        bool strict_mode;
1803
1804        vrf_map_lock(vmap);
1805        strict_mode = vmap->strict_mode;
1806        vrf_map_unlock(vmap);
1807
1808        return strict_mode;
1809}
1810
1811static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1812{
1813        bool *cur_mode;
1814        int res = 0;
1815
1816        vrf_map_lock(vmap);
1817
1818        cur_mode = &vmap->strict_mode;
1819        if (*cur_mode == new_mode)
1820                goto unlock;
1821
1822        if (*cur_mode) {
1823                /* disable strict mode */
1824                *cur_mode = false;
1825        } else {
1826                if (vmap->shared_tables) {
1827                        /* we cannot allow strict_mode because there are some
1828                         * vrfs that share one or more tables.
1829                         */
1830                        res = -EBUSY;
1831                        goto unlock;
1832                }
1833
1834                /* no tables are shared among vrfs, so we can go back
1835                 * to 1:1 association between a vrf with its table.
1836                 */
1837                *cur_mode = true;
1838        }
1839
1840unlock:
1841        vrf_map_unlock(vmap);
1842
1843        return res;
1844}
1845
1846static int vrf_shared_table_handler(struct ctl_table *table, int write,
1847                                    void *buffer, size_t *lenp, loff_t *ppos)
1848{
1849        struct net *net = (struct net *)table->extra1;
1850        struct vrf_map *vmap = netns_vrf_map(net);
1851        int proc_strict_mode = 0;
1852        struct ctl_table tmp = {
1853                .procname       = table->procname,
1854                .data           = &proc_strict_mode,
1855                .maxlen         = sizeof(int),
1856                .mode           = table->mode,
1857                .extra1         = SYSCTL_ZERO,
1858                .extra2         = SYSCTL_ONE,
1859        };
1860        int ret;
1861
1862        if (!write)
1863                proc_strict_mode = vrf_strict_mode(vmap);
1864
1865        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1866
1867        if (write && ret == 0)
1868                ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1869
1870        return ret;
1871}
1872
1873static const struct ctl_table vrf_table[] = {
1874        {
1875                .procname       = "strict_mode",
1876                .data           = NULL,
1877                .maxlen         = sizeof(int),
1878                .mode           = 0644,
1879                .proc_handler   = vrf_shared_table_handler,
1880                /* set by the vrf_netns_init */
1881                .extra1         = NULL,
1882        },
1883        { },
1884};
1885
1886static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1887{
1888        struct ctl_table *table;
1889
1890        table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1891        if (!table)
1892                return -ENOMEM;
1893
1894        /* init the extra1 parameter with the reference to current netns */
1895        table[0].extra1 = net;
1896
1897        nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1898        if (!nn_vrf->ctl_hdr) {
1899                kfree(table);
1900                return -ENOMEM;
1901        }
1902
1903        return 0;
1904}
1905
1906static void vrf_netns_exit_sysctl(struct net *net)
1907{
1908        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1909        struct ctl_table *table;
1910
1911        table = nn_vrf->ctl_hdr->ctl_table_arg;
1912        unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1913        kfree(table);
1914}
1915#else
1916static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1917{
1918        return 0;
1919}
1920
1921static void vrf_netns_exit_sysctl(struct net *net)
1922{
1923}
1924#endif
1925
1926/* Initialize per network namespace state */
1927static int __net_init vrf_netns_init(struct net *net)
1928{
1929        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1930
1931        nn_vrf->add_fib_rules = true;
1932        vrf_map_init(&nn_vrf->vmap);
1933
1934        return vrf_netns_init_sysctl(net, nn_vrf);
1935}
1936
1937static void __net_exit vrf_netns_exit(struct net *net)
1938{
1939        vrf_netns_exit_sysctl(net);
1940}
1941
1942static struct pernet_operations vrf_net_ops __net_initdata = {
1943        .init = vrf_netns_init,
1944        .exit = vrf_netns_exit,
1945        .id   = &vrf_net_id,
1946        .size = sizeof(struct netns_vrf),
1947};
1948
1949static int __init vrf_init_module(void)
1950{
1951        int rc;
1952
1953        register_netdevice_notifier(&vrf_notifier_block);
1954
1955        rc = register_pernet_subsys(&vrf_net_ops);
1956        if (rc < 0)
1957                goto error;
1958
1959        rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1960                                          vrf_ifindex_lookup_by_table_id);
1961        if (rc < 0)
1962                goto unreg_pernet;
1963
1964        rc = rtnl_link_register(&vrf_link_ops);
1965        if (rc < 0)
1966                goto table_lookup_unreg;
1967
1968        return 0;
1969
1970table_lookup_unreg:
1971        l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1972                                       vrf_ifindex_lookup_by_table_id);
1973
1974unreg_pernet:
1975        unregister_pernet_subsys(&vrf_net_ops);
1976
1977error:
1978        unregister_netdevice_notifier(&vrf_notifier_block);
1979        return rc;
1980}
1981
1982module_init(vrf_init_module);
1983MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1984MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1985MODULE_LICENSE("GPL");
1986MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1987MODULE_VERSION(DRV_VERSION);
1988