linux/drivers/nvdimm/region_devs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   4 */
   5#include <linux/scatterlist.h>
   6#include <linux/memregion.h>
   7#include <linux/highmem.h>
   8#include <linux/sched.h>
   9#include <linux/slab.h>
  10#include <linux/hash.h>
  11#include <linux/sort.h>
  12#include <linux/io.h>
  13#include <linux/nd.h>
  14#include "nd-core.h"
  15#include "nd.h"
  16
  17/*
  18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  19 * irrelevant.
  20 */
  21#include <linux/io-64-nonatomic-hi-lo.h>
  22
  23static DEFINE_PER_CPU(int, flush_idx);
  24
  25static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
  26                struct nd_region_data *ndrd)
  27{
  28        int i, j;
  29
  30        dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
  31                        nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
  32        for (i = 0; i < (1 << ndrd->hints_shift); i++) {
  33                struct resource *res = &nvdimm->flush_wpq[i];
  34                unsigned long pfn = PHYS_PFN(res->start);
  35                void __iomem *flush_page;
  36
  37                /* check if flush hints share a page */
  38                for (j = 0; j < i; j++) {
  39                        struct resource *res_j = &nvdimm->flush_wpq[j];
  40                        unsigned long pfn_j = PHYS_PFN(res_j->start);
  41
  42                        if (pfn == pfn_j)
  43                                break;
  44                }
  45
  46                if (j < i)
  47                        flush_page = (void __iomem *) ((unsigned long)
  48                                        ndrd_get_flush_wpq(ndrd, dimm, j)
  49                                        & PAGE_MASK);
  50                else
  51                        flush_page = devm_nvdimm_ioremap(dev,
  52                                        PFN_PHYS(pfn), PAGE_SIZE);
  53                if (!flush_page)
  54                        return -ENXIO;
  55                ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
  56                                + (res->start & ~PAGE_MASK));
  57        }
  58
  59        return 0;
  60}
  61
  62int nd_region_activate(struct nd_region *nd_region)
  63{
  64        int i, j, num_flush = 0;
  65        struct nd_region_data *ndrd;
  66        struct device *dev = &nd_region->dev;
  67        size_t flush_data_size = sizeof(void *);
  68
  69        nvdimm_bus_lock(&nd_region->dev);
  70        for (i = 0; i < nd_region->ndr_mappings; i++) {
  71                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  72                struct nvdimm *nvdimm = nd_mapping->nvdimm;
  73
  74                if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
  75                        nvdimm_bus_unlock(&nd_region->dev);
  76                        return -EBUSY;
  77                }
  78
  79                /* at least one null hint slot per-dimm for the "no-hint" case */
  80                flush_data_size += sizeof(void *);
  81                num_flush = min_not_zero(num_flush, nvdimm->num_flush);
  82                if (!nvdimm->num_flush)
  83                        continue;
  84                flush_data_size += nvdimm->num_flush * sizeof(void *);
  85        }
  86        nvdimm_bus_unlock(&nd_region->dev);
  87
  88        ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
  89        if (!ndrd)
  90                return -ENOMEM;
  91        dev_set_drvdata(dev, ndrd);
  92
  93        if (!num_flush)
  94                return 0;
  95
  96        ndrd->hints_shift = ilog2(num_flush);
  97        for (i = 0; i < nd_region->ndr_mappings; i++) {
  98                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  99                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 100                int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
 101
 102                if (rc)
 103                        return rc;
 104        }
 105
 106        /*
 107         * Clear out entries that are duplicates. This should prevent the
 108         * extra flushings.
 109         */
 110        for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
 111                /* ignore if NULL already */
 112                if (!ndrd_get_flush_wpq(ndrd, i, 0))
 113                        continue;
 114
 115                for (j = i + 1; j < nd_region->ndr_mappings; j++)
 116                        if (ndrd_get_flush_wpq(ndrd, i, 0) ==
 117                            ndrd_get_flush_wpq(ndrd, j, 0))
 118                                ndrd_set_flush_wpq(ndrd, j, 0, NULL);
 119        }
 120
 121        return 0;
 122}
 123
 124static void nd_region_release(struct device *dev)
 125{
 126        struct nd_region *nd_region = to_nd_region(dev);
 127        u16 i;
 128
 129        for (i = 0; i < nd_region->ndr_mappings; i++) {
 130                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 131                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 132
 133                put_device(&nvdimm->dev);
 134        }
 135        free_percpu(nd_region->lane);
 136        memregion_free(nd_region->id);
 137        if (is_nd_blk(dev))
 138                kfree(to_nd_blk_region(dev));
 139        else
 140                kfree(nd_region);
 141}
 142
 143struct nd_region *to_nd_region(struct device *dev)
 144{
 145        struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
 146
 147        WARN_ON(dev->type->release != nd_region_release);
 148        return nd_region;
 149}
 150EXPORT_SYMBOL_GPL(to_nd_region);
 151
 152struct device *nd_region_dev(struct nd_region *nd_region)
 153{
 154        if (!nd_region)
 155                return NULL;
 156        return &nd_region->dev;
 157}
 158EXPORT_SYMBOL_GPL(nd_region_dev);
 159
 160struct nd_blk_region *to_nd_blk_region(struct device *dev)
 161{
 162        struct nd_region *nd_region = to_nd_region(dev);
 163
 164        WARN_ON(!is_nd_blk(dev));
 165        return container_of(nd_region, struct nd_blk_region, nd_region);
 166}
 167EXPORT_SYMBOL_GPL(to_nd_blk_region);
 168
 169void *nd_region_provider_data(struct nd_region *nd_region)
 170{
 171        return nd_region->provider_data;
 172}
 173EXPORT_SYMBOL_GPL(nd_region_provider_data);
 174
 175void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
 176{
 177        return ndbr->blk_provider_data;
 178}
 179EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
 180
 181void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
 182{
 183        ndbr->blk_provider_data = data;
 184}
 185EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
 186
 187/**
 188 * nd_region_to_nstype() - region to an integer namespace type
 189 * @nd_region: region-device to interrogate
 190 *
 191 * This is the 'nstype' attribute of a region as well, an input to the
 192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 193 * namespace devices with namespace drivers.
 194 */
 195int nd_region_to_nstype(struct nd_region *nd_region)
 196{
 197        if (is_memory(&nd_region->dev)) {
 198                u16 i, label;
 199
 200                for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
 201                        struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 202                        struct nvdimm *nvdimm = nd_mapping->nvdimm;
 203
 204                        if (test_bit(NDD_LABELING, &nvdimm->flags))
 205                                label++;
 206                }
 207                if (label)
 208                        return ND_DEVICE_NAMESPACE_PMEM;
 209                else
 210                        return ND_DEVICE_NAMESPACE_IO;
 211        } else if (is_nd_blk(&nd_region->dev)) {
 212                return ND_DEVICE_NAMESPACE_BLK;
 213        }
 214
 215        return 0;
 216}
 217EXPORT_SYMBOL(nd_region_to_nstype);
 218
 219static unsigned long long region_size(struct nd_region *nd_region)
 220{
 221        if (is_memory(&nd_region->dev)) {
 222                return nd_region->ndr_size;
 223        } else if (nd_region->ndr_mappings == 1) {
 224                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 225
 226                return nd_mapping->size;
 227        }
 228
 229        return 0;
 230}
 231
 232static ssize_t size_show(struct device *dev,
 233                struct device_attribute *attr, char *buf)
 234{
 235        struct nd_region *nd_region = to_nd_region(dev);
 236
 237        return sprintf(buf, "%llu\n", region_size(nd_region));
 238}
 239static DEVICE_ATTR_RO(size);
 240
 241static ssize_t deep_flush_show(struct device *dev,
 242                struct device_attribute *attr, char *buf)
 243{
 244        struct nd_region *nd_region = to_nd_region(dev);
 245
 246        /*
 247         * NOTE: in the nvdimm_has_flush() error case this attribute is
 248         * not visible.
 249         */
 250        return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
 251}
 252
 253static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
 254                const char *buf, size_t len)
 255{
 256        bool flush;
 257        int rc = strtobool(buf, &flush);
 258        struct nd_region *nd_region = to_nd_region(dev);
 259
 260        if (rc)
 261                return rc;
 262        if (!flush)
 263                return -EINVAL;
 264        rc = nvdimm_flush(nd_region, NULL);
 265        if (rc)
 266                return rc;
 267
 268        return len;
 269}
 270static DEVICE_ATTR_RW(deep_flush);
 271
 272static ssize_t mappings_show(struct device *dev,
 273                struct device_attribute *attr, char *buf)
 274{
 275        struct nd_region *nd_region = to_nd_region(dev);
 276
 277        return sprintf(buf, "%d\n", nd_region->ndr_mappings);
 278}
 279static DEVICE_ATTR_RO(mappings);
 280
 281static ssize_t nstype_show(struct device *dev,
 282                struct device_attribute *attr, char *buf)
 283{
 284        struct nd_region *nd_region = to_nd_region(dev);
 285
 286        return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
 287}
 288static DEVICE_ATTR_RO(nstype);
 289
 290static ssize_t set_cookie_show(struct device *dev,
 291                struct device_attribute *attr, char *buf)
 292{
 293        struct nd_region *nd_region = to_nd_region(dev);
 294        struct nd_interleave_set *nd_set = nd_region->nd_set;
 295        ssize_t rc = 0;
 296
 297        if (is_memory(dev) && nd_set)
 298                /* pass, should be precluded by region_visible */;
 299        else
 300                return -ENXIO;
 301
 302        /*
 303         * The cookie to show depends on which specification of the
 304         * labels we are using. If there are not labels then default to
 305         * the v1.1 namespace label cookie definition. To read all this
 306         * data we need to wait for probing to settle.
 307         */
 308        nd_device_lock(dev);
 309        nvdimm_bus_lock(dev);
 310        wait_nvdimm_bus_probe_idle(dev);
 311        if (nd_region->ndr_mappings) {
 312                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 313                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 314
 315                if (ndd) {
 316                        struct nd_namespace_index *nsindex;
 317
 318                        nsindex = to_namespace_index(ndd, ndd->ns_current);
 319                        rc = sprintf(buf, "%#llx\n",
 320                                        nd_region_interleave_set_cookie(nd_region,
 321                                                nsindex));
 322                }
 323        }
 324        nvdimm_bus_unlock(dev);
 325        nd_device_unlock(dev);
 326
 327        if (rc)
 328                return rc;
 329        return sprintf(buf, "%#llx\n", nd_set->cookie1);
 330}
 331static DEVICE_ATTR_RO(set_cookie);
 332
 333resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
 334{
 335        resource_size_t blk_max_overlap = 0, available, overlap;
 336        int i;
 337
 338        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 339
 340 retry:
 341        available = 0;
 342        overlap = blk_max_overlap;
 343        for (i = 0; i < nd_region->ndr_mappings; i++) {
 344                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 345                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 346
 347                /* if a dimm is disabled the available capacity is zero */
 348                if (!ndd)
 349                        return 0;
 350
 351                if (is_memory(&nd_region->dev)) {
 352                        available += nd_pmem_available_dpa(nd_region,
 353                                        nd_mapping, &overlap);
 354                        if (overlap > blk_max_overlap) {
 355                                blk_max_overlap = overlap;
 356                                goto retry;
 357                        }
 358                } else if (is_nd_blk(&nd_region->dev))
 359                        available += nd_blk_available_dpa(nd_region);
 360        }
 361
 362        return available;
 363}
 364
 365resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
 366{
 367        resource_size_t available = 0;
 368        int i;
 369
 370        if (is_memory(&nd_region->dev))
 371                available = PHYS_ADDR_MAX;
 372
 373        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 374        for (i = 0; i < nd_region->ndr_mappings; i++) {
 375                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 376
 377                if (is_memory(&nd_region->dev))
 378                        available = min(available,
 379                                        nd_pmem_max_contiguous_dpa(nd_region,
 380                                                                   nd_mapping));
 381                else if (is_nd_blk(&nd_region->dev))
 382                        available += nd_blk_available_dpa(nd_region);
 383        }
 384        if (is_memory(&nd_region->dev))
 385                return available * nd_region->ndr_mappings;
 386        return available;
 387}
 388
 389static ssize_t available_size_show(struct device *dev,
 390                struct device_attribute *attr, char *buf)
 391{
 392        struct nd_region *nd_region = to_nd_region(dev);
 393        unsigned long long available = 0;
 394
 395        /*
 396         * Flush in-flight updates and grab a snapshot of the available
 397         * size.  Of course, this value is potentially invalidated the
 398         * memory nvdimm_bus_lock() is dropped, but that's userspace's
 399         * problem to not race itself.
 400         */
 401        nd_device_lock(dev);
 402        nvdimm_bus_lock(dev);
 403        wait_nvdimm_bus_probe_idle(dev);
 404        available = nd_region_available_dpa(nd_region);
 405        nvdimm_bus_unlock(dev);
 406        nd_device_unlock(dev);
 407
 408        return sprintf(buf, "%llu\n", available);
 409}
 410static DEVICE_ATTR_RO(available_size);
 411
 412static ssize_t max_available_extent_show(struct device *dev,
 413                struct device_attribute *attr, char *buf)
 414{
 415        struct nd_region *nd_region = to_nd_region(dev);
 416        unsigned long long available = 0;
 417
 418        nd_device_lock(dev);
 419        nvdimm_bus_lock(dev);
 420        wait_nvdimm_bus_probe_idle(dev);
 421        available = nd_region_allocatable_dpa(nd_region);
 422        nvdimm_bus_unlock(dev);
 423        nd_device_unlock(dev);
 424
 425        return sprintf(buf, "%llu\n", available);
 426}
 427static DEVICE_ATTR_RO(max_available_extent);
 428
 429static ssize_t init_namespaces_show(struct device *dev,
 430                struct device_attribute *attr, char *buf)
 431{
 432        struct nd_region_data *ndrd = dev_get_drvdata(dev);
 433        ssize_t rc;
 434
 435        nvdimm_bus_lock(dev);
 436        if (ndrd)
 437                rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
 438        else
 439                rc = -ENXIO;
 440        nvdimm_bus_unlock(dev);
 441
 442        return rc;
 443}
 444static DEVICE_ATTR_RO(init_namespaces);
 445
 446static ssize_t namespace_seed_show(struct device *dev,
 447                struct device_attribute *attr, char *buf)
 448{
 449        struct nd_region *nd_region = to_nd_region(dev);
 450        ssize_t rc;
 451
 452        nvdimm_bus_lock(dev);
 453        if (nd_region->ns_seed)
 454                rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
 455        else
 456                rc = sprintf(buf, "\n");
 457        nvdimm_bus_unlock(dev);
 458        return rc;
 459}
 460static DEVICE_ATTR_RO(namespace_seed);
 461
 462static ssize_t btt_seed_show(struct device *dev,
 463                struct device_attribute *attr, char *buf)
 464{
 465        struct nd_region *nd_region = to_nd_region(dev);
 466        ssize_t rc;
 467
 468        nvdimm_bus_lock(dev);
 469        if (nd_region->btt_seed)
 470                rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
 471        else
 472                rc = sprintf(buf, "\n");
 473        nvdimm_bus_unlock(dev);
 474
 475        return rc;
 476}
 477static DEVICE_ATTR_RO(btt_seed);
 478
 479static ssize_t pfn_seed_show(struct device *dev,
 480                struct device_attribute *attr, char *buf)
 481{
 482        struct nd_region *nd_region = to_nd_region(dev);
 483        ssize_t rc;
 484
 485        nvdimm_bus_lock(dev);
 486        if (nd_region->pfn_seed)
 487                rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
 488        else
 489                rc = sprintf(buf, "\n");
 490        nvdimm_bus_unlock(dev);
 491
 492        return rc;
 493}
 494static DEVICE_ATTR_RO(pfn_seed);
 495
 496static ssize_t dax_seed_show(struct device *dev,
 497                struct device_attribute *attr, char *buf)
 498{
 499        struct nd_region *nd_region = to_nd_region(dev);
 500        ssize_t rc;
 501
 502        nvdimm_bus_lock(dev);
 503        if (nd_region->dax_seed)
 504                rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
 505        else
 506                rc = sprintf(buf, "\n");
 507        nvdimm_bus_unlock(dev);
 508
 509        return rc;
 510}
 511static DEVICE_ATTR_RO(dax_seed);
 512
 513static ssize_t read_only_show(struct device *dev,
 514                struct device_attribute *attr, char *buf)
 515{
 516        struct nd_region *nd_region = to_nd_region(dev);
 517
 518        return sprintf(buf, "%d\n", nd_region->ro);
 519}
 520
 521static ssize_t read_only_store(struct device *dev,
 522                struct device_attribute *attr, const char *buf, size_t len)
 523{
 524        bool ro;
 525        int rc = strtobool(buf, &ro);
 526        struct nd_region *nd_region = to_nd_region(dev);
 527
 528        if (rc)
 529                return rc;
 530
 531        nd_region->ro = ro;
 532        return len;
 533}
 534static DEVICE_ATTR_RW(read_only);
 535
 536static ssize_t align_show(struct device *dev,
 537                struct device_attribute *attr, char *buf)
 538{
 539        struct nd_region *nd_region = to_nd_region(dev);
 540
 541        return sprintf(buf, "%#lx\n", nd_region->align);
 542}
 543
 544static ssize_t align_store(struct device *dev,
 545                struct device_attribute *attr, const char *buf, size_t len)
 546{
 547        struct nd_region *nd_region = to_nd_region(dev);
 548        unsigned long val, dpa;
 549        u32 remainder;
 550        int rc;
 551
 552        rc = kstrtoul(buf, 0, &val);
 553        if (rc)
 554                return rc;
 555
 556        if (!nd_region->ndr_mappings)
 557                return -ENXIO;
 558
 559        /*
 560         * Ensure space-align is evenly divisible by the region
 561         * interleave-width because the kernel typically has no facility
 562         * to determine which DIMM(s), dimm-physical-addresses, would
 563         * contribute to the tail capacity in system-physical-address
 564         * space for the namespace.
 565         */
 566        dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
 567        if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
 568                        || val > region_size(nd_region) || remainder)
 569                return -EINVAL;
 570
 571        /*
 572         * Given that space allocation consults this value multiple
 573         * times ensure it does not change for the duration of the
 574         * allocation.
 575         */
 576        nvdimm_bus_lock(dev);
 577        nd_region->align = val;
 578        nvdimm_bus_unlock(dev);
 579
 580        return len;
 581}
 582static DEVICE_ATTR_RW(align);
 583
 584static ssize_t region_badblocks_show(struct device *dev,
 585                struct device_attribute *attr, char *buf)
 586{
 587        struct nd_region *nd_region = to_nd_region(dev);
 588        ssize_t rc;
 589
 590        nd_device_lock(dev);
 591        if (dev->driver)
 592                rc = badblocks_show(&nd_region->bb, buf, 0);
 593        else
 594                rc = -ENXIO;
 595        nd_device_unlock(dev);
 596
 597        return rc;
 598}
 599static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
 600
 601static ssize_t resource_show(struct device *dev,
 602                struct device_attribute *attr, char *buf)
 603{
 604        struct nd_region *nd_region = to_nd_region(dev);
 605
 606        return sprintf(buf, "%#llx\n", nd_region->ndr_start);
 607}
 608static DEVICE_ATTR_ADMIN_RO(resource);
 609
 610static ssize_t persistence_domain_show(struct device *dev,
 611                struct device_attribute *attr, char *buf)
 612{
 613        struct nd_region *nd_region = to_nd_region(dev);
 614
 615        if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
 616                return sprintf(buf, "cpu_cache\n");
 617        else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
 618                return sprintf(buf, "memory_controller\n");
 619        else
 620                return sprintf(buf, "\n");
 621}
 622static DEVICE_ATTR_RO(persistence_domain);
 623
 624static struct attribute *nd_region_attributes[] = {
 625        &dev_attr_size.attr,
 626        &dev_attr_align.attr,
 627        &dev_attr_nstype.attr,
 628        &dev_attr_mappings.attr,
 629        &dev_attr_btt_seed.attr,
 630        &dev_attr_pfn_seed.attr,
 631        &dev_attr_dax_seed.attr,
 632        &dev_attr_deep_flush.attr,
 633        &dev_attr_read_only.attr,
 634        &dev_attr_set_cookie.attr,
 635        &dev_attr_available_size.attr,
 636        &dev_attr_max_available_extent.attr,
 637        &dev_attr_namespace_seed.attr,
 638        &dev_attr_init_namespaces.attr,
 639        &dev_attr_badblocks.attr,
 640        &dev_attr_resource.attr,
 641        &dev_attr_persistence_domain.attr,
 642        NULL,
 643};
 644
 645static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
 646{
 647        struct device *dev = container_of(kobj, typeof(*dev), kobj);
 648        struct nd_region *nd_region = to_nd_region(dev);
 649        struct nd_interleave_set *nd_set = nd_region->nd_set;
 650        int type = nd_region_to_nstype(nd_region);
 651
 652        if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
 653                return 0;
 654
 655        if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
 656                return 0;
 657
 658        if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
 659                return 0;
 660
 661        if (a == &dev_attr_resource.attr && !is_memory(dev))
 662                return 0;
 663
 664        if (a == &dev_attr_deep_flush.attr) {
 665                int has_flush = nvdimm_has_flush(nd_region);
 666
 667                if (has_flush == 1)
 668                        return a->mode;
 669                else if (has_flush == 0)
 670                        return 0444;
 671                else
 672                        return 0;
 673        }
 674
 675        if (a == &dev_attr_persistence_domain.attr) {
 676                if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
 677                                        | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
 678                        return 0;
 679                return a->mode;
 680        }
 681
 682        if (a == &dev_attr_align.attr)
 683                return a->mode;
 684
 685        if (a != &dev_attr_set_cookie.attr
 686                        && a != &dev_attr_available_size.attr)
 687                return a->mode;
 688
 689        if ((type == ND_DEVICE_NAMESPACE_PMEM
 690                                || type == ND_DEVICE_NAMESPACE_BLK)
 691                        && a == &dev_attr_available_size.attr)
 692                return a->mode;
 693        else if (is_memory(dev) && nd_set)
 694                return a->mode;
 695
 696        return 0;
 697}
 698
 699static ssize_t mappingN(struct device *dev, char *buf, int n)
 700{
 701        struct nd_region *nd_region = to_nd_region(dev);
 702        struct nd_mapping *nd_mapping;
 703        struct nvdimm *nvdimm;
 704
 705        if (n >= nd_region->ndr_mappings)
 706                return -ENXIO;
 707        nd_mapping = &nd_region->mapping[n];
 708        nvdimm = nd_mapping->nvdimm;
 709
 710        return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
 711                        nd_mapping->start, nd_mapping->size,
 712                        nd_mapping->position);
 713}
 714
 715#define REGION_MAPPING(idx) \
 716static ssize_t mapping##idx##_show(struct device *dev,          \
 717                struct device_attribute *attr, char *buf)       \
 718{                                                               \
 719        return mappingN(dev, buf, idx);                         \
 720}                                                               \
 721static DEVICE_ATTR_RO(mapping##idx)
 722
 723/*
 724 * 32 should be enough for a while, even in the presence of socket
 725 * interleave a 32-way interleave set is a degenerate case.
 726 */
 727REGION_MAPPING(0);
 728REGION_MAPPING(1);
 729REGION_MAPPING(2);
 730REGION_MAPPING(3);
 731REGION_MAPPING(4);
 732REGION_MAPPING(5);
 733REGION_MAPPING(6);
 734REGION_MAPPING(7);
 735REGION_MAPPING(8);
 736REGION_MAPPING(9);
 737REGION_MAPPING(10);
 738REGION_MAPPING(11);
 739REGION_MAPPING(12);
 740REGION_MAPPING(13);
 741REGION_MAPPING(14);
 742REGION_MAPPING(15);
 743REGION_MAPPING(16);
 744REGION_MAPPING(17);
 745REGION_MAPPING(18);
 746REGION_MAPPING(19);
 747REGION_MAPPING(20);
 748REGION_MAPPING(21);
 749REGION_MAPPING(22);
 750REGION_MAPPING(23);
 751REGION_MAPPING(24);
 752REGION_MAPPING(25);
 753REGION_MAPPING(26);
 754REGION_MAPPING(27);
 755REGION_MAPPING(28);
 756REGION_MAPPING(29);
 757REGION_MAPPING(30);
 758REGION_MAPPING(31);
 759
 760static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
 761{
 762        struct device *dev = container_of(kobj, struct device, kobj);
 763        struct nd_region *nd_region = to_nd_region(dev);
 764
 765        if (n < nd_region->ndr_mappings)
 766                return a->mode;
 767        return 0;
 768}
 769
 770static struct attribute *mapping_attributes[] = {
 771        &dev_attr_mapping0.attr,
 772        &dev_attr_mapping1.attr,
 773        &dev_attr_mapping2.attr,
 774        &dev_attr_mapping3.attr,
 775        &dev_attr_mapping4.attr,
 776        &dev_attr_mapping5.attr,
 777        &dev_attr_mapping6.attr,
 778        &dev_attr_mapping7.attr,
 779        &dev_attr_mapping8.attr,
 780        &dev_attr_mapping9.attr,
 781        &dev_attr_mapping10.attr,
 782        &dev_attr_mapping11.attr,
 783        &dev_attr_mapping12.attr,
 784        &dev_attr_mapping13.attr,
 785        &dev_attr_mapping14.attr,
 786        &dev_attr_mapping15.attr,
 787        &dev_attr_mapping16.attr,
 788        &dev_attr_mapping17.attr,
 789        &dev_attr_mapping18.attr,
 790        &dev_attr_mapping19.attr,
 791        &dev_attr_mapping20.attr,
 792        &dev_attr_mapping21.attr,
 793        &dev_attr_mapping22.attr,
 794        &dev_attr_mapping23.attr,
 795        &dev_attr_mapping24.attr,
 796        &dev_attr_mapping25.attr,
 797        &dev_attr_mapping26.attr,
 798        &dev_attr_mapping27.attr,
 799        &dev_attr_mapping28.attr,
 800        &dev_attr_mapping29.attr,
 801        &dev_attr_mapping30.attr,
 802        &dev_attr_mapping31.attr,
 803        NULL,
 804};
 805
 806static const struct attribute_group nd_mapping_attribute_group = {
 807        .is_visible = mapping_visible,
 808        .attrs = mapping_attributes,
 809};
 810
 811static const struct attribute_group nd_region_attribute_group = {
 812        .attrs = nd_region_attributes,
 813        .is_visible = region_visible,
 814};
 815
 816static const struct attribute_group *nd_region_attribute_groups[] = {
 817        &nd_device_attribute_group,
 818        &nd_region_attribute_group,
 819        &nd_numa_attribute_group,
 820        &nd_mapping_attribute_group,
 821        NULL,
 822};
 823
 824static const struct device_type nd_blk_device_type = {
 825        .name = "nd_blk",
 826        .release = nd_region_release,
 827        .groups = nd_region_attribute_groups,
 828};
 829
 830static const struct device_type nd_pmem_device_type = {
 831        .name = "nd_pmem",
 832        .release = nd_region_release,
 833        .groups = nd_region_attribute_groups,
 834};
 835
 836static const struct device_type nd_volatile_device_type = {
 837        .name = "nd_volatile",
 838        .release = nd_region_release,
 839        .groups = nd_region_attribute_groups,
 840};
 841
 842bool is_nd_pmem(struct device *dev)
 843{
 844        return dev ? dev->type == &nd_pmem_device_type : false;
 845}
 846
 847bool is_nd_blk(struct device *dev)
 848{
 849        return dev ? dev->type == &nd_blk_device_type : false;
 850}
 851
 852bool is_nd_volatile(struct device *dev)
 853{
 854        return dev ? dev->type == &nd_volatile_device_type : false;
 855}
 856
 857u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
 858                struct nd_namespace_index *nsindex)
 859{
 860        struct nd_interleave_set *nd_set = nd_region->nd_set;
 861
 862        if (!nd_set)
 863                return 0;
 864
 865        if (nsindex && __le16_to_cpu(nsindex->major) == 1
 866                        && __le16_to_cpu(nsindex->minor) == 1)
 867                return nd_set->cookie1;
 868        return nd_set->cookie2;
 869}
 870
 871u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
 872{
 873        struct nd_interleave_set *nd_set = nd_region->nd_set;
 874
 875        if (nd_set)
 876                return nd_set->altcookie;
 877        return 0;
 878}
 879
 880void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
 881{
 882        struct nd_label_ent *label_ent, *e;
 883
 884        lockdep_assert_held(&nd_mapping->lock);
 885        list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
 886                list_del(&label_ent->list);
 887                kfree(label_ent);
 888        }
 889}
 890
 891/*
 892 * When a namespace is activated create new seeds for the next
 893 * namespace, or namespace-personality to be configured.
 894 */
 895void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
 896{
 897        nvdimm_bus_lock(dev);
 898        if (nd_region->ns_seed == dev) {
 899                nd_region_create_ns_seed(nd_region);
 900        } else if (is_nd_btt(dev)) {
 901                struct nd_btt *nd_btt = to_nd_btt(dev);
 902
 903                if (nd_region->btt_seed == dev)
 904                        nd_region_create_btt_seed(nd_region);
 905                if (nd_region->ns_seed == &nd_btt->ndns->dev)
 906                        nd_region_create_ns_seed(nd_region);
 907        } else if (is_nd_pfn(dev)) {
 908                struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 909
 910                if (nd_region->pfn_seed == dev)
 911                        nd_region_create_pfn_seed(nd_region);
 912                if (nd_region->ns_seed == &nd_pfn->ndns->dev)
 913                        nd_region_create_ns_seed(nd_region);
 914        } else if (is_nd_dax(dev)) {
 915                struct nd_dax *nd_dax = to_nd_dax(dev);
 916
 917                if (nd_region->dax_seed == dev)
 918                        nd_region_create_dax_seed(nd_region);
 919                if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
 920                        nd_region_create_ns_seed(nd_region);
 921        }
 922        nvdimm_bus_unlock(dev);
 923}
 924
 925int nd_blk_region_init(struct nd_region *nd_region)
 926{
 927        struct device *dev = &nd_region->dev;
 928        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
 929
 930        if (!is_nd_blk(dev))
 931                return 0;
 932
 933        if (nd_region->ndr_mappings < 1) {
 934                dev_dbg(dev, "invalid BLK region\n");
 935                return -ENXIO;
 936        }
 937
 938        return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
 939}
 940
 941/**
 942 * nd_region_acquire_lane - allocate and lock a lane
 943 * @nd_region: region id and number of lanes possible
 944 *
 945 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 946 * We optimize for the common case where there are 256 lanes, one
 947 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 948 * this implementation assumes the cost of maintaining an allocator for
 949 * free lanes is on the order of the lock hold time, so it implements a
 950 * static lane = cpu % num_lanes mapping.
 951 *
 952 * In the case of a BTT instance on top of a BLK namespace a lane may be
 953 * acquired recursively.  We lock on the first instance.
 954 *
 955 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 956 * for the BTT metadata updates.
 957 */
 958unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
 959{
 960        unsigned int cpu, lane;
 961
 962        cpu = get_cpu();
 963        if (nd_region->num_lanes < nr_cpu_ids) {
 964                struct nd_percpu_lane *ndl_lock, *ndl_count;
 965
 966                lane = cpu % nd_region->num_lanes;
 967                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 968                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 969                if (ndl_count->count++ == 0)
 970                        spin_lock(&ndl_lock->lock);
 971        } else
 972                lane = cpu;
 973
 974        return lane;
 975}
 976EXPORT_SYMBOL(nd_region_acquire_lane);
 977
 978void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
 979{
 980        if (nd_region->num_lanes < nr_cpu_ids) {
 981                unsigned int cpu = get_cpu();
 982                struct nd_percpu_lane *ndl_lock, *ndl_count;
 983
 984                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 985                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 986                if (--ndl_count->count == 0)
 987                        spin_unlock(&ndl_lock->lock);
 988                put_cpu();
 989        }
 990        put_cpu();
 991}
 992EXPORT_SYMBOL(nd_region_release_lane);
 993
 994/*
 995 * PowerPC requires this alignment for memremap_pages(). All other archs
 996 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
 997 */
 998#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
 999
1000static unsigned long default_align(struct nd_region *nd_region)
1001{
1002        unsigned long align;
1003        int i, mappings;
1004        u32 remainder;
1005
1006        if (is_nd_blk(&nd_region->dev))
1007                align = PAGE_SIZE;
1008        else
1009                align = MEMREMAP_COMPAT_ALIGN_MAX;
1010
1011        for (i = 0; i < nd_region->ndr_mappings; i++) {
1012                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1013                struct nvdimm *nvdimm = nd_mapping->nvdimm;
1014
1015                if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1016                        align = MEMREMAP_COMPAT_ALIGN_MAX;
1017                        break;
1018                }
1019        }
1020
1021        mappings = max_t(u16, 1, nd_region->ndr_mappings);
1022        div_u64_rem(align, mappings, &remainder);
1023        if (remainder)
1024                align *= mappings;
1025
1026        return align;
1027}
1028
1029static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1030                struct nd_region_desc *ndr_desc,
1031                const struct device_type *dev_type, const char *caller)
1032{
1033        struct nd_region *nd_region;
1034        struct device *dev;
1035        void *region_buf;
1036        unsigned int i;
1037        int ro = 0;
1038
1039        for (i = 0; i < ndr_desc->num_mappings; i++) {
1040                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1041                struct nvdimm *nvdimm = mapping->nvdimm;
1042
1043                if ((mapping->start | mapping->size) % PAGE_SIZE) {
1044                        dev_err(&nvdimm_bus->dev,
1045                                "%s: %s mapping%d is not %ld aligned\n",
1046                                caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1047                        return NULL;
1048                }
1049
1050                if (test_bit(NDD_UNARMED, &nvdimm->flags))
1051                        ro = 1;
1052
1053                if (test_bit(NDD_NOBLK, &nvdimm->flags)
1054                                && dev_type == &nd_blk_device_type) {
1055                        dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1056                                        caller, dev_name(&nvdimm->dev), i);
1057                        return NULL;
1058                }
1059        }
1060
1061        if (dev_type == &nd_blk_device_type) {
1062                struct nd_blk_region_desc *ndbr_desc;
1063                struct nd_blk_region *ndbr;
1064
1065                ndbr_desc = to_blk_region_desc(ndr_desc);
1066                ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1067                                * ndr_desc->num_mappings,
1068                                GFP_KERNEL);
1069                if (ndbr) {
1070                        nd_region = &ndbr->nd_region;
1071                        ndbr->enable = ndbr_desc->enable;
1072                        ndbr->do_io = ndbr_desc->do_io;
1073                }
1074                region_buf = ndbr;
1075        } else {
1076                nd_region = kzalloc(struct_size(nd_region, mapping,
1077                                                ndr_desc->num_mappings),
1078                                    GFP_KERNEL);
1079                region_buf = nd_region;
1080        }
1081
1082        if (!region_buf)
1083                return NULL;
1084        nd_region->id = memregion_alloc(GFP_KERNEL);
1085        if (nd_region->id < 0)
1086                goto err_id;
1087
1088        nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1089        if (!nd_region->lane)
1090                goto err_percpu;
1091
1092        for (i = 0; i < nr_cpu_ids; i++) {
1093                struct nd_percpu_lane *ndl;
1094
1095                ndl = per_cpu_ptr(nd_region->lane, i);
1096                spin_lock_init(&ndl->lock);
1097                ndl->count = 0;
1098        }
1099
1100        for (i = 0; i < ndr_desc->num_mappings; i++) {
1101                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1102                struct nvdimm *nvdimm = mapping->nvdimm;
1103
1104                nd_region->mapping[i].nvdimm = nvdimm;
1105                nd_region->mapping[i].start = mapping->start;
1106                nd_region->mapping[i].size = mapping->size;
1107                nd_region->mapping[i].position = mapping->position;
1108                INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1109                mutex_init(&nd_region->mapping[i].lock);
1110
1111                get_device(&nvdimm->dev);
1112        }
1113        nd_region->ndr_mappings = ndr_desc->num_mappings;
1114        nd_region->provider_data = ndr_desc->provider_data;
1115        nd_region->nd_set = ndr_desc->nd_set;
1116        nd_region->num_lanes = ndr_desc->num_lanes;
1117        nd_region->flags = ndr_desc->flags;
1118        nd_region->ro = ro;
1119        nd_region->numa_node = ndr_desc->numa_node;
1120        nd_region->target_node = ndr_desc->target_node;
1121        ida_init(&nd_region->ns_ida);
1122        ida_init(&nd_region->btt_ida);
1123        ida_init(&nd_region->pfn_ida);
1124        ida_init(&nd_region->dax_ida);
1125        dev = &nd_region->dev;
1126        dev_set_name(dev, "region%d", nd_region->id);
1127        dev->parent = &nvdimm_bus->dev;
1128        dev->type = dev_type;
1129        dev->groups = ndr_desc->attr_groups;
1130        dev->of_node = ndr_desc->of_node;
1131        nd_region->ndr_size = resource_size(ndr_desc->res);
1132        nd_region->ndr_start = ndr_desc->res->start;
1133        nd_region->align = default_align(nd_region);
1134        if (ndr_desc->flush)
1135                nd_region->flush = ndr_desc->flush;
1136        else
1137                nd_region->flush = NULL;
1138
1139        nd_device_register(dev);
1140
1141        return nd_region;
1142
1143 err_percpu:
1144        memregion_free(nd_region->id);
1145 err_id:
1146        kfree(region_buf);
1147        return NULL;
1148}
1149
1150struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1151                struct nd_region_desc *ndr_desc)
1152{
1153        ndr_desc->num_lanes = ND_MAX_LANES;
1154        return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1155                        __func__);
1156}
1157EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1158
1159struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1160                struct nd_region_desc *ndr_desc)
1161{
1162        if (ndr_desc->num_mappings > 1)
1163                return NULL;
1164        ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1165        return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1166                        __func__);
1167}
1168EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1169
1170struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1171                struct nd_region_desc *ndr_desc)
1172{
1173        ndr_desc->num_lanes = ND_MAX_LANES;
1174        return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1175                        __func__);
1176}
1177EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1178
1179int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1180{
1181        int rc = 0;
1182
1183        if (!nd_region->flush)
1184                rc = generic_nvdimm_flush(nd_region);
1185        else {
1186                if (nd_region->flush(nd_region, bio))
1187                        rc = -EIO;
1188        }
1189
1190        return rc;
1191}
1192/**
1193 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1194 * @nd_region: blk or interleaved pmem region
1195 */
1196int generic_nvdimm_flush(struct nd_region *nd_region)
1197{
1198        struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1199        int i, idx;
1200
1201        /*
1202         * Try to encourage some diversity in flush hint addresses
1203         * across cpus assuming a limited number of flush hints.
1204         */
1205        idx = this_cpu_read(flush_idx);
1206        idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1207
1208        /*
1209         * The pmem_wmb() is needed to 'sfence' all
1210         * previous writes such that they are architecturally visible for
1211         * the platform buffer flush. Note that we've already arranged for pmem
1212         * writes to avoid the cache via memcpy_flushcache().  The final
1213         * wmb() ensures ordering for the NVDIMM flush write.
1214         */
1215        pmem_wmb();
1216        for (i = 0; i < nd_region->ndr_mappings; i++)
1217                if (ndrd_get_flush_wpq(ndrd, i, 0))
1218                        writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1219        wmb();
1220
1221        return 0;
1222}
1223EXPORT_SYMBOL_GPL(nvdimm_flush);
1224
1225/**
1226 * nvdimm_has_flush - determine write flushing requirements
1227 * @nd_region: blk or interleaved pmem region
1228 *
1229 * Returns 1 if writes require flushing
1230 * Returns 0 if writes do not require flushing
1231 * Returns -ENXIO if flushing capability can not be determined
1232 */
1233int nvdimm_has_flush(struct nd_region *nd_region)
1234{
1235        int i;
1236
1237        /* no nvdimm or pmem api == flushing capability unknown */
1238        if (nd_region->ndr_mappings == 0
1239                        || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1240                return -ENXIO;
1241
1242        for (i = 0; i < nd_region->ndr_mappings; i++) {
1243                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1244                struct nvdimm *nvdimm = nd_mapping->nvdimm;
1245
1246                /* flush hints present / available */
1247                if (nvdimm->num_flush)
1248                        return 1;
1249        }
1250
1251        /*
1252         * The platform defines dimm devices without hints, assume
1253         * platform persistence mechanism like ADR
1254         */
1255        return 0;
1256}
1257EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1258
1259int nvdimm_has_cache(struct nd_region *nd_region)
1260{
1261        return is_nd_pmem(&nd_region->dev) &&
1262                !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1263}
1264EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1265
1266bool is_nvdimm_sync(struct nd_region *nd_region)
1267{
1268        if (is_nd_volatile(&nd_region->dev))
1269                return true;
1270
1271        return is_nd_pmem(&nd_region->dev) &&
1272                !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1273}
1274EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1275
1276struct conflict_context {
1277        struct nd_region *nd_region;
1278        resource_size_t start, size;
1279};
1280
1281static int region_conflict(struct device *dev, void *data)
1282{
1283        struct nd_region *nd_region;
1284        struct conflict_context *ctx = data;
1285        resource_size_t res_end, region_end, region_start;
1286
1287        if (!is_memory(dev))
1288                return 0;
1289
1290        nd_region = to_nd_region(dev);
1291        if (nd_region == ctx->nd_region)
1292                return 0;
1293
1294        res_end = ctx->start + ctx->size;
1295        region_start = nd_region->ndr_start;
1296        region_end = region_start + nd_region->ndr_size;
1297        if (ctx->start >= region_start && ctx->start < region_end)
1298                return -EBUSY;
1299        if (res_end > region_start && res_end <= region_end)
1300                return -EBUSY;
1301        return 0;
1302}
1303
1304int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1305                resource_size_t size)
1306{
1307        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1308        struct conflict_context ctx = {
1309                .nd_region = nd_region,
1310                .start = start,
1311                .size = size,
1312        };
1313
1314        return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1315}
1316